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Abstract: Understanding and predicting fate of global biodiversity amidst an increasingly complex and 
changing world is a major challenge facing the Earth-system science community.  Among the core research 
objectives within this challenge lies the ability to construct a comprehensive metric that not only faithfully 
quantifies the current and observed state of biodiversity, but also captures future trends that are driven by a 
variety of stressors across environmental, social, and economic systems. In order to give a better overview 
of our impact on biodiversity despite the obvious complexity inherent to the multi-sectoral nature of the 
problem, we have chosen to group together the indicators currently assessed and used internationally in a 
linked indicator set categorized according to the “Pressure-State-Response” framework. This approach stems 
from a desire to highlight and quantify the links between these different indicators in a logical and objective 
manner and allows us to construct a systematic synthesis of the key drivers of biodiversity. We develop 
a new methodology using predictive supervised learning to propose a statistical weighting of the linked 
indicator metric. 
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1. Introduction
Among the planetary boundaries proposed by Rock-
ström et al. (2009), that of change in the integrity of the 
biosphere is one of the six considered exceeded in 2022. 
Two aspects are assessed to reach this conclusion: genetic 
diversity reflecting the resilience of the biosphere and the 
diversity of functional traits reflecting ecosystem health. 
This choice of measure to qualify this limit has always 
been highly criticized both because of the limitations as-
sociated with the calculation of relevant indicators due to 
missing data and because of the uncertain links between 
the measurements made and the true state of biodiversity. 
The Convention on Biological Diversity (CBD), signed in 
the presence of 196 parties at the Earth Summit in Rio de 
Janeiro in 1992, initiated important work on indicators 
for global monitoring of biodiversity as well as national 
monitoring of the National Biodiversity Strategies and 
Action Plans (NBSAPs) that the Convention requires each 
party to implement. In order to monitor these indicators, 
the Biodiversity Indicator Partnership (BIP) was created 
in 2007 to select, evaluate and monitor indicators of the 
state of biodiversity, the threats it faces, and the measures 
implemented. The sixty indicators assessed, although some-
times with a lack of data, made it possible to ensure with 
certainty that the targets set for 2010 had not been reached. 
The 10th Conference of the Parties held in Nagoya, Japan 
in 2010 set new targets for 2020: the Aichi Targets (United 
Nations, 2010). These set a broader and stricter conser-
vation target. In addition, the targets are subdivided into 
5 strategic goals. BIP had to rework its indicators, as only 
13 of the 20 targets were covered by at least one indicator. 
Today, BIP differentiates between a set of primary and 
secondary indicators for each target, and monitoring is 
facilitated by the fact that, at least at the global and national 
levels, many indicators are available and calculated annually. 
A new monitoring framework has been proposed more 
recently with the development of the Kunming-Montreal 
Global Biodiversity Framework (United Nations, 2022). 
The number of indicators is therefore greater than ever, 
making it particularly difficult to raise awareness among 
the public and decision makers.
Biodiversity is intrinsically multi-sectoral. The deteriora-
tion of biodiversity is caused by multitude anthropogenic 
pressures: the impact of overfishing or deforestation on 
natural resources, the increase in temperature or eutro-
phication of the oceans due to climate change, the impact 
of pollution and fine particles, and the artificialization 
and pollution of soils due to industrial, agricultural or 
urban activities are only some of them. The public policies 
implemented by the different countries or the awareness 
of the populations, just as important as the assessment of 
the state of biodiversity, are still not sufficiently accessible 
to decision makers.

The growing complexities among the links between cli-
mate, natural and societal systems require scientists and 
policy makers to explore these interdependencies in the 
study of risks and instabilities. These complex interactions 
lead to the appearance of tipping points, the analysis of 
which requires the use of increasingly complex and often 
specific models. For the general public as well as for de-
cision-makers, it is becoming more difficult to provide 
a meaningful diagnosis that provides a summary of the 
underlying phenomena that drives risks on a macro scale. 
It has also become increasingly difficult to track global or 
relative risks that result from stressors related to social 
and environmental phenomena. Therefore, the scientific 
community is challenged with a task to construct a more 
comprehensive, time-evolving metric of biodiversity that 
logically and objectively combines data relating both to 
climatic and natural risks and societal factors about vulner-
ability of populations and resilience of communities such 
as: access to health care, standards of living, or education.
This paper aims to provide a new methodology to assess 
weights used to compute a composite indicator using 
predictive neural networks and feature importance algo-
rithms. Our methodology is, furthermore, based on the 
use of linked indicator sets to logically categorize sub-in-
dicators. We apply this methodology to a multisectoral 
set of biodiversity indicators categorized according to the 
“Pressure-State-Response” framework and compute an 
aggregated index as an example of use case.

2. Creation of a composite indicator

2.1 General considerations
To give a systematic overview of the absolute risk level in 
the case of biodiversity indicators, composite indicators 
have been become more common practice to international 
organizations and governments. They allow the monitoring 
of countries over time while considering a single indicator 
instead of several separate indicators while keeping the 
underlying information. 
The choice of the normalization and aggregation methods 
is crucial when considering indicators with very different 
measurement units such as US Dollars, Percentages, and 
Biodiversity-specific units for trophic levels. Jacobs et al. 
(2004) and Freudenberg (2003) lists several normalization 
methods. The proposed linked indicator set must, however, 
be standardized or be run through a MinMax scaler as 
the minimum and maximum don’t always represent the 
worst and best value. The other option is to use categorical 
scales consisting in assigning a score to each indicator. 
This can be based on a ranking of the different countries 
and categorical values representing the position of a given 
country within the histogram of values or the position with 
regards to a given threshold. However, the very existence 
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of thresholds and tipping points for biodiversity is in fact 
questioned (e.g., Montoya et al., 2018).

2.2 Weighing indicators to compute 
composite indicator

To calculate a composite indicator from an indicator set  
one can compute an arithmetic mean aggregation: 

  (1)

where  is the relative weight of indicator  in the sum.
In the score evaluation presented above, the score of each 
indicator can be taken into account in the same way in 
the final score evaluation by considering . The addition of 
superfluous indicators is sufficient to convince oneself that 
the score of each individual indicator should, however, be 
weighted in the construction of the total score. The question 
of the relative importance of the indicators in relation to 
each other and therefore of the choice of weights is a del-
icate one, as it is important to consider the entirety of the 
physical and socio-economic phenomena and therefore 
not to eliminate indicators that may be relevant to one 
specific aspect of biodiversity.
Two main paths exist when considering weighting of in-
dicators (see Sharpe et al., 2012). The first one is explicit 
weighting which consists in manually analyzing the meta-
data and general analysis resulting from the first step of 
the methodology described above and making subjective 
decisions about the weights to give to each indicator in the 
composite indicator mix. Several methods have been used 
by governmental and non-governmental organizations such 
as expert weighting where the weights are decided by pro-
fessionals (as described for example by Gómez-Limón et al., 
2020) of the relevant field or survey weighting where one 
considering that accurate weight should reflect valuation 
of the society. Several methodologies for theses partici-
patory methods have been described in the literature, the 
best-known being Budget Allocation Process (BAP) based 
on allocation of a given number of points to the indicators 
included in a set and the Analytic Hierarchy Process based 
on pairwise comparisons. Finally, the analyst can decide 
to give the final user of the composite indicator the choice 
of weights he wants to use (e.g., Schlosser et al., 2022).
The other path is to use “data-driven” weighting methods 
(Decancq and Lugo, 2013) where a numerical analysis of 
the data enables to compute the weights for the composite 
indicator. These methods can therefore be considered as 
objective methods as the analyst is not involved in the 
decision-making regarding the choice of weights. However, 
this approach results in a tradeoff as both the analyst and 
the final user lose the transparency associated to the explicit 
understanding of the process of choosing the weights. 
Furthermore, criticism arises about these methods both 

on the fact that statistical relationships don’t always accu-
rately represent the relationship between indicators and 
on method-specific issues (see Greco et al., 2019). Most of 
the data-driven methods are based on algorithms trying 
to maximize the variance in the indicator set with as few 
components as possible. Principal Component Analysis 
(PCA) for example consists of finding the eigenvalues of 
the covariance matrix of the indicator set corresponding 
to the variance of the principal components. The goal is 
to determine optimal weights in order to maximize the 
variation explained by only the first principal component 
used as the composite indicator.

Recently, other statistical approaches based on machine 
learning have been developed. In 2020, Paulvannan Kan-
mani et al. (2020) proposed a method to better understand 
indicator sets by using clustering and unsupervised learning. 
The method developed in the study aims to overcome the 
limits introduced by rankings of countries as in traditional 
sustainability indicators. By tracking the evolution of each 
country within a self-organized map, grouping countries by 
similarities in the evolution of their sustainability, one can 
compare the trajectory of a country with some having or 
that have had similar characteristics. This method is more 
of an alternative than an ultimate solution to weighing 
and aggregation of composite indicators. More recently 
Jiménez-Fernández et al. (2022) and Jiménez-Fernán-
dez et al. (2022) used Multivariate Adaptive Regression 
Splines instead of traditional distance minimization to best 
approximate the indicator set with the composite indicator 
on one side and P2 minimization specifically applied to 
the benchmark of units of the different variables. 

2.3 Using a linked indicator set to assess 
biodiversity

To provide an overview of the state of biodiversity and the 
complex interactions that govern it, many indicators are 
needed. The only description of the state of biodiversity 
(richness or abundance for example) can be done through 
measures of specific ecosystem, genetic or functional di-
versity, the latter considering the interactions between 
society and nature (i.e., resources, landscapes, and cultural 
wealth). This multitude of indicators, although scientifically 
necessary for the comprehension of the state of biodiver-
sity, can also be detrimental to the understanding of the 
underlying problems by an uninformed public. Our desire 
to synthesize the information stems from this problem. The 
main issues surrounding the development of a relevant 
set of indicators are proposed in Levrel et al. (2007). In 
order to achieve a systematic vision of biodiversity while 
maintaining the underlying complex dynamics, we seek 
to achieve an educated, categorized, hierarchized and con-
textualized selection of indicators. 
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Given these considerations, an important milestone in this 
construction was the scientific consensus that emerged 
in 2010 on a Pressure-State-Response framework to or-
ganize biodiversity indicators (e.g., Sparks et al., 2011). 
This conception recognized that biodiversity is affected by 
human activities, the state of the environment, as well as 
the resource status and the actions of economic and envi-
ronmental agents. The strategic goals adopted at the COP 
2010 are in the spirit of this framework. Strategic Goal B 
(Reduce the direct pressures on biodiversity and promote 
sustainable use) encompasses the pressures, Strategic Goal 
C (To improve the status of biodiversity by safeguarding 
ecosystems, species and genetic diversity) the state and Stra-
tegic Goal A (Address the underlying causes of biodiversity 
loss by mainstreaming biodiversity across government and 
society), D (Enhance the benefits to all from biodiversity 
and ecosystem services) and E (Enhance implementation 
through participatory planning, knowledge management 
and capacity building) the responses. The idea of a linked 
framework of indicators based on the relationship be-
tween the drivers of change, the state of the diversity of 
flora and fauna and the corrective actions taken is not 
new and is often applied in the monitoring of forests and 
marine environments. Linking biodiversity metrics in an 
organized framework can support indicator development, 
enable stronger predictions of biodiversity change, and 
provide policy-relevant advice (e.g., Sparks et al., 2011). 
Many linked sets have been developed to assess the status 
of biodiversity at a national scale (e.g., Sparks et al., 2011; 
Han et al., 2014), Marques et al. (2014), Hill et al., 2016) 
following this model. It is important to emphasize, however, 
that causes, state and responses are not perfectly correlated. 

2.4 Using feature importance to determine 
the relative weight of indicators in the 
linked set

Within statistical weighing methods, a main criticism is 
the difficulty of interpretations of the weights given to each 
of the different sub-indicators. We believe that the use of 
predictive neural networks to compute weights can make 
these interpretations easier by highlighting quantitative 
relationships between indicators. Feature importance al-
lows to understand the relative importance of the input 
parameters and to make accurate interpretations on the 
most important input variables for the prediction of an 
output. In the case of indicator sets, training a model to 
predict the value of one indicator based on the value of 
others teaches it temporal and logical relationship between 
indicators. Feature importance therefore allows to highlight 
indicators whose values can be deduced from one another. 
Weights given to each of the indicators in a linked set can 
be deduced from those relationships by making the as-
sumption that in the Pressure-State-Response framework, 
an indicator in one category may be considered crucial 

if its value has an impact on many indicators in another 
category. In other words, this means that a variation at a 
given moment has an impact on the value of the indica-
tors of the other categories shortly thereafter, indicating a 
response to a common phenomenon related to a risk that 
increases tenfold with the number of domains affected. 
For this hypothesis to be valid, the linked indicator set has 
to be a partition of the space of indicators of the studied 
question. In other words, the indicators in the different 
categories have to cover all the underlying phenomena 
and the categories have to be of null intersection so an 
indicator can be assigned to only one category.
The Pressure-State-Response framework is particularly 
useful in that matter because the relationships between 
categories are logical. It is expected of a very informa-
tion-rich indicator in the “Pressure” category to impact a 
lot of indicators in the “State” and “Response” categories. 
This approach, furthermore, limits the problem of double 
counting encountered with other statistical methods. By 
disregarding relationships between indicators of the same 
category, we allow ourselves to consider indicators that 
might partly describe the same phenomenon and therefore 
be easily inter-predictable.
In order to determine the weights given to each indicator 
in the linked set, we successively train neural networks to 
predict the value of an indicator  from those of the other 
categories. After successful training, we evaluate the relative 
importance  of each input indicator, , that is determined by 
its predictive strength. The relative importance (RI) of each 
indicator within the set of k indicators is then given by: 

  (2)

In Equation 2 the weights given to each indicator is the 
average importance of that indicator in the prediction of 
indicators across other categories weighted by the impor-
tance those indicators have. Thus, adding the last weighting 
term allows to give a low weight to the relative importance 
of the considered indicator in the prediction of an indicator 
that would be irrelevant. The relative importance of each 
indicator in the prediction of noise would for example not 
be considered in our indicator weighting method.

3. Results

3.1 Choice of indicators composing the 
linked set 

We have chosen our different clusters of indicators to cover 
the entirety of the Aichi Targets while making some ad-
justments and grouping some of them together to consider 
the Pressure-State-Response framework. The indicators 
finally selected in each cluster were chosen according to 
the following criteria:
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1. Data availability and quality 
2. Ability to aggregate to a national scale
3. Availability over a time scale greater than 5 years
The resulting linked indicator set is presented in Table 1. 
In many cases, an indicator used for the national monitor-
ing of the Aichi Targets could be obtained directly or by 
calculation from existing BIP data. Otherwise, we turned 
to other sources. Some of the indicators used in the pol-
lution, land use, and climate change clusters are derived 
from the indicators or data used in the calculation of the 
composite indicator Environmental Performance Index (see 
Wolf et al., 2022). For this indicator, it is worth mentioning 
the normalization between a minimum and a maximum 
set at given quantiles to carry out the aggregation and an 
empirical weighting based on “the importance of the issue, 
data quality, timeliness of data, and statistical analyses to 
balance the spread of score” (see Wolf et al., 2022). Finally, 
in some cases we have identified relevant indicators that 
are unfortunately not yet available or substitutable today. 
This is the case for the Ecosystem Area Index, Ecosystem 
Health Index and Red List Index of Ecosystems (see Row-
land et al., 2020) as well as the Biodiversity Engagement 
Indicator (see Cooper et al., 2019). 
Joint Research Centre-European Commission and 
others (2008) describes a methodology of ten steps for 
the development of composite indicators. Even though 
this handbook can be viewed as a sequence towards 
the creation of a composite indicator, one must make 

several decisions in the process to have a heavy impact 
on the outcome. It is therefore important not to forget 
that composite indicators might oversimplify the issues 
at stake and mislead policy construction.
The first few steps of developing a theoretical framework, 
selecting variables, imputation of missing data and multivar-
iate analysis are briefly described in the previous sections 
of this report. The use of a linked indicator set allows to 
create a nested structure to describe a wide-ranging phe-
nomenon such as biodiversity under the scope of its state, 
drivers and consequences. Furthermore, the summary tables 
and in particular the consideration of the limitation of the 
individual indicators and the multivariate analysis allow for 
a better understanding of the weaknesses of the resulting 
composite indicator and interpretation of the weights that 
will be computed in the next steps of the methodology.

3.2 Experimental protocol
The raw data first undergoes different steps of pre-process-
ing. To add more data points to the set, a spline is fit to the 
different indicators per country and 100 points are added 
in between two years. A quick study of Figure 1 leads us 
to eliminate the period to ensure that enough indicators of 
each category are non-null. In order to facilitate the learning 
of temporal relationships, each entry is composed of the 
last 10 values for each indicator and not only of the value 
corresponding to the date of the entry. The ISO country 
codes are one hot encoded and the data normalized. Due 
to the aggregation of many indicators spanning different 

Table 1. Summary table of the identified indicators used in a “Pressure-State-response” framework. For a more comprehensive 
description of the indicators, please refer to the appendix Tables a1-a3.

Pressure

Pollution
GHG Greenhouse Gases Intensity Trends
SNM Sustainable Nitrogen Management

Land Use

TCL Tree Cover Loss
WLL Wetland Loss
GLL Grassland Loss
EF Ecological Footprint

Climate Change
CO2 CO2 Emissions
DIS Population impacted by Natural Disasters

Resource Extraction MTI Marine Trophic Index
Invasive Species NaN -

State
Species Richness RLI Red List Index
Species Abundance BII Biodiversity Intactness Index
Ecosystem Health and Services NaN -

Response

Protected Ecosystems
PAKA Protected Area Coverage in Key Biodiversity Areas

SPI Species Protection Index

Pollution Policy REC Recycling Rates
Finance CRS International Aid for Environmental Protection
Public Awareness NaN -
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time ranges, the data has many missing values (See Figure 
1). These are replaced by the value “-8888”. 
The model used is a 3-layer Long Short-Term Memory 
(LSTM) network. This special type of recurrent network is 
capable of learning long-term dependencies and is therefore 
particularly suited in our case. We train it separately for 
the determination of each indicator. The inputs used for 
an indicator  are then all indicators  not belonging to the 
same category as . Thus the obvious correlation between the 
Red List Index and the Biodiversity Index, both in the State 
category and both concerning specific hazard issues, is not 
taken into account in the calculation of weights. We also 
eliminate for each indicator the input data with fewer than 
two non-zero values. Once the model is properly trained 
and tested on a random set, we compute the importance 
of the input features using the Deep Learning algorithm 

Important Features proposed by Shrikumar et al. (2017). 
Only the values corresponding to indicators are considered 
in the final results, thus excluding the years and country. 
The relative importance of the different lags is aggregated 
for each indicator and the results are presented in Table 
3.  The relative importance given to each indicator is then 
calculated by considering the results of feature importance 
of the set of models each predicting an indicator from the 
others of a different category according to Equation 2. 

In the following discussion, we use a socio-geographic 
regional decomposition to analyse the results more finely. 
The macro-regions chosen are the following: Southeast 
Asia, Pacific Asia, Global West, Former Soviet countries, 
Sub-Saharan Africa, Middle East, Latin America, Eastern 
Europe also presented on Figure 2.

Figure 1. Years of existence of at least one value per indicator considered

Figure 2. Socio-geographical macroregion chosen for the analysis of the results 
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3.3 Computation of the relative importance

To check the results given by the Feature importance and 
to identify possible aberrations, we perform the Feature 
Importance calculation on a specific input. The results are 
presented in Table 2 and highlight the following: 

 • The country considered is of primary importance as 
expected. On the contrary, all the other countries are 
of zero importance. One would have expected to see 
more complex links between the values of a country 
and those of its neighbouring countries.

 • The indicators considered with no value are not consid-
ered by the model. On the contrary, all other indicators 
have a strictly positive importance.

 • Contrary to what one might have expected, the year 
considered is not that important. The main part of the 
prediction is therefore based on the value of indicators 
of different categories at the same point in time and 
on learning patterns in their evolution. It should be 
noted that the importance of the year fluctuates a lot 
and becomes particularly important in the absence of 
value for the most relevant indicators.

The results are presented in Table 3 and in a more visual 
form in Figure 3. Finally, we calculate the relative impor-
tance of each indicator according to Equation 2 which is 
summarized in the graph Figure 4.

Table 2. Feature Importance results for an entry of the 
BII-prediction model

Feature Importance Input

ISOUSA 47.03 1

EF 11.58 6.22

MTI 10.32 3.79

SPI 7.46 35.06

WLL 7.04 0.05

GLL 6.01 0.00

GHG 3.53 0

PAKA 3.00 34.72

REC 2.54 0.86

Year 1.02 2001.54

CO2 0.33 0.01

SNM 0.13 0.39

TCL 0 -8888

DIS 0 -8888

CRS 0 -8888

ISOXXX 0 0

Table 3. Feature Importance computed according to the DeepLift algorithm of each indicator (rows). Each column represents the 
entry features considered. The relative importance of each indicator is computed according to Equation 2 and presented in the last 
column. The results in other columns are expressed as a percentage of use for the prediction of each indicator.

GHG SNM TCL WLL GLL EF MTI CO2 DIS BII RLI PAKA SPI REC CRS RI

GHG 0 0 0 0 0 0 0 0 0 0.00 0.36 0.00 0.32 0.22 0.09 0.04

SNM 0 0 0 0 0 0 0 0 0 0.02 0.31 0.01 0.27 0.29 0.10 0.02

TCL 0 0 0 0 0 0 0 0 0 0.16 0.03 0.17 0.31 0.07 0.26 0.01

WLL 0 0 0 0 0 0 0 0 0 0.08 0.24 0.13 0.31 0.03 0.21 0.14

GLL 0 0 0 0 0 0 0 0 0 0.32 0.09 0.24 0.04 0.15 0.16 0.12

EF 0 0 0 0 0 0 0 0 0 0.37 0.22 0.18 0.17 0.05 0.01 0.01

MTI 0 0 0 0 0 0 0 0 0 0.09 0.47 0.04 0.19 0.10 0.11 0.03

CO2 0 0 0 0 0 0 0 0 0 0.28 0.12 0.11 0.12 0.07 0.31 0.04

DIS 0 0 0 0 0 0 0 0 0 0.20 0.29 0.20 0.06 0.19 0.05 0.00

BII 0.04 0.02 0.00 0.04 0.31 0.03 0.07 0.04 0.00 0 0 0.15 0.22 0.07 0.00 0.08

RLI 0.03 0.03 0.00 0.03 0.03 0.00 0.08 0.02 0.00 0 0 0.26 0.50 0.01 0.00 0.10

PAKA 0.10 0.01 0.02 0.29 0.19 0.03 0.02 0.10 0.01 0.16 0.07 0 0 0 0 0.10

SPI 0.09 0.03 0.05 0.24 0.25 0.02 0.07 0.08 0.00 0.04 0.12 0 0 0 0 0.17

REC 0.08 0.02 0.02 0.66 0.00 0.01 0.01 0.07 0.00 0.02 0.11 0 0 0 0 0.05

CRS 0.01 0.10 0.03 0.24 0.33 0.01 0.03 0.10 0.00 0.08 0.08 0 0 0 0 0.08
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Figure 3. Graphical representation of matrix Table 2. arrows represent the use of one indicator for the prediction of another. The 
thickness of the arrows is proportional to the coefficients in matrix Table 2. arrows corresponding to coefficients of less than 2% are 
not represented.

Figure 4. relative Importance computed with Feature Importance according to the DeepLift algorithm of each indicator.
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Note first that Table 3 is a block matrix of diagonal null 
blocks. This is due to the fact that by design, the predictions 
and calculations of relative importance of an indicator of a 
category only take into account indicators that are not part 
of this category. For example, for the prediction of the Red 
List Index (RLI) of the “State” category, only the indicators 
of the “Pressure” and “Response” categories are used. In 
the case of this example, the prediction made by the neural 
network is based 50% on the species protection index (SPI) 
and 26% on the biodiversity protection index (PAKA). This 
is not surprising, as the three indicators explain the risks 
of extinction incurred by the species and the means put in 
place to fight against it. Note, however, that the opposite is 
not necessarily true and that the land use indicators (WLL, 
TCL and GLL) are preferred to the red list index (RLI) for 
predicting SPI and PAKA. The Species Protection Index (SPI) 
is used for the prediction of many pressure and response 
indicators. It is therefore strongly weighted in our study. 
The population impact of natural disasters (DIS) is a weak 
predictor of indicators in other categories. It characterizes 
the impact of extreme events on populations, which is, as one 
might expect, a poor indicator of the state of biodiversity. Its 
prediction from the indicators of the “State” and “Response” 
categories is, however, achieved and it is important to note 
that Equation 2 considers its uselessness in the predictions of 
other indicators to decrease the weighting of the coefficients 
brought by DIS in the calculation of the relative importance 
of the other indicators.
Finally, we note that the use of some indicators in the 
prediction of others is unexpected. This is the case, for 

example, of the use of wetland cover changes (WLL) in the 
prediction of the recycling rates of the different countries 
(REC). The heavy reliance on WLL in the prediction of 
REC can only be explained by the fact that the algorithm 
could not find a better indicator than WLL to perform the 
prediction of REC. The addition of many other indicators 
would improve the predictions and reveal relationships 
more in line with our expectations.

3.4 National computation of the relative 
importance of the indicators

We also perform the relative importance calculations at a 
national level. To do this, the methodology used to obtain 
Table 3 is repeated for each country. Starting from the models 
trained for the prediction of each of the indicators, the Feature 
Importance calculations are made from the data for each of 
the countries and a relative importance of each indicator 
is calculated for each country. The results are presented in 
Figure 5. One can see that the variance of the different rel-
ative importance depends on the indicators. Some of them, 
such as the impact of natural disasters (DIS) on popula-
tions, have a relative importance that varies enormously from 
one country to another, while others, such as the ecological 
footprint (EF) or the rational use of nitrogen in agriculture 
(SNM), have very limited variance. It should also be noted 
that the geographical distribution chosen does not seem to 
give any particular meaning to the distribution of the relative 
importance of the different indicators by country. Indeed, 
there does not seem to be an obvious correlation between 
the chosen geographical categorisation and, by extension, the 

Figure 5. relative Importance computed with Feature Importance according to the DeepLift algorithm of each indicator for each 
country. countries are labelled by socio-geographical microregion (refer to Figure 2).
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development or not of a country and the relative importance 
of the different indicators. Finally, it should be noted that the 
calculation of the relative importance of each indicator at the 
national level is not related to the global level. It is therefore 
not surprising that an indicator such as the impact of natural 
disasters (DIS) has a much greater relative importance in 
the case of the individual calculation for each country than 
in the global case.

4. Computation of the weighted index
To give an example of the use of the weighted indicator set, 
we propose an aggregated index based on the indicators 
presented above. As this paper aims to focus on the devel-
opment of a weighting method, we will use the following 
simple methodology for the aggregation: (i) Normalization 
of the different indicators with a StandartScaler (ii) Capping 
of values between 0 and 1 by setting 0 and 1 respectively 

at the 5th and 95th quintile (iii) Inversion of the indicators 
if necessary, so that 1 is systematically the most favorable 
value. For indicators such as the Marine Trophic Index for 
which there is no favorable value as its value represents 
the mean trophic level of fish catches, we apply the same 
methodology to the 5-year rolling average change rate.
We can now use the weights obtained in the calculation 
of a biodiversity index as presented in the first part of this 
chapter. The map Figure 7 presents the map of our biodi-
versity index calculated using the weights from the use of 
our predictive model compared to an unweighted index. 
Our weighting highlights as expected countries for which a 
low biodiversity index was expected, such as China, India 
and Indonesia, where individual metrics are initially low. 
Two countries that initially had a similar unweighted index, 
such as Argentina and Brazil for 2018, may have a very 
different weighted index (see Table 4). Indeed, the higher 

Figure 7. Weighted Index aggregated using arithmetic average and weights computed using predictive neural networks and feature 
Importance (DeepLift algorithm)
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values of the Species Protection Index (SPI) and the Red 
List Index (RLI), which are heavily weighted, tend to make 
the difference between the two countries at the expense 
of other differences in the values of some indicators for 
these two countries that would have favoured Argentina 
more, but which are less weighted. 
In putting this aggregate metric into a global context, re-
cently efforts have led to the development and continual 
updating to an “environmental performance index” (EPI, 
Wolf et al., 2022). While designed to look more broadly 
at sustainability issues, the EPI metric carries factors that 
reflect a nation’s ability to protect environmental health and 
enhance ecosystem vitality. Analysis of the EPI (Wolf et al., 
2022) has shown a positively correlated relationship between 
a nation’s EPI score to GDP per capita, with higher envi-
ronmental performance generally associated with wealthier 
countries. In view of this, we construct a similar analysis 
with our aggregated metric to assess the extent to which 
such a relationship exists (Figure 8), whereby countries’ 
aggregate metric values are mapped as a function of the 
log GDP per capita. We find evidence of a consistent re-

Table 4. comparison of the value of each indicator and the aggregated indexes for argentina and Brazil in 2018. Missing values are 
non-existent for those countries in 2018

ISO Year GHG SNM TCL WLL GLL EF MTI CO2 DIS BII RLI PAKA SPI REC CRS U
nw

ei
gh

te
d 

In
de

x

W
ei

gh
te

d 
In

de
x

ARG 2018 0.33 0.57 0.95 0.98 1 0.74 0.57 0.38 0.47 0 0.60 0.61

BRA 2018 0.19 0.44 0.94 0.93 0.78 0.57 0.75 0.50 0.89 0 0.60 0.69

Table 5. comparison of the country rankings between the 
aggregate index developed in this study and the Environmental 
Performance Index (EPI) for 2018.

Rank EPI Aggregate Index

1 Denmark Luxembourg

2 United Kingdom Estonia

3 Finland Latvia

4 Malta Denmark

5 Sweden Finland

6 Luxembourg Namibia

7 Slovenia Czechia

8 Austria Slovakia

9 Switzerland Venezuela, Bolivarian Republic of

10 Iceland Lithuania

11 Netherlands Croatia

Figure 8. aggregated Index as a function of the decimal logarithm of GDP per capita. The solid line indicates the least-squares linear 
fit to the data and the shaded region indicates the error estimate.
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lationship, compared to EPI, also emerges in the case of 
our aggregate indicator to a country’s wealth. While the 
relationship results in a weak log-linear trend, the analysis 
indicates it is significantly positive.

5. Closing Remarks
The approach we have developed for weighting indicators in 
a linked indicator set differs from other statistical weighting 
approaches in that it uses categorization to limit the risk 
of error due to redundant indicators. Indeed, two indica-
tors with similar meanings should be placed in the same 
category and therefore not be compared with each other 
when developing the weighting. Furthermore, statistical 
weighting methods are often criticized for assuming equality 
between causality and correlation. The method developed 
here aims at overcoming this pitfall by using predictive 
neural models and relying on more complex causal links 
between indicators over time to carry out the weighting.
Our method nevertheless suffers from obvious limitations. 
From a practical point of view, it is essential to include 
in the set of indicators a very large number of indicators 
covering all the phenomena that we wish to study. The 
omission of certain indicators will for example inevitably 
distort the weighting obtained by redistributing the weight 

on other indicators. However, a surplus of indicators is not 
necessarily problematic. Indeed, redundant indicators will 
share the weight that an indicator would have had if it had 
been included by itself, and an indicator that is not very 
closely related to those of other categories and therefore 
not very relevant to the problem being addressed (such as 
the impact of natural disasters on populations (DIS) in our 
example) will have no weight in the aggregation. However, 
this immediately raises the issue of indicator categorisation. 
If the choice of the “Pressure-State-Response” framework 
provides categories of null intersection, the misplacement 
of an indicator will distort the entire weighting in light of 
the preceding comments. 

A final limitation intrinsic to the use of statistical methods 
in the choice of weights is the lack of impact of the analyst 
on the weighting. For a given set of indicators, the model 
will produce a given weighting regardless of the question 
to be addressed, the audience for which the results are 
intended or the aggregation method chosen. The results 
obtained by the statistical methods should therefore be put 
into perspective during a more detailed study. However, 
we are confident that the proposed method can provide 
an objective summary statistic on biodiversity, especially 
considering its causes and consequences.
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Appendix

Table A1. Summary table of pressure indicators

Indicator Abbr.
What it 
shows

Methodology Data Source
Time 
Frame

Limitations

GHG 
Emission 
Trends

GHG Emission 
intensity of 
Greenhouse 
gases

Potsdam Institute 
for Climate Impact 
Research

1999-2019 International transport. 
land use change and 
deforestation emissions are 
not taken into account

Sustainable 
Nitrogen 
Managment 
Index

SNM Nitrogen use 
efficiency in 
agriculture

Nitrogen use 
efficiency is 
divided by 
crop yield and 
compared to a 
reference value

Zhang and Davidson 
(2016)

1961-2015 Based on an arbitrary base 
value

Tree Cover 
Loss

TCL Loss of 
canopy 
surface

Satellite imagery Global Forest Watch 2006-2020

Wetland 
Loss

WLL Loss in 
wetland cover

Satellite imagery Copernicus 1997-2020

Grassland 
Loss

GLL Loss in 
grassland 
cover

Satellite Imagery Copernicus 1997-2020

Ecological 
Footprint

EF Human impact 
on natural 
resources

Biocapacity is 
compared to 
ecological assets 
needed to support 
human demand

Global Footprint 
Network

1961-2014 Impact of fossil fuels only 
partly taken into account
Part of anthropic emissions 
not taken into account
Regenerative capacities 
of the biosphere and 
ecosystems not taken into 
account

Marine 
Trophic 
Index

MTI A measure 
of whether 
fish stocks 
overexploitation

Catch 
observations

SeaAroundUs 1950-2019 Only available for countries 
with marine border
Quality and consistency of 
the measures
Use of abundance reports 
to assess integrity of 
ecosystems

CO2 

Emission 
Trends

CO2 Emission 
intensity of 
CO2

Potsdam Institute 
for Climate Impact 
Research

1999-2019

Tree Cover 
Loss

TCL Climate 
change 
impacts 
and human 
resilience

Data is collected 
from governmental 
organisations

United Nations 2005-2021 Impacts of climate change 
and higher risks due to low 
resilience of societies are 
difficult to disjoin
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Table A2. Summary table of state indicators

Indicator Abbr.
What it 
shows

Methodology Data Source
Time 
Frame

Limitations

Red List 
Index

RLI Species 
extinction risk

The Red List 
Index is computed 
from species 
threat levels and 
geographical 
trends

IUCN 2000-2022 Extrapolation is used 
because of different 
assessment years
Regional extinction has a 
strong impact on national 
values
Not very sensitive due to 
classification

Biodiversity 
Intactness 
Index

BII Human 
impacts on 
terrestrial 
biodiversity

Using two models. 
the variation of 
abundance is 
modelled as a 
function of human 
pressures (land 
use and population 
distribution).

PREDICTS Project. 
National Zoological 
Society London

1970-2014 Systematic statistical error 
when categorising land use
Each area is considered 
equally

Table A3. Summary table of response indicators

Indicator Abbr.
What it 
shows

Methodology Data Source
Time 
Frame

Limitations

Protected 
Area 
Coverage 
in Key 
Biodiversity 
Areas

PAKA Protecting 
measures 
implemented 
by 
governments

Overlay of 
protected areas 
and key areas 
for biodiversity 
disaggregated per 
country

IUCN. BirdLife. 
United Nations

2000-2021 Effectiveness of the 
management of the 
protected area not taken into 
account

Species 
Protection 
Index

SPI Protecting 
measures 
implemented 
by 
governments

Comparison 
of optimal and 
effectively 
protected habitat 
surfaces

Map of Life 1980-2021 Biodiversity abundance not 
taken into account 
Aggregation at national level 
creates bias
Countries with less 
biodiversity have higher 
scores
Arbitrary and species 
independent optimal species 
protection habitat surface

Recycling 
Rates

REC Amount of 
recyclable 
waste 
effectively 
recycled

World Bank 1990-2020 Regional differences in data 
collection

Official  
development 
assistance 
for  
biodiversity

CRS International 
aid targeting 
environmental 
protection 
received by 
each country

CRS Logs OECD 2008-2020 A large number of countries 
are not considered
The source and nature of 
funding is not taken into 
account
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