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Abstract: Physical and societal risks across the natural, managed, and built environments are becoming 
increasingly complex, multi-faceted, and compounding. Such risks stem from socio-economic and 
environmental stresses that co-evolve and force tipping points and instabilities. Robust decision-making 
necessitates extensive analyses and model assessments for insights toward solutions.  However, these 
exercises are consumptive in terms of computational and investigative resources. In practical terms, such 
exercises cannot be performed extensively – but selectively in terms of priority and scale. Therefore, an 
efficient analysis platform is needed through which the variety of multi-systems/sector observational 
and simulated data can be readily incorporated, combined, diagnosed, visualized, and in doing so, 
identifies “hotspots” of salient compounding threats. In view of this, we have constructed a “triage-based” 
visualization and data-sharing platform – the Socio-Environmental Systems Risk Triage (SESRT) – that 
brings together data across socio-environmental systems, economics, demographics, health, biodiversity, 
and infrastructure. Through the SESRT website, users can display risk indices that result from weighted 
combinations of risk metrics they can select. Currently, these risk metrics include land-, water-, and 
energy systems, biodiversity, as well as demographics, environmental equity, and transportation 
networks. We highlight the utility of the SESRT platform through several demonstrative analyses over the 
United States from the national to county level. The SESRT is an open-science tool and available to the 
community-at-large.  We will continue to develop it with an open, accessible, and interactive approach, 
including academics, researchers, industry, and the general public. 
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1. Introduction
Climate and our natural as well as managed environments 
are changing. Society is growing and its aging infrastruc-
ture to provide reliable energy, water, and transportation 
systems is increasingly strained and challenged by need-
ed expansion, upgrades, and modernization. Further, the 
gobal economy, energy systems, and supply chains are 
faced with the challenge of transformational changes at 
a global scale. Simply put, the world is facing increasing 
and interwoven physical and transitional risks. In order 
to confront these challenges, the scientific community, 
stakeholders, and citizen scientists must view the world 
as complex, interwoven networks that co-evolve and are 
increasingly inter-connected. Multi-Sector Dynamics (MSD, 
e.g. Figure 1) explores interactions and interdependencies 
among human and natural systems and how these systems 
co-evolve in response to short-term shocks and long-term 
influences and stresses (e.g. Reed et al., 2022). For example, 
economic growth might put a pressure on public services 
and squeeze out low-income households (e.g. Frank, 2009), 
carbon policies can lead to different distributional impacts 
on households (e.g. Garcia-Muroz et al., 2022), and failed 
economies lead to widespread poverty, unemployment, 

tax base decline, and transform demographic geographies 
(e.g. Hochstenbach and Musterd, 2018). Under a changing 
global environment, weather may become more extreme, 
leading to increasing extreme events, such as droughts and 
floods  (e.g., Stott et al., 2016). Efforts to curb emissions 
will affect air pollution, but can also exert unintended 
and unequal stress on communities (e.g. Kiesecker, 2019). 
Similarly, water pollution, or efforts to reduce it, while 
having clear health benefits can have unequal social and 
economic impacts (e.g., Mueller and Gasteyer, 2021). As 
the world economy changes, perhaps turning away from 
fossil fuels to toward other energy resources, resource use 
could change drastically leading to regional increases and 
declines in related industries.  A growing global population 
that is becoming wealthier will put greater pressure on 
energy, land, and water resources.

In this vein, among the major challenges that Federal and State 
agencies face in addressing and identifying these problems lies 
in the difficulty of combining data to assess hazards, quantify 
overall risk, and set priorities. Currently, much of the needed 
data is disaggregated across multiple agencies, universities, 
and research groups, and presented at different geographical 
scales in varying formats. Finding and accessing all these data 

Figure 1. Schematic representation of the multi-Sector Dynamic framework that recognizes the co-evolving nature of socio-economic 
and physical systems. these systems must be considered as connected to gain insights into the various landscapes of vulnerabilities, 
compounding risks, and environmental instabilities and inequalities.
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are also a challenge in itself. More importantly, combining 
these data and creating metrics to address “overall risk” is 
unintuitive. On a more granular level, communities around 
the world will face multiple stressors over the coming de-
cades. The vulnerability or resilience of communities—their 
ability to successfully cope with stressors—varies.  Poorer 
communities have fewer financial resources on which to 
draw, and minority communities often do not receive the 
attention or aid of other communities. Communities with 
many elderlies or children have a larger proportion of more 
dependent persons.  The overall health of a community 
and access to health care also results in varying ability to 
cope with stressors, such as exposure to heat or pollution. 
Gathering data and projections necessary to understand 
environmental change and a community’s vulnerabilities is 
itself a significant undertaking. Recruiting experts, evaluating 
available data and projections, and determining vulnerable 
infrastructure, populations, and economic activity even 
at a very low level can require hundreds of thousands of 
dollars, if not many millions. With this consideration in 
mind – an efficient, low-cost screening level assessment that 
can identify “hot-spots” and allow a user to prioritize where 
resources and efforts can be most appropriately deployed 
would be valuable.
This paper describes a collection of data, constructed metrics, 
and an interactive, visualization platform that allows citizen, 
scientists, communities, states, and the Federal government 
to identify particularly vulnerable regions, populations, in-
frastructure, and resources. This web-based platform can be 
used to prioritize efforts in vulnerable regions to increase 
resilience against the identified potential stresses. Overall, we 
refer to this as a “risk-triage” approach, with “triage” aligning 
with its definitional context of “...assigning of priority order to 
projects on the basis of where funds and other resources can 
be best used, are most needed, or are most likely to achieve 
success” (Marion Webster Dictionary, 2021). Our goal is 
to characterize how the risk of various stressors co-exist, 
compile them in an easy to use and flexible fashion, and 
identify how the aggregate risk landscape changes when 
individual risks are combined. From this screening-level 
assessment, “hotspots” of risk can be identified that point 
to deeper diagnoses of risks at a more granular and detailed 
level, and these steps should lead to action to improve resil-
ience. Identifying the most vulnerable region provides an 
opportunity to intervene before there are serious effects. In 
the section that follows, we discuss our conceptual foundation 
and methodology that combines data and provide a link to 
a website that implements the conceptual model. We devel-
oped the platform to have flexibility to change or add to the 
various metrics in response to feedback from the research 
community and more importantly, government and private 
stakeholders as well as citizen scientists. Such feedback may 
point to areas where new data or projection capability may 
be needed.  The current implementation presented herein 

focuses on assessing current vulnerabilities and current 
stressors, with later versions indented to project potential 
changes in stressors.  To highlight the current capabilities of 
the platform, we then provide some examples and demon-
strative analyses over the United States from the national 
to county level.  Summary and closing remarks describe 
our continued efforts to expand the platform’s capabilities. 

2. Methodology

2.1 Conceptual Considerations
Stakeholders, legislators, decision-makers, as well as the 
community-at-large face increasingly complex exposures 
and compounding effects from co-evolving environmental, 
economic, and societal pressures. A number of online 
data, visualization, and analysis platforms are currently 
available to the community-at-large for exploring a wide 
range of climate, social, and environmental hazards (e.g., 
Pickard et al., 2015; U.S. EPA, 2019, 2020; Temper et al., 
2015; Iturbide et al., 2020; NOAA NCEI, 2022; Zuzak et al., 
2021). All these platforms carry unique perspectives and 
strengths, yet what they lack is the  ability to combine 
and weight user-selected metrics to quantitatively assess 
compounding hazards. The extent of data that is accessible 
to visualize and quantify these pressures and stresses is 
substantial (e.g. see Appendix A). Yet in many cases, such 
data are neither provided nor processed in a suitable form 
such that they can be readily combined. Flexible and us-
er-specified combinatory diagnostics such as these would 
provide valuable perspectives and identify salient priorities 
and vulnerabilities for investment and action. To use an 
example as conceptual motivation, imagine a situation in 
which a particular region of interest (e.g. nation, state, or 
county) is prone to high flood risk. Any flood risk metric 
by itself would identify areas at high risk, however, infra-
structure, demographics, and poverty could make some 
areas less able to withstand a flood and less resilient to 
recover than others. However, compiling and combining 
all the necessary data to make a quantitative assessment 
with all these combined factors (and potentially weighted 
according to a decision-maker’s judgement) is not readily 
available. A tool to combine compounding factors that 
identify the most risk-prone areas is valuable and insightful 
as a triage-response assessment. Similarly, communities 
might use such a tool identify their vulnerabilities with 
respect to an array of stressors and their combinations. 
We believe that under the conception of a “risk-triage” 
capability, a visualization platform should include metrics 
of stressors, risks, vulnerabilities, and resilience across so-
cio-economic, climate, water, land, energy, demographic, 
and infrastructure sectors, and that any metric should 
characterize the conditions and resources needed to cope 
with both gradual and sudden stressors. For example, the 
tool should encompass a gradual event such as economic 
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decline from the fading of a communities’ dominant in-
dustry, or a sudden, extreme event like a large flood. The 
platform likewise needs to be flexible: it must encompass 
and have the ability to quantitatively combine and visualize 
different types of metrics.  The tool should include metrics 
that indicate current and the potential of future stresses.  
However, it cannot be expected to provide precise predictors 
of what and when something will happen, but rather, the 
tool can convey a quantitative description of multiple risks 
that can be viewed individually and in any desired combi-
nation – so that the impact of compounding effects can be 
assessed under current conditions and future pathways.  
These futures could be a result of plausible (and uncertain) 
trajectories of climate, weather extremes, socio-economic 
growth, land cover/use, land and ecosystem productivity, 
water resources, and air quality to name a few. 
There are numerous data bases available from various Fed-
eral, non-profit, and open-science research institutions (see 
Appendix A) that provide a wide range of social, economic, 
and environmental variables (e.g., Pickard et al., 2015; U.S. 
EPA, 2019, 2020; Temper et al., 2015; Iturbide et al., 2020; 
NOAA NCEI, 2022; Zuzak et al., 2021).  Depending on the 
data structure, content, and granularity, they are provided 
in various downloadable forms and formats. We have relied 
on these data to populate a “one-stop” collection of data to 
serve as a Socio-Environmental Systems Risk Triage (SESRT) 
platform (URL – mst.mit.edu). In doing so, we also use these 
data to synthesize a collection of risk metrics that allow for 
the combinatory diagnostics, which is detailed in the next 
section. Overall, the principles by which the SESRT has 
been and continues to developed are (1) describe “hotspots” 
and prioritize further action and deeper inspection of risk 
or threats rather than just report data, and (2) strive for 
comprehensiveness, as data prepared by various agencies 
and institutes each have a relatively narrowed auspice (3) 
create normalized risk metrics that allow for user-defined, 
combinatory analyses across risks and vulnerabilities. The 
subsequent compounding-risk metrics offer an intuitive and 
collective ability to identify regions most in need of attention. 
We allow users to aggregate or view a single metric given 
their focus and interests.  As such, a user of the platform 
could be able to identify, for example, the “top-10” riskiest 
locations/regions with the most vulnerable populations, 
resources, and infrastructure across all potential stressors, 
allowing for specific risks and weights within those catego-
ries. Or one could create a more focused assessment, like 
the one described above, of infrastructure most at risk from 
extreme flooding with highly vulnerable populations. Some 
examples of these are provided in Section 3 to highlight a 
range of potential applications. As previously discussed, in 
the context of “triage”, the SESRT platform is intended to 
provide a rapid assessment, allowing reasonable prioritiza-
tion, on the basis that an efficient “hotspot” analysis is more 
effective than exhaustive, extensive deep-dive assessments 

that are time-and-resource consuming.  In fact, the intent 
of the “risk-triage” approach is to identify more specific 
targets for these deep-dive assessments.

2.2 Risk Metrics and Combinatory Analyses
The initial focus of our data collection has been over the 
United States at the county-level scale. We have and continue 
to collect publicly available data from the community-at-large 
that has resulted in a metadata collection (described in Ap-
pendix A) of currently over 100 variables that quantify a 
variety of fluxes, flows, states, and conditions across various 
landscapes of socio-environmental sectors, demographics, 
and public opinion. In view of the conceptual approach and 
methodology (Section 2), we have selected a subset of these 
variables that serve as the basis for the combinatory risk 
metrics analysis and visualization. As such, these metrics 
are “normalized” such that a user can chose various com-
binations to assess the extent of their co-existence – and to 
be able to gauge the “severity” in such a way that provides 
a quantitative basis for identifying “hotspots” of risk.  The 
procedure to construct these metrics is described below.
Our approach to construct these combinatory risk metrics is 
flexible and extensible by design. Conceivably, any variable 
from the main topical areas described above can be repre-
sented and selected. Initially, we have selected variables from 
the following topical areas: water; land; climate; economy; 
energy; health; biodiversity, and demographics. From these, 
we have further refined and constructed 17 variables for 
use as combinatory risk metrics. This collection of metrics 
will continue to be expanded under the SESRT mission 
to provide a comprehensive assessment of compounding 
and co-evolving risks.  The current set of risk metrics are 
presented in Table 1.
A primary consideration to the construction of an aggre-
gate metric is that each of the risk metrics described above 
carries inconsistent units, and therefore in their constructed 
form, any combinatory, comparative, and/or prioritizing 
diagnostics are untenable. To provide a capacity for these 
metrics to be combined quantitatively that assures numerical 
consistency, there are two possible procedures that could be 
exercised.  The first option would be to numerically recast 
all these metrics under a common-scale categorization of 
“risk” (e.g., Strzepek et al., 2021; Messer et al., 2014).  This 
scale could be as straightforward as judging each variable 
under binned categories of “none”, “low”, “moderate”, “se-
vere”, and “extreme” risk, or assigning a numerical value 
for each category or severity of risk (i.e., “none” = 1, “low” 
= 2, “moderate” = 3, “severe” = 4, and “extreme” = 5).  The 
advantage of this approach is that it preserves the absolute 
nature of risk, and when combining all the metrics of inter-
est, the resultant metric would highlight all areas “at risk” 
that have compounded accordingly.  The difficulty of this 
approach is that the rescaling of the raw values according 
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Table 1. Description and data-source information for the risk metrics that have been constructed for the combinatory analyses.

Variable Description Data Sources

Exposure 
to airborne 
particulate 
matter

Annual PM2.5 concentration 
data in the U.S., 1 km 
resolution, weighted by 
population and summed to 
the county (ug/m3).

PM2.5 Data: Gridded concentrations of fine particulate matter (PM2.5) from Di et al. (2019 & 2021)
Land area data: https://sedac.ciesin.columbia.edu/data/set/gpw-v4-land-water-area-rev11 
/data-download
Population density: https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-adjusted- 
to-2015-unwpp-country-totals-rev11 (CIESIN, 2018) Statistic constructed from 2015 data. 

Water 
Stress

Approximate proportion of 
the available water used. 
Estimated as withdrawal 
divided by total runoff.

Runoff: derived from ERA5 reanalysis
Water withdrawal: USGS (https://water.usgs.gov/watuse/data), includes both surface and ground-
water withdrawals to determine total freshwater withdrawals. 
Value for combinatory metric is the average of 2010 and 2015 estimates.

Water 
Quality

EPA Water Quality Index EPA Water Quality Index Lower values represent better quality and higher values represent worse 
quality The EPA created the Water Quality Index from 6 data sources: the WATERS program data-
base, Estimated Use of Water in the United States, the National Atmospheric Deposition Program, 
the Drought Monitor Network, the National Contaminant Occurrence Database, and the Safe 
Drinking Water Information System.  https://edg.epa.gov/EPADataCommons/public/ORD/CPHEA/
EQI_2006_2010/

Flood Risk First Street Foundation 
county-level flood risk factor

The county’s value is based on the average value across all land parcels that have a flood risk 
factor value between 2 and 10 (any value lower than 2 is not included).  Data available at: https://
registry.opendata.aws/fsf-flood-risk/

Highly 
Erodible 
Cropland

Cropland that can erode 
at excessive rates. (From 
USDA assessment - soils 
with an erodibility index of 
eight or more.)

The data are from the USDA National Resources Conservation Service, RCA Report website: www.
nrcs.usda.gov/wps/portal/nrcs/detail/?cid=stelprdb1187041
Thematic maps at: https://www.nrcs.usda.gov/Internet/NRCS_RCA/maps/m14598hel17.png
Original shapefiles from Tcheuko, Lucas - FPAC-NRCS, Beltsville, MD (Lucas.Tcheuko@usda.gov)

Land 
disturbance

EPA Land Quality Index, 
represents five disturbance 
factors: agriculture, 
pesticides, facilities, radon, 
and mining activity.

The index combines data from the 2007 Census of Agriculture, 2009 National Pesticide Use Data-
base, EPA Geospatial Data 12 Download Service, Map of Radon Zones, and Mine Safety and Health 
Administration. The Land Quality Index is 1 of 5 Environmental Quality Indices by the EPA. Data 
Downloaded from https://edg.epa.gov/EPADataCommons/public/ORD/CPHEA/EQI_2006_2010

Temperature 
stress

Temperature of the hottest 
month out of all months

Surface-air temperature from reanalysis (1980-2019).  
See Appendix A for further details on reanalysis data.

Fossil fuel 
employment

Fraction of population 
employed in fossil fuel 
industry

The 2020 U.S. Energy & Employment Report by the National Association of State Energy Officials, 
the Energy Futures Initiative, and the BW Research Partnership, includes job data for electric power 
generation, transmission, distribution & storage, fuels, energy efficiency, and motor vehicles

Energy 
expenditure

Expenditures in all energy 
sectors given as a fraction 
of GDP 

State Energy Data System (SEDS) is the source of the U.S. Energy Information Administration’s 
(EIA) comprehensive state energy statistics.

Endangered 
species

Metric is the number of 
species, includes only plants 
and fungi in the calculation 

An international network and data infrastructure funded by the world’s governments and aimed at 
providing anyone, anywhere, open access to data about all types of life on Earth.GBIF.org. The 
GBIF occurrence download is https://doi.org/10.15468/dl.gew2z6

Wildfire risk Based on data for mean 
burn probability (BP)

https://wildfirerisk.org/download

Population 
under 18

Fraction of population under 
the age of 18

The U.S. Census Bureau -  https://api.census.gov/data/2016/acs/acs5/variables.html

Population 
over 65

Fraction of population over 
the age of 65

The U.S. Census Bureau (see link above)

Nonwhite 
population

Fraction of population 
nonwhite 

The U.S. Census Bureau (see link above)

Population 
below 
poverty level

Fraction of population with 
annual household income 
below poverty level

The U.S. Census Bureau (see link above)

Unemploy-
ment rate

Labor force unemployed The U.S. Census Bureau - https://www.bls.gov/lau

Homeless-
ness

# of people experiencing 
homelessness per 10,000 
people in 2019. Obtained by 
dividing the US Housing and 
Urban Development people 
experiencing homelessness 
by the Census Bureau’s 
population counts.

The U.S. Department of Housing and Urban Development’s Office of Policy Development and 
Research (PD&R) https://www.huduser.gov/portal/datasets/ahar/2020-ahar-part-1-pit-estimates-of-
homelessness-in-the-us.html
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to a common risk scale, that can be combined under us-
er-specified configurations, would be prone to subjective 
judgement and could lead to distortions of one or more 
metrics over others. In addition, the process by which each 
variable is cast into a generic risk scale would be exhaustive 
and require extensive, expert judgement.  A second option, 
which we have adopted for our initial platform development, 
is to normalize the metric by ranking their values across any 
pooled sample of the data. This is an efficient and objective 
means by which to recast the data. It also aligns with our 
“triage” methodology, which is to identify high-priority 
regions.  There are options by which to normalize and rank 
a pooled set of raw data values as well as other approaches 
that include variance scaling (e.g., Strzepek et al. 2021).  
Considering the intent of the SESRT platform to provide 
a prioritization of risk, we have taken a percentile ranking 
approach.  As such, for any selected pooling of data (in this 
case, county-level data pooled across the United States), the 
following conversion is made. Given the raw value of the 
data, V_(r), we construct a percentile ranking value V_(p), for each 
county (c) value using the expression:

The minimum (min) and maximum (max) values are ob-
tained from the pooled county-level data collection across 
the United States or for a particular state (as determined 
by the user). The values of V _(p ) ranges from 0 to 100 and is 
unitless, with a value of 0 indicating that the corresponding 
region has the lowest risk relative to all the other regions 
across the pooled data, and a value of 100 indicating the 
highest relative risk. 
As previously noted, the intent of the SESRT is to provide the 
capability to perform user-specified, combinatory analyses 
and visualization. The use of composite metrics and analyses 
has been documented and used extensively to explore the 
complexity and inter-dependencies of various environmental 
issues (e.g., Saisana and Tarantola 2005; and Greco et al., 2019) 
The main issues are the choice weighting and aggregation 
methods across metrics, indicators, and/or variates that are 
of interest. Among the two more widely used approaches 
to determining weights (e.g., Sharpe and Andrews, 2012), 
“explicit” methods consist of evaluating surveys of responses 
from expert judgement using a Budget Allocation Process 
or an Analytic Hierarchy Process. The alternative and more 
objective approaches evaluate the relative importance of 
indicators based on data compression analyses. Various 
statistical methods such as Principal Component Analy-
sis (PCA) or Factor Analysis (FA) can be applied for this 
purpose (e.g., Ram, 1982). These methods place a higher 
weight on “orthogonal” modes of variability that describe 
the maximum portion of aggregate variance, and thus a 
subset of metrics can have more importance in the final 
weighting. More recently approaches based on artificial 

intelligence models have been used for this purpose (e.g., 
Paulvannan Kanmani, et al. 2020; Jimenez-Fernandez et al., 
2022). However, considering the intent of our platform to 
provide a flexible, user-inspired tool to explore multiple 
combinations of physical and transition risks, the debatable 
issue to the approaches above is that the portion of explained 
variance does not necessarily directly correspond to the 
highest value or importance of any metric, and an exhaustive 
set of expert judgements that span all possible combinations 
of our collected metrics is elusive. Given this, a final option 
is to give the user the choice of weights and aggregate the 
resultant metric accordingly. A wide variety of aggregation 
methods are used to combine indicators once their relative 
importance has been chosen. The most common is linear 
aggregation, though more complex non-compensatory 
methods are also possible (e.g., Greco et al. 2019).  We have 
initially adopted a linear aggregation, and therefore at the 
user’s discretion, any combination of these normalized risk 
metrics can be combined, at various selected weights – such 
that the resulting aggregate risk metric V_(a) based on a total 
of N normalized metrics combined, described by:

Where the assigned weight, W _(i ), for each individual normal-
ized risk metric (V _(p,i )) selected by the user is a constant value 
(from 0.1 to 1) across all counties. From this procedure, 
the SESRT platform also constructs a distribution of the 
resultant data that is displayed. In the section that follows, 
we provide examples of how this procedure can be used 
to assess a variety of combinatory, socio-environmental 
assessments and research applications. 

3. Application and Assessment 
Examples

3.1 National Level Screening
One visual example of the SESRT platform’s capabilities is 
the ability to efficiently indicate where environmental risks 
compound (Figure 2). In this demonstration, the current risks 
to land disturbances, water availability and quality, as well 
as exposure to poor air quality can be displayed individually 
(top panels of Figure 2a), and prominent hotspot regions 
that face higher levels of each of these separate risks can be 
discerned (orange/red shaded areas). In viewing these as 
separate mappings, it is not readily apparent to what degree 
the more severe areas of these individual environmental risks 
co-exist and potentially compound. Through the ability of 
the SESRT platform to combine all four metrics (Figure 
2b – all with equal weighting), the landscape of the relative 
compounding risks is more clearly discernable, with the more 
prominent visible “hotspots” located across California, the 
upper and lower Mississippi basin, the Ohio River basin, 
Texas, the Southeast as well as Mid-Atlantic states. 
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These hotspot areas may all be exacerbated by human-forced 
changes in climate, extreme events, land use, as well as 
water and energy demands. Future electricity demand 
is driven by socio-economic factors (e.g., GDP growth, 
population growth, technology costs and resulting elec-
tricity prices) as well environmental factors, particularly 
temperature, as driven by climate change, which drives 
demand for heating and cooling (e.g., Auffhammer et al., 
2017; Van Ruijven et al., 2019).  The highest density and 
connections of highest-voltage transmission lines are par-
ticularly concentrated in the hotspots of the compounding 
air-land-water risks across the Central U.S. (orange overlay 
lines in Figure 3a denote Level 3 transmission lines >= 
345kV). Concurrently, regions of the nation with the largest 
portion of employment in the fossil fuel industry, along with 
high levels of poverty and unemployment flank the lower 
portions of the Mississippi River (Figure 3b). National and 
global actions to reduce greenhouse emissions could limit 
risks to land, water, and air quality in the upper basin, but at 
the same time impacts on the fossil fuel industry could have 
significant employment impacts in the lower Basin where 
poverty and unemployment are already disproportionate.  
Further, climate-related extremes (e.g., droughts, floods, 

and events that damage transportation infrastructure) can 
adversely affect the flow of goods along the country’s major 
river route (Figure 3b, the heavy blue line along the Mis-
sissippi river). Such disruptions would impact upstream 
and downstream regions in multiple respects that include 
energy supplies, agricultural products and inputs, as well 
as manufactured and raw materials, and all these would 
have follow-on impacts in other parts of the transportation 
network, industrial sectors, agriculture and land use, as well 
as the energy sector. All of these highlight the potential 
locations of and connections between contrasting regional 
effects of a low-carbon energy transition.  

The co-existence of these interconnected risks in the ex-
ample above provides motivation, location, and guidance 
for deeper-dive studies on human-natural system inter-
actions; grid resiliency; and transportation infrastructure. 
To study these in more detail requires models of greater 
sophistication and large computational expense – but the 
presented triaging analyses identifies areas for targeted 
study, and in doing so reduces the need for exhaustive model 
simulations and analyses. There are, of course, many other 
combinations and overlays of compounding risks that can 

Figure 2. Shown is an example of the combinatory metric analysis provided by the risk-triage framework. In the top panel a), the 
maps show the results for each metric of exposure to air particulates, water stress, water quality, and land disturbance.  In the 
bottom panel b), the result of the four metrics, combined with equal weighting, is shown.  In all panels, the risk metric is unitless 
and is the result of the normalization procedure (described in Section 2.2). Shades of orange and red indicate the counties with the 
highest relative risk, while shades of blue indicate the lowest relative degree of risk. 
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be visualized and explored with the triage platform that 
highlight other regions and multi-sector linkages, and these 
can guide model configurations, tested hypotheses, and 
experimental frameworks for a variety of detailed use case 
studies. Our ongoing efforts will continue to build upon 
our collection of historical and contemporary variables 
and expand upon our list of combinatory risk metrics in 
support of these screening-level multi-sector assessments. 

3.2 Water Stress, Flood Risk, Poverty, 
and Race

As mentioned, many combinations of the risk metrics can be 
readily explored through the SESRT platform and provide 

more quantitative insights as to the areas of concern. For 
example, climate change, population growth, demographics, 
poverty, economic activity, and low-carbon energy trans-
formation are but some of the major factors that can affect 
water demands. Looking at the current landscape of the 
combined risk of water stress and quality (Figure 4a), the 
risk is widespread and therefore it is difficult to distinguish 
exactly which areas of highest priority and/or concern 
would be. In considering only water stress and quality 
risks – most of the western U.S., the upper and mid-Mis-
sissippi regions, New England, the Mid Atlantic, and parts 
of the Southeast all convey a scattered map with locations 
of higher stress. The county-level results can be aggregated 

Figure 3. maps produced from the SeSrt platform illustrate the “hotspot” visualization and analysis capability of the user-defined, 
use-inspired interface. panel a) shows the result of quantitatively combining the current level of risks in water availability and quality, 
land disturbance, and exposure to poor air quality. Orange and red shades indicate “hotspot” areas of these three risks co-existing to 
the highest degree relative to all U.S. counties. Also shown is the graphical overlay of high-voltage transmission lines (green ≥ 230kV 
and orange ≥ 345kV) across the nation’s energy grid. panel b) shows the result of combining risk metrics that convey the current 
levels of employment in fossil energy as well as demographic metrics of poverty, unemployment, and non-white population. Also 
shown as an overlay (blue lines) is the extent of major riverine and marine “highways” with the thickness of the lines depicting the 
relative total value of goods transported (coal, petro, food, chemical, manufacturing, and raw materials).
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at the state level and ranked according to various factors 
in order to gain quantitative prioritization. For example, a 
“top 5 list” of the highest-at-risk states can be constructed 
by counting only the counties that are contained in the 
top 10% of the nationally pooled distributions (shown at 
the side of the maps in Figure 4) and summing those for 
every state according to either: total number of counties, 
percentage of counties in the state, or total population 
of those counties (Table 2).  Based on any of these three 
categories, California stands out as the most salient state 
at risk with the highest or 2nd highest ranking. Other states 
that clearly stand out at higher risk are Illinois and Texas 
(with 2 top-five rankings).  For the remainder of the results, 
the choice of the ranking criterion can have an important 
impact to a state’s ranking. For example, over two-thirds 
of Delaware’s counties experience combined water risk, 
placing it at the top of the percentage-of-counties rank-

ing – but due to its lower total population as well as small 
total number of counties, it is at a distinct disadvantage 
to be top ranked in those ranking categories. Similarly, 
Nebraska having a high number of total counties gives the 
potential for a higher total number of counties under risk, 
and as such, it places 2nd in that category. However, its low 
total population and high total number of counties put 
it at a disadvantage to place in those ranking categories. 

There are other important sensitivities to these high-
est-at-risk rankings. For example, the prioritization of a 
state to receive attention and assistance to mitigate water 
risks might also include a consideration of the extent of 
poverty. With this consideration in mind, we combine 
the water stress, water quality, and extent of poverty risk 
metrics, all with equal weighting. The results (Figure 4b) 
reveal important shifts in the overall landscape of risk as 

Figure 4. As in Figure 3, but highlighting the contrast between combinatory landscapes of: a) water stress and water quality risks; 
and b) water stress, water quality, and population below the poverty level. 
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well as to the highest-at-risk state rankings (Table 3) dis-
cussed above. Many of the regions across the northern U.S. 
at higher risk from only water stress and quality are buff-
ered, and most of the highest at-risk counties are in states 
across the southern half of the United States. This impact 
is also clearly seen in the top-five ranked state results. With 
the addition of poverty into the risk assessment, Illinois 
drops out of all the top rankings considered, in addition 
to Connecticut, Delaware, and Montana. The most notable 
addition to the highest rankings is New Mexico, making 
into all three of the highest-ranking lists. Other additions 
contributing to this southern shift of states within the top 
rankings include Georgia, Kentucky, and West Virginia. 
One exception to this overall shift is Oregon, in which 
one-third of its counties at water stress and poverty risk 
place it just within the top ranking of that category (but 
absent in the water-only risk results).  Nevertheless, there 

are two states that stand out as the highest ranked across 
both the combined risk metrics: California and Texas.
Like water stress, resiliency to flooding is not simply a case 
of the risk of flooding itself and its consequences which 
damages property and contaminates water supplies, but also 
the ability of communities to rebuild and repair damage, 
which can be hindered by poverty (e.g. McDermott, 2022; 
Hallegatte et al., 2020) and may also carry important equity 
dimensions. We can examine all these facets through a 
successive combinatory analysis provided by the SESRT 
framework. To first order, we find that as the risk metric 
incorporates poverty and equity (i.e., nonwhite popula-
tion) successively, the hotspots (Figure 5) as well as the 
top-ranked states (Table 4) move predominantly toward the 
southern half of the United States. Most notably, the highest 
ranked states in the Northeast, in terms of the physical risk 
of flooding, are diminished when poverty and nonwhite 
population factors are incorporated. Conversely, there is 

Table 2. Summary of results from the combinatory risk metric combining water stress and water quality. the table presents the 
top-five ranked states (listed highest to lowest in the column) with the combined water stress and quality risk based on the following 
criterion: 1) total number of counties that are in the top 10% among the nationally-pooled county values; 2) percentage of counties 
of the state that are in the top 10% among the nationally-pooled county values; and 3) the totaled population of counties that are 
experiencing the highest 10% of stress.

Rank Number of Counties Experiencing Stress
Percentage of Counties  
Experiencing Stress

Total Population of Counties  
Experiencing Stress

1 California 35 (of 58) Delaware 67% California 38,219,489
2 Nebraska 21 (of 93) California 60% Illinois 8,911,663
3 Illinois 20 (of 102) Wyoming 57% Arizona 6,402,797
4 Texas 17 (of 254) Connecticut 50% North Carolina 4,120,372
5 Montana and Colorado 16 (of 56 & 64, respectively) Utah 48% Texas 3,383,288

Table 4. Summary of results from the combinatory risk metrics considering: 1) flood and water quality; 2) flooding, water quality, 
and poverty; and 3) flooding, water quality, poverty, and nonwhite population. the table presents the top-five ranked states (listed 
highest to lowest in the column) with the combined risk based on the percentage of counties of the state that are in the top 10% 
among the nationally-pooled county values.

Rank Flood and Water Quality
Flood Risk, Water Quality  
and Poverty

Food Risk, Water Quality, Poverty, and 
Non-white Population

1 West Virginia 67% West Virginia 60% North Carolina 62%
2 Vermont 50% Kentucky 54% South Carolina 51%
3 New Hampshire 50% North Carolina 48% Arizona 40%
4 North Carolina 45% Arkansas 35% West Virginia 31%
5 Kentucky 40% Arizona 33% Kentucky and Georgia 30%

Table 3. As in table 2 – but for the combinatory risk metric of water stress, water quality, and population below the poverty level.

Rank Number of Counties Experiencing Stress
Percentage of Counties 
Experiencing Stress

Total Population of Counties 
Experiencing Stress

1 North Carolina 35 (of 100) New Mexico 61% California 16,393,766
2 Texas 34 (of 254) Arizona 53% New Mexico 6,295,727
3 Kentucky 28 (of 120) California 41% Texas 5,065,099
4 California 24 (of 58) North Carolina 35% Colorado 4,937,036
5 New Mexico and Georgia 20 (of 33 & 159, respectively) Oregon 33% West Virginia 3,927,185
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a prominent clustering and high ranking from all the risk 
factors combined (i.e., flood, water quality, poverty, and 
nonwhite population) in the Carolinas and surrounding 
states (West Virginia and Georgia). Irrespective of these 

notable shifts in the landscapes of risk – West Virginia, 
North Carolina, and Kentucky consistently rank high and 
experience all these combinations of risk across the largest 
portion of their counties.

Figure 5. As in Figure 3, but highlighting the contrast between combinatory landscapes of: a) aggregate flood risk and water quality 
risk; b) aggregate flood risk, water quality risk, and population below the poverty level; and c) aggregate flood risk, water quality risk, 
population below the poverty level, and non-white population.

mIt JOINt prOGrAm ON tHe SCIeNCe AND pOLICY OF GLObAL CHANGe  repOrt 361

11



3.3 Cropland under risk of erosion and water 
stress 

The U.S. is a major producer and exporter of food and 
agricultural products (e.g. FAO, 2022; USDA, 2021). Crop-
land in the U.S. is exposed to several risks, among which 
is water stress, but can vary considerably by region. An 

initial visualization (Figures 6 and 7) and tabulation of the 
cropland area data (Table 5), which is readily download-
able from the SESRT platform, indicates that among the 
top-10 states that contain the highest amount of cropland 
area – all but one (Montana) contain or flank the sharp 
east-west gradient of Climate Moisture Index (CMI, see 

Figure 6. map displays cropland area (acres) across U.S. counties. Gray shaded areas denote missing data and/or no cropland 
recorded for county.  map results based on data retrieved from the USDA National Agricultural Statistics Service (NASS).  See text 
for further information.

Figure 7. maps display Climate moisture Index (CmI- unitless) multiplied by a factor of 10 across U.S. counties averaged for two 
20-year time periods (left panels 1980-1999 and right panels 2000-2019) based on the meteorological driver data from the three 
reanalyses data sets compiled for the platform (top panels NArr, middle panels erA5, and bottom panels merrA2). See text for 
further information regarding the calculation of CmI as well as the reanalyses data. 
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Appendix A.3 for further details) that delineates regions 
of precipitation excess (CMI>0) or deficit (CMI<0).  For 
the case of when a county achieves a negative CMI value, 
this would be indicative of a salient transition into a “water 
stress” situation, in that irrigation will likely be required 
to sustain water demand for rainfed crops. We tighten this 
convention by assigning a threshold for a county under 
“water stress” when its CMI drops below -0.1 (and there-
fore so is the cropland within it). From this criterion, the 
decadal-scale shifts in CMI across the timespan of the data 
(between the 1980-1999 and 2000-2019 averaging periods) 
reveal that in all but one state (North Dakota), the total 
area of cropland within the top-10 cropland area states 
experiencing water stress increases (Table 5).  The largest 
changes, in terms of absolute and relative change, occur in 
Kansas (over 1.5M additional acres, a 6% increase), Iowa 
(over 2.1M additional acres, an 8% increase), and Nebras-
ka (over 1.1M additional acres, a 6% increase).  Another 
notable change is the emergence of Illinois from initially 
none to over 293,000 acres of farmland located in counties 
experiencing water stress (by our definition).  Overall, 
over the past four decades (1980-2019) 5.5 million acres 
of additional farmland across the top-10 cropland-area 
states are being exposed to water stress. 

While these recent trends in water stress locate formidable 
risks across the country’s largest cropland areas, in other 
areas, several risks may co-exist and reinforce each other 

(such as land conditions and water stress), threatening yields 
and increasing the chances of potential negative impacts 
in agricultural income and local livelihoods – especially 
in areas of poverty. The triage platform allows an efficient 
assessment of major cropland areas subject to multiple 
risks at the National and State levels, as also as identifying 
if these places are already subject to social challenges, high 
poverty levels or unemployment rates. Figure 8 highlights 
these combinations. While panels a, b and c show the dis-
tribution of water stress, populations below poverty level 
and highly erodible land taken individually, panels d, e and 
f combine each two of these variables. These combinations 
reduce the frequency of higher risk areas, mainly in the 
Eastern side of the country, although several “hot spots” 
arise. As example, water stress and highly erodible land 
(panel e) reinforce each other at central areas along the 
borders of New Mexico with Texas and Colorado as well 
as between Kansas and Nebraska. Combining population 
below poverty level to these (panel g), and comparing it 
with cropland area (panel h), allows to identify the highest 
risk areas for cropland production due to water stress and 
erosion and how they overlap with higher poverty levels, 
highlighted in panels g and h. Among the most salient areas 
with these multi-dimension risks include counties within 
California, Texas, New Mexico, Montana, and Washington. 

Table 5. Summary of results from combinatory metrics considering: 1) cropland area (acres); 2) area of cropland experiencing “water 
stress” (acres) for the 1980-1999 period (i.e., left panels in Figure 7); and 3) area of cropland under water stress (acres) for the 
2000-2019 period (i.e., right panels in Figure 7). the table presents results for the top-ten ranked states in terms of total cropland 
area (listed highest to lowest). table values in parentheses indicate percentage of total cropland area. A county is considered 
to experience “water stress” (and thus its cropland area) if its climate moisture index (CmI) is below –0.1 (or a value of –1 in the 
panels shown in Figure 7). In terms of total cropland across the U.S., these top-10 states comprise nearly 60% of the total national 
cropland area (396,372,177 acres).  the rightmost column presents the change in cropland area (acres) under water stress from 
the 1980-1999 to the 2000-2019 periods. the results for cropland area under water stress are the mean result from the three 
reanalyses’ CmI estimates.

State Cropland area 
(acres)

Cropland experiencing 
“water stress” 1980-1999 

(acres)

Cropland experiencing 
“water stress” 2000-

2019 (acres)

Change in cropland 
experiencing “water 

stress” (acres)

Texas 29,359,599 25,925,706 (88%) 26,700,990 (91%) 775,284

Kansas 29,125,505 23,999,420 (82%) 25,508,792 (88%) 1,509,372

North Dakota 27,951,676   27,652,883 (99%) 27,303,470 (98%) -349,413

Iowa 26,545,960 5,593,063 (21%) 7,744,015 (29%) 2,150,952

Illinois 24,003,086 - 293,863 (1%) 293,863

Nebraska 22,242,599 20,633,967 (93%) 21,767,371 (98%) 1,133,404

Minnesota 21,786,756 10,208,863 (47%) 10,250,377 (47%) 41,514

South Dakota 19,813,517 18,893,072 (95%) 18,917,555 (95%) 24,483

Montana 16,406,300 13,694,876 (83%) 13,769,486 (84%) 74,611

Missouri 15,599,446 758,126 (5%) 988,470 (6%) 230,343

Total   232,834,444 146,601,850 (63%) 152,255,920 (65%) 5,654,070
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3.4 Exploring the intersection of physical and 
transition risks

We can use the triage platform to provide insights about 
both transition and physical risks. In terms of transition 
risk, we can look at employment in fossil fuels (Figure 9a), 
which suggests potential risk of economic hardship if the 
country moves away from fossil fuels and toward low-car-
bon alternatives. We see that Texas, Louisiana, Oklahoma, 
Kansas, Wyoming, North Dakota and West Virginia stand 
out as having high shares of people employed in jobs re-
lated to fossil fuels. We can then combine this metric with 
data on the population below the poverty level (shown in 
Figure 9b). Areas that already have a high poverty rate and 
have the potential for significant job loss with a transition 
away from fossil fuel use are particularly vulnerable to 
economic distress (Figure 9c). The triage platforms can 
identify individual counties where this combined risk is 
particularly high. These areas would be good candidates 
for targeted job retraining programs or green jobs devel-
opment to help ameliorate the transition risks.   
Looking at employment in fossil fuels also tells us where 
the most fossil assets are located. Combining that informa-
tion with flood risk (shown in Figure 9d), we can identify 
fossil assets at risk of flooding. The resulting combined 
map (Figure 9e) indicates that areas of West Virginia and 
western Pennsylvania have high risks of physical damage 

to fossil assets due to flooding. Areas to the east and west 
of the lower Mississippi River, as well as pockets along 
the Gulf Coast, also have high physical risks. Fossil assets 
along the Gulf Coast face additional physical risks due to 
sea level rise, hurricanes and storm surge. Areas identified 
as facing high physical risks should be further investigated 
to consider investments in protective measures and/or 
relocation. Combining these aspects of transition and phys-
ical risk related to fossil fuels highlights areas particularly 
vulnerable to these combined risks.  

3.5 Local Impact Assessment – A Case Study

The following case study applies the risk-triage approach 
from a local (town/county) perspective. Background: The 
owner of a company is being offered incentives to move their 
food processing business to a town in Vandalia, IL which is 
in Fayette County, IL. They are looking to locate in an area 
with access to reliable infrastructure (including energy and 
transportation), minimal flood/drought risk, and a decent 
economy to maintain and support their employees. They 
may also be interested in expanding into growing some 
of their own produce and would like to know if the area 
is conducive to that activity. The SESRT platform can help 
evaluate these concerns by reviewing different landscapes 
of socio-economic, health, and environmental risk. 

Figure 8. maps indicating U.S. conditions of: a) water stress a), b) population below poverty line, c) highly erodible land, as well as 
combinations of those in panels d) – g); and h) cropland areas. 
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Concern #1: Flood/Drought Risk
Looking at Fayette, IL over the water stress dataset from 2010 
to 2015, there doesn’t appear to be any years of significant 
water stress (Figure 10). Some of the surrounding counties 
may experience significant water stress during some years. 
There is light to moderate risk of drought when looking 
through the various years and models of the hydrologic 
drought index. The climate moisture index is around 0 for 
this area which means it is not an area of extreme heat or 
cold on average. There is a concern when looking at the 
100-year flood as the results show that this area is under 
high risk (Figure 11a). 

Concern #2: Reliable Infrastructure
We can define reliable transportation infrastructure as access 
to major highways and waterways that are in proximity and 
not located in areas prone to extreme events that would 
degrade the quality and reliability of the infrastructure. We 
can also look at the surrounding areas to evaluate if there is 
redundancy in the infrastructure.  The location of Fayette, 
IL has prime access to major transportation infrastructure 
including road, rail, and nearby major waterway. There 
are some redundancies in the highways as it appears to 
have access from north to south and east to west. Both 
highways and rail run through the county (Figure 11b). 
The Mississippi River is near allowing freight transport of 
food. While there is low concern regarding droughts in this 
area, there is a significant flood risk which could impact 

the transportation infrastructure. In addition to transpor-
tation infrastructure, the SESRT provides information on 
the energy infrastructure. Figure 9c shows major electrical 
transmission lines run through Fayette, IL (> 345kV).

Concern #3: Local Economy
The per capita personal income from 2018 was ~$30k/per-
son (Figure 12a). This is on the lower end of personal 
income. When looking at the different areas of employment, 
it appears that approximately 6% of employed people are 
in the category of agriculture, forestry, fishing and hunting 
while 18% are employed by healthcare and social assistance.  
The SESRT also provides information on population and 
unemployment. Fayette, IL has ~4% unemployment rate 
which is lower than the national average (not shown). Un-
fortunately, 16% of the population in this county is below 
the poverty level which is higher than the national average 
(Figure 12b). The population under 18 is 21% and over 65 
is 18%, which places it within an average population age 
distribution relative to the national values.

Concern #4: Ability to successfully 
grow crops
Figure 10c shows Fayette, IL with poor water quality (0.8) 
but low to negative irrigation deficit which shows that water 
availability shouldn’t be a concern. Although, as mentioned 
previously, there is significant concern of flooding. It is noted 
that there is no critical habitat of concern in Fayette, IL.

Figure 9. maps indicating transition and physical risks related to fossil fuels: (a) employment in fossil fuels (transition risk); (b) 
population below poverty level; (c) combined fossil employment and poverty (transition risk); (d) flood risk; (e) combined fossil 
employment and flood risk (physical risk); and (f) combined fossil employment, flood risk and poverty (both transition and 
physical risk).
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Figure 10. maps display the average water stress (unitless) from 2010-2015 for: a) the U.S. (top panel) as well as; b) for the state of 
Illinois (bottom panel). In the bottom panel, the result for the county of Fayette, IL is highlighted to note that it has an average water 
stress of 0 over this period. 
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Figure 11. maps depicting: a) the 100-year flood risk for Illinois, and depicting the high flood risk value of 8 out of 9 for Fayette, 
IL, and b); flood map that includes overlays of major highway (thin gray lines), railways (thick gray line); as well as waterways (blue 
lines); and c) flood map that includes overlay of electrical transmission lines at 345 kV, and indicating that these transmission lines 
run through Fayette, IL.
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Combined overall risk evaluated 
on the SESRT
If we ranked all the metrics as listed below, we find that the 
overall risk given our prioritized concerns is about at 57/100, 
which we would consider a moderate risk. In comparison 
with the state of IL, this is about average or a bit lower than 
average risk (Figure 13). The resultant aggregate metric 
was obtained through the following combinatory weights: 

 • Maximum: Water Stress, Water Quality, Flood Risk, 
Temperature Stress, Poverty Level, and Unemployment

 • Medium: Highly Erodible Cropland, Land Disturbance 
 • Minimum: Employment in Fossil Fuels, Population 

under 18, Population over 65, and Nonwhite Population
In conclusion, after evaluating Fayette, Il with the SESRT, 
the company determined that while there is significant risk 
of flooding and a poor economy, the overall risk given the 

Figure 12. maps indicate: a) the per capita personal income across Illinois (based on the 2019 Census data collected). Fayette, IL is on 
the lower end of personal income with a value of $40k/person; b) the percentage of population below the poverty level across Illinois. 
Fayette, IL has a moderately high percentage (16%) of people below poverty level relative to other counties; and c) the level of water 
quality across Illinois. Fayette, IL has some concerns regarding water quality with a ranking of 0.8 out of 2 where 2 is the worst ranking.
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company’s prioritized concerns is average. It should also be 
noted that the overall combined metrics did not include the 
enormous benefit of access to reliable transportation infra-
structure (road, rail and waterways). The risk of flooding 
in terms of the manufacturing plant can be minimized by 
locating the building outside the immediate flood zones.  
While poor economy was listed as a risk, the company likes to 
view it as an opportunity to help contribute to improving the 
situation by adding to employment and stimulating the local 
economy. The opportunity to look at growing crops appears to 
have some potential given the high level of agriculture already 
in the area, but also some concerns with water quality, land 
disturbance and flood potential. Investment into growing 
their own crops would need to be investigated further.

4. Summary and Closing Remarks
We have described a Socio-Environmental Systems Risk 
Triage (SESRT) platform that is designed to serve as visu-
alization tool for multi-sector, combinatory risk analysis 
and data download. The risk-triage platform is intended 
to be a tool in and of itself and is publicly available. As we 
continue to develop our platform across more of these 
landscapes, it can be used to motivate and guide addition-
al analysis and deeper dives by the MSD research com-
munity. The platform has also generated broader interest 
and support from various stakeholders to incorporate and 
integrate other landscapes of hazards and risks such as: 
biodiversity, health, and systemic racism. The platform 

has been designed to readily incorporate additional data 
and model results as well as support an open-science re-
search community. Our source code is on GitHub (github.
com/cypressf/climate-risk-map). You can view discussion 
of technical planning and discussion on our GitHub issues 
link (github.com/cypressf/mit-climate-data-viz/issues).
We present several illustrative examples that highlight 
features and capabilities of the SESRT platform. We show 
that in terms of the combined air-energy-land-water risks, 
the most prominent “hotspots” are located across Cali-
fornia, the upper and lower Mississippi basin, the Ohio 
River basin, Texas, the Southeast as well as Mid-Atlantic 
states. Concurrently, we find regions of the nation with the 
largest portion of employment in the fossil fuel industry, 
along with high levels of poverty and unemployment flank 
the lower portions of the Mississippi River. National and 
global actions to reduce greenhouse emissions could limit 
risks to land, water, and air quality in the upper basin, but 
at the same time impacts on the fossil fuel industry could 
have significant employment impacts in the lower Basin 
where poverty and unemployment are already dispropor-
tionate. Overall, these highlight the potential locations of 
and connections between contrasting regional effects of 
any low-carbon energy transition strategy.
Another inspection with the SESRT platform that considers 
state-to-state rankings of severe water stress shows regions 
that are robust (i.e., California, Illinois and Texas) but also 
sensitive to the choice of criterion upon which to base a 

Figure 13. map depicting the overall risk that results from combining all factors from Figs. and weighing them according to the 
business owner’s main concerns. Fayette, IL has a moderate overall risk.
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ranking of water risk (Delaware and Nebraska).  Further 
considerations that include socio-demographic conditions, 
such as poverty, can have a substantial impact on these rank-
ings. The combination of poverty and water-stress into the 
risk ranking results in a notable shift to southern states that 
rank among the highest (New Mexico, Georgia, Kentucky, 
and West Virgina). A similar impact is seen when combining 
flood risk with poverty and ethnicity (i.e., non-white pop-
ulation), with a southerly shift to “hotspots” of combined 
risk that incorporate the socio-demographic dimensions. 
Further echoing these water issues, when we alternatively 
combine these metrics with the extent of cultivated lands, we 
find that over the past few decades, at least an additional 5.5 
million acres of farmland are in counties exposed to increased 
water stress, with Iowa, Kansas, and Nebraska the top three 
states.  However, this landscape changes considerably when 
combined with risks in land erosion and poverty, and the 
“hotspots” move to counties within California, Texas, New 
Mexico, Montana, and Washington.  We further illustrate the 
platform’s ability to explore multiple facets of risk through 
a focus on transition risks. We show that there is a large 
region across the south-central U.S. and Appalachia that 
experiences relatively high levels of fossil fuel employment 
and poverty – and underscores a transition risk to low-carbon 
energy proliferation. 
These examples of co-existence of interconnected risks 
provide guidance and motivation for deeper-dive use 
case studies on human-natural system interactions; grid 
resiliency; and transportation infrastructure (Section 3). 
There are, of course, many other overlays and different 
compounding risks that can be explored with the triage 

platform that highlights other regions or different use cases. 
In another demonstration, we also highlight the ability 
of the platform to scan multiple sectors and overlays and 
provide a combinatory risk inspection at a county level.  
The result provided a multi-dimension assessment of risk 
for a (hypothetical) company who had interest in expand-
ing their business within a particular county (Fayette, IL).
In view of these aspects to our SESRT platform, as part of our 
ongoing efforts we will continue to build upon our collection 
of historical and contemporary variables and expand upon 
our list of combinatory risk metrics. We will seek oppor-
tunities to partner and complement these efforts to create 
a comprehensive and inclusive repository for data-driv-
en science in multisector dynamics. Thus far, our SESRT 
platform has been focused on historical and contemporary 
landscapes of data and combinatory metrics. Another key 
development task under this effort will be to expand the triage 
platform to provide a comprehensive assessment of future 
projections that incorporates uncertainty. In doing so, we 
expect these advances to provide insights that identify: the 
extent that trajectories from current, co-existing risks can 
compound and intensify; and the extent to which new and 
unprecedented risks can emerge as “hotspots” for potential 
tipping points. Given the ability of the SESRT platform to 
explore many different combinations of these emerging 
risks, we also expect the insights that we obtain can help 
prioritize and identify locations for deeper-dive studies that 
can assess specific actions and adaptations that are needed 
to reduce, remove, or reverse risks; as well as the extent to 
which insights gained from one region/location could be 
applicable to other locations facing similar risks.
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Appendix A. Data Sources
There are a number of on-line tools that exist and many of 
them provide capabilities that have been discussed herein.  
Such platforms include (but are not limited to):

 • Data.gov: U.S. Government’s open data portal
 • EPA: EnviroAtlas Interactive Map: https://www.epa.

gov/enviroatlas/enviroatlas-interactive-map
 • Environmental Dataset Gateway (edg.epa.gov)
 • EJScreen (ejscreen.epa.gov)
 • EJAtlas: Global Atlas of Environmental Justice 

(ejatlas.org)
 • EIA: U.S. Energy Atlas (https://atlas.eia.gov/pag-

es/maps) – mapping and data for energy infrastructure, 
resources, and disruptions. 

 • ESGF: Earth-System Grid Federation – the one-stop 
site for CMIP, CORDEX, and a variety of Earth-System 
Model data across major international research institutes.

 • DOE: “Open Energy Data” (https://www.energy.
gov/data/open-energy-data) 

 • Environmental Quality Index (EQI - www.epa.gov/heal-
thresearch/environmental-quality-index-eqi)

 • FEW-ViewTM: Food, Energy, and Water Data Science 
for Supply Chains (fewsion.dtn.asu.edu)

 • NASA: Worldview (https://worldview.earthdata.nasa.gov)
 • NSF: NCSES (National Center for Science and En-

gineering Statistics) Survey Data (https://ncsesdata.
nsf.gov/home)

 • USGS National Map Viewer (https://noaa.maps.arcgis.
com/home/index.html) 

 • NOAA: GeoPlatform (https://noaa.maps.arcgis.
com/home/index.html)

Each of these platforms carry with them a unique strength 
and feature, yet in none of these does it provide the abil-
ity to selectively combine (and weight) metrics to assess 
co-occurring, compounding, and co-evolving threats.  As 
mentioned, our platform has been developed in order for 
the user to efficiently explore and assess these amalgamate 
effects. We have drawn data from a number of these data 
and visualization platforms. In Section 2, we described 
variables that have been used as the basis for our com-
binatory risk metric visualization and analyses. Below 
we provide a description of variables not included in the 
combinatory metrics webpage, yet we have incorporated 
into the platform as supplementary data for visualization 
and download. Our data collection is ongoing, and so 
the summary presented here is likely not commensurate 
to the data collection currently on the platform. Further 
documentation will be provided when salient augments 
to the data collection have been compiled.

A.1  Energy and Economy
As the global energy and economy systems are closely 
linked, data under these categories have been initially 
collected under two main considerations: employment 
across selected energy sectors; and the associated costs of 
energy across various sectors.  We gathered data from the 
2017 U.S. Energy and Employment Report (https://www.
usenergyjobs.org/) and our platform provides the coun-
ty-level statistics on total number of people employed in: 
1) fossil fuels, 2) renewable energy, 3) energy efficiency, 4) 
transmission/distribution/storage, and 5) motor vehicles.  
For energy expenditures, we have gathered data available 
from the State Energy Data System (SEDS) provided by the 
U.S. Energy Information Administration (EIA). The data is 
directly available via download at www.eia.gov/state/seds/.  
Our current collection of data provided on the platform 
includes 2018 statistics on: 1) annual energy expenditure 
per capita (USD per person); 2) annual residential ener-
gy expenditure per capita (USD per person); 3) annual 
transportation energy expenditure per capita (USD per 
person); 4) energy expenditure as share of GDP (%); 5) 
residential energy expenditure as share of GDP (%); and 
6) transportation energy expenditure as share of GDP (%). 

A.2  Land
The current collection of variables provides information on 
land use, the quality of the land, wildfire risk, endangered 
species, as well as information on the market value and 
the extent of insured cultivated lands. In terms of land 
use, value, and insurance, we have extracted data from 
the National Agricultural Statistics Service (NASS, data 
is available at  https://quickstats.nass.usda.gov/), and the 
current collection provided on the SESRT platform includes: 
1) area (acres) of agricultural land; 2) area (acres) of land 
for forestry; 3) area coverage (acres) of pastureland; 4) area 
(acres) of insured farmland; and 5) the estimated market 
value of the land and buildings (in USD) in farms. 
In terms of the quality of land, we have extracted data 
from the U.S. Department of Agriculture’s (USDA) Na-
tional Resources Conservation Services (NRCS) portal 
that indicate: 1) acres of highly erodible cropland (HEL), 
which is land that has an erodibility index of eight or more 
as defined from the National Food Security Act Manual 
(NFSAM). The erodibility index (EI – technical description 
provided at https://directives.sc.egov.usda.gov/rollupviewer.
aspx?hid=29340) provides a numerical expression of the 
potential for a soil to erode considering the physical and 
chemical properties of the soil and the climatic conditions 
where it is located. The higher the index, the greater the 
investment needed to maintain the sustainability of the soil 
resource base if intensively cropped. The HEL procedure 
results in pointwise “pindrops” on maps to indicate loca-
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tions where there are 10,000 acres of HEL land. For our 
county-level presentation of the data on the SESRT plat-
form, we summed the total number of these HEL pindrops 
within each county – and summed the total subsequent 
area coverage. These pindrop maps for 1982 and 2017 are 
available (respectively) at: https://www.nrcs.usda.gov/Inter-
net/NRCS_RCA/maps/m14601hel82.png and https://www.
nrcs.usda.gov/Internet/NRCS_RCA/maps/m14598hel17.
png. For our analyses, we obtained the original shapefiles of 
the point data (Tcheuko, Lucas, personal communication, 
FPAC-NRCS, Beltsville, MD <Lucas.Tcheuko@usda.gov, 
March 30, 2021).  
The SESRT data collection also includes a land distur-
bance index obtained from the Environmental Protection 
Agency’s (EPA) Environmental Quality Index (EQ Index) 
collection (U.S. EPA, 2020). Low index scores indicate 
higher environmental quality, and higher index scores mean 
lower environmental quality. The land disturbance index 
included five data sources representing five constructs: (1) 
Agriculture, (2) Pesticides, (3) Facilities, (4) Radon, and 
(5) Mining Activity. The data sources identified for this 
domain include: 2007 Census of Agriculture [19], 2009 
National Pesticide Use Database [18], EPA Geospatial Data 
12 Download Service [20], Map of Radon Zones [21], and 
Mine Safety and Health Administration (MSHA) mines data 
[22]. The MSHA mines database is a data source new to EQI 

2006-2010. Also, the National Geochemical Survey database 
used in EQI 2000-2005 was not used in EQI 2006-2010.  
The data can be downloaded from https://edg.epa.gov/EP-
ADataCommons/public/ORD/CPHEA/EQI_2006_2010/, 
and a report and overview of the Environmental Quality 
Index can be downloaded at: https://www.epa.gov/heal-
thresearch/environmental-quality-index-eqi#overview.

A.3  Climate and Water
We have compiled three widely used reanalysis datasets: 
1) MERRA-2; 2) ERA5; and 3) NARR (Table A1) on a 
monthly timescale to derive various climate-related risk 
metrics over the United States under contemporary con-
ditions.  We examine these risk metrics during three time 
periods: 1980-1999, 2000-2019, and 1980-2019.  The use 
of multiple reanalysis data allows us to account for several 
sources of uncertainties in risk assessment attributed to 
the choice of reanalysis products, temporal period and 
spatial resolution. This historical climate risk assessment 
could serve as the baseline against foresights into potential 
tipping points and instabilities in the future climate change 
environment.               
The climate-related risk metrics examined in our triage 
prototype focus on different hydrological and temperature 
extreme conditions (Table A2). Metrics are derived at 
the native spatial resolution of each reanalysis data for all 

Table A1. Characteristics of various reanalysis products used to derive climate risk metrics. merrA-2, erA5, and NArr represent 
the modern-era retrospective analysis for research and Applications, Version 2 (bosilovich et al. 2016), the fifth generation of 
eCmWF atmospheric reanalyses (malardel et al. 2015), and the NCep North American regional reanalysis (NArr, mesinger et al. 
2006), respectively.

Reanalysis

Product
Domain Period of Record Timestep

Spatial

Resolution

Assimilation

Method

MERRA2 Global 1980-present Sub-daily 0.625˚x0.5 3D-VAR

ERA5 Global 1979-present Sub-daily 0.25˚x0.25 4D-VAR

NARR North American 1979-present Sub-daily 32km 3D-VAR

Table A2. Various derived climate-related risk metrics. All the metrics are derived for three periods, including 1980-1999, 
2000-2019, and 1980-2019.

Name Unit Description

PRC mm/year mean annual precipitation
PET mm/year mean annual evapotranspiration calculated using modified Hargreaves method (Droogers & Allen, 2002)
CMI - climate moisture index based on prc and pet
RO mm/year mean annual runoff calculated using Turc-Pike model (Yates, 1997)
DEF mm/year irrigation deficit (pet – prc)
GW mm/month minimum of the monthly runoff climatology
WET mm/month 98th percentile of monthly runoff time series
DRY mm/year 5th percentile of annual runoff time series
HT ºC Maximum monthly temperature
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three time periods. Monthly potential evapotranspiration 
(PET) is calculated based on monthly mean surface air 
temperature, monthly mean temperature diurnal range, 
and monthly mean precipitation using modified Hargreaves 
method (Droogers and Allen, 2002). The Climate Mois-
ture Index (CMI) is one type of drought indicator and 
calculated as the difference between annual precipitation 
(PRC) and potential evapotranspiration (PET) as shown 
in the equation (1). Positive CMI values indicate wet or 
moist conditions, while negative CMI values indicate dry 
conditions. The closer to 1.0 (-1.0) CMI value is, the stron-
ger the wet (dry) condition represents. Driven by each of 
the abovementioned reanalyses data sets, monthly runoff  
(RO) is calculated based on the monthly precipitation and 
potential evapotranspiration using the Turc-Pike model 
(Yates, 1997). Irrigation deficit (DEF) is calculated as the 
difference between mean annual potential evapotranspi-
ration and precipitation. Groundwater recharge (GW) is 
derived as the minimum of the monthly runoff climatology 
during each of the time periods. The minimum cutoff value 
(0.000001) is used to avoid negative values. Flood indicator 
(WET) represents the 98th percentile of monthly runoff 
time series during each of the time periods, while drought 
indicator (DRY) is calculated as the 5th percentile of annual 
runoff time series during each of the time periods. Note 
that each metric may be derived on a different time scale 
(monthly or annual). 

As discussed in Section 2.2, a water-stress index (WSI) 
was calculated for each county as the ratio of annual water 
withdrawal over water supply. Here, we use the estimated 
runoff from the abovementioned procedure to represent 
water supply in calculating the water stress index (WSI). 
For county level water withdrawals, we have extracted 
data from the U.S. Geological Survey (https://water.usgs.
gov/watuse/data) for corresponding year. Added data for 
surface freshwater withdrawals and groundwater freshwater 
withdrawals to determine total freshwater withdrawals. For 
the combinatory metric (discussed in Section 2.2 and Table 
1), we employ an average WSI from 2010 and 2015. The 
total freshwater withdrawal for 2010 and 2015 is averaged 
and the runoff for 2010 and 2015 is also averaged, and the 
ratio of withdrawal/runoff is then taken to obtain WSI.
Water Quality is based on the EPA Water Quality Index. 
Lower values represent better quality and higher values 
represent worse quality. The EPA created the Water Quality 
Index from 6 data sources: the WATERS program database, 

Estimated Use of Water in the United States, the National 
Atmospheric Deposition Program, the Drought Monitor 
Network, the National Contaminant Occurrence Database, 
and the Safe Drinking Water Information System. The data 
can be downloaded from https://edg.epa.gov/EPAData-
Commons/public/ORD/CPHEA/EQI_2006_2010/ and an 
overview of the Environmental Quality Index is available at 
https://www.epa.gov/healthresearch/environmental-qual-
ity-index-eqi#overview.

A.4  Demographics
The demographic data included on the SESRT platform 
is obtained from a variety of sources. We provide data on 
total population, population under 18, population over 65, 
non-white population, and population below poverty level. 
These data are based on the 2019 U.S. Census survey – and 
available at: https://api.census.gov/data/2019/acs/acs5/vari-
ables.html. We also provide the corresponding estimate 
of population density from the total population (in 2019) 
divided by the area of each county. Another variable pro-
vided on the SESRT platform is the unemployment rate. 
The data is available through the U.S. Bureau of Labor 
Statistics (https://www.bls.gov/lau/), and we have extracted 
the data for 2019. The unemployment rate is calculated as 
a percentage of “employable population” and combines 
information from the current population survey, current 
employment statistics, as well as the state unemployment 
insurance systems (to obtain estimate of employable popu-
lation).  The SESRT platform also provides statistics on the 
rate of homelessness.  The metric is provided as the number 
of people experiencing homelessness per 10,000 people. 
We estimate this by taking the statistics of total number of 
people homeless (only at the state level) provided by the 
U.S. Department of Housing and Urban Development’s 
Office of Development and Research and divide that by 
the Census Bureau’s total population. This estimate was 
obtained using data from 2019.

A.5  Human and Environmental Health
We provide various mortality rates across various age groups 
that have been obtained from the Centers for Disease Con-
trol and Prevention. 

 • Deaths, ages 0-5
 • Deaths, ages 5-25 
 • Deaths, ages 25+
 • Circulatory Deaths, ages 25+
 • Respiratory Deaths, ages 25+
 • Death Rate, ages 0-5
 • Estimated Death Rate, ages 0-5
 • Death Rate, ages 5-25
 • Estimated Death Rate, ages 5-25
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 • Death Rate, ages 25+
 • Estimated Death Rate, ages 25+
 • Circulatory Death Rate, ages 25+
 • Estimated Circulatory Death Rate, ages 25+
 • Respiratory Death Rate, ages 25+
 • Estimated Respiratory Death Rate, ages 25+

The data is available at https://www.cdc.gov/nchs/nvss/deaths.
htm and we have provided the data for 2016.  For several 
counties, the age-specific, cause-specific mortality data 
that result in a small number of deaths are omitted, due 
to privacy constraints. We estimate death rates for such 
counties based on state-level averages. As discussed in 
Section 2.2, we also provide an estimate of the population 
weighted average of the exposure to airborne particulate 
matter (µg/m3). Gridded concentrations of fine particulate 
matter (PM2.5) (Di et al, 2021) are combined with gridded 
population data (CIESIN, 2018) to provide an estimate 
of the annual average level of PM2.5 experienced by the 
population of each county in the US.
In addition to human health information, we also provide 
data on environmental health, sustainability, and biodiver-
sity. Currently we include data on critical habitat obtained 
from the U.S. Fish and Wildlife Service Threatened and 
Endangered Species Active Critical Habitat Report, and 
it is provided as the percentage of land in a county that is 
considered critical habitat. We represent this as the per-
centage of the total county area.  In addition, we include 
information on wildfire risk based on the mean burn prob-
ability USDA and the U.S. Forest Service (available at: 
https://wildfirerisk.org/download/). The data is provided 
at higher spatial resolution than our visualization, and we 
aggregate the data to obtain a county-level value.  The data 
provided on endangered species is obtained from the Global 
Biodiversity Information Facility (GBIF - https://www.gbif.
org/occurrence/download/0089477-210914110416597). 
However, the endangered species counts in the data ob-
tained only include plants and fungi.  Further work toward a 
more comprehensive treatment of these biodiversity related 
metrics is ongoing and will expand upon this coverage.

A.6  Infrastructure
Currently, our representation of infrastructure is provided 
by graphical overlays with any selected metrics that are 
displayed at the county-level scale. Among these overlay op-
tions includes electric power transmission lines. This is based 
on shapefiles obtained from the Homeland Infrastructure 
Foundation-Level Data (HIFLD – at https://hifld-geoplat-
form.opendata.arcgis.com/datasets/electric-power-trans-
mission-lines). To reduce latency in the graphical display 
we provide transmission lines at the Level 2 (230-344kV) 
and Level 3 (>= 345kV). Underground transmission lines 
are included where sources were available.  Similarly, we 

have also extracted data from the Natural Earth data portal 
(https://www.naturalearthdata.com/downloads/10m-cul-
tural-vectors/) in order to provide overlays for major 
roadways (that include major interstate highways) and 
railways. We have also obtained data from the U.S. Army 
Corps of Engineers National Waterway Network (down-
loaded from https://usace.contentdm.oclc.org/digital/col-
lection/p16021coll2/id/3798/) to provide overlay options 
for major waterways (or “marine highways”) used in the 
transportation of raw materials and goods.  For the major 
waterways data, the overlay option is further separated 
into sub-categories of: coal and petrol; food; crude ma-
terials, chemical, manufacturing, and “other” to illustrate 
the tonnage of goods shipped. 

A.7 Climate Opinions
We have collected information (at the county level) from 
the Yale Program on Climate Change Communication. 
Specifically, we have gathered data from their survey on 
climate change beliefs, risk perceptions, and policy pref-
erences (e.g. Howe et al., 2015). For the SESRT platform, 
we have provided results (% of county population) on 
the survey’s positive (or “yes”) responses to the following: 

 • Discuss global warming at least occasionally
 • Support requiring fossil fuel companies to pay a 

carbon tax  
 • Support setting strict CO2 limits on existing coal-fired 

power plants 
 • Agree that your local officials should do more to address 

global warming 
 • Agree that your governor should do more to address 

global warming 
 • Agree that congress should do more to address 

global warming
 • Agree that the president should do more to address 

global warming 
 • Agree that corporations and industry should do more 

to address global warming 
 • Agree that citizens themselves should do more to address 

global warming 
 • Support regulating CO2 as a pollutant 
 • Support requiring utilities to produce 20% electricity 

from renewable sources 
 • Support expanding offshore drilling for oil and natural 

gas off the U.S. coast 
 • Support drilling for oil in the Arctic National Wild-

life Refuge 
 • Support funding research into renewable energy sources 
 • Support providing tax rebates 
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 • Hear about  global warming in the media  at least 
once a week  

 • Agree that global warming should be a high priority 
for the next president and Congress 

 • Agree that schools should teach about global warming  
 • Agree that global warming is happening 
 • Agree that global warming is caused mostly by human 

activities 
 • Agree that most scientists think global warming is 

happening 
 • Are worried about global warming 
 • Think that global warming will harm me personally 

 • Think that global warming is already harming people 
in the US 

 • Think that global warming will harm people in devel-
oping countries 

 • Think that global warming will harm future generations 
 • Think that global warming will harm plants and animals  
 • Think a candidate’s views on global warming are im-

portant to their vote 
 • Think that global warming is affecting the weather in 

the United States
These and other data from the survey are available at: 
https://climatecommunication.yale.edu/visualizations-da-
ta/ycom-us/.  We have collected and provide the data ob-
tained from the 2021 results. 
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Appendix B. Software Design and Data Procedures

Evaluate use cases
We based our software design off the website requirements. Initially, these were:

 • Display a small number of county-level datasets in the United States
 • Add datasets together to show their weighted average
 • Allow adjusting the weighted average with a slider

Compare options
To simplify comparison, we categorized options as services, frameworks, and libraries.

Service Framework Library

Description Pre-made data visualization 
graphical editor

Large software package that 
creates the entire website

Small software package that can help with 
data visualization

Examples Tableau, ArcGIS Online R Shiny d3, react, OpenLayers, Mapbox, Leaflet
Pros Fastest development time Medium development time Most versatile

Easier for software engineers to modify
Cons Least versatile

Must pay monthly fees to use
Limited versatility Slowest development time

We investigated options from each category. Tableau took more than 1s to load our shape files, 
and did not make it easy to combine datasets and adjust weighted averages. R Shiny didn’t have 
a large developer following, and thus the community support wasn’t as good as the other more 
in-depth software libraries. We settled on d3 and react, because they had good community support 
and a large following, which made development in them easier.

Decide on software design for version 1
To simplify development and maintenance, version 1 was a frontend site with no backend. We 
used a topojson command line utility (https://github.com/topojson/topojson-simplify) to reduce 
the size of our map to under 1MB, and store our datasets in a single csv file that’s small enough 
it could be preloaded with the site. We wrote it in typescript to reduce the likelihood of runtime 
errors. We used d3 for data manipulation, loading and react for rendering.

Redesign version 2 to accommodate more data
We needed to load at least 10x the data when we added time-series data, which would take too 
long to load in one go on a static site. We stored the data in a PostgreSQL database so we could 
query small slices of the data on-demand. To load data from the database, we used a backend 
binary server written in Rust with the actix-web framework. Rust allowed us to deploy our ser-
vice using only the binary file (as opposed to a java which would require a whole runtime) while 
having more memory and concurrency safety than C++.  We used GitHub actions to test and 
build continuously, to reduce development time.

Data Procedures 
Because the data came from many sources, we decided on a standard format with which to present 
and combine the data. Many of the data sources had different sets of counties they reported on 
including missing counties, combined results for multiple counties, unpopulated areas such as 
forest aeras, etc. Therefore, we the list of counties reported by the Census Bureau (available at: 
https://www.census.gov/library/publications/2011/compendia/usa-counties-2011/file-layout.
html#part03) and aligned all other data sources to fit this list. Most missing values were reported 
as such, unless there was a reasonable or necessary alternative. In instances where the average of 
several counties was given, that average was assigned to each county individually. For data where 
there were significant missing entries, relevant and widely used methods of estimation were used 
to assign values to those counties. All the source data and the parsing methods are open source 
and available for download (see Appendix A for further details). 
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