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Abstract
ASGM is the world’s largest source of anthropogenic Hg emissions and is common in Latin
America, Sub-Saharan Africa, South Asia, and East Asia. However, the amount of mercury
emitted from ASGM and contributing to global mercury emissions is subject to substantial
uncertainty. Bottom-up studies have quantified sources of Hg, including ASGM, using data on
underlying activities to estimate regional and global totals. In contrast, top-down studies have
used atmospheric concentration measurements and models to constrain Hg emissions.
However, no top-down estimates have yet been calculated for ASGM emissions. With
GEOS-Chem’s global-scale chemical transport model for Hg, we investigate whether and how
ASGM-related Hg emissions can be quantified from existing regional measurement sites for
gaseous elemental mercury (GEM). By combining our top-down method with existing
bottom-up data, we improve estimates of Hg emissions from ASGM activities, using Peru and
the Madre de Dios region of South America as case studies. We find that quantitative
constraints on ASGM emissions are better provided by information on the shape of the
probability distribution of GEM concentrations, such as the interquartile range and the 95%
range, suggesting possible design guidelines for monitoring networks. The model-based
analysis offers insights into improving regional estimates of ASGM emissions.
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Chapter 1

Introduction

Mercury (Hg) is a severe health hazard in the environment and for people, especially fetuses and

young children[1]. The release of mercury into the atmosphere results from human activities

and natural processes. Upon release, mercury moves between the air, soils, and waters until,

eventually, it is removed from the system through burial in coastal and deep ocean sediments, lake

sediments, and subsurface soils [2]. Moreover, mercury can travel great distances when emitted

into the atmosphere, contaminating ecosystems, fish, birds, mammals, and human food chains [2].

Recent estimates, as seen in Figure 1-1, indicate that about 38% of global Hg emissions come from

ASGM, making it the largest source of Hg pollution to the atmosphere and hydrosphere around

the world[3]. However, the amount of Hg released by ASGM activities and the extent to which

it is transported regionally and globally is highly uncertain. This thesis examines how top-down

emissions estimation techniques can help reduce the uncertainty in ASGMHg estimates. First, we

will briefly describe the Hg problem in ASGM. As a next step, we review the state of atmospheric

Hg monitoring and modeling in regions where ASGM activities are prevalent. In addition, we

use observed atmospheric Hg concentrations and atmospheric Hg predictions produced by the

GEOS-ChemModel to come up with the first-ever top-down estimates of ASGMHg emissions for

a region in Peru. Lastly, we synthesize the findings and make recommendations for policymakers

to use monitoring and modeling to better understand ASGM Hg emissions. To comply with the

Minamata Convention, we will use the term "Hg emissions" throughout this thesis to refer to Hg

discharges into the atmosphere and "Hg releases" to refer to Hg discharges into the ground and

water. "Hg discharge" will be used when referring to both emissions and releases.

9



838 Mg
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27.6%
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24%
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10.7%

Artisanal and Small Scale Gold Mining

Industry Sectors

Fuel combustion

Intentional Use(including product waste)

Figure 1-1: Pie chart showing the 2018 global mercury assessment (GMA 2018) ASGM Hg
emission estimates for different sectors. ASGM is estimated to emit themost Hg emissions (shown
in orange) at 838Mg, followed by industry sectors (shown in red) at 614Mg, then fuel combustion
(shown in blue) at 533 Mg, and finally, intentional use sectors excluding ASGM (show in green)
at 239 Mg [3].

1.1 Motivation

More than 100 million people depend on artisanal and small-scale gold mining (ASGM) for their

livelihood globally, particularly in the over 81 countries, predominantly in the global south

where ASGM exists[4]. Additionally, ASGM is an essential source of income and an opportunity

for rural development in countries where options and alternatives to ASGM for generating

income to buy necessities of daily life are in short supply or nonexistent [4]. It is estimated that

around 10 to 20 million (ASGM) miners are employed in ASGM worldwide - about a third of

them are women - and they provide 90% of the global gold mining workforce and extract about

20% of the world’s gold annually [4]. For example, in Peru, ASGM sustains the livelihoods of an

estimated 1 million people, and between 300,000 and 500,000 miners were involved in Peru’s

ASGM sector as of 2014. Despite being a vital source of livelihood for the communities that

practice ASGM, its activities often lead to several environmental, human, and social harms. In

addition to Hg releases to the environment, ASGM externalities include deforestation, tropical
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diseases such as malaria, dangerous and unsafe working conditions, crime and exploitation of

indigenous communities, diesel and gasoline spills, and human trafficking [5].

While most of the Hg pollution from ASGM is local, its ability to travel across borders and

contaminate distant ecosystems bolsters the case for concerted global efforts to eliminate Hg

pollution in all forms, including ASGM Hg pollution. The Minamata Convention (MC) is one of

the unified global efforts to combat Hg pollution. It is a legally binding global treaty with 137

parties as of this writing, and its goal is to protect human health and the environment from the

adverse effects of mercury. The MC’s text comprises articles that address different sources of Hg

pollution, including ASGM Hg emissions[6]. This thesis work is inspired by the need to

improve our understanding of Hg emissions and Hg’s regional and global transport to ensure

that policies and actions taken to reduce ASGM Hg emissions are informed by the best available

science and take advantage of all resources at our disposal to create actionable scientific

knowledge.

1.2 Mercury Use in Artisanal and Small-Scale Gold Mining

During ASGM, Hg is added to the gold ore to form a mercury-gold amalgam, a mixture of about

equal amounts of Hg and gold[7]. Heat is applied to the amalgam, which evaporates the Hg,

leaving the gold behind. Gold extraction using this method is popular with the ASGM

community since it is inexpensive, easy to use, and quick [7]. Moreover, Hg is relatively effective

at capturing gold when there are no alternatives but often captures less than 40% [8]. There is

usually a tremendous amount of Hg vapor in the air around amalgam burning sites, much

higher than the World Health Organization(WHO) limit of 1.0 𝜇g/m3[1]. The Hg emissions in

ASGM are harmful to miners and members of their communities. Additionally, humans and

ecosystems far away are also exposed to Hg risks because Hg travels globally through the

atmosphere. As volatilized Hg subsequently settles in soil, rivers, bays, and oceans, anaerobic

organisms transform it into methylmercury, and water bodies can become contaminated with

methylmercury[3]. Methylmercury is absorbed and ingested by phytoplankton, zooplankton,

and fish, and predator species such as sharks and swordfish that live a long time accumulate

methylmercury and can cause health damages to people who eat fish[1].
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1.3 ASGMMeasures in the Minamata Convention

The MC was agreed upon at the fifth meeting of the Intergovernmental Negotiating Committee

on Hg in Geneva, Switzerland, in January 2013 and formally adopted in October that year in

Kumamoto, Japan. Moreover, the treaty entered into force on 16 August 2017, 90 days after the

50th instrument of ratification was deposited, and currently has 137 parties to the convention[6].

The MC’s goal is to protect human health and the environment from the adverse effects of

mercury, and it affirmed that global action is essential to address the Hg pollution problem.

Article 7 and Annex C of the MC target ASGM. Article 7 requires countries where Hg use in

ASGM is “more than insignificant” to develop a National Action Plan (NAP) that details ways to

reduce and, where possible, eliminate the use of Hg and Hg compounds. Each country should

include in its NAP actions to stop some of the worst practices of ASGM, which include, among

other things, (i) whole ore amalgamation, (ii) open burning of amalgam, (iii) burning of

amalgam in residential areas (iv), and cyanide leaching in sediment or tailings to which Hg has

been added without first removing the Hg [3]. Moreover, countries are required to include in

their NAPs baseline estimates the quantities of Hg used in ASGM. The UNEP Guidance

Document: Developing a National Action Plan to Reduce and, Where Feasible, Eliminate Mercury

Use in Artisanal and Small-Scale Gold Mining(MC Monitoring Guidance) [9] states that the goal

should be to produce an estimate with an accuracy of± 30% and, at worst,± 50%. This is argued

to be an obtainable level of confidence in the context of effort, time, and financial resources

while being good enough to inform the NAP and allow for prioritization of actions [9]. A vital

component of the MC is Article 22, which specifies a variety of information that must be

included when conducting the effectiveness evaluation of the MC. The article states that "the

Conference of the Parties shall, at its first meeting, initiate the establishment of arrangements

for providing itself with comparable monitoring data on the presence and movement of Hg and

Hg compounds in the environment as well as trends in levels of Hg and Hg compounds

observed in biotic media and vulnerable populations." This thesis aims to demonstrate the value

atmospheric modeling and monitoring would add to the process mandated by article 22 by

evaluating the state of atmospheric monitoring and modeling in world regions with high ASGM

incidence. Moreover, the role and the value of monitoring and modeling in the effectiveness

evaluation of the MC were emphasized in the recently published MC Monitoring Guidance[10].
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1.4 Case Study Region

The estimated amounts of ASGM Hg emissions from the different countries vary. This is

illustrated in Figure 1-2, which is a map showing the GMA 2018 ASGM Hg0 emission estimates

for 2015 for all countries worldwide that have ASGM Hg0 emissions and a bar chart showing

countries estimated to emit more than 10 tons/year of Hg from ASGM [3]. Moreover, the GMA

2018 reported that ASGM Hg emissions in Latin America were the highest [3]. Figure 1-2 shows

that Latin America has the highest concentration of countries have estimated ASGM Hg

emissions above 40 tons/year [3]. Furthermore, Latin America has the highest average ratio of

mercury losses to gold production at 4.63, according to Yoshimura et al.’s[11] estimate. This

means that for every gram of gold produced, 4.63 grams of Hg are "lost" (i.e. discharged to the

environment). Africa and Asia have the lowest at 1.96 and 1.23, respectively. However,

atmospheric Hg data from Latin America are rare; hence Hg dynamics in the region are not well

understood.
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Figure 1-2: World map showing the GMA 2018 ASGM Hg0 emission estimates for all countries
worldwide that have estimated ASGM Hg0 emissions and a bar chart showing the countries
estimated to emit more than 10 tons/year of Hg from ASGM [3].
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Peru is the source of the largest ASGM Hg emissions in Latin America and the second largest

source globally, as seen in Figure 1-2. In Peru, the Madre de Dios region provides an ideal place

for Hg research because the process of ASGM in this region involves mainly an amalgamation

of the whole ore, which is the more Hg-intensive of all ASGM processes and is recommended as

a "worst practice" to be eliminated by the Minamata Convention[12]. The process of whole ore

amalgamation involves pouring liquid Hg into old oil drums and mixing it with gold-flecked

sediment. Miners spend hours immersed in toxic mud with their pants rolled up to their knees

in traditional winemaking style. The ratio of liquid Hg to gold amalgam is around

2:1[13, 14, 15]. As soon as the mercury amalgam is formed, miners burn it off to sell the gold.

Hg is often burned off by "gold-changers" in the open air with blowtorches in market areas also

occupied by other local small businesses. In addition to posing environmental risks, this

mercury can also harm women and children[16].

The Madre de Dios region is estimated to be the source of the largest quantities of Hg to the

environment and the atmosphere[17]. Madre de Dios, shown by the red outline in Figure 1-3, is

a rainforest region between Bolivia and Brazil and covers roughly 85,000 square kilometers. The

region’s name is derived from the name of a major river that runs through it, and smaller

streams and rivers cross through it to provide transportation and fishing for indigenous

communities. Furthermore, these waterways are the main sites of ASGM and, subsequently, Hg

contamination [18, 17]. The other regions around Madre de Dios that are sources of large

quantities of Hg are outlined in Figure 1-3. The department of Puno is highlighted in purple,

Arequipa is shown by the blue outline, Ayachucho with the green outline, Apurimac with the

orange outline, and Cusco with the maroon outline.
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Arequipa
Madre de Dios
Puno
Ayacucho
Cusco
Apurímac

Figure 1-3: Peruvian departments studied in this thesis. Some of these departments were
predicted to be the prominent sources of ASGM Hg releases according to the Artisanal Gold
Council’s Inventory Report for the ASGM sector in Peru (2017)[17].

Environmental and human health effects of ASGM Hg pollution have been extensively studied

in Madre de Dios. This thesis project seeks to complement previous studies and distinguish

itself by investigating the extent to which the GEOS-Chem model can leverage existing

measurements of Hg in the atmosphere to produce top-down estimates of ASGM Hg emissions

from Madre de Dios and surrounding departments with reported ASGM activities.

1.5 Thesis Questions

Several studies have identified atmospheric mercury monitoring as a primary and appropriate

method to assess the effectiveness of the MC [19, 20, 21, 3]. Additionally, according to the MC’s
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Monitoring Guidance one of the primary objectives of monitoring Hg in the atmosphere is to

provide data for the development and improvement of transport and chemistry models[10].

However, few studies have shown how monitoring data and atmospheric models can inform

policy on ASGM Hg emissions. Therefore, we seek to answer the following questions based on

the assumption that using chemical transport models (CTMs), such as GEOS-Chem, we can

synthesize data from national and global Hg inventories and atmospheric monitoring networks

for tracking progress and assessing MC’s effectiveness:

1. To what extent can regional atmospheric modeling and monitoring help reconcile the

differences in the current global estimates of emissions and national emissions?

2. How can regional monitoring networks improve the utility of models for evaluating the

effectiveness of MCs?

3. Which atmospheric modeling and monitoring should be prioritized by governments and

policy makers to obtain actionable information about Hg reductions?

1.6 Organization

This introductory chapter has provided a general background on ASGM concerning Hg

emissions and the extent of global efforts to protect people and the environment from the

adverse effects of Hg pollution. Chapter 2 compares the temporal and spatial characteristics of

observed and modeled atmospheric Hg concentrations. It addresses aspects of the first thesis

question by evaluating GEOS-Chem modeled atmospheric Hg concentrations across Latin

America with observed Hg concentrations at various regional sites. In chapter 3, a method is

presented for estimating ASGM Hg emissions. Using atmospheric modeling and monitoring, it

is demonstrated how different ASGM Hg emissions inventories can be reconciled and how

monitoring networks can enhance models’ utility. Finally, chapter 4 presents policy

recommendations and conclusions to address the third research question.
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Chapter 2

Use of a Global Model to Understand

Atmospheric Mercury Observations at

Monitoring Sites in Latin America

Environmental pollution from Hg damages ecosystems through Hg’s transformation into toxic

methylmercury and bio-accumulation in food chains. Further, Hg is highly mobile in the

atmosphere, allowing it to travel to faraway places, resulting in worldwide distribution of its

elemental form, Hg0 , which can last for as long as six months in the atmosphere[22, 23]. Hg in

the atmosphere can be classified as gaseous elemental Hg (GEM), gaseous oxidized Hg (GOM),

and particulate-bound Hg (PBM) [24, 25, 26]. In most cases, Hg emissions occur as gaseous

elemental Hg0 , which is relatively inert and sparingly soluble in water [22]. Since most Hg

entering ecosystems comes from the atmosphere, monitoring and modeling atmospheric Hg

and Hg deposition enables us to understand its biogeochemical cycle. In addition, a better

understanding of Hg’s circulation in the environment would enable effective policies to reduce

its harmful effects.

In this chapter, we compare the outputs of the GEOS-Chem model with observed Hg at multiple

sites in Latin America from two monitoring networks. We combine simulations of Hg in the

atmosphere produced by the GEOS-Chem CTM (Sect. 2.2.2 - Sect. 2.2.2) with ground-based

observations of atmospheric total gaseous mercury (TGM) (Sect. 2.2.3) from the Global Mercury

Observation System (GMOS)[19] and gaseous elemental mercury (GEM) data from a network of

passive air samplers (PAS)[27] distributed across Latin America. Then, we present comparisons
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between observations and model outputs and discuss the implications of the current state of

atmospheric monitoring and modeling atmospheric Hg in Latin America(Sect. 2.3). Finally, we

summarize conclusions from the analysis (Sect. 2.4).

2.1 Background

Hg monitoring networks and atmospheric Hg models are closely interconnected in the

literature. For instance, Gustin et al’s.[28] describe up-to-date scientific thinking regarding

mercury in the environment, monitoring and modeling techniques, and how they relate to

Minamata Convention on Mercury. Notably, the mutual dependency between atmospheric

modeling and monitoring is presented in the MC’s "Monitoring Guidance Document"[10],

which states that observations are needed not only to detect and quantify changes but also to

improve and evaluate models of mercury transport, fate, exposure, and impacts[10]. Similarly,

Sprovieri et al.[19] emphasize the importance of consistent global Hg measurements to validate

regional and global-scale models. According to Brasseur and Jacob[29], it is crucial to have a

large ensemble of observations to evaluate atmospheric modeling outputs.

Data from passive and active sampling sites are evaluated in this thesis. The MC’s "Monitoring

Guidance Document"[10] provides a comprehensive definition and comparison of active and

passive air sampling. Active air samplers, particularly automated ones, can deliver high-frequency

data in a short period from as little as 5 seconds to 5 minutes[10]. However, they may be complex

and costly to set up and operate. In contrast to active samplers, PAS are low-cost, inexpensive, and

do not require electricity, moving parts, pump operation, or calibration[30]. Despite their small

size, they can be deployed at background, remote, urban, and hotspot sites without worrying

about media failures[10].

Some world regions, such as Latin America and Africa, with high ASGM Hg emissions, have not

been subject to detailed model-observation comparisons. This may be attributed to these

regions’ lack of wide coverage of required high-frequency atmospheric Hg monitoring capacity,

as shown in Figure 2-1, which illustrates the distribution of different Hg monitoring networks

worldwide[3]. It is evident in Figure 2-1 that Latin America, Africa, and South East Asia remain
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significantly behind Europe and North America regarding access to large observation

ensembles. A majority of the sampling sites present in these regions are PASs.

Antarctic

Other

Canada

Japan

Mexico

National networks
Australia

China

Republic of Korea

AMAP

EMEP

GMOS

International networks
MDN (Canada and United States)

Long-term air monitoring
(>10-year time-series)

Figure 2-1: Global map of Hg monitoring networks [3]

2.2 Methods

2.2.1 GEOS-Chem Description

The global atmospheric Hg concentration was simulated using version 12.8.1 of GEOS-Chem,

whose Hg simulation is described by Horowitz et al.[22]. All the simulations in this study were

run globally for 47 vertical layers at a resolution of 2.0×2.5, which is approximately equal to a
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222 km×277.5 km grid square at the equator [22]. Moreover, the MERRA-2 assimilated

meteorological data [31] drive the model’s atmospheric transport, which calculates atmospheric

Hg from three tracers: elemental Hg, Hg0, divalent Hg, Hg2+, and particulate-bound divalent

Hg, Hgp. The Hg chemical scheme in the GEOS-Chem version used in this study considers

bromine (Br) to be the primary Hg0 oxidant[22] and employs monthly mean Br oxidant

concentrations from Schmidt et al.[32].

2.2.2 GEOS-Chem Simulations

The GMA 2018 emissions inventory was used to represent anthropogenic emissions sources

from all sectors[33]. Different inputs to the GEOS-Chem model, such as emissions sources, can

be toggled on or off depending on the research objective; hence a reference simulation, Base

(ASGM = ON) simulation was created by turning on all Hg emissions sources globally.

Moreover, a No ASGM (ASGM = OFF) simulation was generated by turning off the ASGM source

globally to evaluate the contribution of ASGM to the baseline modeled Hg0 in the atmosphere

by calculating the difference between the Base (ASGM = ON) simulation and No ASGM (ASGM

= OFF) simulation . Table 2.1 describes the simulations that were conducted in detail.

Table 2.1: GEOS-Chem simulations conducted

Simulation Name Period Resolution Description

Base (ASGM=ON) 2010-2016 2.0×2.5 All Hg anthropogenic emission sources are turned on

No ASGM (ASGM=OFF) 2010-2016 2.0×2.5 All ASGM emissions are turned off

The simulation frequency was set to output daily Hg0 averages at the global scale, while the Hg0

output for the grid boxes corresponding to the locations of the GMOS observation sites was set

to an hourly frequency. The GEOS-Chem outputs for all the simulations were in units of parts

per trillion (ppt) and were converted to ngm-3 at standard temperature and pressure (273 K, 1

atm) to compare them to observations.

2.2.3 Atmospheric Mercury Monitoring Sites in Latin America

The GMOS network is one of a few major projects to develop a global observing system for Hg

pollution. GMOS aims to provide high-quality Hg data sets in the Northern and Southern
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hemispheres to enable a more comprehensive assessment of atmospheric Hg concentrations and

their dependence on meteorology, long-range atmospheric transport, and atmospheric

emissions[19]. A vast network of ground-based monitoring stations, regular oceanographic

cruises, and lower, upper, and stratospheric measurements make up this European

Union-funded project [34, 19]. More than 40 ground-based monitoring sites constitute the

GMOS network, covering many regions with limited to no observational data before GMOS[19].

The GMOS monitoring network has five sites in Latin America that actively monitor Hg levels.

A detailed analysis of the Sisal, Calhau, Manaus, Nieuw Nickerie, and Bariloche sites was

conducted by Sprovieri et al.[19], and the Chalcataya site was analyzed in detail by Koenig et

al.[34]. A summary of the sites’ characteristics is shown in Table 2.2. Moreover, the distribution

of these GMOS sites in Latin America is indicated by the red triangles in Figure 2-2, which is a

map showing the names and locations of the GMOS Monitoring Network Sites and Passive

Sampler sites in Latin America [27, 34]. Moreover, PAS data from the Latin American Passive

Air sampling Network (LAPAN), which was analyzed in detail by Quant et al.[27], was used for

the model observation comparison. The respective locations of the PAS sites are shown by the

blue circles in Figure 2-2.

Table 2.2: Characteristics of the GMOS sites evaluated [34, 19].

Site Site Latitude Longitude Physical Elevation Number of Site Measurement

abbrev Setting (m) Records (days) Type Period

Sisal, Mexico SIS 21.16 -90.05 Coastal site 7 320 Secondary 1/1/2010-1/1/2016

Calhau, Cape Verde CAL 16.86 -24.87 Coastal site 10 309 Secondary 1/1/2013-12/1/2014

Nieuw Nickerie, Suriname NIK 5.93 -56.98 Coastal site 1 215 Secondary 3/1/2007-12/1/2014

Manaus, Brazil MAN -2.89 -59.96 Amazon site 110 100 Master 1/1/2013-12/1/2014

Chalcataya, Bolivia CHC -16.2 -68.12 Mountain site 5340 333 Secondary 7/1/2014-2/1/2016

Bariloche, Agentina BAR -41.13 -72.42 Mountain site 800 333 Master 10/1/2012-7/1/2017

The GMOS sites are classified as either secondary or master sites in Table2.2 to indicate the type

of data collected and the type of equipment used at the site. Master stations are those where

Gaseous Elemental Hg (GEM, i.e., the gas phase Hg in its ground electronic state), Gaseous

Oxidized Hg (GOM, i.e., the oxidized gas phase Hg compounds), Hg associated with suspended

particulate matter (PBM2.5) and Hg in precipitation are continuously measured while

secondary stations are those where only GEM and Hg in precipitation are continuously

measured [19, 21, 34].
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Figure 2-2: Map showing the names and locations of the GMOS Monitoring Network Sites and
Passive Sampler sites in Latin America. GMOS sites are indicated by the red triangles, and the
PAS sites are indicated by the blue dots[27, 34].

2.2.4 Pre-processing andComparison ofObserved andModeledMercury

Concentration in the Atmosphere

Annual average GEM concentration data for 27 PAS sites in Latin America was obtained from

Quant et al.[27], which included information about the coordinates of the deployment sites and

the period of measurement. The PAS data was already ngm-3 hence there was no need for

pre-processing before comparison with the modeled Hg concentrations. Furthermore, the PAS

had been deployed for a year; the different deployment dates ranged from October 20th, 2017, to

March 14th, 2020. Therefore the annual average GEM concentrations from the PASs were
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compared to the modeled annual average Hg0 for 2015 for each site.

Available Hg observation data from the GMOS stations on Figure 2-2 was obtained from the

GMOS online database (http://www.gmos.eu), as well as published studies about the Hg

monitoring data from the different sites [19, 34]. The data sets were pre-processed based on the

information in Sprovieri et al.[19] and Koenig et al.[34]. Daily and annual averages of the

observed TGM concentration were calculated to compare with the GEOS-Chem output.
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2.3 Results and Discussion

PAS Sites GMOS Sites

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7
ngm 3

Figure 2-3: The average annual Hg concentration on Latin America’s surface. The background
is the yearly average Hg0 concentration generated by the Base (ASGM=ON) simulation for 2015.
Circles represent the annual average GEM concentration at PAS sites, while triangles represent
the yearly average TGM concentration at GMOS sites[19, 27, 34].

Recent publications analyzing global Hg monitoring data highlight an observed

inter-hemispheric gradient of Hg concentration where Hg concentration in the southern

hemisphere is lower than Hg concentration in the northern hemisphere[3, 19]. The gradient is

evident in the simulated background annual average Hg0 concentration as seen in Figure 2-3.

Moreover, most GMOS sites agree with and validate the modeled interhemispheric gradient.
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However, a glance at Table 2.3 shows that the model overestimates the annual average Hg

concentration at all the GMOS sites. Moreover, Figure 2-4 better visualizes the difference

between the modeled and observed concentrations. The bar chart in Figure 2-4 compares

observed and modeled Hg concentrations at the GMOS sites. Observed concentrations are

indicated in red, modeled in blue, and ASGM contribution in green. There are annotations on

the bars indicating the average concentration of Hg. In addition, each bar is annotated above

with the data set’s standard deviation and error bars.

Table 2.3: Comparison of the modeled Hg0 concentration and the observed TGM concentrations
at the GMOS sites. The percentage difference between themodel predictions and the observations
depicts the extent to which the model predicts the observed TGM concentrations

GMOS Site Observed Average TGM/GEM Modeled Average Hg0 Percentage difference between Percentage ASGM

Concentration ( ngm-3 ) Concentration ( ngm-3 ) modeled and observed average (%) Contribution (%)

Sisal 1.15 1.26 10 9

Calhau 1.22 1.29 6 9

Nieuw Nickerie 1.17 1.41 20 16

Manaus 1.01 1.26 25 18

Chalcataya 1.04 1.21 17 23

Bariloche 0.71 0.9 27 6
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Figure 2-4: Bar chart comparing the modeled and observed average Hg concentration at the
respective GMOS Sites. The blue bars indicate the modeled annual average concentration, the red
bars indicate the observed annual average concentration, and the green bars indicate the ASGM
contribution at each site. The bars are annotated with the average Hg concentration values.
Moreover, the error bars and the annotated value above the bars show the standard deviation in
each data set.
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Figure 2-4 shows that ASGMs modeled contribution is low in most sites except for Chacaltaya,

Manaus, and Nieuw Nickerie. The model’s behavior regarding the predicted ASGM contribution

at these sites is not surprising since these three sites are in countries estimated to be among the

top 10 Latin American ASGM Hg emitters in the ASGM emission inventory used for

GEOS-Chem simulation. Even though the model estimates a notable ASGM contribution at the

Manaus (18%) and Nieuw Nickerie (16%) sites, the sites lack enough data to fully characterize

the ASGM contribution to the modeled Hg0 concentration over the long term. However, the

predicted ASGM Hg contribution at Chacaltaya is the highest at 23% as seen in Table 2.3.

As far as the PAS observed GEM concentrations are concerned, the modeled background Hg0

concentrations in Figure 2-3 seem to match the PAS GEM measurement at Chalcataya, but,

according to Quant et al.[27], the higher GEM levels observed at Chacaltaya (1.4 ngm-3 ) are

likely to reflect a known Hg spill near the sampling site and may not reflect regional Hg

concentration values. The Chacaltaya Hg spill occurred after the GMOS Chacaltaya site had

completed its data collection period. Thus, the GMOS Chacaltaya station’s annual average Hg

concentration reflects regional Hg concentration more than the PAS station. In comparison

with PAS data, the GEOS-Chem model also overestimated atmospheric concentrations. This

phenomenon is more prevalent in inland sites than coastal ones.

In the Amazon region, for example, there is a difference between the model and inland PAS

sites. This may be because the GEOS-Chem model version used in this study underestimates Hg

uptake by plants [35], which means that the model predicts a higher Hg concentration in the

atmosphere than it is. Figure 2-5 which shows the modeled (blue circles) and observed (red

circles) annual average Hg0 plotted as a function of latitude indicates the interhemispheric

gradient observed in GEOS-Chem. The observation error bars represent the replicate precision

of the observations, while the model error bars represent the 95𝑡ℎ percentile range bootstrap

confidence interval for the mean annual Hg0 .
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Figure 2-5: Hg Concentration in the atmosphere as a function of Latitude. The Base (ASGM =
ON) simulation (blue circles) and observed (red circles) annual average Hg0 plotted are plotted as
a function of latitude to evaluate spatial trends across the continent. The observation error bars
represent the replicate precision of the observations while the model error bars represent the 95th
bootstrap confidence interval for the mean annual Hg0 .

GEOS-Chem’s overestimation of Hg concentration in the Amazon region observed above was

also addressed in Feinberg et al.[35] where GEOS-Chem simulations were compared with

litterfall, throughfall, and flux tower measurements from 93 forested sites to evaluate vegetation

as a Hg sink. The study concluded that the GEOS-Chem version, 12.8.1 underestimates Hg0 dry

deposition, which may explain why measurements of Hg concentration in Latin America were

lower than predicted by GEOS-Chem .
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2.3.1 Modeled vs. Observed Temporal Trends
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Figure 2-6: Time series plots of the observed TGM concentrations at different GMOS sites in red
with the corresponding modeled concentration in blue and the associated ASGM contribution in
green. Except for the CHC site, where the data are from July 2014 and January 2016, the available
data and corresponding model outputs were plotted between January 2013 and January 2016.

This study also compared observed and modeled data on a daily resolution as seen in Figure 2-6,

which shows the time series of the modeled Hg0 concentration in the atmosphere alongside the

observed Hg and the simulated ASGM contribution to the atmospheric Hg concentration at the

GMOS sites. The GEOS-Chem model version used in this study overestimated the concentration

of Hg on most days. However, the GEOS-Chem estimated average Hg0 concentration over the

available observation period was within one standard deviation of the observed Hg in most of

the sites except for the Manaus and Nieuw Nickerie sites. GEOS-Chem’s overestimates the

28



observed GEM concentrations at the Manaus and Bariloche master sites by over 25% and the

GEM concentration at Nieuw Nickerie by 20%, which may be indicative of poor

parameterization of GEM in the model. Moreover, the overestimation of GEM concentrations in

Manaus further indicates the model’s poor implementation of Hg plant uptake through dry

deposition, as discussed in Feinberg et al.[35].

Figure 2-7 displays the scatter plots of modeled Hg concentrations as a function of the observed

Hg concentrations for each site. Each plot uses the red line to evaluate the linear relationship

between the modeled and observed Hg concentrations. Equations of the red regression line and

the coefficient of determination for each site are also displayed on the plots. The general

observation is that the model poorly matched the observations, indicated by the mild and even

flat slopes and shallow 𝑅2 values. The low correlations between the model and observations

may be attributed to poor vegetation uptake[35]. Another plausible hypothesis about the poor

model prediction is that the input ASGM emissions that GEOS-Chem uses are poorly

parameterized. Wrong emissions in the model may reduce the extent to which the model

recreates the observed atmospheric Hg concentrations. Chapter 3 investigates this hypothesis

in detail and highlights some causes, such as the underestimation of emissions from high

Hg-emitting regions like Madre de Dios.
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Figure 2-7: Scatter plots of the modeled Hg concentration as a function of the observed
concentration. The red line is used to investigate the extent of the linear relationship between the
modeled and observed Hg concentrations. The coefficient of determination(𝑅2) and the equation
of the red regression line are shown above each site scatter plot

2.3.2 Comparison of Model Predictions

GEOS-Chem’s skill in reproducing the Hg concentration measured using the two sampling

methods was analyzed using the scatter plots in Figure 2-9. Figure 2-9 (a) shows the modeled

annual mean Hg0 concentration for each GMOS site as a function of the observed Hg0
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concentration at the site, while Figure 2-9 (b) shows the modeled annual mean Hg0

concentration for each of 6 PAS sites that are the closest to the 6 GMOS sites in (a) as a function

of the observed Hg0 concentration at the respective site. In each plot, the red line is the

regression line to investigate the strength of the association between the modeled

concentrations and observed concentrations.
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Figure 2-9: Scatter plots comparing model’s predicted Hg Concentration means with the GMOS
and PAS average annual Hg Concentration means. (a) shows modeled annual mean Hg0
concentration for each site as a function of the observed Hg0 concentration at the site. The red
line is the regression line

Figure 2-9 shows that GEOS-Chem is better at reproducing the actively monitored average Hg

concentration (steep slope and large 𝑅2) than the data from the passive monitoring.

Furthermore, adding all the remaining Hg concentrations from the PAS did not improve the

slope or 𝑅2 but worsened the relationship. Even though Figure 2-7 informs us that GEOS-Chem

poorly predicted daily averages at the individual GMOS sites, Figure 2-9 shows that its

predictions of actively monitored Hg concentrations are better in aggregate than passively

monitored Hg concentrations. This result suggests that modeling studies would gain better

insights from comparisons with actively monitored Hg concentrations. However, this result

does not render PAS monitoring obsolete. Using PAS technologies, we can obtain high-quality

data about Hg concentrations in the atmosphere and understand regional background Hg

concentrations over long periods. Since PAS networks are relatively inexpensive and easy to

install, countries can use them to understand their Hg emissions better, providing valuable
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global and regional monitoring data. A better understanding of temporal trends can be gained

from active monitoring, as evidenced by the analysis of GMOS TGM concentrations.

Furthermore, a single data set of actively monitored Hg concentrations can be analyzed to

generate metrics such as mean, 𝑖𝑞𝑟 , and 95𝑡ℎ percentile range , allowing multiple ways to

compare modeled and observed concentrations. Despite not recreating the exact Hg

concentrations observed at GMOS sites, improvements to the model, such as the update in the

model’s dry deposition discussed in Feinberg et al.[35] may improve the GEOS-Chem’s

predictions of measured Hg concentration in the atmosphere. Additionally, Shah et al.’s[23]

improved mechanistic model of the atmospheric redox chemistry of mercury may also reduce

GEOS-Chems’s error in predicting the observed concentrations.

2.4 Conclusion

This chapter explored the relationship between the modeled and observed Hg concentrations in

Latin America. The atmospheric Hg measurements from six active monitoring sites across Latin

America part of the GMOS network were analyzed and compared with modeled Hg0

concentrations at the respective sites[34, 19]. Furthermore, annual average GEM measurements

from 27 PAS sites across Latin America were compared to 1-year beverages for Hg0

concentrations at the respective monitoring sites [27]. A relatively weak relationship was found

between the observed mercury species (GEM and TGM) and those in the Base (ASGM = ON)

simulation , demonstrating a need for improving the models. Additionally, GEOS-Chem

recreated the average Hg concentration measurements from active monitoring stations better

than PAS. Lastly, improved vegetation uptake and more accurate emission parameterizations

may improve the model’s prediction.
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Chapter 3

Top-down Constraints on Atmospheric

Mercury Emissions from ASGM Activities

To measure the effectiveness of mitigation and elimination strategies for reducing Hg pollution

from ASGM, Hg emissions estimates will be compared to baseline estimates per Article 22 of

the MC. The ASGM industry is often unregulated, with little government oversight and a limited

amount of reliable data[36]. Therefore, measurement of Hg use in the ASGM sector is difficult due

to its complexity and largely informal nature. Typically, finding reasonable estimates of ASGM

Hg use, gold production, and staff requires extensive site visits, multiple interviews, observations,

and measurements at ASGM sites[36].

In this chapter, we apply a top-down approach at a regional scale to estimate ASGM Hg

emissions (emission inversion) from Peru. As of now, there has been no scientific study using

Hg atmospheric monitoring data and atmospheric models to provide top-down constraints for

ASGM emissions. Section 3.2 describes the overall methodology. We combine ground-based

observations of atmospheric Hg from the case study region[34], a national inventory for

Peru[37] and simulations with the GEOS-Chem global CTM. Reference (also known as a priori)

emissions are from the GMA 2018[3, 33]. The Markov Chain Monte Carlo is the inversion

method used (Sect. 3.2.5) to obtain the optimized (a posteriori) emissions, considering

uncertainties associated with reference and ground-based observations. Section 3.3 presents

results and discussion. Comparisons of observations and model outputs are given in Sect. 3.3.3.

The optimized emissions from 5 regions in Peru are shown in Sect.3.3.4. Finally, we discuss the

implications of the inversion results for providing baseline estimates of ASGM Hg emissions
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and summarize conclusions (Sect. 3.4).

3.1 Background

Numerous prior studies have quantified anthropogenic Hg sources, including ASGM Hg

emissions using different methodologies. Bottom-up estimates leverage collected data on

underlying activities and emission factors to estimate regional and global totals. For instance,

the bottom-up global inventory in the GMA 2018 estimated ASGM Hg emissions to be 838 Mg

with an uncertainty range of 675-1000 Mg for 2015 [3, 33]. Moreover, Streets et al. (2019) tested

six different proxies for scaling emissions to other years and used an average value to scale the

inventory of emissions to the year 2015, thus estimating that ASGM was the largest source and

responsible for 775 Mg of emissions[38]. Muntean et al. (2014) also used a bottom-up technique

in which they found that poverty in gold ore-rich countries (as measured by the GINI index

[39], where available) was correlated with data on ASGM production activity. The

poverty-based approach they used estimated that ASGM was responsible for 728.27 Mg

emissions in 2010, equivalent to 41.1% of the global Hg emissions[40]. Such inventories are

essential and a critical input to model Hg using CTMs such as GEOS-Chem .

However, the different assumptions on the activity data and emission factors induce significant

uncertainty in the emission inventories. Furthermore, the bottom-up approach has biases due to

its reliance on officially reported emission data, which may cause regional and national

differences in accuracy. Countries identify and quantify Hg sources released within their

borders through national baseline Hg-use estimates as per O’neill and Telmer[36]. Under

Article 7 of the MC and Annex C, countries must include in their NAPs baseline estimates of the

quantities of mercury used in ASGM within their territory[41].

In contrast to bottom-up approaches, top-down emission estimation approaches combine

atmospheric transport and chemistry models with atmospheric concentration measurements to

quantify emissions. Even though the atmospheric chemistry literature has various top-down

method applications, no study explicitly constrains ASGM Hg emissions. For instance, Bousquet

et al., 1999 applied top-down methods to infer surface fluxes of atmospheric CO2 from observed

concentrations[42]. Furthermore, Kopacz et al., 2009, employed top-down techniques to

quantify source contributions to ozone pollution at two adjacent sites on the U.S. west coast in
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the spring of 2006[43]. They used GEOS-Chem as a common intercomparison platform to show

global consistency between the satellite data sets and the in situ data. This underscores the role

models such as GEOS-chem have as integration platforms for differently sourced data to

generate unified insights. Likewise, Hg emissions have been constrained using top-down

methods in Song et al., 2015 where a top-down approach at a global scale is applied to

quantitatively estimate present-day Hg emission sources and critical parameters in GEOS-Chem

to better constrain the global biogeochemical cycle of Hg[44]. Moreover, Denzler et al., 2017

used a top-down approach to quantify Hg emissions on a European scale based on the

atmospheric Hg measurements conducted at the remote high-altitude monitoring station,

Jungfraujoch, Switzerland[45].

3.2 Methods

Chapter 2 of this thesis discussed the differences between the GEOS-Chem model predictions of

Hg at various monitoring stations and in Latin America. In one hypothesis, the difference

between the model and the observations was attributed to how the emissions were

parameterized in GEOS-Chem . Generally, the input emissions in GEOS-Chem are determined

by the Hg inventory used; hence, we first evaluated the Hg inventory used in the simulations in

Chapter 2 (GMA 2018, also called AMAP/UNEP 2015 inventory) against other global inventories.

Next, the inventory was compared to a national inventory for Peru developed by the Artisanal

Gold Council in preparation for Peru’s NAP [17]. Once the differences between the GMA 2018

inventory[33] and the Peruvian national inventory were analyzed [17], the global inventory

was re-gridded to the GEOS-Chem grid, and the emissions from grid boxes corresponding to

different departments in Peru were scaled. The scaled inventories were used to create the

simulations described in Table 3.1. These simulations were used to investigate the sensitivity of

the Hg concentration at distant locations to the changes in emissions from the grid boxes in the

case study region. The simulated Hg0 concentration in the atmosphere was compared to the

observed TGM concentration in the atmosphere to determine the sensitivity of the Hg0

concentration to the changes in emissions from individual grid boxes and multiple grid boxes.
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3.2.1 Mercury Emission Inventories

Globally gridded emissions inventories such as those shown in Figure 3-1 are a critical input to

CTMs such as GEOS-Chem . Figure 3-1 shows the distribution of Peruvian anthropogenic Hg

emission estimates by different global inventories [3, 33, 38, 40]. The GMA 2018 ASGM Hg

emissions estimates for 2015 are shown in Figure 3-1, (a). The ASGM Hg emissions in the GMA

2018 inventory were distributed by assigning emission estimates to geo-located point sources,

using reported emissions information where available, and otherwise assigning a modeled

emission to the point. Emissions that could not be assigned to point sources were distributed

using sector-specific proxies [33]. The proxies for ASGM Hg emissions in Peru were the

locations of legal mining concessions and the global alluvial gold map data set. This inventory

estimated that ASGM was responsible for about 110 tonnes of annual emissions in Peru.

Moreover, the GMA 2018 inventory was used in all the GEOS-Chem simulations conducted in

this study. This inventory was used because it was more representative of the ASGM emissions

than the other two inventories, as the total Hg emissions are compatible with bottom-up

baseline ASGM Hg emissions. Figure 3-1,(b) shows how anthropogenic Hg emissions were

distributed in the EDGAR ASGM Hg emissions inventory[40]. This global mercury emissions

inventory includes emissions from all key mercury emitting sources, and Peru’s total Hg

emissions estimate was about 26 tonnes per year. Finally, Figure 3-1,(c) shows how

anthropogenic Hg emissions were distributed in the Streets et al. 2019 Hg emissions

inventory[38]. They analyzed the global and regional trends in anthropogenic Hg releases to

the atmosphere between 2010 and 2015 and the associated trends in modeled and measured Hg

concentrations at sites around the world. Their Peru total Hg emissions estimate was about 40

tonnes per year.
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2015 AMAP/UNEP ASGM inventory 2010 EDGAR ASGM inventory 2015 STREETS inventory (all emissions)

0 200 400 600 800 1000
Hg0 emissions (kg yr 1)

(a) (b) (c)

Figure 3-1: Comparison of Hg emissions from Peru as estimated by different global inventories
[3, 33, 38, 40].

3.2.2 Emission Modification and GEOS-Chem Simulations

Five more simulations were added to the Base (ASGM = ON) simulation and No ASGM (ASGM

= OFF) simulation GEOS-Chem simulations presented in Chapter 2. The other five simulations

were sensitivity runs that used modified emission inventories corresponding to changes in

emissions from one of the grid boxes in the case study region.
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Figure 3-3: Maps showing how the GMA2018 emission estimates for the year 2015 were
distributed for Peru before re-griding (a)[33] and after re-gridding to the GEOS-Chem grid (b)
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Table 3.1: Table showing the different GEOS-Chem simulations used in the analysis

Simulation Name Resolution Description Estimate

Base (ASGM=ON) 2.0×2.5 All Hg anthropogenic emission sources are

turned on

No ASGM (ASGM=OFF) 2.0×2.5 All ASGM emissions are turned off

Mdd 2.0×2.5 Emissions from the GEOS-Chem grid box

located in Madre de Dios were scaled up by a

factor of 2

Apr 2.0×2.5 Emissions from the GEOS-Chem grid box

located in Apurimac were scaled down by a

factor of 0.5

Aqp 2.0×2.5 Emissions from the GEOS-Chem grid box

located in Arequipa department were scaled up

by a factor of 2

Npun 2.0×2.5 Emissions from the GEOS-Chem grid box

located in the northern region of Puno were

scaled up by a factor of 2

Spun 2.0×2.5 Emissions from the GEOS-Chem grid box

located in the southern region of the Puno were

scaled up by a factor of 2
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3.2.3 Simulated Atmospheric Mercury Concentration Signals

The relationship between the Hg0 emissions from a specific grid box and the GEOS-Chem

simulated atmospheric Hg0 concentration at distant points from the emissions source is

assumed to be defined by a linear function. This means that an increase in emissions is expected

to increase the Hg0 concentration. Consequently, the relationship between emissions and

concentrations can be represented by the following equation:

𝐻𝑔0𝑠𝑖𝑔(𝑟𝑒𝑔𝑖𝑜𝑛) = 𝐻𝑔𝑚0 +
(𝐻𝑔𝑚1 −𝐻𝑔𝑚0)

(𝑚1 −𝑚0)
(𝑚(𝑟𝑒𝑔𝑖𝑜𝑛) −𝑚0) (3.1)

where:

𝑟𝑒𝑔𝑖𝑜𝑛 is the location of the emission source within the case study region.

𝐻𝑔0𝑠𝑖𝑔(𝑟𝑒𝑔𝑖𝑜𝑛) is the simulated Hg0 concentration at the observation site due to𝑚(𝑟𝑒𝑔𝑖𝑜𝑛) at the

grid box in the specific 𝑟𝑒𝑔𝑖𝑜𝑛 of interest.

𝐻𝑔𝑚0 is the Hg concentration at the observation site generated by the Base (ASGM

=ON) simulation.

𝐻𝑔𝑚1 is theHg concentration at the observation site generated by the 𝑖𝑡ℎ region simulation

𝑖=Mdd,Apr, Aqp,Npun,Spun.

𝑚1 is the amount of emissions in tons after scaling the emissions from a specific

grid box.

𝑚0 is the amount of emissions in tons before scaling the emissions from a specific

grid box.

3.2.4 Observation Site Selection

TGM and GEM observation data from different locations in Latin America were analyzed and

compared to the GEOS-Chem simulated Hg0 concentrations for those sites in Chapter 2. The

GEOS-Chem predictions for ASGM contributions to atmospheric Hg concentration were higher

at the CHC, making it an excellent candidate to use as a reference for comparison with the

modified GEOS-Chem Hg concentration predictions. Moreover, this site is the closest

monitoring site to Peru hence it is expected that it would be more likely to detect atmospheric
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Hg0 changes that result from the changes in Hg emissions from the case study region. The time

series of the observed concentration at the CHC station between July 2014 and January 2016 is

shown in Figure 3-4. The red line indicates the daily average concentration, while the grey line

shows the 120-day moving average, which highlights the upward trend in the daily averages.
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Figure 3-4: The average daily TGM concentration at CHC in ng m-3 as a function of time over
the measurement period from July 2014 to January 2016[34]. The red line indicates the daily
average concentration, while the grey line shows the 120-day moving average, which highlights
the upward trend in the daily averages.

The detailed characteristics of the observations over this measurement period were described in

Koenig et al.[34]; hence my analysis focused on using the observation TGM data to evaluate the

performance of the GEOS-Chem model in predicting the Hg0 based on the input Hg0 emission

inventories. As shown in Figure 3-4, the TGM concentration at CHC showed an upward trend,

which Koenig et al. (2021) attribute to El Niño-Southern Oscillation (ENSO)[34]. As a result,

they categorized the measured TGM concentrations in the atmosphere at the CHC site as

normal conditions (NC), 2014-07 to 2015-05, and ENSO conditions from 2015-06 to 2016-01. To

reduce the number of records associated with ENSO, we limited our analysis to one year’s

worth of data from 2014-07 to 2015-07.

3.2.5 Inverse Modelling with Markov Chain Monte Carlo

Inverse modeling is described by Brasseur, and Jacob [29] as a method for quantifying variables

that drive a physical system using observations. Accordingly, the variables are statistically
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optimized based on the observational and other information available. Variables we wish to

optimize are called state variables and assembled into a state vector 𝑥. In the same way, the

observations are assembled into an observation vector 𝑦. The forward model 𝐹 of the physical

system describes the relationship between 𝑥 and 𝑦:

𝑦 = 𝐹 (𝑥, 𝑝) + 𝜖0 (3.2)

where:

𝑝 contains all variables in the model that we will not optimize as part of the inversion

𝜖0 a vector of observations errors, which includes errors from measurements, the forward

model, and model parameters

Forward models describe the effects of the system as functions of the cause 𝑥, usually by using

equations that describe the system’s physics. The cause (𝑥) can be quantified via inversion of

the model based on the effect (𝑦). Moreover, 𝑥 is estimated with some statistical error when

𝜖0 ̸= 0 is present. The solution for 𝑥 is called the optimal estimate, posterior estimate [29].

The uncertainty in obtaining 𝑥 from 𝑦 requires us to consider constraints on the value of 𝑥

called priors that could reduce the error on the optimal estimate. We generally use the prior

estimate 𝑥𝐴 as a constraint, representing our best estimate of 𝑥 before the observations. The

GMA 2018 inventory estimates of the emissions from the respective grid boxes are used as

priors for our analysis. The prior estimate 𝑥𝐴 has some error 𝜖𝐴. As a result, the ideal estimate

must consider the relative information given by the observations 𝑦 and the prior estimate 𝑥𝐴. In

inverse modeling, we can analyze the relative importance of observations and prior knowledge.

In this way, it provides insight into the effectiveness of an observing system in constraining 𝑥

(Hg emissions) [29].

For this analysis, we use the measured Hg concentration (observation vector 𝑦) to constrain the

emissions from grid boxes in the case study region (state vector 𝑥). The forward model is given

by the linear combination of the signals generated by the GEOS-Chem model as shown in

Equation 3.3 below:
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𝐻𝑔𝑐𝑜𝑛𝑐 = 𝐻𝑔𝑚(𝑀𝑑𝐷) +𝐻𝑔𝑚(𝑆−𝑃𝑢𝑛𝑜) +𝐻𝑔𝑚(𝑁−𝑃𝑢𝑛𝑜) +𝐻𝑔𝑚(𝐴𝑝𝑟) +𝐻𝑔𝑚(𝐴𝑞𝑝)

+𝐻𝑔𝑚0 + 𝜖
(3.3)

where:

𝐻𝑔𝑚(𝑀𝑑𝐷) is the Hg concentration signal resulting from emissions from the Madre de Dios

(MdD) grid box.

𝐻𝑔𝑚(𝑆−𝑃𝑢𝑛𝑜) is the Hg concentration signal resulting from emissions from the South Puno

(S-Puno) grid box.

𝐻𝑔𝑚(𝑁−𝑃𝑢𝑛𝑜) is the Hg concentration signal resulting from emissions from the North Puno

(N-Puno) grid box.

𝐻𝑔𝑚(𝐴𝑝𝑟) is theHg concentration signal resulting from emissions from theApurimac (Apr)

grid box.

𝐻𝑔𝑚(𝐴𝑞𝑝) is the Hg concentration signal resulting from emissions from the Arequipa (Aqp)

grid box.

𝐻𝑔𝑚0 is the baseline Hg concentration signal.

𝜖 is the error in the prior estimates.

Each of the 𝐻𝑔𝑚(𝑟𝑒𝑔𝑖𝑜𝑛) terms of Equation 3.3 represent signals from the different departments

are calculated using Equation 3.1 an the form the parameter vector 𝑝. The𝑚(𝑟𝑒𝑔𝑖𝑜𝑛) terms are

the only unknowns and the equation can be expanded to isolate the terms with𝑚(𝑟𝑒𝑔𝑖𝑜𝑛), which

is the parameter we are optimizing for in the inverse modeling method. The expanded form of

Equation 3.3 is shown below:

𝐻𝑔𝑐𝑜𝑛𝑐 = (𝑚(𝑀𝑑𝐷)𝐻𝑔𝑠𝑖𝑔(𝑀𝑑𝐷)
−𝑚𝑜𝐻𝑔𝑠𝑖𝑔(𝑀𝑑𝐷)

) + (𝑚(𝑆−𝑃𝑢𝑛𝑜)𝐻𝑔𝑠𝑖𝑔(𝑆−𝑃𝑢𝑛𝑜)
−𝑚𝑜𝐻𝑔𝑠𝑖𝑔(𝑆−𝑃𝑢𝑛𝑜)

)

+ (𝑚(𝑁−𝑃𝑢𝑛𝑜)𝐻𝑔𝑠𝑖𝑔(𝑁−𝑃𝑢𝑛𝑜)
−𝑚0𝐻𝑔𝑠𝑖𝑔(𝑁−𝑃𝑢𝑛𝑜)

) + (𝑚(𝐴𝑝𝑟)𝐻𝑔𝑠𝑖𝑔(𝐴𝑝𝑟)
−𝑚𝑜𝐻𝑔𝑠𝑖𝑔(𝐴𝑝𝑟)

)

+ (𝑚(𝐴𝑞𝑝)𝐻𝑔𝑠𝑖𝑔(𝐴𝑞𝑝)
−𝑚𝑜𝐻𝑔𝑠𝑖𝑔(𝐴𝑞𝑝)

) +𝐻𝑔𝑚0 + 𝜖

(3.4)

43



Since the values of𝑚(𝑟𝑒𝑔𝑖𝑜𝑛) are the state variable we want to estimate, they can be represented

as 𝜃𝑖 = 𝑚(𝑟𝑒𝑔𝑖𝑜𝑛), 𝑖 = 1 and the other terms, including the background concentration and error,

are combined into one constant, C:

𝐻𝑔𝑐𝑜𝑛𝑐 = 𝜃0𝐶 + 𝜃1𝐻𝑔𝑠𝑖𝑔(𝑀𝑑𝐷)
+ 𝜃2𝐻𝑔𝑠𝑖𝑔(𝑆−𝑃𝑢𝑛𝑜)

+ 𝜃3𝐻𝑔𝑠𝑖𝑔(𝑁−𝑃𝑢𝑛𝑜)

+ 𝜃4𝐻𝑔𝑠𝑖𝑔(𝐴𝑝𝑟)
+ 𝜃5𝐻𝑔𝑠𝑖𝑔(𝐴𝑞𝑝)

(3.5)

𝐻𝑔𝑐𝑜𝑛𝑐 =
[︁
𝐶 𝐻𝑔𝑠𝑖𝑔(𝑀𝑑𝐷)

𝐻𝑔𝑠𝑖𝑔(𝑆−𝑃𝑢𝑛𝑜)
𝐻𝑔𝑠𝑖𝑔(𝑁−𝑃𝑢𝑛𝑜)

𝐻𝑔𝑠𝑖𝑔(𝐴𝑝𝑟)
𝐻𝑔𝑠𝑖𝑔(𝐴𝑞𝑝)

]︁
×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜃0

𝜃1

𝜃2

𝜃3

𝜃4

𝜃5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.6)

where 𝜃0 = 1 and 𝐻𝑔𝑐𝑜𝑛𝑐 is the modeled Hg concentration at the observation site of interest.

The Markov-Chain Monte Carlo (MCMC) is a valuable sampling method for fitting models to

data[46]. We apply the MCMC to constrain ASGM Hg emissions from the case study region in

Peru. The model is generated by a set of parameters and emissions, and we aim to sample from

the parameters that best fit our data. The MCMC compares the modeled concentrations to the

observed data using metrics such as the 95𝑡ℎ percentile range confidence interval, mean, and the

𝑖𝑞𝑟 . The MCMC models the given data by sampling around optimum values from the posterior

distribution. The MCMC is a Bayesian approach; hence it requires the definition of priors on the

parameters of interest. The priors encode information that we already know of the system. The

probability of the model given the observed data is given by the posterior probability, 𝑃 (𝜃|𝐷),

which is calculated using the Bayes theorem:

𝑃 (𝜃|𝐷) =
𝑃 (𝐷|𝜃)𝑃 (𝜃)

𝑃 (𝐷)
(3.7)

where:

𝑃 (𝐷|𝜃) is the likelihood which is the probability of the data given the model

𝑃 (𝜃) is the prior, which is the probability of the model and
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𝑃 (𝐷) is the evidence which is the probability of the data.

Bayes’ theorem relates posterior the probability distributions of parameters (𝑓𝑝𝑜𝑠𝑡(𝜃,𝐷)) to

the likelihood function (𝑓(𝐷|𝜃)) and prior knowledge of the parameter distributions (𝑓𝑝𝑟𝑖𝑜𝑟(𝜃))

The MCMC with the Metropolis-Hastings algorithm enables the estimation of the sampling of

the posterior distribution, which is the left-hand side of Equation 3.7 by directly computing 𝑃 (𝜃)

and 𝑃 (𝐷|𝜃), and their product, for a very large ensemble of values of 𝜃 sampling strategically

the n-dimensional space defined by the dimension of 𝜃[29]. When applying MCMC sampling, a

new parameter set (𝜃𝑘+1) is drawn from normal distributions with (𝜃𝑘), as the mean. Using the

new parameter set, the posterior probability is calculated and compared to the previous set

(𝑟 = 𝑓𝑘+1

𝑓𝑘 ). With probability 𝑟 greater than 1, the sample set is accepted, while with probability

𝑟 less than 1, the sample set is rejected. Should the new parameter set be rejected, the previous

parameter set (𝜃𝑘+1 = 𝜃𝑘) will be retained. We repeat this process for 1000 samples. Using these

samples, we compute summary statistics on parameter posterior distributions.

3.3 Results and Discussion

3.3.1 National vs. Global Mercury Inventory

Figure 3-5 compares ASGM Hg emissions estimates from two different bottom-up inventories

regrided to the GEOS-Chem 2×2.5 grid used in the simulations in this study. The GMA 2018

estimates of Hg emissions from ASGM activities in Peru for 2015 as distributed by Steenhuisen

andWilson[33] are shown in Figure 3-5,(a). Furthermore, Figure 3-5,(b) representsmy interpretation

of how the Peru ASGM Hg emissions estimates from the AGC’s inventory[17] would be mapped

on to the GEOS Chem Grid. The estimates for the total ASGM emissions from Peru are almost

similar in both inventories, 110.4 t/y in theGMA2018 and 108.74 t/y in theAGCnational inventory.
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Figure 3-5: The AGC Peru National ASGM Hg emissions inventory as published in [17]
and regridded to the GEOS-Chem 2×2.5 grid resolution is shown in (a).How the ASGM Hg
emissions in Peru were distributed in two bottom-up inventories. The GMA2018 ASGM Hg
emissions inventory for 2015 as distributed in Steenhuisen and Wilson [33] and regridded to
the GEOS-Chem 2×2.5 grid resolution is shown in (b).

The AGC’s Peru national inventory attributed most of the ASGM Hg emissions to the South

Eastern departments in the country[17]. As seen in Table 3.2, the Madre de Dios department is

the largest source of Hg emissions, followed by Arequipa, Puno, Ayacucho, Cusco, respectively.

The rest of Peru together contributes about 0.98 tonnes of Hg emissions annually. In contrast

with the AGC’s method, Steenhuisen, and Wilson[33] based the Hg emissions spatial

distribution on a proxy based on the likelihood of gold occurrence in soils, sediments, and

bedrock and knowledge of actual ASGM activity. For Peru, they used the global alluvial gold

map and a (gold) mining concessions dataset for Peru.
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Table 3.2: Comparison of Peruvian ASGM Hg emissions estimates from the GMA2018 inventory
for 2015 and estimates from the AGC national inventory of ASGM Hg emissions from the case
study region. The emissions units are tons/year, and the right-most column shows the percentage
difference between the AGC and GMA 2018 Hg emissions estimates.

Region AGC GMA 2018 Percentage Difference

(t·𝑦−1) (t·𝑦−1) (%)

Madre de Dios 54.46 1.39 -97.45

Puno 19.37 19.42 +0.26

Arequipa 23.86 18.99 -20.41

Apurimac 0.03 19.32 +64300.00

Ayacucho 9.15 8.99 -1.75

Cusco 0.89 0.04 -95.50

Rest of Peru 0.98 42.25 +4211.22

Total 108.74 110.40

The Madre de Dios department is a well-known ASGM hotbed in Peru, and within the Amazon

region hence the GMA 2018 estimate of Hg emissions of 1.39 t/y can be easily identified as

inaccurate. Moreover, Diringer et al.[47] estimated that the amount of Hg used in ASGM in

Madre de Dios was at least 30 tons per year, which also undermines the GMA 2018 estimate.

As discussed in Chapter 2, the Base (ASGM = ON) simulation model did not reproduce

atmospheric Hg concentrations, and the above comparison of global and national inventories

was conducted to determine the role played by emission inputs in the poor model’s replication

of observed atmospheric concentrations. In light of the uncertainty in the inventories of Hg

emission estimates and the above findings about the differences in the inventories, it was

hypothesized that the poor predictions of Base (ASGM = ON) simulation may be the result of

incorrect emission parameterization in GEOS-Chem . Following are the results of scaling the

emissions from the departments in the case study and comparing them with observations. A

top-down estimate of Hg emissions for Peru is also provided.
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3.3.2 GEOS-Chem Predictions vs. Observations at Chalcataya

The comparison of the GEOS-Chem predicted Hg0 concentration to observed TGM at CHC for

the one year from 2014/07/03 to 2015/07/03 is shown in Table 3.3. The metrics being compared

on the table are the mean (𝜇), standard deviation (𝜎), interquartile range (𝑖𝑞𝑟 ), Spearman

correlation (𝑟𝑠) and Pearson correlation (𝑟).The mean Hg0 concentration produced by the No

ASGM (ASGM = OFF) simulation was within 1% of the observed TGM concentration as seen in

Table 3.3. On the contrary, the average Hg0 produced by the Base (ASGM = ON) simulation

overestimated the mean by 29%.

Table 3.3: Characteristics of observed and modeled Hg concentration in CHC where 𝜇 is the
annual average Hg concentration, 𝜎 is the standard deviation, 𝑖𝑞𝑟 is the interquartile range, 𝑟𝑠 is
the Spearman correlation, 𝑟 is the Pearson correlation

𝜇 𝜎 𝑖𝑞𝑟

(ng m−3)/year) (ng m−3)/year) (ng m−3)/year)

Observations 0.90 0.16 0.18

Simulations 𝑟𝑠 𝑟

No ASGM (ASGM=OFF) 0.91 0.060 0.11 0.17 0.14

Base (ASGM=ON) 1.2 0.14 0.20 0.12 0.27

Figure 3-6 shows a detailed comparison of the simulated Hg0 concentration and the observed

TGM concentration at CHC. The observations (in red) are plotted as a function of time in plots

(a) and (c) with the No ASGM (ASGM = OFF) simulation (in green) in plot (a) and the Base

(ASGM = ON) simulation in (blue) in plot (c). The low correlation between both modeled Hg0

concentrations and the observations is also evident in the scatter plots in (b) and (d). However,

the Base (ASGM = ON) simulation closely approximates the variability (defined by the standard

deviation) in the observed Hg concentration as its standard deviation is only 12.5% less than the

observation standard deviation, yet the No ASGM (ASGM = OFF) simulation standard deviation

is 62.5 % less than the observation standard deviation. While here, the dataset has been

truncated to one year from 2014/07/03 to 2015/07/03, this study follows Chapter 2, where the

entire CHC dataset was compared with the modeled Hg0 concentration at CHC.
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Figure 3-6: The observations (in red) are plotted as a function of time in plots (a) and (c) with
the No ASGM (ASGM = OFF) simulation (in green) in the plot (a) and the Base (ASGM = ON)
simulation in (blue) in the plot (c). Analysis of the observed Hg concentrations vs. the No ASGM
(ASGM=OFF) simulation shows how themodeledmean closely approximates the observedmean
and poorly estimates the daily variability, as shown by the difference in the size of the daily spikes
of the Hg concentrations. The scatter plots in (b) and (d) represent the modeled Hg0 as a function
of the measured TGM concentration.

Even though GEOS-Chem closely approximated the mean Hg concentrations at CHC in the No

ASGM (ASGM = OFF) simulation , the Spearman (𝑟𝑠) and Pearson (𝑟) correlations between the

modeled and observed concentrations were very low at 0.17 and 0.144, respectively. Moreover,

the coefficient of determination, 𝑅2 between the observed and modeled concentrations in No

ASGM (ASGM = OFF) simulation case was almost zero at 0.0207. This is in line with the general

result in Chapter 2 that the model poorly estimates the observed Hg emission concentrations in

the atmosphere. Brasseur and Jacob (p.471)[29] argue that in cases where a model captures the

observed means but not the observed variability, the mean may be wrongly interpreted [29]. In

line with Brasseur and Jacob’s argument, the wrong interpretation of the No ASGM (ASGM =

OFF) simulation mean is encapsulated in the direct comparison of the No ASGM (ASGM = OFF)

simulation and the TGM concentration at CHC . This is because Hg concentrations in the

atmosphere captured in the TGM concentration at CHC are affected by ASGM emissions near
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CHC. Moreover, a poor definition of dry deposition or vegetation uptake in the model further

leads to underestimating observed Hg concentrations.

The Base (ASGM = ON) simulation reproduces the 𝑖𝑞𝑟 and 95th % confidence interval better

than it reproduces the mean, as seen in Figure 3-8. Density plots of the modeled and observed

Hg concentration at Chalcataya are shown in Figure 3-8. In (a), the actual distributions for the

two simulations and the observations are plotted where the observed TGM concentration

distribution is shown in red, the distribution of the Hg0 concentration predicted by the No

ASGM (ASGM = OFF) simulation is shown in green, and that produced by the Base (ASGM =

ON) simulation is shown in blue. Figure 3-8 (b) shows the identical distributions to (a) after

standardization by subtracting the mean in each distribution to see how the shapes of the

distributions compare with each other.
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Figure 3-8: Density plots of the modeled and observed Hg concentration at Chalcataya. In (a), the
actual distributions for the two simulations and the observations are plotted where the observed
TGM concentration distribution is shown in red, the distribution of the Hg0 concentration
predicted by the No ASGM (ASGM = OFF) simulation is shown in green, and that produced by
the Base (ASGM = ON) simulation is shown in blue. In (b), the same distributions are shown after
standardization by subtracting the mean in each distribution for easy comparison of the shapes
of the distributions

Figure 3-8, b) shows how the Hg0 concentration produced by the Base (ASGM = ON) simulation

have a distribution that is similar to the distribution of the observations in terms of standard

deviation, 𝑖𝑞𝑟 and 95𝑡ℎ percentile range . The No ASGM (ASGM = OFF) simulation produced the

modeled Hg0 concentration at CHC shows no instance of high Hg0 concentrations at CHC, and

the high concentrations are only produced by the Base (ASGM = ON) simulation . These density
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plots inform us that ASGM emissions primarily influence the range of observed Hg

concentrations in the atmosphere at CHC. Consequently, metrics such as the standard

deviation, 𝑖𝑞𝑟 , and 95𝑡ℎ percentile range may lead to more informative comparisons between

the modeled Hg0 concentration at CHC and the TGM concentration at CHC than the mean.

3.3.3 Comparison of Observations with Emission Modification

The sensitivity of the modeled Hg0 concentration at CHC to the changes in Hg emissions from

each grid box in the case study region was investigated by finding the mean, 𝑖𝑞𝑟 , and

correlation between the modeled Hg0 concentration at CHC and the TGM concentration at

CHC as functions of the emissions from each specific grid box. Each plot in Figure 3-9 shows

the relationship between the mean of the modeled Hg0 concentration at CHC as a function of

Hg emissions from the grid box corresponding to the respective region in the case study. For

each plot, the emissions from one grid box are varied between 0 to 100 tons in increments of 10

tons, while the emissions from the other grid boxes are kept at their Base (ASGM = ON)

simulation level.

The means of the modeled Hg0 concentration at CHC for a given amount of Hg emissions from

each grid box are compared to the red horizontal line. This red horizontal line indicates the

value of the mean of the TGM concentration at CHC (0.90), as presented in Table 3.3. Moreover,

the blue dashed line shows the linear regression line for the values of the modeled Hg0

concentration at CHC as a function of the Hg emissions. All the plots show that the mean of the

Hg concentration changes linearly with an increase in emissions and have a 𝑅2 value of 1,

which validates the linear assumption between emissions and concentrations. Furthermore,

none of the blue dashed lines intersect the red line within the given emissions range, which also

undermines the mean as a metric for comparing the modeled Hg0 concentration at CHC to the

TGM concentration at CHC .
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(e) Madre de Dios

Regression of mean of modeled 
atmospheric Hg0 concentration at CHC as 
a function of the emissions from the 
respective grid boxes in the case study 
region. The red horizontal line indicates 
the value of the mean TGM concentration 
at CHC, 0.90. The dashed blue line 
indicates the linear regression line on the 
means of concentrations at CHC for 
different emission amounts from the 
respective regions. 

Figure 3-9
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Contrary to Figure 3-9 where the relationships between the Hg emissions and the mean of the

modeled Hg0 concentration at CHC have similar 𝑅2 values (𝑅2 =1), the relationship between

the 𝑖𝑞𝑟 of the modeled Hg0 concentration at CHC and the emissions from each grid box in

Figure 3-10 have different 𝑅2 values. For each plot in Figure 3-10, the emissions from one grid

box are varied between 0 to 100 tons in increments of 10 tons while the emissions from the

other grid boxes are kept at their Base (ASGM = ON) simulation level. Even though the 𝑅2

values are different, they are all above 0.85, which validates the linear assumption between the

emissions and the 𝑅2 values of the Hg concentration. The values of the 𝑖𝑞𝑟 for a given amount

of Hg emissions from each grid box are compared to the red horizontal line, which indicates the

𝑖𝑞𝑟 of the TGM concentration at CHC , (0.16) .

All the lines showing the relationship between the 𝑖𝑞𝑟 of the modeled Hg0 concentration at

CHC and the emissions intersect the red line representing the 𝑖𝑞𝑟 of the TGM concentration at

CHC . The Hg emissions value of the point of intersection between the regression line and the

red line can be interpreted as what the emissions from the given grid box should be for the the

modeled Hg0 concentration at CHC to match the the TGM concentration at CHC . The actual

values of the emissions can also be calculated using the regression equation given on each plot.
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Regression of IQR of modeled 
atmospheric Hg0 concentration at CHC as 
a function of the emissions from the 
respective grid boxes in the case study 
region. The red horizontal line indicates 
the value of the IQR of the f TGM 
concentration at CHC, 0.16. The dashed 
blue line indicates the linear regression 
line on the IQRs of concentration at CHC 
for different emission amounts from the 
respective regions. 

Figure 3-10
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Unlike in Figures 3-9 and 3-10, the Pearson correlation coefficient (𝑟) between the TGM

concentration and the modeled Hg0 concentration at CHC has a negative trend in all the

emissions scenarios. Int he concentxt of model obsevation comparison, the Pearson correlation

coefficient characterizes how patterns in the observations are matched by patterns in the

model[29]. According to Brasseur and Jacob, values of 𝑟 near zero imply that the variability in

the observations is controlled by processes that the model does not capture. Table 3.3 shows

that 𝑟 of the Base (ASGM = ON) simulation is very low at 0.27. As in Figures 3-9 and 3-10, the

emissions from the corresponding region are varied from 0 to 100 tons in increments of 10 tons

for each plot in Figure 3-11.

For each emissions scenario, the correlation between the TGM concentration and the modeled

Hg0 concentration at CHC is indicated by the black dot. The red horizontal line indicates the

Pearson correlation between the TGM concentration at CHC and the Base (ASGM = ON)

simulation (0.27). The dashed blue line shows the regression line of the correlation between the

modeled Hg0 concentration at CHC and the TGM concentration at CHC as emissions from each

grid box increase. It is evident that increasing the emissions from one region while keeping the

emissions from other regions at the Base (ASGM = ON) simulation level did not lead to

improvements to the extent to which the patterns in the observations are matched by the

pattern in the modeled Hg0 concentration at CHC . However, the rate at which the correlation

decreases may reveal information about the sensitivity of the modeled Hg0 concentration at

CHC to the emissions from a specific region. For instance the shallow slope in the regression

line for the Madre de Dios scenarios may be an indicator that the emissions from Madre de Dios

are underestimated.
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Figure 3-11
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This section has shown the effect of changing Hg emissions from individual grid boxes in the

modeled Hg0 concentration at a distant active monitoring site like CHC. ASGM Hg emissions

estimates of the from the different regions would be obtained graphically from each of the plots

by identifying the point of intersection between the red horizontal line and the regressions line

or solving the regression line equation. However, the range of these estimates would not be

robust; hence following section presents the emission estimates generated using the MCMC,

which accounts for emission changes from multiple regions.

3.3.4 Estimating Emissions with Markov Chain Monte Carlo

Based on the 95𝑡ℎ percentile range , the MCMC approach produced Hg0 emissions estimates

within the range of bottom-up inventory estimates. The distributions of the estimates produced

by the MCMC approach are shown in Figure 3-12. The box and whisker plots illustrate Hg0

emissions when the 95th percentile range is used to compare the modeled Hg0 concentration and

the TGM concentration. In the box plots, the horizontal lines represent the emission estimates

based on bottom-up inventories. Solid horizontal lines represent emission estimates from the

GMA 2018 inventory [3, 33]; dashed lines represent emission estimates from Peru’s bottom-up

inventory. In Table 3.4, we describe the mean estimates of emissions from these regions and their

ranges [17].
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Figure 3-12: Emission Estimates when the 95𝑡ℎ percentile range is used as the metric to compare
the model outputs to observations. The horizontal lines representing the emission estimates from
the bottom-up inventories are traced over the box plots. The solid horizontal lines represent
the emission estimates from the GMA 2018 inventory [3, 33] and the dashed lines represent the
emission estimates from the bottom-up inventory published by the Artisanal Gold Council[17].

These are the first ever top-down estimates of Hg emissions from ASGM activities. Even though
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the ranges of the estimates are wide, they result from the uncertainty in the models and data we

could access. Therefore, these results may be improved if more data from monitoring sites were

available to constrain the emissions. Nevertheless, the top-down estimate of the total amount of

ASGM Hg emissions under-predicts the GMA 2018 total estimate for Peru by a factor of 1.09 and

the AGC estimate by a factor of 1.08. The comparison of the top-down ASGM Hg estimates with

the bottom-up estimates is visualized in Figure 3-13. It is essential to highlight the Madre de

Dios region’s estimate of 21 tons/year of ASGM Hg emissions. This estimate is an improvement

aligned with the literature about the high ASGM Hg emissions in the region. However, it is still

a drastic underestimate compared to the AGC baseline ASGM Hg estimate for Madre de Dios.

Table 3.4: Table showing the emission estimates for each of the grid boxes in the case study region
when the 95𝑡ℎ percentile range is used as themetric to compare themodel outputs to observations

Region Emission Estimate (Mg) Range of Estimate (Mg)

Madre de Dios 21 1.36− 54.12

Apurimac 17 1.36− 44.37

Arequipa 37 2.88− 87.14

Puno 25 5.85− 51.05

Total 101 11.45− 236.69
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Figure 3-13: Bar chart shows the different estimates of the total ASGM Hg emissions from Peru.
The height of the bars indicates the estimated Total emissions, and the error in each estimate is
shown by the error bars.

Our study produced top-down estimates of ASGM Hg emissions for four Peruvian departments

and thus the country’s total ASGM Hg emissions estimates. Table 3.4 shows Peru emits 101.23

tons of Hg annually, ranging from 11.45 tons to 236.69 tons. There is a wide range here, but it is

a confidence interval based on the data and the uncertainty of the model discussed so far. The

estimates would be improved if more relevant measurements of atmospheric Hg were used

instead of just one-site data. Another potential source of refinement in the estimates may result

from the model’s improved parameterization of vegetation uptake discussed in Feinberg et al

[35].

Model improvements and more time series atmospheric Hg concentration data may enable us to

use the mean as another constraint for producing Hg0 emission estimates. Also, these results

demonstrate that extreme values are vital for quantifying non-point sources like ASGM, where

variability over time is somewhat unpredictable. The analysis in this chapter focused on a

region in Peru where ASGM dominates. These top-down will be challenging to implement in

areas where ASGM co-occurs with many point sources, such as Southeast Asia, where biomass

and coal are burned simultaneously. Furthermore, the global resolution of GEOS-Chem is not

particularly suitable for monitoring Hg in mountainous regions such as CHC. Future work may
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extend this method and this proof of concept using more satisfactory results focusing on the

region.

In addition to helping resolve the differences in global and national ASGM Hg emission

estimates, the above analysis also provides a stronger foundation for answering the second

question about how regional monitoring networks can improve the utility of models for MC

effectiveness evaluations. Creating these inverse models for PAS data would be challenging

since it is a discrete dataset that only shows averages for a specific period. However, active

sampling data is continuous and can be analyzed through summary statistics such as mean, 𝑖𝑞𝑟 ,

correlation, and 95𝑡ℎ percentile range . Even though the mean of the concentrations was not

viable for this analysis, the other metrics were instrumental in generating the results.

3.4 Conclusion

The study showed that time series monitoring data and the GEOS-Chem CTM could be used

together to produce top-down estimates of Hg emissions from ASGM activities. In spite of

limited data sources and uncertain models, our ASGM Hg emission estimates were within

ranges estimated by GMA 2018 [3, 33] and AGC [17]. The objective of this study was to prove

the concept of top-down techniques for estimating Hg emissions from ASGM activities. In

addition to improvements in the model, more time series data would help reduce the

uncertainty in this approach and potentially make mean concentrations more useful. We

applied the top-down techniques to a country in Latin America, where ASGM is the dominant

source of pollution. For future research and interest in applying it elsewhere, it is essential to

note that extending this approach to areas where ASGM Hg emissions occur alongside other

sources may prove challenging.
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Chapter 4

Policy Recommendations and

Conclusions

Quantitative estimates of Hg emitted into the atmosphere by each country and the

corresponding impacts on human health and the environment are crucial for effectively

assessing whether legally-binding agreements such as the Minamata Convention (MC) are

effective. In such a context, it is evident that quantifying current and future emissions with the

best degree of accuracy is an indispensable prerequisite. Consequently, developing and using

appropriate methodologies and tools for calculating current emissions and projections within a

reasonable uncertainty range is crucial. This chapter aims to provide recommendations on

using atmospheric models and monitoring to policymakers in regions with high ASGM

incidence to understand ASGM Hg emissions to the atmosphere and its evolution over time.

Section 4.1 gives a quick summary of the first three chapters. Section 4.2 discusses the

discrepancies between GMA 2018 ASGM Hg emission estimates and those in the NAPs. This

section aims to underscore the value add that atmospheric monitoring and modeling provide in

the presence of such inconsistencies. Moreover, section 4.3 uses the Montreal Protocol as an

example to discuss the possibilities provided by combining atmospheric monitoring and

modeling to inform actions by parties as well as evaluate the effectiveness of the MC. The

discussion in this section drives the point that atmospheric monitoring and modeling provides

valuable information but may be politically controversial depending on the expectation of

parties and the type of penalties imposed on violators of MC’s legally binding agreements.

Next, section 4.4 discusses recommendations for governments and policymakers by
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emphasizing that governments need to prioritize atmospheric monitoring and modeling to

understand and combat ASGM Hg emission sources.

4.1 Review of First Three Chapters

This chapter builds upon the results of the first three chapters of this thesis. Chapter one

discussed the nature of ASGM activities and their estimated contribution to the global Hg

budget. Moreover, challenges regarding knowledge of ASGM Hg emissions were discussed,

including the vast uncertainties in ASGM Hg emission estimates. This thesis was partly

motivated by the lack of sufficient atmospheric monitoring in most regions where ASGM is

prevalent and the absence of modeling studies evaluating Hg emissions from regions with high

ASGM emissions. Furthermore, Chapters 2 and 3 showed how data from different Hg

atmospheric concentration monitoring technologies could be leveraged and integrated with the

GEOS-Chem CTM results to investigate ASGM Hg pollution. Chapter 2 compared the temporal

and spatial characteristics of observed and modeled atmospheric Hg concentrations. PAS GEM

measurements provided helpful information about the distribution of Hg concentrations across

Latin America. Additionally, it was discussed that a network of PAS provides high-quality data

while being accessible and affordable to deploy. However, PAS is limited because it does not

provide continuous data about atmospheric Hg concentrations. On the other hand, active

sampling techniques such as those conducted by the GMOS Network provided valuable time

series data about the atmospheric Hg concentrations. These data enabled broader analysis

through the utilization of more metrics to evaluate Hg emissions and better understand

temporal variations of Hg concentrations in the atmosphere. By combining active monitoring

stations with models, it may be possible to improve understanding of mercury levels in the

atmosphere and better define source-receptor relationships.

4.2 Discrepancies BetweenGlobal andNationalASGMMercury

Estimates

According to Evers et al.[20], country-specific actions under Article 7 of the MC will differ from

country to country, and this variability poses a challenge to assessing the MC’s effectiveness.
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Additionally, they argue that understanding changes in the overall use of Hg in the global ASGM

sector can be informed by tracking progress in individual countries. They suggest a compilation,

visualization, and mapping of the respective data to track this progress across ASGM countries.

The value added by baseline estimates of emissions to policy making is also recognized in the

MC’s paragraph 3 of Article 7, which stipulates that each party that notifies the secretariat that

(ASGM) and processing in its territory is more than insignificant shall develop and implement

a national action plan (NAP) per annex C to the MC. In addition, annex C (d) states that the

NAP shall include baseline estimates of the quantities of Hg used and the practices employed in

ASGM and processing. As of this writing, 18 countries have submitted their respective NAPs.

The estimates of how much Hg is used in their territories are shown in Figure4-1, which is a

bar chart comparing the estimates of annual average Hg emissions predicted in the GMA 2018

inventory in light blue vs. annual average Hg emissions baseline estimates (shown in dark blue)

that were reported by the respective countries in their NAPs [3].
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Figure 4-1: Bar chart comparing the estimates of annual average Hg emissions predicted in the
GMA 2018 inventory in light blue vs. annual average Hg emissions baseline estimates (shown in
dark blue) that were reported by the respective countries in their NAPs [3]

In Figure 4-1, it is evident that the difference between the global estimates and the NAP

estimates is vast for some countries. While the baseline estimates of Hg use in ASGM as

reported in the NAPs and global inventories are critical, data from monitoring networks

combined with atmospheric models provide additional tools to evaluate the changes in Hg in

the atmosphere. The differences in the estimates do not necessarily indicate emission increases,

but they reflect the uncertainties in the global emission estimates.

63



4.3 Informing theUse ofAtmosphericModeling forQuantifying

ASGM Emissions in the Minamata Convention through

Experiences from the Montreal Protocol

Monitoring atmospheric concentrations of pollutants of interest and using atmospheric models

to understand the data has been critical in evaluating global legally-binding environmental

agreements such as the Montreal Protocol. For instance, Rigby et al. 2019 showed how vital the

combination of atmospheric monitoring networks and modeling is when they quantified the

amount of an observed increase in CFC-11 and identified where the source was located[48].

They used high-frequency atmospheric observations from Gosan, South Korea, and Hateruma,

Japan, and global monitoring data and atmospheric CTM simulations to investigate regional

CFC-11 emissions from eastern Asia.

The above example about the Montreal protocol showcases the multiple benefits of atmospheric

monitoring and modeling. For instance, Rigby et al.[48] showed that emissions from eastern

mainland China were 7.0 ± 3.0 (±1 standard deviation) gigagrams per year higher in 2014–2017

than in 2008–2012 and that the increase in emissions arose primarily around the northeastern

provinces of Shandong and Hebei[48]. This kind of precision of emission estimates and the

approximate location of their sources would be beneficial for evaluating the effectiveness of MC

efforts aimed at reducing Hg emissions. Policymakers would value such information because it

would give them precise data about the amounts of emissions and where they should look for

the sources. However, it is uncertain if this level of precision could be achieved for an emission

source like ASGM, given that it is not a point source.

Another critical aspect of the information provided by the approach discussed in this thesis is

the ability to determine areas that have a low likelihood of being sources of increase in

emissions. This benefit was also demonstrated by Rigby et al. (2019) in that they could conclude

that there was no evidence for a significant rise in CFC-11 emissions from any other eastern

Asian countries or other regions of the world where there are available data for the detection of

regional emissions.

A look at China’s response to scientific information about its increased CFC emissions in the

Montreal Protocol example above may provide insight into possible answers by parties when
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they are notified about emission violations within their territory. China questioned the

conclusions of the scientific study noting significant uncertainty. However, they also

acknowledged the importance of atmospheric monitoring. They developed a plan to establish a

national monitoring network, including substantial penalties for companies that produce

insulation foam for ozone-depleting chemicals illegally. Considering that ASGM occurs mainly

in poor communities in countries in the global south, the Minamata Convention may need to

develop a different strategy for helping countries respond to sudden increases in their ASGM

emission sources. For instance, PAS technologies could be deployed at locations of interest once

regional active monitoring networks and models have identified spikes in ASGM Hg emissions.

Lawmakers should rely on legal measures to curb emissions, such as banning mercury or

restricting ASGM communities as a last resort. These command-and-control strategies have

been shown to dissuade miners from cooperating[49, 50].

4.4 Recommendations

As part ofmonitoringASGMactivities and defining policy related toASGMactivities, government

officials and policymakers are encouraged to include atmospheric monitoring. Governments

may be able to set up monitoring within their territories by using PAS technologies. Moreover,

governments are encouraged to establish regional active monitoring stations in collaboration

at the regional level. According to chapter three, a reasonable estimation of emissions can be

made based on data from one station. In this way, a few regional active monitoring networks

and widespread national PAS networks may prove helpful for evaluating the effectiveness of MC

activities.

The monitoring of atmospheric Hg can provide information about ASGM activities and help

identify them. As a result, these data can be used to establish a baseline of mercury use in ASGM

and to evaluate policies related to reducing it. Through cartographic and statistical products,

monitoring andmodeling outputs can be understandable to non-technical audiences, thus facilitating

artisanal mining policy development.

Modeling the atmosphere usingCTMs requires technical skills not usually available in government

agencies or policy agencies because it requires technical competencies typically found in scientific

communities. Consequently, investing in capacity building amongmining administrations lacking

technical knowledge and soliciting researchers’ know-how from local universities are critical
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recommendations for government officials and policymakers.

It is necessary to consider that technical competency is not always present in local communities

and mining associations. As a result, their involvement in monitoring programs and policy

development may be reduced or compromised. Tensions can sometimes be exacerbated by this,

which undermines local trust. Therefore, government officials and policymakers should include

local communities and artisanal miners when developing ASGM policies and programs.

4.5 Conclusion

Chapter four built upon the findings of the previous three chapters. We referenced one of this

thesis’s primary motivations, detailed in chapter one, where we discussed the nature of ASGM

activities and their estimated contribution to the global Hg budget. We also highlighted

chapters 2 and 3 of this thesis, which addressed the first two questions by demonstrating how

data from different technologies for monitoring Hg concentrations in the atmosphere can be

leveraged and integrated with the GEOS-Chem CTM outputs to investigate Hg pollution from

ASGM activities. Moreover, we showed that combining active monitoring stations with models

may improve understanding of mercury levels in the atmosphere and better define

source-receptor relationships. By comparing the GMA 2018 estimates with the NAP estimates

provided by countries, we proposed that atmospheric monitoring and modeling can provide

additional constraints on emissions sources in policy-making.

Furthermore, the Montreal Protocol was cited as an example of how atmospheric monitoring

and modeling are valuable in effective policy-making and ensuring that parties take

responsibility for violations of treaty obligations. However, it may be politically controversial

depending on how parties perceive it. Lastly, we suggested countries engage in regional active

monitoring that uses both PAS and active tracking, referring to the third chapter of this thesis,

where we analyzed active monitoring data to produce the first top-down estimates of ASGM

mercury pollution.
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