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Abstract: We present results from large ensembles of projected 21st century changes in seasonal precipitation 
and near-surface air temperature over Africa and selected sub-continental regions. These ensembles are a 
result of combining Monte Carlo projections from a human-Earth system model of intermediate complexity 
with pattern-scaled responses from climate models of the Coupled Model Intercomparison Project Phase 
6. These future ensemble scenarios consider a range of global actions to abate emissions through the 21st 
century. We evaluate distributions of surface-air temperature and precipitation change.  In all regions, 
we find that without any emissions or climate targets in place, there is a greater than 50% likelihood that 
mid-century temperatures will increase threefold over the current climate’s two-standard deviation range 
of variability. However, scenarios that consider more aggressive climate targets all but eliminate the risk of 
these salient temperature increases.  A preponderance of risk toward decreased precipitation exists for much 
of the southern Africa region considered, and this is also compounded by enhanced warming (relative to 
the global trajectory).  Over eastern and western Africa, the preponderance of risk in increased precipitation 
change is seen. Strong climate targets abate evolving regional hydroclimatic risks. Under a target to limit 
global climate warming to 1.5˚C by 2100, the risk of precipitation changes within Africa toward the end of 
this century (2065-2074) is commensurate to the risk during the 2030s without any global climate target. 
Thus, these regional hydroclimate risks over much Africa could be delayed by 30 years, and in doing so, 
provide invaluable lead-time for national efforts to prepare, fortify, and/or adapt.
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1. Introduction
Africa is faced with the very real threat of substantial hu-
man-forced climate changes in the coming decades. Geo-
graphically, Africa is a remarkable continent and presents 
some of the most challenging features with a total landscape 
that spans across the Northern and Southern Hemispheres 
and covers climate and weather regimes characterized by the 
tropics, sub-tropics, and extra-tropics. Africa’s climate and 
weather systems are interconnected across these regimes 
and therefore challenge the use of climate models to iden-
tify and predict specific emerging patterns that will result 
from human-forced global changes. These uncertainties 
necessitate a comprehensive sampling of the many plausible 
outcomes that may occur in the future, and the use of global 
climate models such that the important teleconnections 
across the tropics, sub-tropics, and extra-tropics can be 
explicitly represented. While efforts to provide the most 
spatially refined information will ultimately be crucial to 
providing local/location-based guidance for stakeholders, 
the modeling tools by which this information can be deliv-
ered (i.e. regional climate models) continue to suffer from 
the inability to comprehensively sample across structural 
uncertainties in prediction. As such, our ability to rigorously 
qualify and quantify the distributions and likelihood of 
regional climate outcomes presently rely upon methods that 
incorporate rigorous sampling of global-scale uncertainties 
in the human-forced climate response and translating how 
these manifests into regional outcomes. Comprehensive 
assessments of the global climate sensitivity using traditional 
climate models are untenable, and therefore we must rely 
on reduced form models to assign boundaries and sampling 
distributions (e.g., Sokolov et al., 2018 and Libardoni et al., 
2018). Further, these large-ensemble simulations should 
also consider several different scenarios that consider a 
range of global emissions pathways and/or climate targets 
(e.g., Morris et al., 2021), and provide spatial details that 
are commensurate to the requirements for regional impact 
studies (e.g., Pierce et al., 2009). 
In view of these considerations, we employ a hybridiza-
tion of Earth-system models to analyze the likelihood of 
changes in precipitation and surface-air temperature in the 
coming decades and into the latter half of this century for 
the greater southern Africa region with a regional emphasis 
over Africa. We employ a technique (Schlosser et al., 2012) 
that constructs large ensembles of plausible climate change. 
This method combines plausible patterns of human-forced 
regional climate change with a comprehensive assessment 
of the global climate change response as determined by 
the MIT Integrated Global System Model (Paltsev and 
Schlosser, 2021). We evaluate the resultant distributions 
over three selected regions over Africa that correspond 
with notable climatic features. We identify the salient shifts 
in these derived distributions from a reference emission 

scenario to moderate to aggressive climate-stabilization 
policies. We close with summary remarks and discussion 
of ongoing work and applications.

2. Assessment of regional 
Climate shifts

2.1 Region of Study and Variables of Interest

The overall area of study (Fig. 1) is an extension and com-
pliment to prior work (Schlosser et al., 2021; Arndt et al., 
2019; Schlosser and Strzepek, 2015; and Fant et al., 2015) 
that provide multi-sector socio-economic-environmental 
assessments of climate risks for developing nations across 
Africa, and the effectiveness of low-carbon pathways to 
reduce risks. This study will present a screening-level as-
sessment of potential climate shifts over Africa and focus 
on two key hydro-climatic variables: precipitation and 
near-surface air temperature (Ta). At a screening level 
assessment, we will focus our analyses on area-averaged, 
distributional changes over three large sub-regions of Africa 
(denoted in Fig. 1): Eastern Africa (EAfr), West Central 
Africa (WCA), and Southern Africa (SAfr). A description 
of the model experimentation and methodology is provided 
in the next section. Below we describe some of the seasonal 
features of Ta and precipitation of the current climate that 
are aligned and distinguish our three regional areas of focus. 
Our historical assessment is based on the observations 
taken from the Global Precipitation Climatology Project 
(GPCP, Huffman et al, 2009, and updates by Adler et al., 
2018) as well as Ta from the Climate Research Unit (CRU, 
e.g., Osborn et al., 2014). 

Figure 1. Map of the study region considered in this study. 
the major sub-regions of Africa are also indicated by the color 
shaded grids. these sub-regions are also used as the basis for 
the area-averaged results presented in the analyses.
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Among the three regions considered, the SAfr region is 
distinguished by the strongest amplitude in the annual cycle 
of (seasonally averaged) precipitation (Fig. 2), and during 
its colder seasonal periods experiences the lowest rates of 
precipitation among the three regions considered in this 
study. The strongest degree of interannual variability occurs 
during the spring season periods. In contrast, the EAfr and 
WCA regions experience notably smaller annual-cycle 
amplitudes in precipitation, but like SAfr, their highest 
precipitation rates occur during the summer periods, with 
(weaker) dry periods in their winter periods. The seasonal-
ity of Ta, in terms of amplitude, exhibits more consistency 
across the regions compared to precipitation (Fig. 2). The 

most notable distinction among the three regions is that 
SAfr experiences the coldest seasonal temperatures and is 
mostly likely a result of its landscape being located at the 
higher latitudes (than EAfr and WCA).
In order to gauge a degree of salience to the changes pro-
duced by the ensemble scenarios of change (described in 
the next sections), we have also assessed the interdecadal 
standard deviation of the seasonal, area-averaged quanti-
ties (Table 1, in italics). For surface-air temperature, the 
standard deviations are similar across seasons and the 
regions. For precipitation, overall the degree of variability 
is consistent across the regions and seasons, with a salient 
exception over SAfr during the summer periods (about 
twice as high). In our assessment of the distribution of 
changes across the 21st century (Section 2.4), we will high-
light the portions of the distributions that are in exceedance 
to these variance statistics, and in this way, represent the 
risk of salient change. It should be noted that the limited 
temporal extent of these historical data sets may affect the 
robustness of our inter-decadal variance estimates.

2.2 Scenarios of Global Change
The set of scenarios for this study was selected from the 
2021 Food, Energy, Water, and Climate Outlook (Paltsev and 
Schlosser, 2021) produced by the MIT Joint Program on the 
Science and Policy of Global Change using the Integrated 
Global System Model (IGSM) framework. Each IGSM 
scenarios consist of a large ensemble of 400 members. The 
ensemble provides a multi-dimensional Latin-Hypercube 
sampling that spans the plausible Earth systems’ response 
to natural and anthropogenic drivers, with the sampling 
boundaries determined by observations (e.g., Sokolov et al., 
2018 and Libardoni et al., 2018). It also spans a range of 
global emissions policies and are based on a regionally 

Table 1. Mean (bold) and standard deviations (italics) of 
area-averaged precipitation and surface-air temperature for the 
Eastern, West Central, and eastern south Africa regions (EAfr, 
WCA, and sAfr respectively) of study. Results are presented 
for two seasonal mean periods: December-February (DJF) 
and June-August (JJA). the diagnostics of precipitation (units 
in mm/decads, decad=10 days) are based on the global 
Precipitation Climatology Project (units in ˚C), and surface-air 
temperature is based on observations assembled by the 
Climate Research unit (CRu). see text for citations to data. 
statistics span the years 1979-2019, and note that the standard 
deviation estimates are based across decadal means for each 
season so as to serve as a baseline for the decadal mean 
changes assessed in the 21st century scenario projections. 

EAfr WCA SAfr

Precipitation
DJF 11.5 ± 0.5 10.9 ± 0.4 41.8 ± 0.9
JJA 15.2 ± 0.4 21.5 ± 0.5 7.0  ± 0.4

Temperature
DJF 19.4 ± 0.4 19.3 ± 0.3 23.0 ± 0.2
JJA 26.3 ± 0.3 27.5 ± 0.3 16.5 ± 0.3

Figure 2. Running seasonally averaged (1979–2009) maps of 
surface-air temperature (top panel) and precipitation (bottom 
panel). surface-air temperature is in units of ˚C and based 
on the Climate Research unit (CRu, Jones et al., 1999) data 
archive. Precipitation is in units of mm/day and based on the 
data from the global Precipitation Climatology Project (gPCP, 
Huffman et al., 2007). the results are shown as area-weighted 
averages for three sub-regions of focus: eastern (EAfr), 
western-central (WCA), and southern (sAfr) Africa (refer to Fig. 
1 for the mapping of these domains). the solid lines indicate the 
mean values and the lighter dotted lines indicate the plus/minus 
one standard-deviation of their inter-decadal variability.
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detailed, multi-sector, economy-wide model that includes 
pricing of fossil fuels, fossil resources, and vintage capital 
in capital intensive sectors (e.g., Chen et al., 2016). Under 
the policy scenarios that are described below, prematurely 
retired capital stock and the need to replace conventional 
energy sources with more expensive, low-carbon options 
draw investment resources away from other sectors of 
the economy and, thus, have an impact on GDP growth 
in mitigation scenarios. However, it is reallocated toward 
those energy sources that meet the emissions reduction 
targets at least cost. Four scenarios, developed to span a 
range of possible global actions to abate greenhouse gas 
emissions over the coming century, were used to explore 
climate-change risks.
Baseline with Covid (BASECOV): This scenario has 
no explicit climate mitigation policies anywhere in the 
world. Thus, it represents a world in which there is no 
Paris Agreement and no alternative action towards re-
ducing emissions for the sake of limiting climate change. 
However, it includes some energy policies such as fuel 
economy standards, renewable electricity requirements, 
and the gradual phase-out of old coal power plants that are 
presently occurring with various motivations. These moti-
vations include reducing imported oil dependence, using 
less of exhaustible resources, or to reducing conventional 
pollutants. In the 2021 Outlook, we include an assessment 
of Covid-19 impacts on economic growth, energy, and 
emissions. The Covid-19 pandemic is projected to have a 
short-term direct impact on greenhouse gas (GHG) emis-
sions. For near-term economic growth projections (up 
to 2030, including impacts from Covid-19), we rely on 
our recent analysis (Reilly et al., 2021); for medium-term 
projections (up to 2050), we use OECD (2020) and IEA 
(2020) forecasts. For GDP growth rates after 2050, we 
assume constant productivity growth profiles based on 
the corresponding region-specific rates in mid-century. 
The BASECOV serves as a baseline scenario because of 
its simplicity. Metrics from the other scenarios are often 
presented as the difference between another scenario and 
the BASECOV scenario. It provides the upper assessment 
of our modeled physical risks.
Paris Forever with Covid (PFCOV): Countries meet the 
mitigation targets in their Nationally Determined Contri-
butions (NDCs) and continue to abide by them through the 
end of the century. The Paris Agreement includes NDCs 
submitted at the 2015 Paris Conference of the Parties (COP) 
of the Framework Convention on Climate Change (FCCC). 
These NDCs—aimed at the reduction of CO2 and other 
GHG emissions—generally deepened and extended through 
2030 those made at the 2009 Copenhagen COP through 
2020. These reductions are typically expressed as (1) an 
absolute emissions target (ABS), measured as an annual 
level of emissions measured in Mt, (2) a percentage re-

duction from a pre-determined baseline, which can easily 
be converted into an absolute emissions target, or (3) an 
emissions intensity target (INT), measured as emissions 
in relation to GDP.
Paris2C: This scenario aims to limit climate warming to no 
higher than a 2˚C global average at 2100. This is achieved 
by implementing a globally coordinated, smoothly rising 
carbon price – such that emissions are reduced. Variations 
in mitigation policies result in the overall uncertainty of dif-
ferent patterns of resource and energy use, different choices 
of technology, and drag on overall economic growth. This 
is also combined with the uncertainty of the global climate 
response that is represented in the MIT Earth System Model 
(MESM, Sokolov et al., 2019). As described in Reilly et al. 
(2018) – these co-evolving uncertainties projected within a 
Latin-hypercube sampling results in an overall probability 
of achieving the target at 66%.
Paris15C: Similar to Paris 2C, this scenario aims to limit 
climate warming to no higher than 1.5˚C global average 
at 2100. Under the similar Latin-hypercube sampling of 
structural uncertainties within the Earth and human mod-
el systems, this results in a 50% probability of achieving 
the climate target (i.e. 200 of the 400-member ensemble 
meets the target).
While these scenarios result in distinct trajectories of glob-
al averaged changes in surface-air temperature, most of 
these distinctions aren’t evident until the latter half of the 
century (Fig. 3). Nevertheless, the mid-century impact of 
the more aggressive climate-based targets (i.e. 15C and 2C 
scenarios) can be distinguished by the majority of their 
trajectories of outcomes falling outside the envelope of 
the BASECOV scenario’s trajectories and more so for the 
15C scenario. The PFCOV scenario, which captures the 
current global commitments to reduce emissions (under 
the Paris Agreement), shows considerable overlap with 
the BASECOV trajectories by mid-century, yet there is a 
discernable overall shift toward lower temperatures. Given 
all these considerations, we gauge the extent of how these 
global results translate into regional features of risk through 
a procedure described in the next section.

2.3 Regional Climate-Change Pattern Kernels
Climate information from the IGSM is supplied by the MIT 
Earth Systems Model (MESM) that is able to provide pro-
jections of human-forced change at the zonal level of detail. 
The most recent version of MESM has been extensively 
evaluated (Sokolov et al., 2018) and includes diagnoses of 
key hydro-climatic variables, namely precipitation and sur-
face-air temperature. It’s performance against observations 
at the global and zonal scales is comparable to global climate 
models from Coupled Model Intercomparison Project Phase 
5 (CMIP5, Taylor et al., 2012). As previously mentioned, 
MESM’s climate sensitivity is also bounded and sampled 
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across the range of observed estimates (Libardoni et al., 
2018). Further, we have also determined that MESM’s global 
hydrologic sensitivity (i.e. the percent change of global pre-
cipitation to a unit increase in global temperature) aligns 
strongly with state-of-the-art climate models (Paltsev et al., 
2021). Thus, MESM is an efficient model that can faithfully 
produce the global and zonal scale aspects of plausible climate 
responses to anthropogenic drivers. 
To provide regional texture to the MESM simulations, we 
must expand this information across longitudes using a 
“pattern scaling” method tailored to the MESM configura-
tion. The use of pattern-scaling methods in climate-change 
scenario assessments and impact studies is extensive and 
varied (e.g., Santer et al., 1990; Wigley et al, 2000; Mitchell, 
2003; Frieler et al., 2012; Lopez et al., 2013; and Herg-
er et al., 2015). For our particular application to the MESM 
framework, the full description and evaluation is provided 
in Schlosser et al. (2012), and herein we describe the key 
features of this transformation procedure. In the simplest 
terms, for any MESM-simulated zonal variable of interest, 
V _(y ), at a given latitude (y) under a human-forced global 
temperature change (∆T _(G), we can write a transformation 
of that variable’s value at a given longitude (x) along the 
latitude band using the following Taylor-expansion based 
numerical relationship:

  (1)

where C _(x ,y ) is a climatological-average transformation co-
efficient, which alters the zonal mean value to a particular 
value for a longitudinal point along the zonal band. We 
estimate C _(x ,y ) based on observational data. As discussed 
in Section 2.1, we will focus our attention on changes in 
near-surface air temperature (T _(a )) and precipitation. Ob-
servational data sources are the same as those used in the 
prior section that summarized the historical climates for 
our study region (GPCP and CRU). The projected change in 
globally averaged temperature, ∆T _(G ), is relative to a reference 
or climatological period (1980-1999). The derivative of these 
transformation coefficients, , for any point (x,y) are 
discretely estimated from climate model information (for 
further details, see Schlosser et al., 2012, Section 2 meth-
odology discussion of Equation 4). Therefore, we consider 
and hereafter refer to the  terms as “pattern-change 
kernels” (PCKs) of regional climate shifts. 
We construct a set of these PCKs from the latest collection 
of climate/Earth-system models that have participated 
in the Coupled Model Intercomparison Project Phase 6 
(CMIP6, Eyring et al., 2016). The CMIP6 model archive 
provides a comprehensive set of outputs from climate and 
Earth-system models that have been developed at insti-
tutes across the international scientific community. For 
the purposes of constructing the PCKs for this analysis, 
the CMIP6 model archive provides a much larger pool of 
participating models (29) than the pool of models that were 

Figure 3. Figure adapted from gao et al. (2022, their Figure 2) showing the global averaged annual surface-air temperature trends 
for the four MIt IgsM scenarios. the left panel presents the median trajectories of the IgsM ensemble, while the right panel 
provides the trajectories from all ensemble members. trends in temperature are calculated relative to the 1861-1880 mean provided 
by the Climate Research unit (CRu). the colored lines indicate the results from the various scenarios performed by the IgsM and 
used to construct the hybrid frequency distributions of outcomes (refer to text).
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employed from CMIP5 (18). In some cases, these institutes 
submitted multiple results that were conducted by their 
model under a variety of different configurations (e.g., dif-
ferent spatial resolutions and/or various parameterization 
prescriptions). In constructing this meta-ensemble, we did 
not incorporate “sibling” model results and instead selected 
only one set of model results per institute to determine a 
representative PCK. This was done to avoid biasing in the 
meta-distribution that would result from using “sibling” 
PCKs (and thereby inappropriately stacking a regional 
pattern of change). The CMIP6 models and their config-
urations chosen for the PCK construction are shown in 
Table 2. As a comparison to prior work conducted (Schloss-

er et al., 2021), the CMIP5 models that were selected for 
the PCK construction are provided in Table 3. Given the 
problematic nature of assessing the relative fidelity climate 
model projections (e.g. Reifen and Toumi, 2009), there 
was no preferential selection to one model result (e.g. the 
highest spatial resolution) when multiple configurations 
were available from an institute. This was also done so as to 
avoid any other possible sources of biasing when deriving 
these PCKs across all the models/institutes, and to achieve 
a diverse sampling of outcomes. The generation Each of 
the PCKs were constructed at the native model resolution, 
and then interpolated to a 2˚x2.5˚ common grid, which 
was commensurate with the coarsest model grid from the 

Table 2. List of CMIP6 models used in our study to construct the pattern-scaling kernels of climate change response. 

Model Name Resolution Institution

ACCESS-ESM1-5 1.875°x1.25° Australian Commonwealth Scientific and Industrial Research Organization

AWI-ESM-1-1-LR 1.875°x1.875° German Alfred Wegener Institute

BCC-CSM2-MR 1.125°x1.125° Beijing Climate Center

CAMS 1.125°x1.125° Chinese Academy of Meteorological Sciences

CanESM5 2.8125°x2.8125° Canadian Centre for Climate Modelling and Analysis

CESM2 1.25°x0.9375° National Center for Atmospheric Research

CIESM 1.25°x0.9375° Department of Earth System Science, Tsinghua University

CMCC-ESM2 1.25°x0.9375° Centro Euro-Mediterraneo Cambiamenti Climatici

CNRM-ESM2-1 1.40625°x1.40625° Centre National de Recherches Meteorologiques

EC-Earth3 0.703125°x703125° EC-Earth-Consortium

E3SM 1°x1° U.S. Department of Energy

FGOALS-g3 2.0°x2.25° Chinese Academy of Sciences

FIO-ESM-2-0 1.25°x0.9375° Qingdao National Laboratory for Marine Science and Technology

GISS-E2-2-G 2.5°x2.0° Goddard Institute for Space Studies

HadGEM3-GC31-MM 0.83°x0.56° Met Office Hadley Centre

IITM 1.875°x1.91° Indian Institute of Tropical Meteorology

INM-CM5-0 2.0°x1.5° Russian Academy of Science

IPSL-CM6A-LR 2.5°x1.26° Institut Pierre Simon Laplace

KACE 1.875°x1.25° Korea Meteorological Administration

KIOST 1.875°x1.875° Korea Institute of Ocean Science & Technology

MCM 3.75°x2.25° University of Arizona

MIROC-ES2L 2.8125°x2.8125° Japan Agency for Marine-Earth Science and Technology

MPI-ESM1-2-HR 0.9375°x0.9375° Max Planck Institute for Meteorology

MRI-ESM2-0 1.125°x1.125° Japan Meteorological Research Institute

NorESM2 1.25°x0.9375° Norwegian Climate Consortium

SAM0-UNICON 1.25°x0.9375° Seoul National University

TaiESM2 1.25°x0.9375° Research Center for Environmental Changes, Taiwan

UKESM1-0-LL 1.875°x1.25° Met Office Hadley Centre
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CMIP6 model pool. Further, we construct the (29) PCKs 
using the results from the 1% transient CO2 simulations. 
Combined with the 400 members of a MESM ensemble (at 
a 4˚ zonal resolution), we employ (1) to obtain patterns of 
change results in a meta-ensemble of 11,600 members per 
scenario (described in Section 2.2). This 11,600-member 
meta-ensemble we refer to as a “hybrid frequency distri-
bution” (HFD). Each HFD is used as the basis of our risk 
quantification and represents the range of outcomes that 
results from the global and regional structural uncertainties 
(from MESM and the PCKs). As a precursory assessment, 
we summarize the model-mean, consensus and diversity of 
the PCKs across the CMIP6 models – and we also provide 
a comparison to the PCKs that have been obtained in prior 
work (e.g., Schlosser et al., 2021) using the CMIP5 models.

2.3.1 Temperature

Overall, the multi-model means of   (or PCK) for 
Ta (Fig. 4) exhibits a distinct “colder ocean and warmer 
land” (COWL) pattern (e.g. Broccoli et al., 1998) across 
all seasons. The most notable feature in the seasonality of 
the PCKs is that the extent of the relative maxima across 
the southern and northern flanks of Africa vary, with the 
strongest extent occurring in JJA (June-August) and the 
weakest during DJF (Dec-Feb). Regionally speaking, the 

strongest degree of seasonality in these features is seen over 
the EAfr region. As described in the prior section, the effect 
of this PCK is to then produce an enhanced warming over 
land as global (and zonal) temperatures rise – as predicted 
and provided by MESM. This enhanced warming is at its 
greatest spatial extent across Africa during JJA, and at its 
weakest during summer (DJF). While the multi-model mean 
(MMM) of the PCKs suggest that this enhanced warming 
is consistent across all land areas, a closer inspection of 
the individual model PCKs (Fig. 5) multiple model results 
shown for DJF) indicates there distinct exceptions - and 
some cases reversal – to this enhanced warming. In several 
cases, this opposing relative trend covers portions of the 
Congo region or large regions across eastern and northern 
Africa, and other features show isolated buffered/reversed 
relative warming patterns to warming that are confined to 
a shallow inland extent from a coastline.

In terms of the consistency in the multi-model mean PCKs 
between CMIP6 and CMIP5, the overall patterns show a 
strong consistency (Fig. 6 and Table 4). The spatial cor-
relations between the MMM CMIP6 and CMIP5 PCKs 
are very strong across all seasons (obtaining values of at 
least 0.97). 

Table 3. List of CMIP5 models used to construct the pattern-scaling kernels of climate change response. shown are the model 
acronyms, institute/model name, and the horizontal spatial resolution of the model’s output used. 

Model Name Resolution Institution

ACCESS1-3 1.875˚ x 1.25˚ Australian Community Climate and Earth-System Simulator

BCC-CSM1-1-m 1.125 ˚ x 1.125˚ Beijing Climate Center

BNU-ESM1 2.8125˚ x 2.8125˚ Beijing Normal University

CanESM2 2.8125˚ x 2.8125˚ Canadian Earth-System Model

CESM1-BGC 1.25˚ x 0.9375˚ Community Earth System Model (NCAR)

CMCC-CM 0.75˚ x 0.75˚ Centro Euro-Mediterraneo Cambiamenti Climatici Climate Model

CNRM-CM5 1.40625˚ x 1.45˚ Centre National de Recherches Meteorologiques 

CSIRO-Mk3-6-0 1.875˚ x 1.875˚ Commonwealth Scientific and Industrial Research Organization

FGOALS-s2 2.8125˚ x 1.66˚ Flexible Global Ocean-Atmosphere-Land System 

GFDL-CM3 2.5˚ x 2.0˚ Geophysical Fluid Dynamics Laboratory

GISS-E2-R 2.5˚ x 2.0˚ Goddard Institute for Space Studies

HadGEM2-ES 1.875˚ x 1.25˚ Hadley Centre Global Environmental Model

INMCM4 2.0˚ x 1.5˚ Institute of Numerical Mathematics

IPSL-CM5B-LR 3.75˚ x 1.875˚ L’institut Pierre-Simon Laplace Coupled Model

MIROC5 1.40625˚ x 1.40625˚ Model for Interdisciplinary Research on Climate

MPI-ESM-MR 2.5 x 1.25˚ Max Planck Institute

MRI-CGCM3 1.125 x 1.125˚ Meteorological Research Institute

NorESM1-M 2.5 x 1.875˚ Norwegian Earth System Model
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Figure 4. Maps of the pattern-change kernel 
(PCK) coefficients, dCx,y /dtglobal (units of K-1), 
over Africa for surface-air temperature averaged 
over the results from the CMIP6 climate models. 
shown are the seasonally averaged pattern shifts 
for: December-February (DJF), March-May (MAM), 
June-August (JJA), and september-November (sON). 

Figure 5. Maps of the pattern-change kernels 
(PCKs) coefficients, dCx,y /dtglobal (units of K-1),, 
over southern Africa for surface-air temperature. 
shown are the results for each model of the CMIP6 
collection of the seasonally averaged pattern shifts 
for December-February (DJF). 
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2.3.2 Precipitation

The MMM as well as inter-model features of the PCKs for 
precipitation (Fig. 7) show a greater degree of heterogeneity 
(as compared to temperature) across all seasons and regions. 
However, the most persistent feature is the PCKs imposing a 
relatively weaker precipitation rate as climate warms across 
much of the SAfr region for all seasons. In contrast, regions 
in which the model-mean PCK would impart the strongest 
relative precipitation rate enhancement (as climate warms) 
occur at 10˚N during MAM (March-May) and 10˚S during 
DJF. Across equatorial Africa, a strong relative drying would 
be imposed by the PCKs during MAM, and during the 
JJA and SON (Sept.-Nov.) seasons the PCK “splits” into a 
drying pattern to the north and wetting pattern to the south 
of the equator. Overall, the most widespread PCK patterns 
occur during the MAM and SON seasonal periods. Yet the 
strongest enhanced precipitation trend is seen across 10˚S 
during DJF. Notwithstanding these common features in the 
model-mean results, the prominent feature to the precipita-
tion PCKs (particularly in light of the temperature PCKs) 
lies in the explicit inter-model features.
Looking at the PCKs across the individual models (Fig. 8) 
provides the results for DJF as an example), there are sub-
sets of models that present qualitatively similar large-scale 
orientations of relative increases and decreases compared 
to the MMM patterns. However, each model PCK carries 
with it unique, and in some cases opposing, features that 
are commensurate in spatial scale to the Africa sub-regions 
of interest. The most notable example is seen over the SAfr 
region. While the majority of the PCKs from the CMIP6 
models convey a drying trend over large portions of the 

SAfr region (consistent with the MMM result), there are a 
subset of models that are in stark and opposing contrast to 
this – with wetting trends across much of the SAfr region. 
This highlights the strength of this approach in its ability to 
efficiently track these unique features and explicitly account 
for them in the resultant HFD projections. Another example 
of this type of opposing behavior can be seen over the WCA 
region, with a PCK from one CMIP6 model producing a 
large wetting pattern, while another produces a large dry-
ing pattern, and yet the MMM pattern exhibits a relatively 
weak pattern – and consistent with the two opposing PCK 
patterns offsetting one another. This also highlights a caveat 
in the use and interpretations made with multi-model aver-
ages – particularly for the case of assessing and quantifying 
risk – as strong signals from individual results are smoothed 
out and lost in the overall interpretation. 

Figure 6. Comparison of the DJF averaged PCKs for surface-air temperature obtained from the CMIP6 models (left panel) and the CMIP5 
models. Each map depicts the mean of all the individual PCKs obtained from each of the CMIP6 models (29) and the CMIP5 models (18). 

Table 4. spatial correlations between the pattern-change kernels 
(PCKs) obtained from the CMIP6 collection of models compared 
to those from the CMIP5 models. For each correlation, a 
multi-model mean of all the PCKs is taken first (29 patterns from 
CMIP6 and 18 patterns from CMIP5), and then their seasonal 
means are calculated: DJF (Dec-Feb), MAM (March-May), JJA 
(June-Aug), and sON (sept-Nov). the spatial correlations shown 
are for the seasonally averaged, multi-model mean PCKs for 
precipitation (PCP) and surface-air temperature (t).

PCKPCP PCKT

DJF 0.43 0.97

MAM 0.58 0.98

JJA 0.74 0.99

SON 0.78 0.98
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Figure 7. Maps of southern Africa showing the 
pattern-change kernel (PCK) coefficients, dCx,y 
/dtglobal (units of K-1), for precipitation averaged 
over the results from the CMIP6 climate models. 
seasonally averaged pattern shifts shown for: 
December-February (DJF), March-May (MAM), 
June-August (JJA), and september-November (sON). 

Figure 8. Maps of southern Africa from each model of 
the CMIP6 collection showing pattern-change kernel 
(PCK) coefficients, dCx,y /dtglobal (units of K-1), for 
seasonally averaged precipitation pattern shifts for 
December-February (DJF)

REPORt 368 MIt JOINt PROgRAM ON tHE sCIENCE AND POLICY OF gLOBAL CHANgE

10



Perhaps consistent with these specific features across the 
precipitation PCKs for the individual CMIP6 models, the 
consistency of the MMM features to those derived from 
the CMIP5 models is, overall, weaker than that seen for 
temperature across all seasons (Table 4). In addition, the 
consistency for the precipitation PCKs has a distinct sea-
sonality with the strongest consistency during the SON 
and JJA seasonal periods, and weakest during the DJF and 
MAM seasonal periods. Taking a closer look at the DJF 
seasonal period (Fig. 9), the most notable distinctions that 
contribute to the reduced consistency are seen in the strong 
wetting trend in the CMIP6 pattern at 10˚S (much weaker 
if not absent in CMIP5), opposing trends across much of 
the Nile River basin, as well as contrasting features across 
much of South Africa and Madagascar. 
In light of all these considerations, the resultant HFD distri-
butions will be explored across the large Africa sub-regions 
(i.e., EAfr, WCA, and SAfr) in the section that follows. The 
analyses will consider the general time-evolving nature of 
the median, interquartile, and extremes of the projections’ 
populations, and contrast each scenario for each region. A 
closer inspection of the distribution of outcomes will then 
be presented for specific times and scenarios to highlight 
the impact of the stronger mitigation on the implied hy-
droclimatic risks across the sub-regions.

2.4 Hybrid Frequency Distribution (HFD) 
Results

2.4.1 Timeseries of Changes 

For all the sub-regions considered, there is a strong con-
sistency in the surface-air temperature responses com-
pared across the scenarios out to 2040 (Figs. 10-12) and 

is particularly evident in the median results from the HFD 
populations. However, by mid-century, the impact of re-
duced warming from the mitigation efforts in the Paris15C 
scenario is distinct from the others and persists for the 
remainder of the projections. It is not until the final de-
cade of the simulation period (the 2060s) that the median 
results from each scenario show a discernable trajectory. 
However, in terms of other key features in the distribution 
of outcomes (lower panels of Figs. 10-12), the Paris2C and 
Paris15C trajectories share a concave down characteristic 
feature, whereas the BASECOV and PFCOV trajectories 
exhibit slightly concave up tendencies. 

In contrast, the results for precipitation (Figs. 13-15) dis-
play more distinct behaviors across the sub-regions, and 
this is owing in large part to the more distinct features in 
the PCKs that were constructed (shown in section 2.3.2). 
The most notable distinction is that for the SAfr region, 
the preponderance of the trajectories indicates reduced 
precipitation over the region due to human-forced climate 
warming. Nevertheless, the median results between all 
the regions still share a common response across the 
scenarios like that seen for surface-air temperature, in 
that the trajectory of the Paris15C is most clearly distinct 
from the others until mid-century. While these features 
demonstrate the important impact of strong mitigation 
on the median and other key features in the distribu-
tion of outcomes, in the analysis that follows, a closer 
inspection of the distributions are presented to highlight 
hydroclimatic risk implications. 

Figure 9. Comparison of the DJF averaged PCKs for precipitation obtained from the CMIP6 models (left panel) and the CMIP5 models. 
Each map depicts the mean of all the individual PCKs obtained from each of the CMIP6 models (29) and the CMIP5 models (18).
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Figure 10. timeseries of key statistical features for annual surface-air temperature change (units in ˚C) obtained from the hybrid 
frequency distribution (HFD) scenarios, averaged for the Eastern Africa (EAfr) region. the surface-air temperature change is based 
against the 2000-2019 average and represents a 20-year smoothed result. In the top panel, the median outcome of the HFDs for 
each of the IgsM scenarios is presented (and scenario results color coded). In the bottom panels, the key statistical features of the 
HFD outcomes are presented: short-dash lines are min/max; long-dash lines are 5th and 95th percentile values; thin-solid lins are 
the lower/upper quartile values; and thick solid lines are the median values. Each of the lower panels presents the results for the 
BAsECOV (“Base scenario”); PFCOV (“PF scenario”); Paris2C (“2C scenario”); and Paris15C (“1p5C scenario”) scenarios.
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Figure 11. As in Fig. 10, but for the results averaged over the western and central Africa (WCA) region.
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Figure 12. As in Fig. 10, but for the results averaged over the southern Africa (sAfr) region.
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Figure 13. As in Fig. 10, but for changes in annual precipitation (units in mm/year), averaged over the Eastern Africa (EAfr) region.
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Figure 14. As in Fig. 13, but for the results averaged over the western and central Africa (WCA) region.
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Figure 15. As in Fig. 10, but for the results averaged over the southern Africa (sAfr) region.
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2.4.2 Mid-Century Distributional Changes

For all the regions considered through the mid-century, 
there is a virtual certainty that seasonally-averaged sur-
face-air temperatures will warm to a level that is ”salient” 
relative to historical variations (Figs. 16 and 17). The no-
table exception to this characterization is seen over the 
SAfr for the DJF seasonal period and indicates that the 
strongest mitigation pathway (Paris15C) would provide a 
roughly 1-in-3 chance that any warming would be below 
what could be regarded as salient. As previously discussed 
(in Section 2.1), the threshold of salience is judged against 
observed climatological variability (Table 1), and we set a 

value of 2 standard deviations to the seasonally-averaged 
decadal-mean quantities (indicated by the blue shaded bin 
region) – at or beyond which any change is regarded as 
“salient”. In the strict sense, this is not an indication of sta-
tistical significance but when considering any variable that 
is aligned with a Gaussian distribution (such as surface-air 
temperature) the ±2 standard deviation range would span 
95% of the total population of values. Therefore, by this 
measure, a temperature change of this magnitude (and 
higher) directly associated with anthropogenic emissions 
lies among the severe-to-extreme climatological population 
of decadal variation. 

Figure 16. Hybrid frequency distributions (HFDs) of 
decadal- and area-averaged surface-air temperature change 
(˚C) for 2050-2059 relative to the last decade of the 20th 
century in all three sub-regions of Africa (EAfr, WCA, and sAfr) 
averaged for June-August (JJA). Each panel provides results 
for all four IgsM scenarios (refer to text for details). the binned 
area shaded in blue represents the temperature change that 
falls within the two-standard deviation of historical decadal 
variability (as depicted in Fig. 2 and table 1).

Figure 17. As in Fig. 16, but for the HFDs of surface-air 
temperature change averaged over DJF (Dec-Feb).
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In view of this, the results from the HFDs indicate that in 
all futures considered except the 15C scenario, over 95% 
of the total population of outcomes result in temperature 
changes above the level of salience (Figs. 16 and 17, all 
panels). Most notably, for the EAfr region for all seasons 
(only DJF and JJA seasonal periods shown), the BASECOV, 
PFCOV, and Paris2C scenarios show that at least 50% of 
their distributions result in temperature changes that are 
double in magnitude to the salience threshold (a 1.5˚C 
warming or higher). These likelihoods are substantially 
reduced in the Paris15C scenario, with less than 10% of 
the distribution at the commensurate level of warming. 
Similar results are seen for the WCA region, with the main 
distinction that Paris2C mitigation has a stronger benefit 
and keeps the higher probability of warming below the 
doubling from the salience threshold. In all seasonal periods 
and regions, the impact of the Paris15C at reducing the 
likelihood of warming well above the salience threshold (i.e. 
doubling) is clear, with as much as 80% of the distribution 
residing in warming below that level. 
As previously noted (Section 2.3.2), the precipitation pat-
tern-changes across the CMIP5 models differ in sign and 
structure both across and within the sub-regions of inter-
est. Therefore, the resultant HFDs will (necessarily) reflect 
likelihoods of both increased and decreased change. Similar 
to precipitation, we prescribe a degree of salience in order 
to provide a quantitative judgement on the magnitude of 
change. Additionally, the relative preponderance of “salient” 
changes toward drier or wetter precipitation rates is also 
gauged under the recognition that equal chances of a dry or 
wet future would be the equivalent to a proverbial “coin-toss” 
as to how one should view the risk of change. Under these 
considerations, the expected changes in precipitation by 
mid-century (Fig. 18) and indicate that there is a greater risk 
of a “salient” increase in precipitation for the EAfr and WCA 
regions and a greater risk of decrease over the SAfr region. In 
the BASECOV scenario by mid-century, the portion of the 
distribution with decreased DJF precipitation change for SAfr 
is 15 times that of increased precipitation (15% versus 1%). A 
similar contrast in outcomes is seen for the EAfr region, but 
the preponderance toward increased precipitation. For the 
WCA region, there are no outcomes in which a decrease in 
precipitation exceeds the salience threshold, but approximately 
20% of the BASECOV population of outcomes exceeds the 
increased precipitation threshold. For all these basins, these 
characteristic preponderances are largely maintained in the 
PFCOV and Paris2C scenarios (at mid-century). 

2.4.3 The Evolution of Risk and Impact of Climate 
Targets to Abatement 

As we have shown for these changes hydroclimatic risks, 
there is a very clear impact of the more aggressive climate 
target scenario at reducing (and nearly eliminating) the risk 
of the very salient (as given by our metrics) temperature 

changes. Stemming from the diversity in the modeled pre-
cipitation response patterns (Section 2.3), and that precipi-
tation change is not a positive definite change process as the 
case for temperature, the impacts of climate-target scenarios 
reducing risks in precipitation change exhibit different 
characteristics in their behavior. Whether considering the 
time trajectories (e.g., Figs. 10-15) or scenario-dependent 
distributional behaviors (e.g., Figs. 16-18), the HFDs of 
primarily respond by broadening and/or tightening of 
the range of outcomes, and as previously noted, for the 
case of precipitation the relative preponderance toward 
positive or negative change is altered. Consistent to this 
behavior is the substantial portion of the distribution still 
contained within the range of changes that are not regarded 
as “salient” (within the construct of our analyses). This 
is quite consistent with the variety and diversity of land-
scapes in the strength and sign of the precipitation PCKs 
(Section 2.3) across and within the three regions of focus. 

Figure 18. As in Fig. 17, but for the HFDs of precipitation 
change. units are given in mm/decad (decad = 10 days). 
the red shaded areas represent the precipitation change that 
falls within the two-standard deviation of historical decadal 
variability (as depicted in Fig. 2 and table 1).
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Nevertheless, as climate continues to warm, the patterns 
continue to emerge (at varying rates) and will affect these 
area-averaged results, and ultimately, unless the warming 
is reversed (or stopped) “unavoidable” salient changes will 
emerge. Nevertheless, looking into the latter half of the 21st 
century (Figs. 19-22), the impact of the more aggressive 
climate targets to reducing the evolving risks, particularly 
from the BASECOV, scenario becomes evident. 

In particular, for surface-air temperature, a notable demon-
stration in the effectiveness of a strong mitigation scenario 

(i.e. Paris15C) is made. For all regions and seasonal periods 
considered (Figs. 19 and 20 show the JJA and DJF results, 
respectively), the distribution of outcomes in the Paris15C 
scenario in 2065 are all skewed toward lower “risk” (higher 
probabilities for lower warming rates) as judged against the 
BASECOV results for 2035. In particular, for SAfr nearly 
35% of the distribution for the DJF seasonal period still 
resides inside the salience threshold of warming at 2065 
for the Paris15C scenario. Equivalently, it indicates that 
there is a 1-in-3 chance that any warming experienced over 

Figure 19. HFDs of decadal- and area-averaged surface-air 
temperature change (units in ˚C) relative to the last decade 
of the 20th century in all three sub-regions of Africa (EAfr, 
WCA, and sAfr), averaged for June-August (JJA). Each panel 
compares changes in two scenarios and different decadal 
periods: the BAsECOV scenario for 2030-2039 and the 
Paris15C scenario for 2060-2069. the binned area shaded 
in blue represents the temperature change that falls within 
the two-standard deviation of historical decadal variability (as 
depicted in Fig. 2 and table 1).

Figure 20. As in Fig. 19, but for the results averaged over DJF 
(Dec-Feb).
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the region in DJF (summertime) during the latter half of 
the century would fall within the envelope of natural vari-
ability. Similar “risk reductions” can be seen in the results 
for precipitation (Figs. 21 and 22 show the JJA and DJF 
results, respectively). For all regions and in both summer 
and winter, the HFDs of precipitation change between the 
REF scenario in the 2030s compared to the 15C scenario 
in the 2065-2074 period are nearly identical, and in most 
cases the likelihood of precipitation changes that aren’t 
considered salient are more likely in the 15C scenario. 

Among other notable impact in the mitigation scenarios 
are seen across the strongest changes in precipitation. In 
particular, for the EAfr and SAfr regions, the likelihood of 
the strongest changes in precipitation changes in 2035 for 
the BASECOV approaches are double to what the likeli-
hood of these changes would be in 2065 for the Paris15C 
scenario. This underscores the beneficial aspect of the 15C 
scenarios, in that the overall risks to precipitation change, 
are delayed by decades. 

Figure 21. HFDs of decadal- and area-averaged precipitation 
change (units in mm/decad; decad = 10 days) relative to the 
last decade of the 20th century in all three sub-regions of Africa 
(EAfr, WCA, and sAfr), averaged for DJF (Dec-Feb). Each panel 
compares changes in two scenarios and different decadal 
periods: the BAsECOV scenario for 2030-2039 and the 
Paris15C scenario for 2060-2069. the binned areas shaded 
in red represents the precipitation changes that falls within 
the two-standard deviation of historical decadal variability (as 
depicted in Fig. 2 and table 1).

Figure 22. As in Fig. 21, but for the precipitation change results 
averaged over JJA (June-August).
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3. Summary Remarks
In this study, we have presented risk-based results derived 
from large ensembles of projected changes in seasonal 
precipitation and near-surface air temperature over large 
sub-regions of Africa. The ensemble procedure combines, 
via a Taylor expansion, regional patterns of emerging cli-
mate responses from the CMIP6 climate models with the 
MIT-IGSM, an intermediate complexity earth-system 
model coupled to a global economic model that evaluates 
uncertainty in socio-economic growth, anthropogenic 
emissions, and global environmental response. Given its 
computational efficiency, the IGSM can be run for large 
ensembles (e.g. 400 members in this study) to explore the 
range of possible global climate responses that result from 
human and natural forcings. In this study, the numerical 
experimentation with the IGSM included four scenarios of 
future climate and socio-economic development in order to 
span a range of possible global actions to abate greenhouse 
gas emissions over the coming century. When combined 
with the CMIP6 regional patterns of climate response (i.e., 
pattern-change kernels or PCKs), the resultant meta-en-
sembles (1,000s of members) are used to create “hybrid 
frequency distributions” (HFDs) in order to examine the 
evolution of climate and the extent to which global actions 
can abate or avoid changes that are regarded as hazardous.

We evaluated the HFDs of surface-air temperature and 
precipitation averaged over three regions across Africa: 
eastern (EAfr), west central (WCA), and southern (SAfr). 
Across all these regions, we find that by mid-century unless 
stronger measures are put into force that set stricter climate 
targets, summer and winter averaged temperatures will 
increase (i.e. over 95% of the BASECOV and PFCOV sce-
nario member simulations) “saliently” beyond the current 
climate’s variability. In addition, there is a strong likelihood 
(in nearly 50% and higher of the BASECOV and PFCOV 
ensemble scenarios) that by mid-century temperatures will 
rise considerably higher than the current climate’s range 
of variability (twofold increase over the current climate’s 
two-standard deviation range of variability). More aggres-
sive global climate targets, particularly set in the Paris15C 
scenario, all but eliminate the risk of these acutely salient 
temperature increases. For precipitation, the evolving na-
ture of the regional risks exhibits more distinct features 
across the regions considered. Most notably, across southern 
Africa, the preponderance of precipitation change across 
the HFD members indicates that there is a considerably 

greater likelihood that the region will experience reduced 
(as opposed to increased) precipitation by mid-century 
even under current global agreements to reduce emissions. 
However, without these national commitments (under the 
Paris Agreement) the likelihood of strong decreases in 
precipitation (i.e. greater than 2 times the current range 
of variability) is notable (around 15% of the BASECOV 
ensemble simulations across all seasonal periods). Given 
the recent severe drought this region has experienced (e.g. 
Sousa et al, 2018) and the widespread water-efficiency 
measures put into action to combat the extreme water 
shortage, the increasing risk of depleted precipitation that 
these results imply would indicate that such efficiency 
measures will become more frequently strained and re-
lied upon. Conversely, across the remaining regions of 
Africa, the distributions of precipitation change indicate 
a preponderance of increased precipitation.

There is a clear benefit seen within the evolving hydroclimatic 
risks as a result of strong climate targets, such as limiting 
the global climate warming to 1.5˚C by 2100 (the Paris15C 
scenario). In all the regions considered, we find that the risk 
of precipitation changes in the Paris15C scenario within the 
latter half of this century (centered at 2065) is comparable, 
and in most cases buffered, to that seen in the BASECOV 
scenario in 2035. The distributions that result from the 15C 
scenario toward the end of this century indicate that not all 
risks of salient changes are removed. Yet, the critical aspect of 
this outcome is that the strong mitigation scenarios demon-
strate the decades of delay in these risks evolving, relative 
to the trajectory that is more aligned with current actions 
to reduce emissions. This 30-year delay will be invaluable 
toward any national efforts that are needed to prepare and 
adapt to heightened risks. 
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