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Abstract: We present a self-consistent, large ensemble, high-resolution global dataset of long‐term 
future climate developed by integrating a spatial disaggregation (SD) pattern-scaling technique and a 
bias-correction (BC) delta method. The delta method adds the anomalies or deltas (future climate trends) 
onto a historical, detrended climate that is based on the third phase of the Global Soil Wetness Project 
(GSWP3). The anomalies or deltas are derived by spatially disaggregating zonal climate projections 
from the MIT Integrated Global System Modeling (IGSM) framework based on regional hydroclimate 
change patterns from the 18 Coupled Model Intercomparison Project Phase 6 (CMIP6) climate models. 
Four emission scenarios are considered to represent the existing energy and environmental policies and 
commitments of potential future pathways, namely, Reference, Paris Forever, Paris 2°C and Paris 1.5°C. 
For each emission scenario, a distribution of plausible trajectories is provided by a 50-member ensemble 
to represent the uncertainty in the Earth system (e.g., the climate sensitivity, rate of heat uptake by the 
ocean, uncertainty in carbon cycle), allowing for constructing a 900-member ensemble of regional climate 
outcomes. This global dataset contains nine key meteorological variables on a monthly scale from 2021 
to 2100 at a spatial resolution of 0.5°x 0.5°, including precipitation, air temperature (mean, minimum and 
maximum), near-surface wind speed, shortwave and longwave radiation, specific humidity, and relative 
humidity. Quantitative assessments clearly indicate the ability of the dataset to represent the expected 
large-scale climate features across various regions of the globe. This large‐ensemble, high-resolution 
dataset can be used for assessing impacts of climate change from a risk-based perspective across different 
applications, including hydropower, water resources, wind power resources to name a few.
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1. Introduction
Global climate model (GCM) simulations of the past, 
current, and future climate have become readily available 
through the different phases of the Coupled Model Inter-
comparison Project (CMIP). Over the past several decades, 
the CMIP data archive has served as a foundational element 
of climate science and for supporting decision and poli-
cy-makers communities. The recent sixth phase of CMIP 
(CMIP6, Eyring et al., 2016) has expanded the breadth of 
the coordinated climate model experiments considerably 
with more than 70 participating models of a wide variety 
from more than 30 participating model groups worldwide.
The Scenario Model Intercomparison Project (Scenario-
MIP) in CMIP6 provides the main set of future climate 
projections based on alternative scenarios directly rele-
vant to societal concerns for climate change mitigation, 
adaptation, or impacts (O’Neill et al., 2016). These climate 
projections are driven by a set of emissions and land use 
scenarios (Riahi et al., 2016) produced with integrated 
assessment models (IAMs) based on future pathways of 
societal development, the Shared Socioeconomic Pathways 
(SSPs), and related to the forcing levels of the Representative 
Concentration Pathways (RCPs). Compared to CMIP5, 
CMIP6 RCPs fill critical gaps for intermediate forcing levels 
(for example, short-lived species and land use) and the 
full set of SSPs-RCPs combinations spans a larger range of 
outcomes. However, these multi-model climate projections 
under a matrix of possible integrated scenarios may not 
adequately represent the desired risk-based assessment of 
climate change impacts and climate policy benefits due to 
several issues described below. First, there is a lack of the 
consistency in socioeconomic and environmental factors 
and such consistency is highly relevant for assessing climate 
impacts and climate policy benefits. These model projections 
have been driven with exogenous climate forcing that is 
disconnected from consistent socioeconomic pathways, 
thus lacking the interactions between natural processes 
and human activities. These inconsistencies arise mainly 
because the developers and the users of these socioeco-
nomic scenarios come from different research groups and 
disciplinary communities. For example, even with a com-
mon land use scenario implemented, the different Earth 
system models can have different interpretations of land 
use classes, making the resulting differences in the carbon 
cycle and land use forcing difficult to interpret. Further, 
each of the integrated scenarios was produced by a dif-
ferent group and their projections of future air pollutant 
emissions are not consistent with one another, which can 
contaminate the analysis of climate policy benefits. Second, 
the coarse resolutions (70-400 km) and inherent biases 
of climate model outputs are not suitable for local-scale 
climate impact studies, particularly when they are used as 
drivers into impact models (i.e., hydrological models, crop 

models, biodiversity evaluation, etc.). Third, the ensemble 
of climate projections from the participating climate modes 
falls short of providing quantitative insights on ‘risk’ or the 
probability of variables of interest.  
We address these issues by developing a self-consistent, large 
ensemble, high-resolution, bias-corrected global dataset of 
future climates for a set of possible 21st century scenarios. 
We employ the MIT Integrated Global System Modeling 
(IGSM) framework, which consists of the MIT Earth Sys-
tem Model (MESM) of intermediate complexity and the 
Economic Projections and Policy Analysis model (EPPA) 
(Sokolov et al., 2018). The EPPA characterizes detailed 
economic activities to track inter-sectoral and inter-regional 
links, while the MESM represents key physical, chemical, 
and biological components of the Earth system that are 
impacted by human activity. Such integrated framework 
ensures consistent treatment of interactions among pop-
ulation growth, economic development, energy and land 
system changes and physical climate responses, which can 
provide improved assessments of climate impacts across 
multiple sectors (Monier et al., 2018). The MESM con-
tains a two-dimensional (zonally averaged) atmospheric 
model with interactive chemistry coupled to the zonally 
averaged version of Global Land System model and an 
anomaly-diffusing ocean model. This architecture allows 
for conducting a large ensemble of climate simulations for 
robust uncertainty analyses at significantly less computa-
tional cost than state-of-the-art climate models. In addition, 
we apply a combined spatial disaggregation (SD)—bias 
correction (BC) method with SD for achieving the high 
resolution and BC for correcting the biases inherent in the 
MESM future climate projections. 
The paper is organized as follows. Section 2 presents the data 
sets used in this study. Section 3 describes the employed 
SD-DC method. A quantitative evaluation of an ensem-
ble of future climate projections is presented in section 4 
followed by a summary in section 5.

2. Data 

2.1 Historical Meteorology
We utilize the historical meteorological dataset from the 
third phase of the Global Soil Wetness Project (GSWP3, 
http://hydro.iis.u-tokyo.ac.jp/GSWP3/) as the base-
line climate. It is a 3-hourly 0.5° global forcing product 
(1901–2014) based on the 20th Century Reanalysis version 
2 (Compo et al., 2011). The reanalysis was dynamically 
downscaled to 0.5° resolution based on the Global Spectral 
Model using a spectral nudging technique (Yoshimura and 
Kanamitsu, 2008). Bias corrections based on observations 
were made for temperature, precipitation, and longwave 
radiation, and shortwave radiation using CRU TS v3.21 
(Climate Research Unit, Jones and Harris, 2013), GPCCv7 
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(Global Precipitation Climatology Centre, Schneider et al., 
2014), and Surface Radiation Budget data sets, respectively. 
A wind-induced undercatch correction was also applied.
The meteorological variables considered in this study 
include precipitation, air temperature (mean, minimum 
and maximum), near-surface wind speed, shortwave and 
longwave radiation, specific humidity, and relative humid-
ity. Minimum and maximum air temperature as well as 
relative humidity are not provided in the GSWP3 data, but 
derived as follows. Minimum and Maximum air tempera-
ture are calculated as the monthly means of the minimum 
and maximum daily air temperature across the 8 3-hourly 
time steps, respectively. Relatively humidity is derived 
from surface air temperature (Tair), surface air pressure 
(Psf), and specific humidity (Qair) at a 3-hourly time step 
as in equation (1) and averaged into the monthly values.

  (1)

Where e and es are vapor pressure and saturated vapor 
pressure, respectively. rh is the relative humidity in percent.

2.2 CMIP6 Model Simulations
The CMIP has become one of the foundational elements 
of climate science by distributing global climate model 
simulations of the past, current, and future climate. The 
CMIP6 includes more than 70 participating models of a 
wide variety developed at research institutes across the in-
ternational scientific community. For the SD pattern-scaling 

procedure used in the construction of our large-ensem-
ble future projections at the 0.5° resolution, we draw the 
simulations of the participating models from the 1pctCO2 
experiment in which the concentration of atmospher-
ic CO2 increases gradually at a rate of 1% per year from 
the global annual mean 1850 value until quadrupling. It 
serves as a consistent and useful benchmark for analyzing 
model transient climate response (TCR) to cumulative 
carbon emissions (TCRE). Multiple variations of model 
outputs may be available from a model family with different 
configurations (e.g., different spatial resolutions or com-
ponents). In that case, only one sibling model is selected 
to represent the family. The precedence for selection is 
(highest to lowest): 1) all the key meteorological variables 
of our interest are archived, including precipitation, air 
temperature (mean, minimum and maximum), near-surface 
wind speed, shortwave and longwave radiation, specific 
humidity, and relative humidity; 2) an Earth System Model 
(ESM) is chosen whenever available; and 3) higher spatial 
resolution is desired. This resulted in 18 climate models that 
participated in the CMIP6 1pctCO2 experiment (Table 1). 
Their corresponding monthly outputs are then obtained 
for the pattern-scaling method (Section 3.2).

2.3 IGSM Future Climate Projections
A self-consistent, large ensemble of zonal future climate 
projections is constructed with the MIT IGSM. We focus 
on four policy scenarios that were developed to span a 
range of possible global actions to abate greenhouse gas 

Table 1: List of CMIP6 models used in our study to construct the pattern-scaling kernels of climate change response.

Model Name Resolution Institution

ACCESS-ESM1-5 1.875° × 1.25° Australian Commonwealth Scientific and Industrial Research Organization
AWI-ESM-1-1-LR 1.875° × 1.875° German Alfred Wegener Institute
BCC-CSM2-MR 1.125° × 1.125° Beijing Climate Center
CanESM5 2.8125° × 2.8125° Canadian Centre for Climate Modelling and Analysis
CMCC-ESM2 1.25° × 0.9375° Centro Euro-Mediterraneo Cambiamenti Climatici
CNRM-ESM2-1 1.40625° × 1.40625° Centre National de Recherches Meteorologiques
EC-Earth3-Veg 0.703125° × 703125° EC-Earth-Consortium
FGOALS-g3 2.0° × 2.25° Chinese Academy of Sciences
FIO-ESM-2-0 1.25° × 0.9375° Qingdao National Laboratory for Marine Science and Technology
GISS-E2-2-G 2.5° × 2.0° Goddard Institute for Space Studies
HadGEM3-GC31-MM 0.83° × 0.56° Met Office Hadley Centre
INM-CM5-0 2.0° × 1.5° Russian Academy of Science
IPSL-CM6A-LR 2.5° × 1.26° Institut Pierre Simon Laplace
MIROC-ES2L 2.8125° × 2.8125° Japan Agency for Marine-Earth Science and Technology
MPI-ESM1-2-HR 0.9375° × 0.9375° Max Planck Institute for Meteorology
MRI-ESM2-0 1.125° × 1.125° Japan Meteorological Research Institute
SAM0-UNICON 1.25° × 0.9375° Seoul National University
UKESM1-0-LL 1.875° × 1.25° Met Office Hadley Centre
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emissions over the coming century, specifically Reference 
(REF), Paris Forever (PF), Paris 2°C (P2C), and Paris 
1.5°C (P1p5C). The REF scenario implements no explicit 
climate mitigation policy (no specific greenhouse gas emis-
sions target) anywhere in the world for the sake of abating 
climate change, except for some energy policies such as fuel 
economy standards, renewable electricity requirements, the 
gradual phase-out of old coal power plants, reduced use of 
exhaustible resources, and conventional pollutants reduc-
tion. The REF serves as a baseline scenario and represents 
the upper bound of climate change risks. The PF scenario 
assumes that all Paris Agreement Nationally Determined 
Contributions (NDCs) are implemented through the year 
2030 and maintained in perpetuity after that. While our PF 
scenario represents an unprecedented global commitment 
to limit greenhouse gas emissions, it neither stabilizes cli-
mate nor limits climate change. P2C and P1p5C scenarios 
extend from the Paris Agreement’s NDCs and align with 
its long-term goals. These two scenarios aim to limit and 
stabilize human-induced global climate warming to 2°C and 
1.5°C, respectively, by the end of this century. Variations 
in mitigation policies lead to the uncertainty in patterns of 
resource and energy use, technology choices, and drag on 
overall economic growth, with additional uncertainty arising 
from the global climate response represented in the MESM 
(Sokolov et al., 2018). These co-evolving uncertainties result 
in an overall probability of achieving the target at 50% for 
both P2C and P1p5C scenarios. Detailed description of 
emission scenarios is given in Paltsev et al. (2021).

For each of four policy scenarios, a 50-member ensemble of 
MESM simulations is conducted to provide a range of Earth 
systems’ response to natural and anthropogenic drivers. 
This 50-member ensemble replicates well the surface air 
temperature distribution from the 400‐member ensemble 
simulations presented in Paltsev et al. (2021, not shown). In 
both cases climate parameters were sampled from 3-dimen-
tional probability distribution described by Libardoni et al. 
(2018). These scenarios result in distinct pathways and 
distributions of global averaged changes in human forcing 
and climate variables (Figures 1 and 2). In comparison 
with the CMIP5 RCP scenarios, the IGSM REF scenario 
presents weaker radiative forcing than its RCP counter-
part (RCP8.5), while the more aggressive climate-based 
targets (P2C and P1p5C) fall between RCP4.5 and RCP2.6 
scenarios. The PF scenario characterizes stronger radiative 
forcing than the RCP6.0 scenario. The impact of the ag-
gressive mitigation policies on alleviating or eliminating 
the warming risk is immediately evident, with a majority 
of the distributions of global averaged annual surface-air 
temperature (SAT) trends in P2C and P1p5C scenarios 
falling outside that of the REF scenario in the latter half of 
the 21st century (Figure 2). Despite a notable shift toward 
lower warming risk, considerable overlap persists till the 
end of the century between the SAT trends distributions 
of the PF scenario and those of the REF scenario.

2.4 Regions
We adopt 21 regions used in Giorgi and Francisco (2000) 
to evaluate the regional-scale performances of our dataset. 

Figure 1. Total radiative forcing (relative to 1860, W/m2) from the four MIT IGSM policy scenarios used in this study, compared to 
that from the representative Concentration Pathway (rCP) experiments in CMIP5. The dotted lines indicate 5% and 95% percentiles, 
respectively.
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The detailed information of 21 regions is listed in Table 
2. These regions represent different climatic regimes and 
physiographic settings, and are defined to approximately 
cover all land areas in the World with the size of each region 
varying in the range of a few thousand to several thousand 
km in each direction (Giorgi and Francisco, 2000). The 
evaluation is conducted on the regional averages of sea-
sonal means across the entire time period for each variable. 
The relevant ensemble statistics (minimum, median, and 
maximum) are derived based on the regional averages of 
seasonal means of each ensemble member.

3. Methods
We employ an integrated SD-BC method to develop a 
long-term (2021-2100), large ensemble, high-resolution 
global dataset of future climate projections. BC methods 
rely on the use of different statistical techniques to make 
climate model outputs more realistic at finer spatial
resolution by exploiting the available high resolution ob-
servation datasets (Ehret et al. 2012; Hawkins et al. 2013). 
BC can be typically implemented in several ways, including 
delta change, quantile mapping, linear regression, vari-
ance scaling, etc. The delta change method is the simplest 
approach and involves applying a changing factor to the 
historical observation for constructing a new time series 
of the future climate (Hawkins et al. 2013). A changing 
factor can be additive (difference) or multiplicative (ratio). 
Different changing factors can be employed for different 
climate variables. This method does not take into account 
changes in climate variability such as increasing extreme 
rainfall or longer dry spells. Linear regression performs 

a regression analysis using historical observations and 
climate model outputs during the same period and applies 
the regression parameters to construct bias-adjusted future 
climate time series. The regression can be made as simple or 
complex (Belitz and Stackelberg, 2021). Quantile mapping 
generally uses a Gaussian or gamma distribution function 
to correct the distribution function of a climate variable and 
improve its fitting to observations (Teutschbein et al. 2012; 
Themeßl et al. 2011). Quantile mapping has become widely 
used because of its ability to correct bias at the extreme 
tails and its desired accuracy and robustness. However, the 
results may be sensitive to the choice of calibration period. 

Table 2. List of regions used in this study (Giorgi and Francisco, 
2000). Only land grid points are used in the analysis.

Figure 2. Global averaged annual surface-air temperature trends for the four MIT IGSM policy scenarios. The left panel presents the 
median trajectories of the 50-member IGSM ensemble, while the right panel provides the trajectories from all ensemble members. 
Trends in temperature are calculated relative to the 1861-1880 mean.
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Here we use the delta change method as our BC method. 
The basic principle behind the BC delta method involves 
adding changes (or delta) in projected monthly climate to the 
high-resolution present-day climate (baseline). The projected 
monthly climate from the IGSM is at the coarse resolution 
(zonal) and need be spatially disaggregated to match the 
high-resolution baseline climate before the addition is ap-
plied. The spatial disaggregation is achieved through a pat-
tern-scaling technique (section 3.2). The change is defined as 
the difference between the spatially-disaggregated monthly 
climate in the future and its long-term (20-year) monthly 
climatology in the historical period. The delta method as-
sumes that changes in climates are only relevant at coarse 
scales but temporal variability of each variable is maintained 
towards the future. This assumption may hold true in many 
cases, except for the highly heterogeneous landscapes where 
considerable variations may be induced within a relatively 
short distance. The low computational demand of the delta 
method allows for efficient bias-correction of large ensembles 
and diverse emission scenarios over centuries. 
The method comprises the following steps: (1) detrending the 
time series of monthly baseline climate (GSWP3, 1931-2010) 
for each month and each climate variable at each grid; 2) ex-
tracting the IGSM zonal historical (2001-2020) and projected 
(2021-2100) monthly climate; 3) spatially disaggregating 
2) to the spatial resolution of the baseline climate (0.5°) 
based on a “pattern scaling” method tailored to the IGSM 
configuration (Schlosser et al. 2012) and determining the 
changes (deltas) in the projected monthly climate; and 4) 
Adding the spatially disaggregated changes in the projected 
monthly climate (3) of 2021-2100 to the corresponding 
detrended baseline climate (1) of 1931-2010. The procedure 
is implemented for each ensemble member and emission 
scenario. Details for each step are elaborated below.

3.1 Detrend Baseline Climate
We perform significance test for the linear trend of 80-year 
(1931-2010) GSWP3 monthly time series for each month and 
each climate variable at each grid. If a linear trend is found 
to be statistically significant at the 95% confidence level, the 
new monthly time series are derived by first detrending the 
original monthly time series and then adjusting (adding) the 
detrended monthly values to the corresponding monthly 
values of year 2020 to emulate an 80-year (2021-2100) climate 
without climate change. The monthly values of year 2020 are 
obtained based on the linear trend.  If a linear trend is found to 
be not statistically significant, the new monthly time series will 
simply take the original monthly time series. The derived new 
monthly time series of all the months are then merged, which 
is referred to as “detrended baseline climate” in the following 
steps. For precipitation, we transform monthly precipitation 
in logarithmic scale. A linear relationship is examined only if 
at least half of the total years (80) have the pre-transformed 
monthly precipitation larger than 1 mm/day. This condition 

will prevent any artificial linear trend as a result of very low 
precipitation amount in very dry areas (e.g., Sahara Des-
ert), which could lead to unrealistically high values in the 
detrended precipitation time series. Detrending (if a linear 
trend is significant) is only applied to the years that involve in 
constructing the linear relationship. Other years will simply 
take the corresponding monthly values of year 2020.

3.2 Pattern-scaling
The MIT IGSM provides a 50-member ensemble of climate 
projections at the zonal level, which is expanded across 
longitudes using a pattern-scaling method as follows to 
provide regional details (Schlosser et al. 2012). 

  (2)

Where C _(x,y ) is the climatological downscaling transformation 
coefficient in a historical reference time period; V (y ) is the 
IGSM zonal monthly climatology of a variable at a given 
latitude (y) in a historical period; V (x,y ) is the transformed 
historical monthly climatology of the variable at a given 
longitude (x ) along the latitude (y ); V _(y ) represents the 
IGSM zonal monthly future climate under a human-forced 
monthly global mean temperature change (ΔT _(G )); V _(x ,y ) rep-
resents the corresponding transformed monthly future 
climate;  , namely “pattern-change kernels” (PCKs), 
describes the shifts in C _(x,y ) induced by human-forced climate 
warming. In our study, C _(x ,y ) is derived from the 20-year 
(1991-2010) GSWP3 forcing and calculated as the ratios of 
monthly climatology at each grid to monthly climatology at 
the respective latitude band. V (y ) is calculated as the monthly 
climatology from 2001 to 2020. ΔT _(G ) is calculated as the 
difference between 10-year backward moving average of 
global mean temperature and its respective 2012-2021 mean 
for each month. V _(y ) (from January 2021 to December 2100) 
is calculated as the 20-year backward moving average for 
each month. For example, January 2021 is calculated as 
the average of January from 2002 to 2021. PCKs are con-
structed from the list of the CMIP6 climate models (Table 
1), with each climate model regridded to a 0.5° common 
grid via area averaging (conservative regridding procedure) 
prior to PCKs construction. Each of the 18 constructed 
PCKs ( ) is then combined with the 50-member IGSM 
climate projections (V _(y )) via the equation (2) to develop a 
900-member ensemble per policy scenario. This meta-en-
semble per scenario represents a comprehensive range of 
plausible outcomes resulting from the uncertainties in 
global climate responses (50-member ensemble of the IGSM 
zonal climate projections) and regional response pattern 
changes (PCKs). The change in the projected monthly 
climate (“delta”) is the difference between V _(x ,y ) and V _(x ,y ). 
The monthly change is further smoothed using a 21-year 
running average centered on each year for that month (the 
first and last 10 years have fewer samples for smoothing).
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4. Results 

4.1 Seasonal PCKs
Seasonal PCKs of temperature and precipitation show a 
wide range of climate model response patterns as a result 
of forced climate warming (Figs 3-6). The differences are 
reflected in the sign, magnitude, location, and extent of 
the change in response. For temperature (Figs 3-4), the 
most striking feature is a colder ocean and warmer land 
(COWL) global pattern (Broccolli et al. 1998) seen in both 
seasons across all the models, with the exceptions to this 
characterization found in different regions across various 
models. The model mean PCKs show that the relative cool-
ing signal in land areas lies mostly over the northwestern-
most regions of North America, western Europe, northern 
Siberia and parts of the southern Russia in DJF (Figure 4). 
The maritime fetch of the relatively cooler ocean conditions 
may play a large role in the afore-mentioned relative cool-
ing over the coastal regions. Also evident is the stronger 
warming over the high Northern Hemisphere latitudes 
in DJF than in JJA. High inter-model scatter in PCKs is 
ubiquitously observed in the boreal region of the Northern 
Hemisphere, particularly in DJF. In JJA, South Africa and 
interior portions of South America also present moderate 
inter-model scatter. The lowest model scatter generally 
occurs over much of the world’s oceans, particularly in the 
subtropics and with no evident seasonality. For precipi-
tation (Figs 5-6), the model mean shows a wide extent of 
drier conditions attributed to climate warming, including 

a swath extending from central subtropical North Pacific 
to the North Atlantic and a path extending from the South 
Pacific basin to the South Atlantic and the Indian Ocean. 
The drying feature in these regions persists in both seasons, 
with the areas of prominent drying varying between two 
seasons. The drying is particularly enhanced over central 
subtropical North Pacific and the North Atlantic in DJF, 
but it is more prominent over the central America, Gulf 
of Mexico, Caribbean Sea and islands, east Indian Ocean 
and Indonesia islands in JJA. Over land areas, the most 
prominent drying occurs over Mexico, northern South 
America, northern African, and parts of the Middle East 
in DJF, but is largely confined to the Continental United 
States, Amazon, Southern Africa, Australia, the European 
continent, and Western Russia in JJA. The wetter conditions 
in both seasons over land areas are largely associated with 
the monsoon regions, including South and Southeast Asia, 
Africa, Australia, South and North America. High model 
scatter for precipitation is largely confined to the world’s 
oceans, particularly in DJF, including the subtropical Pacific, 
the western boundary of the North Atlantic, the tropical 
Atlantic, and the Indian Ocean. Over land, the Indian and 
Southeast Asian monsoon regions present the largest model 
scatter. Other notable areas with moderate model scatter 
include the eastern half of North America, most of Central 
America, South America, parts of Africa, Australia, Europe, 
and Western Russia. A large portion of Eurasia, Central 
North America, and Northern Africa contains the lowest 
inter-model deviations, particularly in DJF.

Figure 3. Global maps of the JJa averaged pattern-change kernels (PCKs) that describe the relative change in surface air 
temperature per unit change in global averaged surface-air temperature (units of K-1) from each of the 18 participating models in the 
Coupled Model Intercomparison Project Phase 6 (CMIP6) as well as the multi-model mean and standard deviation. PCKs are derived 
for each month from the 1% transient CO2 experimental simulations.
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Figure 5. Global maps of the JJa averaged pattern-change kernels (PCKs) that describe the relative change in precipitation per unit 
change in global averaged surface-air temperature (units of K-1) from each of the 18 participating models in the Coupled Model 
Intercomparison Project Phase 6 (CMIP6) as well as the multi-model mean and standard deviation. PCKs are derived for each month 
from the 1% transient CO2 experimental simulations.

Figure 4. Same as Figure 3, but for the DJF averaged pattern-change kernels (PCKs).
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4.2 Dataset Evaluation

Quantitative assessments are performed for all the 
meteorological variables and all the seasons [December-Feb-
ruary (DJF), March-May (MAM), June-August (JJA), and 
September-November (NOV)] over the 21 regions in Table 
2 from 1931 to 2010 (the detrended baseline) and from 
2021 to 2100 (projected future climate) for four emission 
scenarios, respectively. Only precipitation and surface air 
temperature in DJF and JJA are included for demonstration 
purposes. Only land grid points are used in the assessments, 
except for the global maps shown in Figure 10.

4.2.1 Baseline Climate

Figure 7 shows the comparisons of precipitation and surface 
air temperature between GSWP3 and detrended baseline 
from 1931 to 2010 over the 21 regions. Overall, both JJA and 
DJF GSWP3 precipitation does not show evident trends over 
all the regions, except for the JJA precipitation in WAF and 
EAF (Figure 7a, b). We see that the corresponding detrended 
baseline precipitation eliminates or reduces the trends in 
these two regions. Detrending is more clearly observed 
in the surface air temperature (Figure 7c, d). As expected, 

GSWP3 surface air temperature exhibits strong upward 
trends over a majority of regions for both seasons. Some 
exceptions are observed for SSA, North America (WNA, 
CAN, ENA), GRL, and NEU in both seasons, for Asia 
(except for CAS) and TIB in JJA, as well as for WAF, SAH, 
and NAS in DJF. GSWP3 surface air temperature in DJF 
presents overall weaker upward trends than in JJA, except 
for EAS, SAS, and TIB. Regions in the same continent may 
display very different patterns. For example, CAS is only 
one out of four regions in Asia showing a strong upward 
trend in the JJA temperature. Other variables (shortwave 
and longwave radiation, wind speed) in both seasons may 
exhibit upward or downward trends in the scattered re-
gions (not shown). An additional notable feature is that 
the GSWP3 specific humidity in both seasons are largely 
associated with weak upward trends with small changes 
in the magnitude across the entire period (not shown). 
Such upward trends are consistent with those in surface air 
temperature as warmer temperature makes the atmosphere 
hold more water vapor. Overall, the detrended baseline 
climate is seen to eliminate or reduce the trends inherent 
in the GSWP dataset to varying degrees, regardless of the 
meteorological variables, seasons, and regions.

Figure 6. Same as Figure 5, but for the DJF averaged pattern-change kernels (PCKs).
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Figure 7a. Comparisons between the JJa GSWP3 (black line) and detrended baseline (gray line) precipitation (mm/day)  from 1931 
to 2010 over the 21 regions.
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Figure 7b. Comparisons between the DJF GSWP3 (black line) and detrended baseline (gray line) precipitation (mm/day) from 1931 
to 2010 over the 21 regions.
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Figure 7c. Comparisons between the JJa GSWP3 (black line) and detrended baseline (gray line) near-surface air temperature (K) 
from 1931 to 2010 over the 21 regions.
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Figure 7d. Comparisons between the DJF GSWP3 (black line) and detrended baseline (gray line) near-surface air temperature (K) 
from 1931 to 2010 over the 21 regions.
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4.2.2 Future Climate

Figure 8 shows the ensemble statistics (minimum, median, 
and maximum) of precipitation and surface air temperature 
in both seasons from 2021 to 2100 for the PF scenario, along 
with their detrended baseline counterparts. The responses of 
projected precipitation to the human-induced warming are 
mixed across various regions. We see ensemble medians are 
largely aligned with the detrended baseline over a majority 
of regions (Figure 8 a, b). Some exceptions are found in the 
high latitudes (ALA, GRL, NEU, and NAS) and dry regions 
(EAF, SAH, and SAS in JJA as well as WNA, CNA, and ENA, 

EAS, SAS, and TIB in DJF), where the detrended baseline 
values are just aligned with the ensemble minimums or fall 
outside the projected precipitation ranges marginally. This 
is likely an indication that current climate models present 
some difficulties in representing the precipitation in these 
regions. As expected, the ensemble uncertainty (spread) over 
all the regions is small at the beginning of the period and 
becomes increasingly larger by the end of the century. The 
high latitude and dry regions are typically characterized by 
the small ensemble uncertainty in both seasons. The large 
ensemble uncertainty is generally found around the tropics, 
such as CAM (3.66 mm/day) and SEA (2.87 mm/day) in 

Figure 8a. The ensemble statistics (minimum, median, and maximum) of the JJa precipitation (mm/day) from 2021 to 2100 over 
the 21 regions for the PF scenario, along with their detrended baseline counterparts.
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JJA as well as SEA (1.54 mm/day) and AMZ (1.18 mm/day) 
in DJF, consistent with what was found in previous studies 
(Kharin et al., 2013; O’Gorman, 2012; Sillmann et al., 2013).

It is not surprising that all the ensemble members exhibit 
consistently higher surface air temperature than the de-
trended baseline throughout the entire period in both sea-
sons over all the regions (Figure 8 c, d). The tropical regions 
present an overall smaller ensemble uncertainty in both 
seasons. The ensemble spread of the JJA air temperature 
varies from 1.13°C in the SEA to 3.16°C in the CNA by 2100. 
TIB is the only other region with the ensemble uncertainty 
of the JJA air temperature exceeding 3°C (3.02°C). The 

uncertainty of the JJA air temperature in the CNA may 
be associated with the differences in modeled trends and 
responses to precipitation-recycling ratios, dependencies on 
the boundary layer parameterization, and the land model 
representation of evapotranspiration, while that in the TIB 
is likely attributed to the model differences in representing 
orographic effects. The DJF air temperature features the 
large ensemble uncertainty in the high latitudes, partic-
ularly in the GRL (4.7°C) and ALA (4.9°C) regions, and 
underscores the influence from the heterogeneity in the 
representations of snow and cold land processes by various 
Earth-system models (Slater et al., 2001; Luo et al., 2004).

Figure 8b. The ensemble statistics (minimum, median, and maximum) of the DJF precipitation (mm/day) from 2021 to 2100 over 
the 21 regions for the PF scenario, along with their detrended baseline counterparts.
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Figure 8c. The ensemble statistics (minimum, median, and maximum) of the JJa surface air temperature (K) from 2021 to 2100 over 
the 21 regions for the PF scenario, along with their detrended baseline counterparts.
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Figure 8d. The ensemble statistics (minimum, median, and maximum) of the DJF surface air temperature (K) from 2021 to 2100 
over the 21 regions for the PF scenario, along with their detrended baseline counterparts.
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Figure 9 shows the ensemble medians of precipitation 
and surface air temperature in both seasons from 2021 to 
2100 for all the four scenarios, along with their detrend-
ed baseline counterparts. We see that the differences in 
precipitation of both seasons (Figure 9 a, b) attributed 
to the scenarios are much smaller than those attributed 
to the ensembles of the specific scenario (e.g., PF in Fig-
ure 8). By 2100, the spread of the JJA precipitation across 
four scenarios (the difference between REF and P1p5C) 
is less than 0.2 mm/day over most of the regions, except 

for CAM (-0.47), SEA (0.24), and SAS (0.49) (Figure 9a). 
For the most aggressive policy scenario (P1p5C), 5 out of 
21 regions experience slight wetting trends in JJA relative 
to  no policy scenario (REF), including ENA (-0.04), AMZ 
(-0.06), MED (-0.1), CNA (-0.14), and CAM (-0.47). The 
spread in the DJF precipitation is even smaller, ranging 
from -0.1 to 0.26 mm/day across various regions (Figure 
9b). Overall, precipitation of both seasons does not exhibit 
apparent drying or wetting trend over all the regions with 
climate policy in place as compared to no policy. In contrast, 

Figure 9a. The ensemble medians of the JJa precipitation (mm/day) from 2021 to 2100 over the 21 regions for all the four policy 
scenarios, along with their detrended baseline counterparts.
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climate policy (P1p5C) shows strong mitigation effect on 
surface air temperature, with the reduction ranging from 
1.1°C to 1.9°C in JJA (Figure 9c) and from 1.0°C to 2.9°C 
in DJF (Figure 9d) across various regions. The strongest 
reduction in the JJA air temperature occurs mostly in the 
mid latitudes (e.g., CNA, CAS, MED, TIB) and SAH des-
ert, while that in the DJF air temperature is found mostly 
in high latitudes (2.9°C in ALA, 2.5°C in GRL, 2.4°C in 
NAS, 1.9°C in ENA). Many studies documented “Arctic 

amplification”, a phenomenon that the warming in the 
Arctic far outpaces the global average (Post et al., 2019; 
Rantanen et al., 2022), particularly in winter (Bintanja 
and Krikken, 2016). Our results suggest that climate mit-
igation policy can effectively slow or reduce warming in 
these regions and would have significant implications on 
land and sea ice, wildlife and human livelihoods, meth-
ane emissions, and extreme weather at lower latitudes. 

Figure 9b. The ensemble medians of the DJF precipitation (mm/day) from 2021 to 2100 over the 21 regions for all the four policy 
scenarios, along with their detrended baseline counterparts.
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Figure 9c. The ensemble medians of the JJa surface air temperature (K) from 2021 to 2100 over the 21 regions for all the four 
policy scenarios, along with their detrended baseline counterparts.
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Figure 9d. The ensemble medians of the DJF surface air temperature (K) from 2021 to 2100 over the 21 regions for all the four 
policy scenarios, along with their detrended baseline counterparts.

MIT JOINT PrOGraM ON THe SCIeNCe aND POLICy OF GLObaL CHaNGe  rePOrT 363

21



Table 3 summarizes 5-year mean differences (centered 
in 2050 and 2090) in the ensemble medians of REF from 
those of P1p5C and detrended baseline for 6 meteoro-
logical variables in JJA over 21 regions. Regardless of the 
periods, no climate policy (REF) always results in higher 
air temperature, longwave radiation, and specific humid-
ity than P1p5C and detrended baseline. The increases in 
the JJA air temperature relative to the detrended baseline 
range from 0.5°C to 1.0°C in 2050 and 1.4°C to 2.7°C in 
2090 across the regions, respectively. The most aggressive 
climate policy mitigates such increases by 0.1°C ~ 0.3°C 
(difference between REF and P1p5C) in 2050 and 1.0°C to 
1.8°C in 2090, respectively. For the JJA longwave radiation, 
the increases in REF relative to the detrended baseline 
range from 3 to 7 W/m2 in 2050 and 8 to 20 W/m2 in 2090 
across the regions, respectively. The increases are lowered 
by 1 to 2 W/m2 in 2050 and 6 to 14 W/m2 in 2090, respec-
tively, attributed to the most aggressive climate policy. For 
specific humidity, the increases without climate policy 
relative to either scenario are relatively small over all the 
regions  during both periods (0 ~ 0.0015 kg/kg). Other 
variables (precipitation, shortwave radiation, and wind 
speed) show mixed responses. Over a major of regions, 
the JJA precipitation and shortwave radiation without cli-
mate policy exhibits marginal increasing trends relative to 
P1p5C and detrended baseline. The two largest increases in 
2090 occur in SAS (0.5 and 0.9 mm/day relative to P1p5C 
and detrended baseline, respectively) and SEA (0.2 and 
0.4 mm/day) for precipitation, and in MED (4 and 11 
W/m2) and ENA (5 and 10 W/m2) for shortwave radiation. 
These patterns are also observed in 2050 over the same 
regions but with smaller magnitudes. More than half of 
the regions demonstrate the decreasing JJA wind speeds 
in both periods without climate policy relative to P1p5C 
and detrended baseline. However, the maximum changes 
in the magnitudes are  marginal across all the regions (< ± 
0.05 m/s). The DJF climate variables present similar char-
acteristics to its JJA counterparts (Table 4), except that 1) 
the air temperature increases without climate policy are 
higher in the upper bounds (0.5°C versus 0.3°C relative to 
P1p5C in 2050, 1.8°C versus 1.0°C relative to the detrended 
baseline in 2050,  2.7°C versus 1.8°C relative to P1p5C in 
2090, and 4.1°C versus 2.7 °C relative to the detrended 
baseline in 2090), which is largely attributed to the high 
latitude regions; 2) the two largest increases in 2090 occur 
for precipitation in ENA (0.2 and 0.3 mm/day relative to 
P1p5C and the detrended baseline, respectively) and SEA 
(0.2 and 0.2 mm/day), and for solar radiation in AMZ (3 
and 4 W/m2) and CAM (2 and 4 W/m2). These results 
(precipitation and air temperature) are consistent with 
what are present in Figure 9.
Figure 10 presents the ensemble medians of precipitation 
and surface air temperature in both seasons in 2090 for the 
PF scenario, along with the differences from its correspond-

ing detrended baseline counterparts. The ensemble median 
precipitation in both seasons indicate that maxima occur 
in the Tropics, specifically the intertropical convergence 
zone (ITCZ) in the Atlantic, Pacific, and Indian Oceans, 
the South Pacific convergence zone (SPCZ), as well as over 
tropical Africa and South America (Figure 10 a, b). This 
band of heavy rain moves north and south of the Equator 
seasonally. Major precipitation peaks in tropical regions are 
below the equator in DJF but are located further north in 
JJA. JJA is the season that is strongly affected by the Asian 
monsoon which brings heavy rain to China, southeast 
Asia, and India. In midlatitudes, the storm tracks in the 
Northern Hemisphere (NH) oceans are much stronger 
in DJF than in JJA, while the circumpolar storm tracks in 
the Southern Hemisphere (SH) are weaker in DJF than in 
JJA. DJF is also characterized by a secondary precipitation 
maximum along the northwest coast of North America 
from Alaska to California at the eastern end of the Pacific 
Ocean storm track. Except for the Maritime Continent, 
a majority of land areas are characterized by dry condi-
tion in both seasons with moderate precipitation found in 
Eastern North America, northern Europe, northeastern 
and southeastern China in JJA. 
The changes in the ensemble median precipitation relative 
to the detrended baseline are embedded with distinct zon-
al patterns inherited from the MESM zonal architecture 
(Figure 10 c, d). Nevertheless, many expected regional 
characteristics of wetting and drying are observed and 
shared by both seasons. The strongest positive changes 
are found in the equatorial Pacific with many regions be-
ing associated with Monsoon precipitation and they shift 
slightly between north and south seasonally. Extensive 
but weaker positive changes are also observed in the high 
latitudes (lands and oceans) of both hemispheres, likely 
attributed to the increased specific humidity of the warmer 
troposphere and increased transport of water vapor from 
the tropics. A strong drying signal is projected over the 
central America, the Amazon, the Mediterranean, and 
Indonesia islands together with the Atlantic, Indian, and 
South Pacific Oceans. The most part of the United States 
(US) is projected to become wetter in DJF, particularly in 
the Eastern US and the west coast, while many regions 
will experience precipitation decreases in JJA, including 
the northern part of the country (40° ~ 50°N) and the 
southern US. In-between lies a moderate wetting zone 
extending from the Southwestern to the Southeastern US. 
The ensemble medians of the JJA and DJF surface air tem-
perature (Figure 10 e, f) demonstrate the well-established 
temperature gradient from the equator to the high latitudes 
of both hemispheres. The JJA temperature maxima are locat-
ed in the Sahara Desert, the Middle East, the Mojave Desert, 
and the Sonoran Desert in northwestern Mexico, while the 
temperature minima are confined to the Greenland and 
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Table 3. 5-year mean differences between the ensemble medians of reF and P1p5C (top row of each region) as well as reF and 
detrended baseline (bottom row of each region) for 6 meteorological variables in JJa over 21 regions. 5-year mean is centered in 
2050 (2048~2052) and 2090 (2088 ~ 2092), respectively. Negative values indicate lower values in reF relative to P1p5C (top 
row) or detrended baseline (bottom row). The difference between bottom row and top row represents mitigation effects with the 
most aggressive climate policy relative to no policy scenario.

Region
Prep (mm/d) Tbot (°C) Fsds (W/m2) Flds (W/m2) Wind (m/s) Qbot (kg/kg)

2050 2090 2050 2090 2050 2090 2050 2090 2050 2090 2050 2090

AUS
0.002 0.034 0.24 1.31 0.25 1.63 1.1 6 0 -0.01 0.0001 0.0004

0.008 0.046 0.67 1.82 0.74 2.26 3.03 8.24 0 -0.02 0.0002 0.0005

AMZ
-0.016 -0.054 0.26 1.46 0.3 3.04 1.62 8.57 0 0.01 0.0001 0.0008

-0.028 -0.072 0.76 2.01 1.33 4.35 4.49 11.78 0.006 0.018 0.0004 0.001

SSA
0.004 0.064 0.21 1.16 0.06 0.43 1.19 6.35 0 -0.014 0.0001 0.0005

0.022 0.094 0.59 1.63 0.06 0.48 3.29 8.85 -0.008 -0.024 0.0002 0.0007

CAM
-0.152 -0.424 0.16 1.28 -0.87 3.13 1.04 7.79 0 0.014 0.0001 0.0007

-0.16 -0.412 0.74 1.95 1.76 6.85 4.4 11.52 0.008 0.026 0.0004 0.001

WNA
-0.01 0.014 0.22 1.63 -1.11 1.43 1.87 10.83 -0.018 -0.04 0.0001 0.0006

0.01 0.042 0.9 2.41 0.92 4.29 5.73 15.15 -0.016 -0.032 0.0004 0.0008

CNA
-0.034 -0.122 0.24 1.79 -1 3.9 1.76 11.04 -0.014 -0.016 0.0001 0.0008

-0.046 -0.126 0.99 2.69 2.64 8.98 5.8 15.58 -0.008 -0.006 0.0005 0.0012

ENA
-0.016 -0.042 0.19 1.53 -0.34 5.17 1.43 9.17 -0.02 -0.056 0.0001 0.0009

-0.006 -0.012 0.86 2.31 3.2 9.96 4.89 13.06 -0.022 -0.052 0.0005 0.0014

ALA
0.018 0.134 0.25 1.19 0.66 0.55 1.51 8.16 -0.012 -0.02 0.0001 0.0005

0.076 0.198 0.67 1.63 0.67 0.32 4.15 10.97 0 0.002 0.0002 0.0007

GRL
0.012 0.1 0.25 1.34 0.1 -0.41 1.61 8.49 -0.012 -0.026 0.0001 0.0005

0.062 0.162 0.75 1.87 -0.19 -0.71 4.51 11.62 -0.002 -0.01 0.0002 0.0006

MED
-0.022 -0.086 0.2 1.72 -1.24 4.47 1.51 9.88 -0.01 -0.006 0 0.0003

-0.046 -0.106 0.96 2.59 3.24 10.53 5.21 14.06 0 0.008 0.0002 0.0005

NEU
-0.008 0 0.19 1.22 0.38 3.03 1.39 7.86 -0.02 -0.036 0.0001 0.0005

0.03 0.048 0.69 1.77 1.18 4.08 4.29 11 -0.012 -0.022 0.0003 0.0008

WAF
0.004 0.08 0.23 1.33 -0.19 1.01 1.83 10.55 0.002 0.032 0.0002 0.0009

0.046 0.122 0.72 1.88 0.21 1.59 5.62 14.73 0.02 0.048 0.0005 0.0013

EAF
0.008 0.094 0.24 1.37 -0.27 0.74 1.82 10.25 0 0.014 0.0001 0.0008

0.05 0.136 0.73 1.92 0.14 1.34 5.44 14.26 0.01 0.028 0.0004 0.0011

SAF
0 0.008 0.27 1.45 0.01 1.41 1.44 7.58 0 0.004 0.0001 0.0005

-0.002 0.006 0.74 2 0.58 2.11 3.8 10.27 0.002 0.004 0.0002 0.0007

SAH
0.002 0.024 0.24 1.7 -2.4 -1.42 2.22 13.86 -0.006 -0.004 0.0001 0.0006

0.012 0.04 0.96 2.54 -0.5 1.76 7.4 19.69 -0.006 -0.004 0.0003 0.0009

SEA
0 0.226 0.17 0.99 0 1.3 1.11 6.82 -0.002 0.008 0.0002 0.0009

0.128 0.38 0.54 1.4 0.49 2 3.71 9.64 0.006 0.01 0.0005 0.0013

EAS
0.016 0.124 0.15 1.36 -0.87 2.88 1.32 8.95 -0.012 -0.034 0.0001 0.001

0.088 0.224 0.79 2.11 1.91 6.83 4.84 12.91 -0.014 -0.034 0.0006 0.0014

SAS
-0.002 0.458 0.11 1.05 -1.31 -0.08 1.14 8.34 0 0.01 0.0001 0.001

0.316 0.848 0.63 1.66 0.09 2.11 4.75 12.38 0.002 0.018 0.0005 0.0015

CAS
0.002 0.008 0.22 1.74 -1.72 1.67 2.04 12.22 -0.012 -0.036 0 0.0003

0.01 0.018 0.98 2.63 1.67 6.51 6.37 17.13 -0.012 -0.036 0.0002 0.0005

TIB
0.024 0.104 0.2 1.69 -1.87 -0.59 1.79 10.79 -0.016 -0.05 0.0001 0.0005

0.048 0.136 0.94 2.55 0.49 2.99 5.65 15.14 -0.02 -0.052 0.0003 0.0007

NAS
0.008 0.092 0.3 1.6 0.48 1.96 1.88 10.08 -0.014 -0.036 0.0001 0.0006

0.062 0.158 0.89 2.23 0.88 2.44 5.3 13.81 -0.014 -0.026 0.0003 0.0009
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Table 4. Same as Table 3, but in DJF.

Region
Prep (mm/d) Tbot (°C) Fsds (W/m2) Flds (W/m2) Wind (m/s) Qbot (kg/kg)

2050 2090 2050 2090 2050 2090 2050 2090 2050 2090 2050 2090

AUS
0.012 0.064 0.26 1.29 0.16 1.07 1.87 9.31 0 0.01 0.0001 0.0006
0.024 0.094 0.66 1.77 0.41 1.46 4.79 12.69 0.002 0.008 0.0003 0.0008

AMZ
-0.026 -0.108 0.23 1.25 0.54 3.2 1.56 8.27 0.002 0.018 0.0002 0.0009

-0.05 -0.12 0.66 1.73 1.49 4.3 4.4 11.33 0.008 0.02 0.0005 0.0012

SSA
0.02 0.128 0.24 1.24 0.45 2.11 1.59 8 -0.004 -0.01 0.0001 0.0006

0.062 0.188 0.63 1.72 0.89 2.71 4 10.86 -0.004 -0.01 0.0003 0.0008

CAM
-0.006 0.092 0.21 1.29 0.04 2.35 0.9 5.81 0.004 -0.004 0.0001 0.0006

0.03 0.15 0.74 1.89 1.49 4.09 3.29 8.47 -0.006 -0.016 0.0004 0.0009

WNA
0.012 0.094 0.26 1.52 -0.36 -0.62 1.57 8.42 0 -0.036 0.0001 0.0004

0.05 0.138 0.88 2.24 -0.34 -0.49 4.77 12.04 -0.02 -0.05 0.0002 0.0006

CNA
0.026 0.142 0.28 1.58 -0.27 0.05 1.62 8.77 0 -0.016 0.0001 0.0005
0.076 0.21 0.89 2.28 0.11 0.65 4.81 12.34 -0.01 -0.03 0.0002 0.0007

ENA
0.042 0.242 0.31 1.77 -0.35 -0.38 1.69 9.08 0 -0.01 0.0001 0.0005
0.132 0.344 0.99 2.55 -0.27 -0.17 5.11 12.9 -0.004 -0.016 0.0003 0.0007

ALA
0.014 0.084 0.53 2.71 -0.25 -0.43 2.76 12.46 0.002 -0.002 0 0.0002
0.046 0.124 1.75 4.08 -1.02 -1.29 9.19 19.65 0.002 -0.004 0.0001 0.0003

GRL
0.024 0.13 0.41 2.36 -0.24 -0.77 2.19 11.12 0.01 0.03 0 0.0002
0.082 0.198 1.45 3.53 -0.8 -1.38 6.85 16.25 0.018 0.036 0.0001 0.0003

MED
-0.006 -0.006 0.14 1.02 0.05 1.59 0.73 4.58 -0.008 -0.042 0.0001 0.0004
0.004 0.012 0.62 1.56 0.96 2.78 2.73 6.88 -0.02 -0.062 0.0002 0.0006

NEU
0.018 0.102 0.24 1.41 -0.34 -1.01 1.8 8.89 -0.004 -0.036 0.0001 0.0004
0.074 0.172 0.95 2.23 -1.05 -1.8 6.27 13.94 -0.014 -0.048 0.0002 0.0006

WAF
0.006 0.044 0.25 1.4 -0.36 0.08 1.83 9.88 0.002 -0.002 0.0001 0.0005
0.016 0.058 0.77 1.98 0.2 0.84 5.24 13.57 -0.006 -0.008 0.0003 0.0008

EAF
0.028 0.144 0.23 1.27 -0.58 -1.19 1.9 10.14 0 -0.012 0.0002 0.0008
0.064 0.186 0.7 1.79 -0.52 -0.99 5.31 13.86 -0.008 -0.022 0.0004 0.0011

SAF
-0.004 -0.006 0.25 1.28 0.25 1.56 1.61 8.29 0.002 0.01 0.0001 0.0008
-0.014 0.004 0.66 1.76 0.67 2.13 4.31 11.33 0.004 0.01 0.0004 0.0011

SAH
0 0.006 0.23 1.4 -0.44 0.21 1.52 8.53 0.012 0.042 0 0.0004
0 0.01 0.8 2.05 0.35 1.23 4.6 11.95 0.016 0.05 0.0002 0.0006

SEA
0.018 0.162 0.16 0.97 -0.09 0.97 1.26 7.16 0.002 0 0.0002 0.0009
0.078 0.234 0.55 1.39 0.52 1.73 3.91 9.98 -0.002 -0.002 0.0005 0.0012

EAS
0.018 0.11 0.25 1.45 -0.33 0.03 1.56 8.3 0.004 0.008 0.0001 0.0004
0.052 0.154 0.83 2.12 0.06 0.62 4.59 11.73 0.002 0.004 0.0002 0.0006

SAS
0.02 0.138 0.24 1.43 -0.57 -0.27 1.88 10.24 0 -0.014 0.0001 0.0007

0.056 0.182 0.82 2.07 0.15 0.67 5.45 14.2 -0.01 -0.024 0.0004 0.001

CAS
0.002 0.044 0.28 1.64 -0.24 0.35 1.52 8.07 -0.004 -0.02 0.0001 0.0004
0.018 0.066 0.93 2.37 0.29 1.1 4.54 11.47 -0.012 -0.03 0.0002 0.0005

TIB
0.01 0.052 0.29 1.6 -0.26 0.42 1.69 8.68 -0.004 -0.024 0.0001 0.0003

0.026 0.07 0.9 2.29 0.33 1.29 4.67 12.05 -0.012 -0.034 0.0002 0.0004

NAS
0.022 0.112 0.4 2.23 -0.3 -0.91 2.29 11.35 0.002 0.01 0 0.0002
0.068 0.166 1.38 3.35 -1.04 -1.73 7.37 17.05 0.002 0.01 0.0001 0.0003
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Figure 10.  ensemble medians of the precipitation (panels a-d, mm/day) and surface air temperature (panels e-h, K) in JJa 
(left columns) and DJF (right columns) in 2090 for the PF scenario, along with the differences (panels c, d, g, and h) from its 
corresponding detrended baseline counterparts in 2000.
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Antarctic. The DJF temperature maxima are found in the 
Australian Deserts, while the minima are concentrated in 
the high latitude lands (North of 40°N) and Antarctic. As 
expected, the ensemble median air temperature is projected 
to increase over most of the globe relative to the detrended 
baseline, but its magnitudes vary regionally and seasonally 
(Figure 10 g, h). The immediately evident are the strongest 
JJA warming in the Antarctic Peninsula and the strongest 
DJF warming in the northern high latitudes (in particular 
the Arctic regions). Previous studies reported that the 
Arctic regions experience warming at twice the pace of 
the global average (Post et al. 2019; Rantanen et al. 2022) 
and unprecedented warming over the Antarctic Peninsula 
(González-Herrero et al. 2022). The general pattern of 
temperature increase indicates that warming is stronger 
over land than over oceans. The limited cooling signals are 
found over the northern Atlantic in both seasons as well 
as over the Arctic Ocean in JJA. Studies suggested that 
the cooling in the northern Atlantic is likely linked to the 
slowing of the Atlantic Meridional Overturning circulation 
and the resulting slower northward surface-heat trans-
port (Caesar et al., 2018; Keil et al., 2020). These pattern 
characteristics are consistent with what were shown in 
Tebaldi et al. (2021).

5. CONCLUSIONS
We present a self-consistent, meta-ensemble, high-reso-
lution global dataset of long‐term future climate under a 
range of possible policy scenarios. The dataset is developed 
using an integrated SD-BC (delta) approach with SD for 
achieving the high resolution and BC for correcting the 
biases in the IGSM zonal climate projections. The meta-en-
semble is constructed by combining the 50-member ensem-

ble of the IGSM zonal climate projections and 18 CMIP6 
climate models. The 50-member ensemble represents a 
range of Earth systems’ response to natural and anthro-
pogenic drivers, while the CMIP6 models characterize the 
uncertainty in their regional spatial response patterns as a 
result of forced climate warming. Our 0.5° global dataset 
comprises a 900-member ensemble of 9 climate variables 
(precipitation, mean, minimum and maximum air tem-
perature, near-surface wind speed, shortwave and long-
wave radiation, specific humidity, and relative humidity) 
on a monthly time scale for the period 2021-2100 under 
four policy scenarios. Each ensemble member is packed 
in a single file of the self-describing netCDF format, a 
broadly accepted good-practice standard utilized in the 
weather and climate science research communities. The 
complete dataset is ~60 TB in size and can be made avail-
able to any interested user via public file transfer protocol. 
The evaluation suggests that the dataset is able to capture 
broadly the well-observed climate features across various 
regions of the globe and the results are consistent with 
what previous studies reported. The dataset can be used 
for meeting various needs associated with climate impact 
assessments, including uncertainty analyses, risk quanti-
fication, climate policy mitigation, and driving climate 
impact models which require monthly data inputs, on 
both global and regional scales.
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