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Abstract: An open source computer algorithm, the Surface Energy Balance Algorithm for Land-Improved 
(SEBALI), was designed to estimate actual evapotranspiration (ET) at a basin level. In this study, we build 
on later versions of SEBALI/SEBALIGEE to estimate ET at a 30-m resolution for any scale application using 
advanced machine learning approaches (SEBALIGEE v2). We evaluate the monthly ET estimated from the 
new algorithm across several fluxnet sites in US, China, Italy, Belgium, Germany, and France, yielding an 
Absolute Mean Error (AME) of 0.41 mm/day versus 0.48 mm/day in the original SEBALIGEE. Analyses 
of the ET in the US indicate that the annual wheat ET decreases significantly between 2013 and 2021 
(p < 0.05), accompanied by a significant air temperature increase. Net solar radiation is found to be the most 
influencing factor on ET of corn and soybeans with R2 values of ~0.72.
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1. Introduction
A sustainable water management plan is critical to meeting 
the goals of the UN 2030 Agenda on Sustainable Develop-
ment Goals (Si, 2021). However, climate change poses a 
major threat to developing a resilient water management 
system that ensures crops’ optimum health and produc-
tivity (Zhang et al., 2021). Nevertheless, the availability 
of abundant satellite observations and the advancement 
of artificial intelligence/machine learning technologies 
have provided unprecedented opportunity to tackle this 
challenge. 
One essential component of water management systems 
calls for an accurate estimate of crop water demand, also 
known as the actual evapotranspiration (ET). ET is affected 
by many factors, including weather parameters and crop 
characteristics as well as management and environmen-
tal aspects. ET is typically expressed by relating to the 
reference evapotranspiration (ET0) via the adjusted crop 
coefficient (aKc, ET = ET0*aKc) (Mhawej et al., 2021). ET0 
represents the evapotranspiration from a reference surface 
(eg., well-watered grass) and is only affected by weather 
parameters. aKc accounts for the crop evapotranspira-
tion under non-standard field conditions with all kinds 
of stresses as well as sub-optimal crop management and 
environmental constraints. It represents the integrated 
effects of crop characteristics, leaf area, plant height, can-
opy cover, rate of crop development, irrigation method, 
soil and climate conditions, and management practices. 
aKc is specific for each crop, changes throughout the crop 
growth stages, and is usually determined experimentally 
(Mhawej et al., 2021). Knowledge of aKc for a given crop 
will provide crucial information about water use at each 
stage of the crop growing season (from sowing till harvest).
There are two common approaches to estimate ET: crop 
model and satellite remote sensing. Each of these techniques 
considers specific properties and has limitations. Crop 
models, such as AquaCrop (Steduto et al., 2009), CropSyst 
(Stockle et al., 1994), the Agricultural Production Systems 
sIMulator (APSIM) (Keating et al., 2003), are often applied 
on a parcel-scale, due to many site-specific parameters 
which need be calibrated to achieve a desired accuracy. 
This usually generates fragmented observations. Satellite 
remote sensing can readily provide continuous observations 
over large areas of various variables required to calculate 
ET at global coverage (Fadel et al., 2020). The widely used 
algorithms for estimating ET include the Surface Energy 
Balance Algorithm for Land (SEBAL) (Bastiaanssen et al., 
1998), Mapping EvapoTranspiRation with Internalized 
Calibration (METRIC) (Allen et al., 2007), ET-Watch 
(Wu et al., 2008), the Atmosphere-Land EXchange In-
verse (ALEXI) flux Disaggregation approach (DisALEXI) 
(Anderson et al., 2013), and operational Simplified Surface 
Energy Balance (SSEBop) (Senay et al., 2014). Our recently 

developed SEBAL – Improved (SEBALI) (Mhawej et al., 
2020a; 2020b; Allam et al., 2021) Google Earth Engine 
(SEBALI-GEE) (Mhawej and Faour, 2020; Mhawej et al., 
2021) algorithm represents many improvements over the 
previously mentioned models (see section 3.1 for more 
details). The utilization of the GEE platform also enables 
prompt fetching and processing of all the needed inputs 
(Gorelick et al., 2017) and is therefore end-user friendly. 
However, SEBALI/SEBALIGEE and other algorithms 
mentioned above generally rely on the use of hot and 
cold pixels to construct a linear relationship between tem-
perature differences (dTs) and their corresponding land 
surface temperatures (LSTs) in the sensible heat calculation 
(Abunnasr et al., 2022). This procedure may introduce 
biases when the relationship is extrapolated to other pixels 
for the dT computation (see section 3.2 for more details). 
Here we propose an improved version of the SEBALI/SE-
BALIGEE model (SEBALIGEE version 2, hereinafter re-
ferred to as SEBALIGEE v2), also hosted over the GEE. 
SEBALIGEE v2 employs the Random Forest (RF) machine 
learning technique in place of the conventional hot/cold 
pixel approach, which enables more objective and accurate 
dT computation on any scale. In this study, we first evaluate 
the performance of SEBALIGEE v2 in estimating the ET at 
various Fluxnet sites across six different countries, including 
the United States, China, Italy, Belgium, Germany, and 
France. We then focus on three most commonly grown 
crops across the entire Contiguous United States (CONUS), 
namely, corn, soybeans and winter wheat, and deduce their 
aKc values from the SEBALIGEE v2-estimated ET and ET0 
between 2013 and 2021. We further assess the seasonal 
and annual variations of three crops’ aKc and ET as well 
as how different climate variables and drought conditions 
are associated with their variations. The structure of the 
paper is as follows; in section 2, we describe the study 
area and various datasets used in this study. The method 
for developing the SEBALIGEE v2 is given in section 3. 
Section 4 presents the results. Summary and discussions 
are provided in section 5.

2. Study Area and Datasets

2.1 Study Area
Our study focuses on the Contiguous United States (CO-
NUS) which is represented by 22 different climatic zones 
(Abunnasr and Mhawej, 2021). Agriculture is a major in-
dustry in the United States with nearly two million farmers 
(Page, 2018). It is mostly mechanized and concentrated 
in the Great Plains, Great Lakes and east of the Rocky 
Mountains. According to the United States Department of 
Agricultural National Agricultural Statistics Service (USDA 
NASS) report of 2015 (https://www.nass.usda.gov/Charts_
and_Maps/Crop_Progress_&_Condition/2015/index.php), 
corn represents the highest production value of 52.3 billion 
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USD, followed by soybeans of 40.3 billion USD and wheat 
of 11.9 billion USD. In 2021, these three crops correspond-
ed to an area of 53, 46, and 12 million ha, respectively 
(Figure 1). Corn and soybeans are mainly located over 
the eastern half of the US called Corn Belt, whilst wheat 
plantations are largely found over the western half, known 
as the Wheat Belt (Winkler et al., 2012). The western US 
is typically characterized by a cold semi-arid climate in 
the interior upper states and warm/hot semi-arid climate 
in the southwestern states. In the eastern US, the climate 
transitions from humid continental in northern areas into 
a humid temperate in the southern states.

2.2 Datasets
Various datasets have been compiled for the development 
of SEBALIGEE v2, including 1) the 30-m 16-day Level-2 
Bottom of Atmosphere (BOA) Surface Reflectance (SR) 
Landsat-8 satellite (Vermote et al., 2016), which is used 
for the generation of Normalized Difference Vegetation 
Index (NDVI), LST, and albedo; 2) the monthly air tem-
perature, dewpoint and wind speed from the fifth genera-
tion ECMWF atmospheric reanalysis of the global climate 
at 0.1° (~10-km, ERA5, Hersbach et al., 2020) used for 
the calculation of ET0; 3) the 1-km Moderate Resolution 
Imaging Spectroradiometer (MODIS) daily snow cover 
version 6 (MOD10A1, Hall et al., 2016) used for cloud 
cover detection; 4) the 500-m annual MODIS Land Cover 
Type version 6 (MCD12Q1.006, Sulla-Menashe and Friedl, 
2018) used for water body mapping; 5) the 90-m NASA 
Shuttle Radar Topographic Mission (SRTM) version 4 
(Jarvis et al., 2008) used for the calculation of altitude and 
slope and ET0; 6) the 30-m annual USDA NASS Cropland 
Data (Boryan et al., 2011) used for the corn, soybeans and 

winter wheat mapping; 7) air temperature at two different 
heights (i.e., 2-m and 10-m) from the Modern-Era Retro-
spective analysis for Research and Applications, Version 
2 at 0.625° × 0.5° (~ 50km, MERRA-2, Bosilovich et al., 
2016) used for the sensible heat calculation. Two additional 
datasets are employed for the statistical analysis (section 
4.2), including the monthly total precipitation from the 
Parameter-elevation Regressions on Independent Slopes 
Model AN81m at 4-km (PRISM, Daly et al., 2008) and 
various daily drought indices at 4-km derived from the 
Gridded Surface Meteorological (GRIDMET, Abatzoglou, 
2012). The drought indices to be examined in our study 
include the widely-used Standardized Precipitation Evapo-
transpiration Index (SPEI) calculated at different time 
scales (Table 1). Given a wide range of spatial resolutions 
among various datasets (30-m ~ 50-km), our analyses will 

Figure 1. Mapping main crops in the cONUS, 2021 (“n” corresponds to sample size of 30x30 pixels).

Table 1. SpeI thresholds for Drought/Wet classification

SPEI Value Meaning

2.0 or more extremely wet
1.6 to 1.99 very wet
1.3 to 1.59 moderately wet
0.8 to 1.29 slightly wet
0.5 to 0.79 incipient wet spell
-0.49 to 0.49 near normal
-0.79 to -0.5 incipient dry spell
-1.29 to -0.8 mild drought
-1.59 to -1.3 moderate drought
-1.99 to -1.6 severe drought
-2.0 or less extreme drought
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be performed at the 30-m (finest) grid scale. Any coarser 
dataset grid will overlay multiple 30-m grids with the same 
values across the grids. Although the ERA5 provides air 
temperature at 2-m and 10-m, we consider only those 
datasets that are directly available and accessible at the 
GEE platform. This will allow end-users to readily apply 
our algorithm for their applications. We expect that the 

use of climate variables from multiple data sets will not 
significantly change our results.
We use ET observations collected at multiple Eddy Co-
variance flux towers to evaluate the SEBALIGEE v2 per-
formance (Table 2, Figure 2). Most of these sites have 
been used in our previous studies related to the SEBA-
LI/SEBALIGEE model. We focus on the sites which have 

Table 2. Description of various eddy covariance Flux towers sites used in our study

Country Flux Tower Sites Location Data DOI Dates

Belgium BE_LON 4.746E, 50.551N 10.18140/FLX/1440129 Jan 2014 – Nov 2014
China - 115.788E, 40.349N - Jan 2016 – Dec 2017
France FR_GRI 1.951E, 48.844N 10.18140/FLX/1440162 Sep 2013 – Oct 2014
Germany DE_KLI

DE_GEB
13.522E, 50.893N
10.914E, 51.099N

10.18140/FLX/1440149
10.18140/FLX/1440146

Feb 2014 – Oct 2014
Apr 2014 – Oct 2014

Italy IT_CA2 12.026E, 42.377N 10.18140/FLX/1440231 Sep 2013 – Dec 2014
United States US_Bi1

US_Bi2
US_Ro6
US_TW3
US_TWT

121.499W, 38.099N
121.535W, 38.109N
93.058W, 44.695N
121.646W, 38.115N
121.653W, 38.108N

10.17190/AMF/1480317
10.17190/AMF/1419513
10.17190/AMF/1419509
10.18140/FLX/1440110
10.18140/FLX/1440106

Jan 2017 – Dec 2021
Jan 2018 – Dec 2021
Feb 2017 – Dec 2017
Sep 2013 – Oct 2014
Sep 2013 – Oct 2014

Figure 2. Location of the flux towers in six countries as well as a Google earth satellite view above each tower. the world map at the 
middle corresponds to Koppen climate classification.
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the flux measurements overlapping the Landsat-8 data, 
specifically from September 2013 to December 2021. This 
results in a total of 11 sites across four climate regions 
(Hot-summer Mediterranean climate (Csa), Oceanic (Cfb), 
Monsoon-influenced warm-summer humid continental 
(Dwb), and hot-summer humid continental (Dfa)) in six 
countries. These datasets are available to download from 
the FLUXNET (https://fluxnet.fluxdata.org/) or AMERI-
FLUX (https://ameriflux.lbl.gov/) official data portal. Only 
the fully processed Eddy Covariance ET measurements in 
China were provided by the Chinese Academy of Science 
(CAS) from January 2016 to December 2017.

3. Development of the SEBALIGEE v2

3.1 SEBALI/SEBALIGEE Model
SEBALI/SEBALIGEE is a satellite-based surface energy 
balance model developed in 2020 and commonly imple-
mented over a basin scale. The basic principle behind SE-
BALI /SEBALIGEE is the widely known surface energy 
equation (Price, 1985) at the Earth’s surface with the latent 
heat flux as a proxy for ET, derived as the residual of other 
energy terms (i.e., net radiation flux Rn, soil heat flux G 
and sensible heat flux H). SEBALI/SEBALIGEE integrates 
the strengths of existing models (i.e., SEBAL, METRIC, 
ET-Watch, and SSEBop) but also addresses gaps in their 
capabilities. Major improvements of SEBALI/SEBALIGEE 
over previous models include the reduction of required 
parameters (e.g., daily wind speed and relative humidity), 
the exclusion of the commonly-biased soil-related vari-
ables (e.g., wilting point and field capacity) as inputs, and 

a more sophisticated tree-like algorithm for automatically 
identifying hot and cold pixels (Mhawej and Faour, 2020), 
water-based internal calibrations to achieve improved sat-
ellite-based estimates of sensible and latent heat fluxes, 
and the estimation of 30-m ET and aKc simultaneously. 
SEBALI/SEBALIGEE is a fully automated, open-source, 
user-friendly system by ingesting various readily available 
remote sensed datasets at the GEE platform, including 
vegetation indices, albedo, and LST, climate, and other 
ancillary datasets (Mhawej and Faour, 2020). Detailed 
information can be found in Mhawej et al. (2020a, 2020b; 
2021) and Allam et al. (2021).

3.2 SEBALIGEE v2
SEBALIGEE v2 (Figure 3) essentially follows the same 
principle and procedure as SEBALI/SEBALIGEE in the 
calculation of ET, ET0, and aKc, except that RF machine 
learning method is implemented in place of the hot/cold 
pixels approach to resolve the air temperature differences 
for the sensible heat calculation and further reduce po-
tential bias/uncertainty. In SEBALI/SEBALIGEE, hot and 
cold pixels are identified in two steps by accounting for 
the effects of both vegetation (agricultural areas only) and 
surface temperature. First, hot pixels are selected from bare 
or uncultivated lands with limited or lack of vegetation 
cover (0 < NDVI <= 0.2) while cold pixels are associated 
with a vegetation cover (NDVI > 0.2). Two types of pixels 
are further filtered based on the LST statistics (mean and 
standard deviation) of each pixel group. A linear relationship 
is constructed between dTs and LSTs of two groups and 
applied to the LSTs of other pixels across the whole satellite 
image for estimating a pixel-based spatial distribution of 

Figure 3. SebALIGee v2 simplified flowchart of the used inputs and generated output.
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dT. This procedure may introduce several potential sourc-
es of uncertainty due to 1) the impacts of ever changing 
cloud/shadow conditions and/or land cover type through 
the time on the determination of hot/cold pixels and their 
respective LSTs and dTs; and 2) the extrapolation of the 
linear relationship to the pixels of the whole image. 

The RF approach is a type of supervised learning algorithm 
that uses ensemble methods (bagging) to solve both regres-
sion and classification problems (Breiman 2001; Chen et al., 
2020). In SEBALIGEE v2, RF is implemented on a monthly 
scale at the spatial resolution of 

MERRA-2 (50-km * 62.5-km) over the CONUS. We first 
obtain the median daily air temperature at 2-m and 10-m 
heights from MERRA-2 and calculate their difference at 
each grid for each month. Similarly, the median NDVI, 
LST and albedo values at 30-m are derived from one or 
two Landsat images of each month and then spatially ag-
gregated to the resolution of MERRA-2. RF is then trained 
with Landsat NDVI, LST, and albedo as the independent 
variables and MERRA-2 air temperature difference as the 
dependent variable. The trained RF model is later applied 
to the NDVI, LST, and albedo at their native Landsat res-
olution to derive the spatial distribution of dT at 30m. 
The procedure is performed for each month from 2013 to 
2021. In comparison with the hot/cold pixel approach, RF 
algorithm presents several unique strengths in the dT com-
putation on a large scale: 1) it utilizes all the pixels within 
the extent of any region of interest and thus eliminates the 
subjectivity and potential biases in identifying two types of 

extreme pixels; 2) the trained RF model is nonparametric 
and therefore the relationship between dependent (dTs) 
and independent variables is not necessarily linear; and 
3) RF provides great flexibility to account for multiple 
independent variables in the classification model. These 
strengths are expected to lead to a more robust model with 
an improved performance. The RF is computationally very 
efficient. With 130 decision trees (the maximum allowable 
capacity at the GEE platform), it takes only a few seconds 
to produce a monthly dTs at the 30-m resolution over the 
CONUS. SEBALIGEE v2 (Figure 4) is easily portable and 
customizable to produce the relevant parameters specific 
to any region of interest, greatly increasing its applicability.

We have computed a total of 220 monthly ET estimates 
across 11 Eddy covariance tower sites of different climate 
zones in six countries (Table 2). A random selection of 
70% of the samples is used for the calibration with the 
remaining 30% for validation. The model performance 
is evaluated with the monthly Root Mean Square Error 
(RMSE), Absolute Mean Error (AME) and the R-squared 
correlation between SEBALIGEE v2 monthly ET values and 
their flux towers’ counterparts. The validated SEBALIGEE 
v2 is then applied for estimating the water requirements 
of three major crops, including corn, soybeans and winter 
wheat, in the CONUS between 2013 and 2021. Statisti-
cal analysis, including Mann-Kendall tests and step-wise 
regressions, were followed to understand how different 
climate variables affect the variations of the aKc for each 
crop and also identify the most influential factors.

Figure 4. Snapshot of the SebALIGee v.2 system interface hosted over the Gee platform.
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4. Results and Discussions
Comparison of the SEBALIGEE v2 estimated ET values with 
the flux tower observations show good performance with a 
RMSE of 16.35 mm/month, an AME of 14.47 mm/month 
and a R2 of 0.78 over the remaining 30% of total samples. 
SEBALIGEE exhibits a similar RMSE of 16.26 mm/month 
and an AME of 14.54 mm/month but a much lower R2 of 
0.66 with the six flux tower observations (excluding the 
new three tower sites in the US). Over the same flux towers 
considered in SEBALIGEE, SEBALIGEE v2 has an improved 
RSME (14.73 mm/month) and AME (12.22 mm/month) 
and a much higher R2 (~0.83%). Our following analyses 
focus on the three crops in the CONUS.

4.1 Water Requirements of Corn, Soybeans 
and Winter wheat

Figure 5a shows the monthly climatology of ET for three 
crops from 2013 to 2021. These results are aggregated from 
the total number of parcels of each crop (sample size in 
Figure 1) based on the yearly crop plantation mask from 
USDA NASS cropland data layers. We see that the ET values 
of all three crops present similar distinct seasonal cycles with 
peaks occurring in late spring to the summer (May-Aug) 
and troughs between October and January. These features 
correspond well to the key stages of crop life cycle, such as 
onset of greenness, peak of the growing season, duration of 
the growing season, and initiation of the dry down period. 
Corn and soybean exhibit similar magnitudes of ET (36 ~ 

168 mm/month) and higher than winter wheat (33 ~ 122 
mm/month), where the reproductive stages (i.e., emergence 
and nth leaf collar for corn, germination and seedling and 
rapid vegetative growth for soybeans, and heading, flow-
ering and grain filling in winter wheat) are requiring the 
most water (Baum et al., 2019). Large standard deviations 
are observed in the ET estimates of all the crops, with ~ 
32 mm/month for corn and soybean and ~ 43 mm/month 
for winter wheat, likely attributed to different parcels of 
the same crop exhibiting a wide range of planting times, 
crop health conditions, and management practices. Our 
ET curves are consistent with previous studies which sug-
gested an optimum planting window between the last week 
of April and the first week of May for corn and soybeans 
(Nafziger, 1994; Norberg et al., 2010; Xu et al., 2019) and from 
mid-September to the first week of October (Nouri et al., 
2017; Nasrallah et al., 2020) for winter wheat.
All three crops show a similar seasonal cycle of aKc with 
two distinct peaks (~ 1.2) in April and October, respectively. 
This may be associated with cultivation twice a year or 
in rotation with other crops in the same year. Due to the 
continuous pressure from more frequent occurrence of 
extreme events (e.g., droughts), multi-cultivation/rotation 
is a desired strategy for farmers to achieve increased annual 
crop yields. The lowest aKc values (~0.8) generally occur 
in winter and summer when crop growth is less active or 
a field is fallow. Corn and Soybean present overall higher 
aKc than winter wheat.

Figure 5. Monthly climatology (a), annual mean (b) of et and aKc and annual mean SpeI (c) for corn, soybeans and winter wheat 
across all parcels over the cONUS from 2013 to 2021; the error bar represents one standard deviation of all the years and parcels of 
each crop. (d) represents the r2 between SpeI-360 and one-year lag et for corn.
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Interannual variations of ET and aKc are shown in Figure 
5b for all three crops, with corn and soybean consistently 
presenting higher ET and aKc values than winter wheat. 
Corn shows the highest and lowest ET in the year 2014 
and 2020, respectively. This is largely consistent with the 
interannual variations of SPEI. The incipient dry spell in 
2013, as reflected by SPEI-360, triggered increased annual 
ET the year after in 2014 (Figure 5c). Inversely, the wet year 
of 2019 decreased the corn water consumption in 2020. 
The R2 between SPEI-360 and one-year lag ET is around 
0.6 for corn (Figure 5d). 
The highest and lowest ET values occur in the year 2018 and 
2015 for soybean as well as 2019 and 2013 for winter wheat, 
respectively. Similar relationships between SPEI-360 and 
one-year lag ET can be observed for winter wheat, with a R2 
value of 0.54. However, this does not hold for the soybean 
with a R2 value of 0.12. Overall, soybeans and corn demon-
strate higher aKc values (1.08 +/- 0.03 and 1.05 +/- 0.03, 
respectively) than winter wheat (0.94 +/- 0.04), suggesting 
corn and soybeans higher water requirements and stronger 
irrigation dependence. Note that these aKc values are aggre-
gated from all the parcels. When the number of parcels over 
the CONUS is factored in, the small aKc differences observed 
among crops would have a large impact on water resources 
nationwide. Thus, more attention and effort are required 
to assess water management system particularly in the US, 
where irrigation water is often unsustainably pumped from 
groundwater, leading to a reduction in future production 
of corn, soybeans and winter wheat (Lopez et al., 2022).

4.2 Statistical Analysis

4.2.1 Mann-Kendall Test

We further examine the annual trends of ET and aKc of three 
crops, climate variables (i.e., air temperature, dewpoint, 

wind speed, precipitation, surface net solar radiation) as 
well as the SPEI indices computed on multiple time scales 
(i.e., 14, 30, 90, 180 and 360 days) between 2013 and 2021. 
The Mann-Kendall test is used to check whether a set 
of data values is increasing or decreasing over time, and 
whether the trend in either direction is statistically signifi-
cant (Mann 1945, Kendall 1975, Gilbert 1987). It does not 
assess the magnitude of change and cannot necessarily be 
extrapolated into the future. Still, the strength of applying 
the Mann-Kendall test is based on its ability to work on a 
small sample’s size, usually larger than four (Gilbert 1987).
 Our results indicate that only winter wheat ET presents 
a significant decreasing trend (-1.06 mm/year, significant 
at 5% level) over the last decade. Crop yields have been 
shown to continuously increase during the past decades 
(https://www.nass.usda.gov/). This finding is likely asso-
ciated with the climate warming induced increase in the 
air temperature (0.129°C, significant at 5% level) and re-
sulting longer growing seasons (Rizzo et al., 2022). How-
ever, warming climate may also render the Corn Belt less 
sustainable to corn plantation and thus endanger further 
productivity gains (Rizzo et al., 2022). The exact reasons 
for the decrease in water demand is not certain, but could 
be attributed to the improved breeding and agronomic 
management (Grassini et al., 2013; Cooper et al., 2020). An-
other possible cause is that recent higher temperatures and 
drier conditions in the CONUS may lead to less ET—just 
no water to evaporate. Further research needs to be done 
to determine the root causes behind the winter wheat ET 
trend and better understand its impacts on productivity.

4.2.2 Step-wise Regression

There seems to be no strong association between aKc values 
of corn, soybeans and winter wheat and various climate 
variables as well as SPEI indices examined (Table 3). The 

Table 3. Highest r2 values for the step-wise regressions between et/aKc of corn, soybeans and winter and various variables from 
2013 to 2021. At, Dt, rN, and WIND represent air temperature; dewpoint temperature, surface net solar radiation and wind speed, 
respectively. SpeI-14 and SpeI-30 are SpeI calculated on 14 days and 30-days, respectively.

Highest R2

First variable Second variable Third variable Fourth variable Fifth  variable

aKc

Corn WIND 
(0.2)

+ DT 
(0.24)

+ AT  
(0.31)

+ SPEI-90 
(0.34)

+ RN 
(0.35)

Soybeans WIND 
(0.14)

+ DT 
(0.2)

+ AT  
(0.26)

+ SPEI-14 
(0.29)

+ RN 
(0.31)

Winter Wheat WIND 
(0.01)

+ DT 
(0.11)

+ AT  
(0.14)

+ SPEI-30 
(0.19)

+ RN 
(0.20)

ET

Corn RN 
(0.71)

+ WIND 
(0.75)

+ DT  
(0.77)

+ SPEI-14 
(0.79)

+ AT 
(0.8)

Soybeans RN 
(0.73)

+ WIND 
(0.78)

+ DT  
(0.79)

+ SPEI-14 
(0.81)

+ SPEI-14 
(0.84)

Winter Wheat RN 
(0.54)

+ SPEI-30 
(0.60)

+ AT  
(0.60)

+ DT 
(0.63)

+ WIND 
(0.65)
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highest R2 values are obtained when five variables are used 
with the corresponding R2 values of 0.35, 0.31 and 0.2 for 
corn, soybeans, and winter wheat, respectively. The weak 
association is likely related to the fact that aKc is a com-
plex metric aggregated from many aspects, including crop 
characteristics, environmental conditions, and management 
practices. There is no simple way to incorporate all these 
different features into a single relationship (Allam et al., 
2021). Our analyses indicate that the most influential 
factor is wind speed, followed by dewpoint temperature. 
Inclusion of additional variables may help improve the R2 
values marginally.
In contrast, ET appears to be well represented to various 
extents by climate variables and SPEI indices. As expected, 
the surface net solar radiation shows the most dominant 
impact on the crop ET, with R2 values of 0.73, 0.71, and 0.54 
for soybeans, corn, and winter wheat, respectively. In this 
context, agrivoltaic systems could serve as a viable option 
to lower the net solar radiation (Zainol Abidin et al., 2021) 
and decrease the crop water consumption for future farm-
ing. Wind speed appears to be the second most influential 
variable for corn and soybeans, but the SPEI-30 stands out 
for winter wheat. SPEI-14 appears to be the most dominant 
factor over corn and soybeans plantations in comparison 
to other SPEI time scales (i.e., 30, 90, 180 and 360 days). 
This information is useful to assist farmers and managers in 
determining the optimum time for cultivating these crops.

5. Conclusions
 In this study, we develop a new version of the SEBALIGEE 
(v2) in which a machine learning RF algorithm is employed 
for the calculation of sensible heat flux in place of the 
widely used hot/cold pixel approach. This improvement 
allows SEBALIGEE’s application to extend from a basin 
scale to any scale (e.g., parcel, basin, nation, continent, or 
globe). The performance of SEBALIGEE v2 in estimating 
the ET is evaluated with the observations from various Eddy 
Covariance flux towers across different climatic regions. 
Our results indicate satisfactory performance of the SE-
BALIGEE v2 in estimating ET as a key proxy for crop water 
requirement, with a much lower AME (~ 0.48 mm/day) 
than those reported by some more complex models (e.g., 
0.52 ~ 1.31 mm/day, Degano et al., 2018, Knipper et al., 
2019, Allam et al., 2021, Asadi and Kamran, 2022). In 
comparison with the SEBALIGEE, v2 presents a similar 
bias but much higher R2 (0.78 versus 0.66).
Further analyses focus on the SEBALIGEE v2 estimated 
ET and aKc values of three major crops in the CONUS 
from 2013 to 2021, including the seasonal and annual 
variations as well as the association with different climate 
variables and drought conditions. Our study considers a 
large study area of ~112 million ha per year with a huge 
number of parcels in each crop type, which indirectly takes 

into consideration the diverse agricultural management 
plans and microclimates. Several findings were report-
ed aiming towards increasing crop water productivity by 
scheduling irrigation and guiding future initiatives, at local, 
regional and national scales. This can provide useful insights 
into achieving an increased crop water productivity and a 
sustainable water usage. Furthemore, it perfectly fits within 
the Sustainable Development Goals (SDG) and the 2030 
agenda proposed by the United Nation (UN).

The SEBALIGEE v2 is an open-source, fully automated, 
computationally efficient, readily-accessed, and easily-op-
erated system for ET and aKc assessments. Non-expert end 
users can customize and implement it to any time period 
and study the region of their interest across the globe with 
minimal effort. The main outputs include processed monthly 
albedo, NDVI, LST, ET and aKc, and annual Land Cover. 
An option is also available for the statistical analysis of 
the relevant variables. The hosting GEE platform provides 
great accessibility to massive computational power and a 
large collection of geospatial databases, which facilitates 
the water productivity research that would otherwise be 
hindered by the scarcity of required resources.

Nevertheless, several aspects of the presented SEBALIGEE 
v2 motivate subsequent trials and development that include, 
1) outputs at a higher spatial resolution by integrating 10-m 
sentinel-2 data (30-m in this study), 2) time laps studies 
that go back to the 1980’s and 1990’s by including other 
sensors such as Landsat 4, Landsat 5, Landsat 7, Advanced 
Spaceborne Thermal Emission and Reflectance Radiometer 
(ASTER), 3) outputs on weekly and daily scales, 4) vali-
dation of the SEBALIGEE v2 with more extensive tower 
observations, and 5) the seasonal responses of ET and aKc 
to the drought intensity and the impacts on crop yields. 
Improving the SEBALIGEE v2 with these aforementioned 
considerations will ultimately lead to persuasive and ac-
tionable insights for future water sustainable plans in the 
face of unavoidable and unpreventable global changes, 
population increase and resources’ scarcity.
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