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Abstract: In this study, we use analogue method and Convolutional Neural Networks (CNNs) to assess the 
potential predictability of extreme precipitation occurrence based on Large-Scale Meteorological Patterns 
(LSMPs) for the winter (DJF) of Pacific Coast California (PCCA) and the summer (JJA) of Midwestern United 
States (MWST). We evaluate the LSMPs constructed with a large set of variables at multiple atmospheric levels 
and quantify the prediction skill with a variety of complementary performance measures. Our results suggest 
that LSMPs provide useful predictability of extreme precipitation occurrence at a daily scale and its interannual 
variability over both regions. The 14-year (2006-2019) independent forecast shows Gilbert Skill Scores (GSS) 
in PCCA range from 0.06 to 0.32 across 24 CNN schemes and from 0.16 to 0.26 across 4 analogue schemes, in 
contrast to those from 0.1 to 0.24 and from 0.1 to 0.14 in MWST. Overall, CNN seems more powerful in extracting 
the relevant features associated with extreme precipitation from the LSMPs than analogue method, with several 
single-variate CNN schemes achieving more skillful prediction than the best multi-variate analogue scheme in 
PCCA and more than half of CNN schemes in MWST. Nevertheless, both methods highlight the Integrated Vapor 
Transport (IVT, or its zonal and meridional components) enables higher skills than other atmospheric variables 
over both regions. Warm-season extreme precipitation in MWST presents a forecast challenge with overall lower 
prediction skill than in PCCA, attributed to the weak synoptic-scale forcing in summer.
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1. Introduction
Extreme precipitation can lead to severe socio-economic 
impacts and is also expected to change in severity, frequency, 
and duration as a result of anthropogenic global warming 
(Min et al., 2011; Kharin et al., 2013; Sillmann et al., 2013). 
However, skill is often limited for global climate models 
to capture these localized extremes due to the lack of the 
ability to resolve the relevant local terrain and mesoscale 
systems at their typical model resolutions (DeAngelis et al., 
2013; Gao et al., 2014). Regional climate models are capable 
of providing more realistic representation of topography 
and mesoscale processes, but limited by their computa-
tional feasibility and high sensitivity to the chosen phys-
ical parameterizations and lateral boundary conditions 
(Christensen et al., 2007; Wehner 2013; Gao et al., 2018). 
Nevertheless, it has been shown that large-scale meteoro-
logical patterns (LSMPs) accompanying extreme precipita-
tion are well-resolved in both weather and climate models 
(DeAngelis et al., 2013; Kawazoe and Gutowski, 2013) 
and can thus provide a great potential for predictability 
via statistical downscaling (Hewitson and Crane, 2006; 
Gao et al., 2017; Farnham et al., 2018). 
LSMPs typically refer to synoptic-scale meteorological vari-
ables that have an understandable physical relationship to 
and a primary influence on a specific phenomenon (e.g. ex-
treme precipitation), including those characterizing primary 
circulation, thermodynamics, and water vapor attributes 
at surface level and different levels of atmosphere. LSMPs 
establish a favorable environment for triggering and/or en-
hancing mesoscale processes to promote the occurrence of 
the phenomenon. There exist a range of methods for identi-
fying LSMPs associated with extremes, including composites 
(Milrad et al., 2014; Gao et al., 2014), regression, empirical 
orthogonal function (EOF) or principal component analysis 
(PCA, Reusch et al., 2005; Jewson, 2020), as well as automated 
pattern-extraction methods such as cluster analysis (Casola 
and Wallace, 2007; Agel et al., 2018) and self-organizing maps 
(SOMs, Lennard and Hegerl, 2015; Loikith et al., 2017). LSMPs 
have been employed to evaluate model fidelity in producing 
synoptic conditions associated with extreme precipitation 
and understand the physical mechanisms conducive to these 
events (DeAngelis et al., 2013; Kawazoe and Gutowski, 2013), 
as well as assess future changes in these conditions (Hope, 
2006; Lennard and Hegerl, 2015). 
Although physical causes of extreme precipitation have 
been well explored, its prediction remains a great chal-
lenge due to its infrequent and irregular occurrence as 
well as different types of weather systems involved. It is 
widely recognized that synoptic-scale forcing in gener-
al has greater predictability than small-scale one (Ho-
henegger and Schar, 2007; Schumacher and Davis, 2010). 
However, to what extent an extreme precipitation event 
is predictable based on LSMPs is not sufficiently assessed. 

Lu et al., (2016) investigated the predictability of 30-day 
extreme precipitation occurrence using a logistic principal 
component regression on time-lagged Sea Surface Tem-
perature (SST) and Sea Level Pressure (SLP) and further 
identified several regions across the world with potential 
forecasting skill. Li and Wang (2017) found significant 
skill in prediction of summer extreme precipitation days 
over eastern China using the stepwise regression models 
on large-scale lower boundary anomalies. Knighton et al., 
(2019) used a convolutional neutral network (CNN) to 
predict seasonal archetypes of regional precipitation and 
discharge extremes in the Eastern United States based on 
a suite of synoptic-scale climate variables and found that 
all the employed variables yielded reliable predictions with 
some differences by season and region. Barlow et al., (2019) 
reviewed the current state of knowledge regarding LSMPs 
associated with short-duration extreme precipitation events 
over North America from the perspectives of meteorological 
systems, dynamical mechanisms, model representation, 
and climate-change trends. They stated that most of the 
studies naturally focused on analyzing LSMPs occurring 
with extreme precipitation, with less emphasis on testing the 
causal nature of the identified relationships, i.e. examining 
to what degree the identified features are necessary and/or 
sufficient conditions for extreme precipitation.
In this study, we assess the prediction skill of regional ex-
treme precipitation occurrence based on LSMPs at a daily 
scale. We focus on two regions of the United States in our 
previous studies (Gao et al., 2014; Gao et al., 2017), where 
extreme precipitation regime presents its distinct season-
ality and atmospheric circulation patterns (Schlef et al., 
2019). This current study differs from our most previous 
ones (Gao et al., 2014; Gao et al., 2017) in that 1) extreme 
precipitation (99th percentile) is analyzed instead of heavy 
precipitation (95th percentile). This leads to highly imbal-
anced dataset (dominance of non-extreme precipitation 
days) and thus pose a considerable challenge to train our 
classification predictive model. 2) we compare a relatively 
simple analogue method developed in our previous stud-
ies with a more sophisticated CNN approach to predict 
extreme precipitation occurrence. Both methods do not 
require making assumptions about the normality, linearity 
or continuity of the data sample. 3) we examine a larger 
set of meteorological variables from different atmospher-
ic levels to characterize the LSMPs. Our objective is to 
understand which features of large-scale circulation are 
most relevant for predicting regional extreme events of 
our interest and how this varies by season and region. 4) 
the Modern-Era Retrospective analysis for Research and 
Applications, Version 2 (MERRA-2) is used to characterize 
LSMPs instead of MERRA. and 5) a different set of per-
formance measures is employed. This work could provide 
a basis for evaluating climate models’ skill in prediction 
of historical and future extreme precipitation occurrence 
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based on model-simulated LSMPs. The remainder of the 
paper is organized as follows. Section 2 presents the data 
used and study region. Section 3 describes two statistical 
methods employed to quantify the potential predictability of 
extreme precipitation occurrence. A quantitative evaluation 
of the prediction skill is presented in section 4 followed 
by summary and discussions in section 5.

2. Datasets 
Daily precipitation observations, spanning from 1948 
to present and confined to the continental United States 
land areas, are obtained from the NOAA Climate Pre-
diction Center (CPC) unified rain gauge-based analysis 
(Higgins et al., 2000). These observations are gridded to a 
0.25° x 0.25° resolution from three sources of station rain 
gauge reports using an optimal interpolation scheme. The 
analysis went through rigorous quality control procedures 
and was shown to be reliable for studies of fluctuations in 
daily precipitation (Higgins et al., 2007). 
MERRA-2 provides data beginning in 1980 at a spatial reso-
lution of 0.625° × 0.5° (Bosilovich et al., 2016). In compari-
son with the original MERRA dataset, MERRA-2 represents 
the advances made in both the Goddard Earth Observing 
System Model, Version 5 (GEOS- 5) (Molod et al., 2015) 
and the Global Statistical Interpolation (GSI) assimilation 
system that enable assimilation of modern hyperspectral 
radiance and microwave observations, along with GPS-Ra-
dio Occultation datasets. MERRA-2 is the first long-term 
global reanalysis to assimilate space-based observations 

of aerosols and represent their interactions with other 
physical processes in the climate system. 
We assemble a set of daily meteorological variables at dif-
ferent levels from MERRA-2 to characterize the LSMPs 
(Table 1). These variables have been widely used for sta-
tistical downscaling of precipitation in various studies as 
summarized by Anandhi et al., (2008) and Sachindra et al., 
(2014). We don’t include the commonly used SLP and geo-
potential height because Gao et al., (2017) showed that the 
overall increasing trend of geopotential height associated 
with climate warming makes the use of geopotential height 
anomalies problematic within the analogue approach for 
future climates. Variables at 850-hPa are also not examined 
due to regions of high orography. 
We analyze two precipitation estimates from MERRA-2: 1) the 
precipitation generated within the cycling data assimilation 
system, hereinafter referred to as MERRA2_P (M2AGCM in 
Reichle et al., 2017), and 2) the corrected precipitation that 
is seen by the land surface and that modulates aerosol wet 
deposition over land and ocean, hereinafter referred to as 
MERRA2_Pc (M2CORR in Reichle et al., 2017). The daily 
precipitation from observation and MERRA-2 as well as daily 
meteorological fields are all regridded to 2.5°x2° resolution 
via area averaging as suggested by Chen and Knutson (2008). 
The overlap between the CPC observation (1948–present) 
and MERRA-2 (1980–present) is 1 January 1980–31 Decem-
ber 2019. The constructed statistical models for identifying 
the daily occurrence of extreme precipitation event are first 
trained with the data from 1980–2005 and then assessed 

Table 1. Large-scale meteorological variables at different levels from MeRRA-2 (left two columns) and two group of statistical 
schemes (right two columns) examined in this study. The variables in bold are used to construct different analogue schemes, while 
all the variables, separately or in combination, are assessed for Cnn (See text for details).

Variable (Symbol) Atmosphere Levels Analogue Schemes CNN Schemes
Zonal wind speed
(u500, u10m, u2m)

500-hPa, 10-meter, 
2-meter

(uvw)500tpw
(uvw)500q2m

(uq)(vq)w500tpw
(uq)(vq)w500q2m

Oversampling
Individual variable (all)
(uq)(vq)
(uq)(vq)tpw
(uq)(vq)q2m

(uq)(vq)w500tpw
(uq)(vq)w500q2m

No-balance
Individual variable (all)

Meridional wind speed
(v500, v10m, v2m)

500-hPa, 10-meter, 
2-meter

Air temperature
(t500, t10m, t2m)

500-hPa, 10-meter, 
2-meter

Specific humidity
(q500, q10m, q2m)

500-hPa, 10-meter, 
2-meter

Relative humidity
(rh500, rh700)

500-hPa, 700-hPa

Vertical pressure velocity 
(w500)

500-hPa

Precipitable water 
(tpw)

Total column

Vertically integrated zonal moisture flux 
(uq)

Total column

Vertically integrated meridional moisture flux 
(vq)

Total column

Dew-point Temperature 
(tdew2m)

2-meter
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with blind prediction using the data from 2006–2019. The 
end of the training period is chosen to be consistent with the 
end of the Coupled Model Intercomparison Project Phase 
5 (CMIP5) historical experiment (1850–2005) primarily 
for evaluation of climate models’ prediction skill based on 
model-simulated LSMPs (not in this study). At each grid 
cell, we convert the meteorological fields of entire period 
(1980–2019) to normalized anomalies based on their respec-
tive seasonal climatological means and standard deviations of 
26-yr training period (1980–2005). A precipitation event is a 
daily amount above 1 mm day-1 at one 2.5°x2° observational 
or model grid. An extreme precipitation event is defined 
when the daily amount at any grid cell exceeds its 99th per-
centile, which is derived from the cumulative distribution of 
all the observed precipitation events at this grid cell across a 
particular season of the entire training period. We then pool 
such events at all grid cells within the regions of our interest 
for the observation and MERRA-2. 
Our analyses focus on the same two regions in our pre-
vious studies (Gao et al., 2014; Gao et al., 2017) where 
extreme precipitation regimes present distinct seasonality 
and circulation patterns: the ‘‘Pacific Coast California’’ 
(PCCA) region (33°–41°N and 123.75°–118.75°W at °x2° 
resolution) in winter season [December–February (DJF)] 
and the Midwestern United States (MWST) (39°–45° N 
sand 98.75° –88.75° W) in summer season [June–August 
(JJA)]. The extreme winter precipitation along the west 
coast in association with ARs have been widely studied 
(Ralph et al., 2006; Leung and Qian, 2009; Lamjiri et al., 
2017; Gershunov et al., 2019) and it was shown that ARs 
can be used to skillfully predict the occurrence of extreme 
precipitation events at a daily scale (Chen et al., 2018). 
However, it is well recognized that the forecast skill of 
summertime precipitation variability is characteristically 
weak, attributable to deficiencies in small-scale cumulus 
convection parameterization which plays a larger role in 
summer than in winter when synoptically-driven systems 
dominate (Sukovich et al., 2014; Wehner et al., 2014). In 
particular, Bosilovich et al., (2013) found that the Midwest 
is one of the poorly represented regions over the United 
States with either false extremes or underrepresentation 
of extreme events by three reanalysis examined, mainly 
due to the increased dependence of summer precipitation 
in this region on the boundary layer parameterization. 
Therefore, our analysis of these two regions (and seasons) 
based on different statistical methods could provide us a 
general insight into the predictability limit of daily extreme 
precipitation occurrence based on LSMPs. 

3. Methods

3.1 Analogue method
The analogue method employs “composites” to identify 
prevailing LSMPs associated with the observed extreme 

precipitation events at a local scale, through the joint 
analyses of precipitation-gauge observations and atmo-
spheric reanalysis. Our previous studies (Gao et al., 2017; 
Gao et al., 2019) evaluated two analogue schemes (uvw500q2m 
and uvw500tpw) based on 500-hPa horizontal and vertical 
winds (uvw500) and each of two moisture variables, name-
ly, near-surface specific humidity (q2m) and total-column 
precipitable water (tpw). Here we examine two additional 
analogue schemes ([(uq)(vq)w500q2m] and [(uq)(vq)w500tpw]) 
that are constructed with moisture flux [(uq) and (vq)] in 
replace of u500 and v500, respectively (Table 1). There may 
exist some degree of collinearity between variables used 
in these two new schemes. Ideally, the variables selected 
for construction of any prediction model should generally 
be independent and a relatively small number of variables 
should be used in order to avoid problems with overfitting 
and collinearity. However, we still test these schemes in or-
der to understand the trade-off between extra-information 
added by these “new” variables (“uq” and “vq”) and their 
collinearity with other moisture variables (q2m or tpw) and 
how prediction skill will be affected.
We follow the same procedure as described in Gao et al., 
(2017) to calibrate the analogue schemes and will briefly state 
it here. Two metrics, the “hotspot” and the spatial anomaly 
correlation coefficient (SACC) are employed to characterize 
the degree of consistency between daily MERRA-2 LSMPs 
and the composites. The “hotspot” metric diagnoses the 
extent to which each atmospheric variable of the composite 
represents that of identified individual event. It involves the 
calculation of sign count at each grid cell by recording the 
number of individual events whose standardized anomalies 
have consistent sign with the composite. “Hotspots” are iden-
tified as the grid cells where the events used to construct the 
composites exhibit strong sign consistency with the composite 
(i.e. the larger sign counts). SACC is calculated between the 
daily MERRA-2 LSMPs and the corresponding composites 
over the region that captures the coherent structures of the 
composites. Ten SACC thresholds are assessed from 0.0 to 
1.0 with an interval of 0.1. 
We experiment selections of different number of variables 
(out of four variables in each analogue scheme) which have 
consistent signs with the corresponding composites over the 
selected “hotspot” grid cells and have SACC larger than the 
designated thresholds. Theoretically, there are 16 selections 
in total. Hereinafter we use a “multi-variate condition” to 
refer to any of such selections and use “case” to refer to any 
analogue scheme under any multi-variate condition. During 
the training phase, we perform automatic calibration to 
simultaneously determine the optimal cut-off values for the 
number of hotspots and SACC of all relevant variables for 
each case. The procedure is conducted by running different 
combinations of the number of hotspots and SACC thresholds 
across all relevant variables in each case. The combination 
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that produces the observed number of extreme precipitation 
events with the best Gilbert skill score (GSS, described later) 
will be denoted as the “criteria of detection” for that case. 
During the blind prediction (validation) period (2006–2019), 
daily MERRA-2 LSMPs will be evaluated against the “criteria 
of detection” established in the training phase. Any day that 
meets the “criteria of detection” is considered as an extreme 
precipitation event. In other words, we use the occurrence of 
composite-type LSMPs to predict the occurrence of extreme 
precipitation events. 

3.2 CNN
CNN is a class of deep neural networks and commonly ap-
plied to image-related recognition, classification, and analysis. 
A major advantage of CNN is that it requires little a priori 
knowledge of underlying data structure and input-output 
relationships, and enables assembling more complex, hierar-
chical patterns in high-dimensional space using smaller and 
simpler patterns. Like other neural networks (NNs), CNNs 
can theoretically approximate any function of input-output 
relationships to an arbitrary degree of precision, although 
sometimes at the expense of interpretability of such relation-
ships. In this study, we use a CNN to explore the potential 
predictability of extreme precipitation occurrence (binary 
classification of an extreme versus a non-extreme event) as 
compared to a relatively simple analogue method. 
Machine learning algorithms for classification are usually 
designed to perform well when the number of samples in each 
class is about equal. Extreme weather event prediction in our 
case is an imbalanced classification where the distribution of 
samples across the classes is biased or skewed. Imbalanced 
classification poses a challenge because it often causes models 
developed using conventional machine learning algorithms 
to have poor predictive performance, specifically for the 
minority class. This is a problem because the minority class 
is typically more important than the majority class. It has 
been shown that class imbalance can affect both convergence 
during the training phase and generalization of a predictive 
model on the test dataset for traditional classifiers (Japkowicz 
and Stephen, 2002; Mazurowski et al., 2008). 
In this study, we employ oversampling, the method most 
commonly applied in deep learning to address class im-
balance (Buda et al., 2018). Oversampling simply repli-
cates randomly selected samples from the minority class 
(extreme precipitation days in our case) to achieve a more 
balanced training data (the test data is left untouched). 
The model is trained batch-wise with each batch (~ 200 
samples) of the oversampled dataset maintaining the same 
ratio of extreme to non-extreme event days. There is no 
simple rule of thumb for an optimal oversampling ratio. 
We have experimented different ratios and select 1:4 and 
2:3 for PCCA and MWST, respectively, which give the best 
Gilbert Skill Scores (GSS, described in section 3.3) during 

both calibration and validation periods. We also compare 
classification performance of a CNN trained based on the 
oversampled (hereinafter referred to as “oversampling”) and 
the original imbalanced dataset (hereinafter referred to as 
“no-balance”) to examine the effectiveness of oversampling.
We implement a 2D CNN within Keras (Chollet, 2015), 
which uses an input layer and a series of hidden (interme-
diate) layers to produce an output of binary classification 
(an output layer). Each synoptic-scale atmospheric field is 
extracted over the spatial domain of 172.5°~90° W and 8° 
~ 66° N for PCCA and 120°~72.5° W and 18° ~ 58° N for 
MWST and applied, individually or in combination, as an 
input layer. The hidden layers consist of a set of convolutional 
and max pooling layers and one flatten layer. The convolu-
tional layer serves as a feature detector (also referred to as a 
“filter” or a “kernel”) over the previous layer (i.e. the input 
layer for the first convolutional layer) and creates feature 
maps that provide an insight into where a certain feature is 
found. This is done by sliding the filter over the layer received 
as input and computing the dot product (or “convolution 
filter”). The higher the value is in a feature map, the more 
the corresponding place resembles the feature. The pooling 
layer is often placed between two layers of convolution and 
applied to reduce the dimensions of feature maps generated 
by a convolutional layer while preserving the most important 
characteristics of each feature. This is achieved by cutting the 
feature map into regular cells and keep the maximum value 
within each cell. The pooling layer improves the efficiency 
of the network by reducing the number of parameters to 
learn and also avoids overfitting. There are usually several 
rounds of convolution and pooling: feature maps are filtered 
with new kernels, new feature maps is further resized and 
filtered again, and so on. The flatten layer converts the last 
feature maps into a vector. The output layer applies weights 
to the input vector via matrix multiplication, pass through 
an activation function (logistic function in our case), and 
produces a new output vector (size 1 in our case). Element of 
the new output vector is the probability of the minority class 
(extreme event) between 0 and 1. A threshold value of 0.5 
is used to label the predicted class, above which an extreme 
event is considered to occur and below which not to occur.
Our CNN is composed of two convolutional layers and two 
max pooling layers. Each convolutional layer use sixteen 3x3 
filters and a step of 1 with the Rectified Linear Unit (ReLU) 
activation function. Each max pooling layer uses a 2x2 square 
cell and a step of 2. We apply L2 regularization with a weight 
of 0.01 and 0.001 to the first and second convolutional layer, 
respectively. In addition, earlystopping is employed to pre-
vent the network from overfitting. The network is evaluated 
with the Adam optimizer using binary cross-entropy as the 
objective function. We assess one meteorological variable 
at a time to understand the relative importance of each for 
prediction of extreme precipitation occurrence. We also 
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explore some combinations of meteorological variables to 
see if any additional predictive power may be added. These 
combinations are tested largely based on the knowledge 
learned from our experience with analogue schemes. All the 
“oversampling” schemes, based on an individual or combined 
meteorological variables (Table 1), are trained with the same 
set of hyperparameters described above. All the “no-balance” 
schemes follow the similar CNN structure but are trained 
with a different set of hyperparameters.

3.3 Measures of prediction skill
We compare the occurrence of extreme precipitation events 
estimated from various analogue and CNN schemes with 
that identified from the observation and two MERRA-2 
precipitation products at 2.5° × 2° resolution during both 
calibration and blind prediction periods. Several perfor-
mance measures are adopted that are used extensively by 
the National Weather Service for deterministic categorical 
forecast evaluation (Table 2). The hit rate (H) measures 
fraction of observed events that is correctly predicted and is 
sensitive only to missed events. The false alarm ratio (FAR) 
measures fraction of predicted events that actually did not 
occur (i.e., were false alarms) and is sensitive only to false 
alarms. Threat score (TS) measures the fraction of observed 
and/or forecast events that were correctly predicted. The TS 
is more complete than the H and FAR because it is sensitive 
to both missed events and false alarms. Frequency bias 
(B) measures the relative frequency of forecast events to 
observed events and indicates whether the forecast system 

has a tendency to underforecast or overforecast events. 
The forecast system is unbiased if B is equal to 1. Values 
higher than 1 indicate overforecasting (too frequently) 
and less than 1 indicate underforecasting (not frequent 
enough). The B is not a true verification measure as it 
does not measure how well the prediction corresponds 
to the observation. Skill Score (SS) uses a single value to 
summarize forecast accuracy relative to a reference forecast 
and essentially represents fractional improvement over the 
reference forecast. SS values larger (smaller) than 0 indicate 
more (less) skillful than reference forecast, with higher SS 
values denoting more skillful predictions. Two SSs, Heidke 
SS (HSS) and Gilbert SS (GSS, or equitable TS (ETS)), are 
employed in our study. The HSS measures the fraction of 
correct forecasts (events and non-events, a+d in Table 2) 
after eliminating those forecasts which would be correct 
due purely to random chance, while GSS measures the 
fraction of observed and/or forecast events (a+b+c in Table 
2) that were correctly predicted, adjusted for hits associated 
with random chance. The reference forecasts for the HSS 
and GSS are the proportion correct and the TS expected 
by random chance, respectively. In this study, the fraction 
of correct forecasts [(a + d)/(a+b+c+d)] is not separately 
assessed because it becomes dominated by the number of 
correct non-events (d) and its value may be very large for 
rare events and thus obscure the forecast accuracy. Both 
the HSS and GSS allow fairer comparison across different 
regimes. However, they share some drawbacks with many 
other scores that 1) they tend to go to small values near 0 

Table 2. Different prediction skill measures used in this study.

Contingence 
Table

Observation (Y) Observation (N)

Prediction (Y) Prediction (N) Prediction (Y) Prediction (N)

a (hits) c (misses) b (false alarms) d (correct non-events)

Skill Measures

Formula Range Characteristics
Hit Rate 
(H)

a/(a+c) [0, 1] 
(poor – good)

ignore false alarms (b), artificially improved 
by overforecast

False Alarm Ratio 
(FAR)

b/(a+b) [0, 1]
(good – poor)

ignore misses (c), artificially improved by 
underforecast

Threat Score 
(TS) 

a/(a+b+c) [0, 1] 
(poor – good) 

ignore correctly-predicted non-events (d) 

Frequency Bias 
(B)

(a+b)/(a+c) 0 ~ ∞ <1 (underpredict); >1 (overpredict)
Not a true skill measure

Gilbert Skill Score 
(GSS)

aref = (a+b)*(a+c)/(a+b+c+d)
GSS = (a-aref)/(a-aref+b+c)

[-1/3, 1] 
(random if = 0)

based on TS corrected for hits due to ran-
dom chance

Heidke Skill Score 
(HSS)

2*(ad-bc)/ ((a+c)*(c+d)+(a+b)*(b+d)) [-1, 1]
(random if = 0)

based on accuracy [(a+d)/(a+b+c+d)] cor-
rected for hits due to random chance

Symmetric Extremal 
Dependence Index 
(SEDI)

F = b/(b+d)
x= logF – logH – log(1– F) + log(1– H)
y= logF + logH + log(1– F) + log(1– H)
SEDI = x/y

[-1, 1]
(random if =0)

Nondegnerating, base-rate independent, 
asymptotically equitable, harder to hedge
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as the event becomes rarer, which leads to a misperception 
that rare events cannot be skillfully forecast or a difficulty 
to track improvements in the forecast performance; and 2) 
they are susceptible to hedging by overforecasting. In light 
of these, we also evaluate a quite new score, the Symmetric 
Extremal Dependence Index (SEDI), which is designed for 
forecast verification of extreme binary events (Ferro and 
Stephenson, 2011). So far, SEDI has been largely used for 
the verification of precipitation forecasts from Numerical 
Weather Prediction (NWP) centers (North et al.,, 2013; Rod-
well et al., 2015; Haiden and Duffy, 2016). SEDI possesses 
more desirable properties in comparison with other scores 
and its family predecessors, including nondegenerating, 
base-rate independent, asymptotically equitable, harder 
to hedge, symmetric and asymmetric relative operating 
characteristic curves (Ferro and Stephenson, 2011). SEDI 
value of zero demarcates forecasts better (> 0) and worse 
(< 0) than random forecast (= 0). Ferro and Stephenson 
(2011) suggest that the SEDI metric only be calculated for 
recalibrated forecasts (B = 1) in order to avoid the effect of 
any model bias on the prediction of extremes. However, it 
is not always possible or feasible to recalibrate forecasts. 
Although an uncalibrated SEDI score may not be effective 
at comparing how well a forecast matches reality, it may 
still provide useful information due to its resistance to 
hedging, particularly if presented along with the forecast 

bias. For this reason, SEDI is included here for evaluating 
the ability of different statistical models against each other 
in predicting the occurrence of extreme precipitation event.
There are many other metrics used in weather forecast verifi-
cation and implementing all of them is not feasible. Different 
metrics measure different aspects of forecast quality and the 
use of several permits these different aspects or attributes 
to be assessed. In our case, the H, FAR, and TS all mea-
sure “accuracy” (the level of agreement between forecasts 
and observations) in slightly different ways, while GSS and 
HSS measure “skill”. They together provide complementary 
assessments of forecast performance. SEDI measures the 
association between forecast and observed rare events. It is 
just beginning to be used in weather verification activities, 
its evaluation is therefore essential to determine what new 
perspectives it may provide on forecast skill. We also assess the 
performance of different statistical schemes in depicting the 
interannual variability of extreme precipitation occurrence 
against the observation with temporal correlation (CORR) 
and the root-mean-square error (RMSE). 

4. Results

4.1 Precipitation characteristics
Figure 1 compares the 99th percentile daily precipitation and 
mean daily precipitation intensity at 0.25° grid for DJF and 

Figure 1. Observed 99th percentile daily precipitation (top) and mean daily precipitation intensity (bottom) at 0.25° grid for DJF (left) 
and JJA (right) of 1980-2005 in mm/day. Both quantities are calculated with dry days (precipitation < 1 mm/day) excluded. The red 
rectangles denote our study regions: 30*40 grids and 50*32 grids at 0.25° grid for PCCA and MWST, respectively.
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JJA based on the observation of 1980–2005. The immediately 
evident is the strong seasonality exhibited by these precipita-
tion quantities over two study regions. In the winter season, 
the coastal mountain ranges in the western U.S. receives a 
large amount of precipitation, with the 99th percentile pos-
sibly reaching up to 130 mm/day. Little precipitation falls 
in summer with the mean precipitation generally less than 
6 mm/day and extreme precipitation less than 30 mm/day 
over much of the study region. In the upper U.S. Midwest, 
summer is the wettest season. In addition, more heavy rain-
storms occur in summer than in any other seasons, while 
the least number occur in winter (Huff and Angel, 1992; 
Gao et al., 2014). The 99th percentile generally ranges from 
50 to 80 mm/day in summer and 10 to 30 mm/day in winter 
across the region. Note that the south central U.S. is active 
in terms of rainfall and extreme precipitation during both 
seasons. Regardless of the regions (seasons), the 99th percen-
tile or extreme precipitation is about 4 times higher than the 
mean precipitation intensity. At the 2.5°x2° grid our analysis 
is performed on, the magnitude of extreme precipitation 

(99th percentile) is systematically underestimated by a factor 
of two (not shown). However, its large scale pattern across 
different regions and seasons is well preserved. The specific 
resolution and associated criteria chosen to estimate the 
observed extreme precipitation events represent one source 
of uncertainty but will not be discussed in this study.  

4.2 Composites for analogue schemes

We extract 41 and 163 extreme precipitation events from 
the observation of 1980–2005 at 2.5° x 2° for the winter 
of PCCA and summer of MWST, respectively. Figure 2 
shows various composite synoptic atmospheric conditions 
as standardized anomalies for two regions, produced by 
averaging the MERRA-2 Reanalysis across the observed 
event days. PCCA is a region where both large-scale cir-
culations and orographic enhancement play important 
roles in the generation of extreme precipitation. LSMPs 
are dominated by a cut-off low to the west-northwest and 
a ridge to the southwest of the study region, promoting 
strong southwesterly flow of moist air from central Pacific 

Figure 2. Composite normalized anomalies of (a) 500-hPa geopotential height (shaded, h500) and the vertical integrated moisture 
flux vector (arrow, uq,vq), (b) 500-hPa vertical velocity (contour, w500) and total precipitable water (tpw; shaded) for the Pacific Coast 
California (PCCA) in DJF based on 41 extreme precipitation events identified from the precipitation observation of 1980-2005 at 
2.5°x2° grid. (c),(d) as in (a),(b), but for the Midwestern united States (MWST) in JJA based on 163 extreme precipitation events. The 
red rectangles denote our study regions: 15 (only 8 valid grids) and 20 grids for PCCA and MWST, respectively.
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towards the West coast of the United States (Fig. 2a). The 
region is also characterized by stronger large-scale upward 
motion and higher amount of water vapor (Fig. 2b). As 
expected, composite anomalies of synoptic fields are weaker 
in summer (MWST) than in winter (PCCA). Nevertheless, 
an anomalous trough to the west and a ridge to the east 
of the study region is evident (Fig. 2c). A key ingredient 
for heavy precipitation in the region is strong southerly 
winds and sustained advection of warm air and low-level 
moisture from the tropical Atlantic Ocean, through the 
Caribbean Sea, turning northward through the Gulf of 
Mexico, and then northeastward into the U.S. Midwest (Fig. 
2c). This fetch of Caribbean moisture links into the Great 
Plains low-level jet (Dirmeyer and Kinter, 2009), creating 
ARs similar to those associated with the western United 
States. The synoptic patterns promote the development 
of strong upward motion and positive precipitable water 
anomalies centered over the study region (Fig. 2d) as well 
as enhanced moisture flux around the periphery of the 
subtropical high. These elements intersect a quasi-stationary 
baroclinic zone and support the development of frequent 
mesoscale convective systems. 

4.3 Prediction skill of analogue schemes
Different multi-variate conditions indicate that no particular 
one will lead to consistently best skill scores across all the 
analogue schemes during both calibration and validation 
periods. Nevertheless, the differences in all the skill scores 
among various multi-variate conditions are really small, 
mostly on an order of a hundredth. Here we only present the 
results based on the multi-variate condition that gives the 
best GSS during the calibration period. GSS is selected as a 
reference because it might be the one used most frequently 
among the variety of performance measures to evaluate 
skill of deterministic precipitation forecasts (Wang 2014; 
Boluwade et al., 2017; Chen et al., 2018).

4.3.1 PCCA

Figure 3 shows performance measures of two MERRA-2 
precipitation products and four analogue schemes for DJF 
of PCCA during the calibration and validation periods. 
GSS is typically analyzed in conjunction with the bias be-
cause higher scores can be achieved by increasing the bias 
above unity. During the calibration period, MERRA2_P 
strongly overforecasts the number of extreme precipitation 
events by approximately 110% (B = 2.1), while MERRA2_Pc 
significantly reduces the bias with a slight overforecast by 
approximately 10% (B =1.1). All the analogue schemes are 
deliberately calibrated to be unbiased (B=1). As a result, 
MERRA2_P presents the highest H (0.68), but at the expense 
of the highest FAR (0.56) as well. However, the expected 
benefit of an elevated bias in MERRA2_P is not reflected in 
other measures, with the lowest ET (0.28), GSS (0.27) and 
HSS (0.42) among all the schemes. This is likely attributed 
to the tradeoff between high H and high FAR. How much 
will these scores (ET, GSS, and HSS) be affected by a bias is 
not entirely clear, i.e. what value of the bias will help or hurt 
these scores? Nevertheless, an improvement in the skill of 
MERRA2_Pc over MERRA2_P is evident, with consistently 
higher ET (0.36), GSS (0.35) and HSS (0.52) but lower FAR 
(0.5). All the analogue schemes outperform MERRA2_Pc 
with higher H (0.54 ~ 0.63), ET (0.37~ 0.46), GSS (0.36 ~ 
0.46), and HSS (0.53 ~ 0.63), but lower FAR (0.37 ~ 0.46) 
values. Among the four analogue schemes, the new group 
constructed with uq and vq [(uq)(vq)w500tpw and (uq)(vq)
w500q2m] is superior to that constructed with u500 and v500 

[(uvw)500tpw and (uvw)500q2m] consistently across all the 
performance measures. In terms of the choice between 
two moisture variables, the analogue schemes based on 
tpw generally yield marginally better performances than 
those based on q2m. These results suggest that the better 
skill of the (uq)(vq) group is not an artifact of hedging by 
increasing the bias (B=1 for all the analogue schemes) or 

Figure 3. Performance measures of MeRRA2 precipitation and various analogue schemes for DJF of PCCA during the a) calibration 
and b) validation (blind prediction) periods. The number of observed extreme precipitation events is 41 and 34 for two periods, 
respectively. The numbers in the parentheses of the legend represent the extreme precipitation events detected by each scheme 
during two periods (separated by slash), respectively. The numbers on the bar indicate the frequency bias of MeRRA2_P.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2

H FAR ET GSS HSS SEDI B

b)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2

H FAR ET GSS HSS SEDI B

MERRA2_P (87/ 37) MERRA2_Pc (46/ 24)
(uvw)500tpw (41/ 21) (uvw)500q2m (41/ 19)
(uq)(vq)w500tpw (41/ 23) (uq)(vq)w500q2m (41/ 27)

a)2.1

MIT JOInT PROGRAM On THe SCIenCe AnD POLICY OF GLOBAL CHAnGe  RePORT 353

9



the choice of verification metrics. Among the variety of 
performance measures, ET, GSS, and HSS exhibit similar 
behavior except that GSS values are just slightly lower 
than those of ET due to the number expected correct by 
chance and that HSS values are the highest. The small dif-
ferences between ET and GSS are not unexpected because 
the number correct by random guessing would be small 
for rare events (it is more difficult to randomly guess rare 
events than common events). SEDI has higher magnitudes 
than all the other verification metrics, but doesn’t present 
much difference among various schemes (two MERRA2 
precipitation and four analogue). 
Performances are generally worse during the validation 
than the calibration period, in particular for all the analogue 
schemes which exhibit large reductions (-0.19 ~ -0.33) in 
H, ET, GSS, HSS, and SEDI but large increases in FAR (0.11 
~ 0.18) values. MERRA2_Pc is the only case with slight in-
creases (~ 0.06) in ET, GSS and HSS values. This is expected 
because analogue schemes are evaluated based on an inde-
pendent dataset from the dataset used for calibration, while 
MERRA2 precipitation products adopt the same assimilation 
system to ingest observations during both periods (their 
performance should be independent of periods). MERRA2_P 
slightly overpredicts the occurrence of extreme precipitation 
events by approximately 10%, while MERRA2_Pc and all 
the analogue schemes have a tendency to underpredict the 
occurrence to various extents (30% for MERRA2_Pc and 
20% ~ 45% for analogue schemes). It is worth noting that 
the decreases in biases (relative to the calibration period) 
lead to very different outcomes–we see a large decrease in H 
but small decrease in FAR for MERRA2_P, a small decrease 
in H but a large decrease in FAR for MERRA_Pc, as well as 
large decreases in H and large increases in FAR for all the 
analogue schemes. An advantage of overforecasting (the 
bias beyond one) in MERRA2_P is not seen in its perfor-
mance metrics. MERRA2_Pc significantly improves the skill 

over MERRA2_P with much higher H (0.5 versus 0.38), 
ET (0.42 versus 0.22), GSS (0.41 versus 0.21), HSS (0.58 
versus 0.35), SEDI (0.79 versus 0.64), and lower FAR (0.20 
versus 0.65) values. MERRA2_Pc also outperforms all the 
analogue schemes in terms of all the performance measures. 
The best skill of MERRA2_Pc is consistent with the changes 
in H and FAR values described above. The performances 
of analogue schemes are mixed. The group of (uq) and (vq) 
schemes performs better than MERRA2_P consistently across 
all the performance measures, while the group of u500 and 
v500 performs consistently worse than MERRA2_P. Because 
all the analogue schemes are calibrated to be unbiased for 
blind prediction, the improvement in skill of the (uq)(vq) 
group over the (uv500) group can be considered genuine. 
Chen et al., (2018) showed the use of ARs to predict the 
occurrence of extreme precipitation events in western U.S. 
watersheds at a daily scale, with GSS values of 0.05 ~ 0.2 
based on different AR-tracking algorithms. Our analyses 
indicate GSS values of 0.25 and 0.17 for the (uq)(vq) and 
(uv500) analogue groups, respectively, which is in agreement 
with Chen et al., (2018). The validation results further suggest 
that it is not obvious how much and in what way a bias will 
affect various performance measures and there is no simple 
and direct interpretation.
Figure 4 presents the performances of various analogue 
schemes in depicting the interannual variations of PCCA 
winter extreme precipitation frequency from 1980 to 2005 
(calibration) and 2006 to 2019 (validation) as compared to 
the observations and MERRA2 precipitation. The number 
of extreme precipitation events for each ‘‘year’’ is computed 
based on the numbers in December of the current year and 
the numbers in January and February of the subsequent 
year (thus, the numbers in January and February of 1980 
and in December of 2019 are not included). The year is 
labeled based on December of that year. All the schemes 
reproduce the observed interannual variations of winter 

Figure 4. a) Interannual variations of PCCA winter extreme precipitation frequency obtained from various analogue schemes, 
MeRRA2 precipitation, and the observation (obs) during the calibration (1980–2005) and validation (2006–19) periods. b) RMSe 
(bar) and temporal correlations (scatter, aligned with the corresponding bar for each scheme) between various schemes and 
observation during two periods. All the correlations are significant at the 0.01 level.
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extreme precipitation frequencies reasonably well with the 
temporal correlations generally above 0.65 and significant 
at the 0.01 level during both periods. The MERRA2_Pc 
performs best with the highest correlations (> 0.85) but 
the lowest root-mean-square errors (RMSEs) of ~1 day, 
while the MERRA2_P performs worst with RMSEs of 
2.4 and 1.7 days for two periods, respectively. There is no 
particular (or group of) analogue scheme demonstrating 
consistently superior performance across the two periods, 
with RMSEs ranging from 1.3 to 1.8 days. We don’t see an 
apparent performance degradation in the validation as 
opposed to the calibration period, particularly in terms 
of correlations which are surprisingly much higher. Also 
evident is that MERRA2_P tends to strongly overestimate 
the observed number of extreme precipitation events in 
most years, but does capture well big peaks of 2005 and 2016. 
MERRA2_Pc closely adheres to the observed year-to-year 
variations except for a slight overestimation in 1982. All 
the analogue schemes capture the largest peak in 2016, but 
strongly underestimate the second largest peak in 2005 and 
overestimate the peak in 1994 and 1996 to various extents. 
In addition, they are able to depict the conditions where 
no extreme precipitation event is observed (zero event).  

4.3.2 MWST

Immediately evident are poorer performances in MWST 
than in PCCA during both periods, in particular for the 
analogue schemes and MERRA2_Pc (Figure 5). There 
are large differences in biases. MERRA2_P significantly 
overforecasts the number of extreme precipitation events 
by 110% (B = 2.1) during the calibration and 70% (B = 1.7) 
during the validation period, while MERRA2_Pc identifies 
only a little fewer than half as often as the events occur 
during both periods (76 forecasts versus 163 occurrences 
and 67 forecasts versus 140 occurrences, respectively). 
Various analogue schemes also tend to underpredict the 

event frequency by approximately 30% ~ 45% during the 
validation period. During the calibration period, the high-
est H (~ 0.6) is achieved by MERRA2_P at the cost of the 
highest FAR (~0.7). In contrast, the lowest H (~ 0.3) of 
MERRA2_Pc corresponds to its lowest FAR (~ 0.4). Ana-
logue schemes present moderate H (~ 0.4) and FAR (~ 0.6). 
However, there is little difference in the performances of all 
the schemes in terms of ET (~ 0.25), GSS (~ 0.2), HSS (~ 
0.35), and SEDI (~ 0.6) values, except for a slightly higher 
SEDI (~ 0.7) of MERRA2_P. During the validation period, 
there is an apparent degradation in the performances of 
analogue schemes as compared to the calibration period, 
with much lower H (~ 0.2), ET (~ 0.15), GSS (~ 0.1), HSS 
(~ 0.2), and SEDI (~ 0.35) values, but higher FAR (~ 0.65). 
We also see the group of (uq)(vq) analogue schemes have 
a slight edge over that of (uv500) by all the performance 
measures, but differences are likely not significant. Despite 
the contrasting H and FAR values between two MERRA2 
precipitation products, they have comparable skill mea-
sures (ET, GSS, HSS, and SEDI) and both outperform all 
the analogue schemes. However, it is not evident whether 
the superior performance of MERRA2_P is an artifact of 
the strong overforecasting because skill measures could 
behave differently within the wide range of frequency bias. 
Nevertheless, our results suggest that warm-season extreme 
precipitation (in our case of MWST), which often occurs 
with weak synoptic-scale forcing, presents a great forecast 
challenge, consistent with what previous studies revealed 
(Carbone et al., 2002; Schumacher and Davis, 2010).
Figure 6 shows the interannual variations of MWST summer 
extreme precipitation frequency from 1980 to 2019 estimat-
ed by observation, MERRA2 precipitation, and analogue 
schemes. In terms of tracking the observed year-to-year vari-
ations of extreme events, the correlations of all the schemes 
are significant at the 0.01 level during the calibration period. 
During the validation period, only the correlations of MER-

Figure 5. As in Figure 3, but for JJA of MWST. The number of observed extreme precipitation events is 163 and 140 for two periods, 
respectively.
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RA2 precipitation and (uq)(vq)w500q2m are significant at the 
0.01 level and that of (uq)(vq)w500tpw significant at the 0.05 
level. The group of (uv500) analogue schemes does not capture 
well these temporal variations with low correlations (~ 0.35). 
However, the RMSEs of various schemes are approximately 
one to four times larger than those in PCCA. MERRA2_P 
has the highest RMSEs of about 7.4 days and 8.2 days for 
the calibration and validation periods, respectively. The 
analogue schemes have the overall lowest RMSEs of 2.7 ~ 
3.3 days and 5.4 ~ 6.3 days for two periods, respectively. 
RMSEs of MERRA2_Pc are 4.5 days for the calibration and 
5.9 days for the validation, which are more than quadru-
ple and quintuple those in PCCA, respectively. There is an 
apparent performance degradation in terms of RMSEs for 
all the schemes during the validation (as compared to the 
calibration). We see MERRA2_P strongly overestimates the 
observed number of extreme precipitation events in nearly 
all the years, while MERRA2_Pc persistently underestimates 
the event frequency, particularly for the major floods (e.g. 
frequency per year  >= 10). MERRA2_Pc predicts only 
one-third as often as the events occurred in 1993 and 2008 
historical floods, about half in 2010 and 2014-2017, and 
one out of 10 observed events in 2019. The larger RMSE of 
MERRA2_Pc during the validation period is likely attributed 
to major floods occurring more often (118 events in 9 major 
floods) than during the calibration period (34 events in 2 
major floods). The contrasting features between two MER-
RA2 precipitation products are well consistent with their 
frequency biases. Analogue schemes capture several major 
floods reasonably well (e.g. 1990, 1993, 2008, and 2010), but 
significantly underestimate those from 2014 to 2019, which 
is the main cause for the large increases in RMSEs during 
the validation period. This constant underestimation is likely 
attributed to the lack of enough major flood events in the 

calibration period to adequately train analogue schemes 
for capturing their complete characteristics. Another pos-
sibility is the slight shift in the relevant features of LSMPs 
associated with extreme precipitation events between two 
periods, which the calibrated analogue schemes fail to cap-
ture. We examine the composites of LSMPs from 1980 to 
2005, 2006 to 2019, and 2014 to 2019 (not shown) and find 
that the western ridge and moisture transport into the study 
region has slightly displaced eastward in 2006-2019 and 
even further in 2014-2019 as compared to 1980-2005. The 
centers of maximum anomalies of total precipitable water 
and upward motion have also shifted southeastward slightly. 
However, the exact reason for this constant underestimation 
is worthy of further study.

4.4 Prediction skill of CNN schemes

4.4.1 Oversampling in PCCA

Figure 7 shows performance measures of different CNN 
schemes trained with the oversampled data set for PCCA 
during both periods. Because machine learning aims at 
developing algorithms that can automatically make accurate 
predictions, we present CNN schemes in descending order 
based on their GSS values in the validation period. Nearly 
all the CNN schemes tend to overpredict the frequency 
of extreme occurrence (B > 1), in particular during the 
calibration period. One probable consequence of over-
prediction (postive frequency bias relative to B = 1) is to 
increase the H, but the FAR might also rise. There are large 
differences in the frequency bias from different schemes, 
ranging from 1 to 3 in the calibration and from 0.5 to 1.7 
in the validation, respectively. Only 5 out of 24 schemes 
indicate underprediction during the validation period. 
Such a large difference poses a challenge in making a fair 
comparison of various schemes’ performances. ET, GSS, 

Figure 6. As in Figure 4, but for MWST summer extreme precipitation frequency. All the correlations during the calibration period 
are significant at the 0.01 level. During the validation period, correlations of (uvw)500tpw and (uvw)500q2m are not significant at the 
0.05 level. Correlation of (uq)(vq)w500tpw is significant at the 0.05 level (not the 0.01 level), while correlation of (uq)(vq)w500q2m is 
significant at the 0.01 level.
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and HSS follow a similar pattern of variations, with HSS 
presenting the largest magnitudes and little difference in 
those of ET and GSS (hits associated with random chance 
are negligible). The variations of SEDI largely mimic those 
of H. Among different schemes, three single-variate (rh500, 
q2m, and tdew2m) and four multi-variate schemes (except (uq)
(vq)w500tpw) demonstrate relatively better performances in 
the calibration with GSS values ranging from 0.46 to 0.6. 
These schemes generally have relatively higher H (> 0.83) 
but lower FAR (< 0.5) values, except for rh500 which has 
moderate H (0.76) but the lowest FAR (0.25). The differences 
in the GSS values of the remaining 17 schemes are not 
large, ranging from 0.26 to 0.38. The overall performances 
of CNN schemes are comparable to that of MERRA2_Pc, 
with half of the schemes having higher GSS values. 

We find strong inconsistencies in some schemes’ perfor-
mances (based on GSS) between two periods. For example, 
rh500 performs best in the calibration but the worst in the 
validation. The ranking of q2m also drops dramatically from 
2 to 17. The opposite trend is seen for (uq) and tpw, whose 
rankings are 18 and 24 in the calibration, but 1 and 7 in the 
validation, respectively. Such inconsistences are also observed 
for the analogue schemes, but the exact reason is unknown.

A majority of schemes exhibit consistently poor perfor-
mances (ranking in the bottom15) between two periods, in-
cluding the horizontal wind speed, temperature, and specific 
humidity at all levels (except for t500 and q2m) and rh700. Sev-
eral schemes demonstrate consistently good performances, 
such as (vq), tdew2m, w500, and four multi-variate schemes 
(except (uq)(vq)w500tpw). In addition, multi-variate schemes 
do not necessarily outperform single-variate schemes, but 
their overall performances are robust. Regardless of the 
scheme, all the performance measures degrade remarkably 
during the validation period with lower H, ET, GSS, HSS, 
and SEDI values but higher FAR values. The H values range 
from 0.09 to 0.62, while the FAR values vary between 0.55 
and 0.81. During the calibration period, however, H values 
never drop below 0.54, while the FAR values rarely exceed 
0.7. Except for the rh500, the variations in GSS values are 
fairly small, ranging from 0.32 ((uq)) to 0.13 (rh700) across 
23 schemes. The decreasing GSS values in the sequence 
of schemes correspond well to their overall decreasing H 
and increasing FAR values. In summary, MERRA2_Pc 
outperforms all the CNN schemes, while about half of 
the CNN schemes are superior to MERR2_P. Analogue 
schemes slightly outperforms their CNN counterparts {(uq)
(vq)w500tpw and (uq)(vq)w500q2m} with higher GSS values 
(0.256 versus 0.207 and 0.234 versus 0.228, respectively). 

Figure 7. Performance measures of MeRRA2 precipitation and various Cnn schemes trained with the oversampled data set for DJF 
of PCCA during the a) calibration and b) validation (blind prediction) periods.
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Figure 8. As in Figure 7, but for JJA of MWST.
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4.4.2 Oversampling in MWST

Figure 8 shows performance measures of different CNN 
schemes trained with the oversampled data set for the 
MWST. During the calibration period, all the CNN schemes 
predict extreme precipitation event more often than the 
observation with the frequency bias ranging from 1.4 to 
2.6, except for u10m which is nearly unbiased (B ~ 1). 
During the validation period, a majority of CNN schemes 
(19) also tend to overpredict the event frequency, but to 
a lesser extent (maximal B is 1.8). The resulting H values 
are much lower in the validation (0.21 ~ 0.52) 
than in the calibration period (0.31 ~ 0.88). In compari-
son with PCCA, a distinct difference is that the hits due to 
random chance are not negligible, particularly during the 
validation period. The resulting differences between ET and 
GSS values are around 0.04 and 0.06 for the calibration and 
validation periods, respectively. Two regions do share some 
common features, such as the same pattern of variations in 
ET, GSS and HSS values, a strong resemblance between the 
fluctuations of H and SEDI, and performance degradation in 
the validation as opposed to the calibration period. Overall, 
the performances of CNN schemes in MWST are poorer 
than in PCCA, with GSS values of 0.09 ~ 0.43 and 0.1 ~ 
0.24 for two periods, respectively. PCCA has corresponding 
GSS values of 0.26 ~ 0.6 and 0.06 ~ 0.32 (0.13 ~0.32 if the 
lowest one is excluded), respectively. Such regional differ-
ences in the performances are consistent with the results of 
analogue schemes. Inconsistent performances between two 
periods are also observed, but for different variables from 
in PCCA. w500 and q500 (ranking 11 and 17 based on GSS) 
show poor calibration performances but good prediction 
skills (ranking 3 and 4), while the opposite occurs to q2m 
and (uq)(vq)w500q2m with their rankings dropping from 2 to 
15 and 6 to 20 between two periods, respectively. We see that 
LSMPs based on the horizontal wind speed, temperature, 
and relative humidity at all levels, tdew2m, and q10m generally 
exhibit limited skills in detecting extreme precipitation events 
in both periods. In contrast, the skills of LSMPs based on 
vertically-integrated variables and their combinations {(uq), 
(vq), tpw, (uq)(vq), (uq)(vq)w500tpw} are fairly robust. In 
comparison with MERRA2 precipitation, more than half 
of the schemes (13) perform better than both precipitation 
products in terms of GSS values during the calibration period, 
but only one scheme ((uq)) performs better than MERRA2_P 
and none better than MERRA2_Pc during the validation 
period. However, CNN schemes generally have higher GSS 
values than their analogue counterparts in both periods. 
To summarize over both regions, an appropriate com-
bination of multiple variables may help achieve a high 
predictive skill if overfitting could be prevented. However, 
it is not ensured that such a multi-variate scheme will 
consistently outperform all the single-variate ones. Both 
regions share some common variables that provide high 

skills in prediction of extreme event occurrence, including 
(uq), (vq), (uq)(vq), w500, and tpw. The specific variables 
are tdew2m to PCCA and q500 to MWST, respectively. These 
interpretations are based solely on the GSS values during 
the validation period without taking into account the large 
differences in the frequency bias of each scheme. It is well 
known that forecasts with a larger bias tend to have a higher 
GSS, which complicates the direct comparison of various 
schemes’ performances. However, further examination 
indicates that these individual or combined variables have 
moderate frequency biases (1.1~ 1.4) among all, implying 
that their high prediction skills are not simply attributed 
to the overprediction artifact (B > 1). The complication 
is particularly true when we compare the same CNN and 
analogue schemes in MWST, in which lower GSS values 
of analogue schemes are accompanied by their lower fre-
quency biases (B < 1). It would be preferable to remove the 
effect of bias in overprediction and underprediction with 
a performance measure corresponding to unit bias, or to 
compare competing schemes that have the similar biases. 

4.4.3 Interannual Variability

In this section, we only demonstrate the performances of those 
common variables described above in depicting the interan-
nual variability of extreme event frequency (Figure 9 and 10), 
with the relevant statistics of all the schemes summarized 
in Table 3. In PCCA, the selected CNN schemes depict the 
observed interannual variation of extreme event frequency 
fairly well with correlation coefficients larger than 0.6 and 0.85 
in the calibration and validation periods, respectively (Figure 
9b). The correlations of all the CNN schemes are significant 
at the 0.01 level (Table 3), except for those of the meridional 
wind at all levels and q10m in the validation period which are 
only significant at the 0.05 level. However, CNN schemes tend 
to overestimate the frequency, with the RMSEs ranging from 
1 to 3.5 days in the calibration and from 1 to 4.5 days in the 
validation (Table 3). Among the selected variables (Figure 9a), 
we see large peaks in 2005, 2016 and 2018 are successfully 
captured by several schemes, but the estimated frequencies 

in 1985 and 1996 by all the schemes are at least double or 
triple the observation. Persistent overestimation also occurs 
to the years with low frequency, including 1981-82, 1995, 
1999, and 2007. The (uq)(vq)w500q2m outperforms all the 
others with the lowest RMSEs in both periods (1.58 and 
1.3 days), which are comparable to its analogue counter-
part (1.6 and 1.3 days). The w500 is also superior to most of 
the schemes with the RMSEs of 1.8 and 1.6 days for two 
periods, respectively. The (uq)(vq)w500tpw has RMSEs of 
2.3 days and 1.6 days, which are worse than its analogue 
counterpart (1.5 days), particularly in the calibration pe-
riod. (uq) performs the worst among all with the overall 
largest RMSEs in both periods (2.6 and 2.3 days). These 
results also suggest that the scheme with the best GSS value 
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is not necessarily the one that performs best in depicting 
the interannual variability (i.e. lowest RMSE).

As expected, the performances of all the CNN schemes 
are poorer in MWST than in PCCA. During the validation 
period, only 9 out of 24 schemes have correlation coeffi-
cients significant at the 0.01 level and only 11 significant 
at the 0.05 level, also with negative correlations for v2m and 
rh500. This implies that most of the schemes fail to repro-
duce the observed interannual variability of summertime 
extreme event frequency in the validation period over the 
MWST. Among the selected schemes, only tpw, w500, and 
(uq)(vq)w500tpw have correlations significant at the 0.01 
level and (uq)(vq)w500q2m significant at the 0.05 level. The 
RMSEs are much larger than in PCCA, ranging from 3 to 
12 days and from 3 to 10 days for two periods, respectively. 
It is immediately evident that all the selected schemes 
constantly overestimate the extreme event frequency to 
various extents (Figure 10a). The overestimation is par-
ticularly strong by four single-variate schemes during the 

calibration period, with the RMSEs ranging from 6.6 to 
7.7 days. Overall, three multi-variate schemes are superior 
to the single-variate schemes with lower RMSEs in both 
periods. In comparison with their analogue counterparts, 
two CNN schemes have larger RMSEs (4.6 versus 2.7 for 
(uq)(vq)w500tpw and 3.5 versus 3.1 for (uq)(vq)w500q2m) in 
the calibration but lower RMSEs in the validation periods 
(3.3 and 4.3 versus 5.4). The larger RMSEs of analogue 
schemes in the validation period are likely attributed to 
their significant underestimation of extreme frequency 
from 2014 to 2019 (Figure 6a).

4.4.4 No-balance 

Figure 11 shows performance measures of 19 single-variate 
CNN schemes trained with the original data set (no-bal-
ance) for PCCA and MWST in the validation period. The 
result of rh500

is not shown for PCCA due to its zero hit and negative 
skill scores. One distinct difference from the oversampling 

Figure 10. As in Figure 9, but for MWST summer extreme precipitation frequency.
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Figure 9. a) Interannual variations of PCCA winter extreme precipitation frequency obtained from selected Cnn schemes trained 
with the oversampled data set and the observation (obs) during the calibration (1980–2005) and validation (2006–19) periods. b) 
RMSe (bar) and temporal correlations (scatter, aligned with the corresponding bar for each scheme) between various Cnn schemes 
and observation during two periods. MeRRA2_Pc is included for a reference.
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Table 3. Correlations and RMSes of MeRRA2 precipitation and Cnn schemes trained with the oversampled data set for PCCA and 
MWST during two periods. “Cal” and “Val” represent “calibration” and “validation”, respectively. The normal font in the “Correlation” 
column indicates that the correlations are significant at the 0.01 level. The bold font in the “Correlation” column indicates that the 
correlations are not significant at the 0.05 level. “#” in the “Correlation” column indicates that the correlations are significant at the 
0.05 level, but not at the 0.01 level. “*” in the “RMSe” column indicates that the RMSes are better than MeRRA2_Pc.

PCCA MWST

Correlation RMSE Correlation RMSE

Cal Val Cal Val Cal Val Cal Val

MERRA2_P 0.68 0.8 2.43 1.71 0.73 0.71 7.39 8.17
MERRA2_Pc 0.87 0.95 1 1.07 0.7 0.79 4.49 5.93
u2m 0.56 0.78 3.51 1.96 0.69 0.13 7.52 5.13*
u10m 0.71 0.73 2.32 1.9 0.66 0.24 3.08* 6.12
u500 0.64 0.84 2.82 3.67 0.75 0.22 12.22 9.83
v2m 0.66 0.67 # 2.9 2.72 0.58 -0.04 6.41 5.81*
v10m 0.77 0.67 # 2.67 2.96 0.72 0.09 7.53 5.95
v500 0.51 0.58 # 3.55 3 0.37 0.31 11.03 6.6
tdew2m 0.65 0.79 1.99 1.82 0.68 0.72 11.41 8.05
t2m 0.76 0.7 3.06 4.52 0.69 0.72 11.68 9.43
t10m 0.82 0.7 2.59 2.73 0.78 0.13 9.69 6.63
t500 0.61 0.83 1.99 1.73 0.77 0.52 5.7 4.72*
q2m 0.79 0.77 1.86 2 0.93 0.66 # 5.45 4.44*
q10m 0.61 0.67 # 2.5 2.35 0.84 0.69 10.12 9.87
q500 0.75 0.81 2.02 1.9 0.68 0.36 8.53 5.26*
rh700 0.69 0.8 2.15 1.78 0.53 0.41 8.98 6.52
rh500 0.71 0.85 1.21 1.9 0.68 -0.11 9.56 6.18
tpw 0.6 0.87 2.75 1.41 0.87 0.68 7.33 4.96*
w500 0.77 0.88 1.84 1.64 0.84 0.74 6.59 5.15*
uq 0.7 0.95 2.56 2.27 0.81 0.29 6.67 5.97
vq 0.77 0.88 2.51 1.86 0.77 0.42 7.66 5.76*
(uq)(vq) 0.79 0.87 1.65 2.09 0.82 0.3 5.08 5.27*
(uq)(vq)tpw 0.82 0.89 1.96 1.36 0.76 0.72 5.51 4.06*
(uq)(vq)q2m 0.83 0.86 1.97 1.59 0.39 # 0.64 # 6.57 3.56*
(uq)(vq)w500tpw 0.81 0.85 2.28 1.64 0.89 0.71 4.62 3.31*
(uq)(vq)w500q2m 0.8 0.91 1.58 1.3 0.87 0.53 3.5* 4.29*

Figure 11. Performance measures of MeRRA2 precipitation and various Cnn schemes trained with the original dataset during the 
validation period for a) DJF of PCCA and b) JJA of MWST.
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instance is that all the schemes significantly underpredict 
the extreme frequency for both regions, generally less than 
half as often as it occurs. The frequency biases range from 
0.06 to 0.44 in PCCA and from 0.13 to 0.54 in MWST (only 
tdew2m exceeds 0.5). The resulting H values are low in both 
regions, ranging from 0.03 to 0.32 in PCCA and from 0.04 
to 0.2 in MWST. However, the FAR values are quite high. 
In PCCA, only one scheme has the value below 0.4, while 
11 out of 19 schemes have the values exceeding 0.6 with 
the largest as high as 0.8. In MWST, the FAR values vary 
from 0.4 to 0.72. As compared to the oversampling instance, 
the GSS values drop remarkably. In PCCA, GSS values 
range from 0.02 to 0.28 with only one scheme larger than 
0.2 and 11 schemes around or below 0.05. Instead, only 
one out of 19 schemes has the GSS value below 0.1 in the 
oversampling case. In MWST, GSS values vary from 0.02 to 
0.13 versus from 0.1 to 0.24 in the oversampling instance. 
Nevertheless, two instances do share some commonalities. 
In PCCA, (uq), (vq), tpw, w500, and tdew2m are among the 
top-performing schemes in terms of the GSS value with 
(uq) and (vq) the two best, while relative humidity and 
v500 generally have poor performances with rh500 the worst. 
MWST presents the similar top-ranking schemes to PCCA 
except for tdew2m, but the relative humidity and zonal winds 
at 10m and 500hPa give the overall poor performances. 
Since the performances of all the schemes in the no-balance 
case are much poorer than their oversampling counterparts, 
we will not discuss it further.

5. Summary and Discussions
Prediction of extreme precipitation event has long been a 
challenge due to its infrequent and irregular occurrence as 
well as different types of weather systems involved. In general, 
synoptic-scale atmospheric dynamics and thermodynamics 
associated with extreme precipitation are more reliably sim-
ulated in general circulation models (GCMs) than mesoscale 
precipitation, and therefore have shown great promise for 
predictability via statistical downscaling. In this study, we 
demonstrate the use of LSMPs as predictors of extreme pre-
cipitation (99th percentile event) occurrence in two regions of 
the United States where extreme precipitation regimes exhibit 
distinct seasonality and circulation patterns, namely, the win-
ter season of the ‘‘Pacific Coast California’’ (PCCA) and the 
summer season of the Midwestern United States (MWST). 
The potential predictability is explored using two machine 
learning approaches of different complexity. One is a relatively 
simple analogue method which has been successfully applied 
to detect the occurrence of heavy precipitation (95th percentile 
events) in these two regions (Gao et al., 2014, 2017; Gao and 
Schlosser, 2018). The other is Convolutional Neural Networks 
(CNNs), one of the widely used deep learning algorithms. We 
evaluate the LSMPs constructed with a large set of variables 
at multiple atmospheric levels in order to understand the 

relative importance of each variable for predicting extreme 
precipitation occurrence and how it varies by season and 
region. The prediction skill of various schemes is quantified 
using a variety of complementary performance measures. 
Our study demonstrates that LSMPs provide useful pre-
dictability of extreme precipitation  occurrence at a daily 
scale (only the results of the validation period is summa-
rized). However, the prediction skill is strongly affected by 
the region/season, the choice of a meteorological variable 
or combination of variables, and the employed method. In 
both regions, analogue schemes tend to underpredict the 
event. A majority of CNN schemes trained with the over-
sampled data significantly overpredict the event frequency, 
while all the CNN schemes trained with the original data 
(no-balance) strongly underpredict the event. The CNN 
schemes trained with the oversampled data present more 
skillful predictions than those with the original data. For 
the winter extreme precipitation event in PCCA, 15 (20) 
out of 19 single-variate (all 24) schemes present GSS values 
around or above 0.2 (maximum 0.32) in the oversampling 
case with only 2 schemes in the no-balance case. Analogue 
schemes exhibit comparable prediction skills to those of the 
oversampled data with GSS values of 0.17 for the (uv)500 group 
and 0.25 for the (uq)(vq) group. Although the performances 
of both analogue and CNN schemes are not as good as that 
of MERRA2_Pc (0.41), they are at least comparable or su-
perior to MERRA2_P (0.21), particularly in consideration 
of MERRA2 precipitation being observation-assimilated. 
All the analogue schemes and a majority of CNN schemes 
trained with the oversampled data reproduce the observed 
interannual variations of extreme frequency reasonably well 
with the temporal correlations significant at the 0.01 level. 
MERRA2_Pc has the lowest RMSE (~ 1 day), while analogue 
schemes (1.3 ~ 1.8 days) are comparable to MERRA2_P (1.7 
days). CNN schemes tend to overestimate the frequency in 
most years with the largest RMSEs (1.3 ~ 4.5 days). For the 
summer extreme precipitation event in MWST, the predic-
tion skills by all the schemes and MERRA2 precipitation are 
lower than in PCCA, attributed to the weaker synoptic-scale 
forcing in the warm season. GSS values of the CNN schemes 
based on the oversampled data range from 0.1 to 0.237, while 
those based on the original data range from 0.02 to 0.13 
with 11 schemes less than 0.1. The GSS values of analogue 
schemes range from 0.1 to 0.14, comparable to their two CNN 
counterparts. MERRA2_P and MERRA2_Pc retain similar 
prediction skills (GSS values 0.23 and 0.26, respectively) and 
both outperform all the other schemes except for the one 
best scheme trained with the oversampled data. More than 
half of the CNN schemes based on the oversampled data do 
not track the observed year-to-year variations of extreme 
events well with correlation coefficients not significant at 
the 0.05 level. Only the (uq)(vq) group of analogue schemes 
presents the correlations significant at the 0.05 level, while 
both MERRA2 precipitation have the correlations significant 
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at the 0.01 level. Analogue schemes and most CNN schemes 
based on the oversampled data show comparable RMSEs 
to or lower RMSEs than MERRA2_Pc (5.9 days) and much 
lower RMSEs than MERRA2_P (8.2 days).
Regardless of the regions (seasons) examined here, there is 
no single scheme in any of two methods that will perform 
consistently the best in detecting extreme precipitation 
occurrence at a daily scale and its interannual variation 
during both the calibration and validation periods. Nev-
ertheless, one notable finding is that vertically-integrated 
variables generally provide higher prediction skill (in the 
validation) than those of a single level. Among the sin-
gle-variate CNN schemes based on the oversampled data, 
(uq) and (vq) unanimously perform the best in predicting 
daily extreme precipitation occurrence followed by w500 and 
tpw over both regions. Surface temperature and horizon-
tal wind speeds, relative humidity at the lower (700hpa) 
and middle (500hPa) troposphere, and horizontal wind 
speeds at the middle troposphere usually offer relatively 
low prediction skill variably over both regions. The ad-
vantage of vertically-integrated variables is also seen in 
the analogue schemes with the (uq)(vq) group usually 
outperforming the (uv)500 group over both regions. Previous 
studies have also documented Integrated Vapor Transport 
(IVT, equivalent to the magnitude of “uq” and “vq”) as a 
very important ingredient for extreme precipitation pro-
duction (Nakamura et al., 2013; Agel et al., 2019) and its  
high relevance in predicting ARs (Gao et al., 2015) and 
regional precipitation extremes (Knighton et al., 2019). 
Combination of multiple variables, even the collinear ones, 
seems to help improve prediction skill. Although it is not 
ensured that such multi-variate schemes outperform the 
best single-variate one, their performances are fairly robust 
and generally superior to most single-variate schemes.
Our interpretation of prediction skill has so far been based 
solely on the GSS values without taking into account the 
frequency bias of each scheme. There are large differences in 
the frequency bias of various CNN schemes, which some-
what complicates the evaluation of their relative prediction 
performances. It is often recognized that the forecast with 
the larger bias (the wetter forecast) tends to have a higher 
GSS than if the two forecasts have the same bias. However, 
it is not obvious how much and in what way GSS values 
are affected by frequency bias. For example, what specific 
value of frequency bias may help or hurt GSS value of 
particular scheme? The H value could be increased by 
forecasting the event more often, but the FAR value might 
also rise. The actual impact on GSS value will depend on 
their relative increases and may result in the difference in 
the benefit from the elevated bias. Although the identified 
top-performing CNN schemes tend to overforecast (B > 1), 
their frequency biases are moderate (1.2 ~ 1.4) among all. 
In addition, the analogue schemes tend to underforecast 

(B < 1), but have comparable GSS values to their CNN 
counterparts. These results imply that the high prediction 
skills of top-performing CNN schemes cannot be solely 
attributed to the overprediction artifact. In terms of other 
prediction accuracy measures, ET and HSS follow the 
similar pattern of variations to GSS with the differences 
in magnitude, while SEDI largely resembles H.
For the two methods employed in this study, the analogue 
method mainly relies on characterizing the similarity of daily 
LSMPs to their corresponding composites averaged from the 
ensemble of observed extreme events, while CNNs utilizes 
multiple layers of artificial neurons and filters to extract the 
relevant features from complex, hierarchical high-dimen-
sional data. Both methods require no assumptions about the 
normality, linearity or continuity of the data sample. However, 
each method has its own advantage and disadvantage. The 
analogue method is straightforward to implement. In partic-
ular, it can be calibrated to be unbiased (B = 1) before being 
used for the prediction and therefore prediction skills from 
different schemes (combinations of variables) are directly 
comparable. One limitation of analogue method is that only 
one distinct LSMP of each variable (composites) is considered 
to support the occurrence of extreme precipitation. The main 
advantage of CNN is that it enables capturing or learning 
location invariant features of different levels automatically. 
This could be particularly useful when there is a slight shift 
in the relevant features of LSMPs associated with extreme 
precipitation occurrence. However, there could be a large 
difference in the frequency bias of various CNN schemes 
trained with the same dataset, which somewhat complicates 
the evaluation of their relative skills. CNN schemes may also 
be prone to overfitting or suffer from the issue of physical 
interpretability. Nevertheless, some arbitrariness is inevitable 
in determining either hyperparameters in CNN (i.e. num-
ber of hidden layers, filter size, etc.) or criteria in analogue 
method (i.e. spatial domain to calculate spatial correlation, 
specific multi-variate condition, etc.). Such choice could lead 
to minor differences in the resulting skills and often there 
is no simple rule of thumb to obtain their optimal values. 
In addition, non-stationarity of the relationships between 
the LSMPs and extreme precipitation occurrence has been 
a common major challenge for both methods. 
Prediction of extreme precipitation events at a regional 
scale is of great significance due to their severe impacts on 
society. One immediate question is: is there any true skill in 
forecasting these rare events? If so, how much? Our results 
suggest the answer is yes and quite a bit. Overall, CNN 
seems more powerful in extracting the relevant features 
associated with extreme precipitation from the LSMPs 
than analogue method, with several single-variate CNN 
schemes achieving more skillful prediction than the best 
multi-variate analogue scheme in PCCA and more than 
half of CNN schemes in MWST. It is possible that there 
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is more predictability to be harvested from the LSMPs 
than we realized from this exercise. It should be noted 
that the specific details of the results of this investigation 
are almost certainly dependent on the choices of many 
elements, such as the definition of extreme precipitation 
events, study region, reanalysis data, predictors, hyperpa-
rameters of CNN, criteria of analogue method, etc. Few of 
the studies are directly comparable because these elements 
and employed approaches are quite varied. To improve 
prediction skill, oversampling strategy could be explored 
for the analogue method as well. The application of CNN 
in our study is purely data-driven and the constructed 
model may not be well generalizable beyond the data on 

which it is trained. This problem becomes worse when 
there is no enough training data (e.g. extreme weather 
prediction). Future works will focus on knowledge-guided 
machine learning (KGML) models, which stand a better 
chance in safeguarding against non-generalizable features 
by integrating scientific knowledge (explainable physical 
theories) and data synergistically. 

Acknowledgments
 This work was supported by the U.S. Department of Energy (DOE) 
under DE-FOA-0001968 and other government, industry and 
foundation sponsors of the MIT Joint Program on the Science and 
Policy of Global Change. For a complete list of sponsors, see http://
globalchange.mit.edu/sponsors/.

6. References
Agel, L., M. Barlow, S.B. Feldstein & W.J. Gutowski Jr. (2018). 

Identification of large-scale meteorological patterns associated 
with extreme precipitation in the US northeast. Clim. Dyn., 50, 
1819–1839, doi: 10.1007/s00382-017-3724-8

Anandhi, A., V.V. Srinivas, R.S. Nanjundiah & D. Nagesh Kumar 
(2008). Downscaling precipitation to river basin in India for IPCC 
SRES scenarios using support vector machine. Int. J. Climatol., 28: 
401-420, doi: 10.1002/joc.1529

Barlow, M., W.J. Gutowski, J.R. Gyakum, et al. (2019). North 
American extreme precipitation events and related large-scale 
meteorological patterns: a review of statistical methods, 
dynamics, modeling, and trends. Clim. Dyn., 53, 6835–6875, doi: 
10.1007/s00382-019-04958-z.

Boluwade, A., T. Stadnyk, V. Fortin and G. Roy (2017). Assimilation of 
precipitation Estimates from the Integrated Multisatellite Retrievals 
for GPM (IMERG, early Run) in the Canadian Precipitation 
Analysis (CaPA). J. Hydrology: Regional Studies. 14, 10-22.

Bosilovich, M.G. (2013). Regional climate and variability of NASA 
MERRA and recent reanalyses: US summertime precipitation 
and temperature. J. Appl. Meteorol. Climatol., 52: 1939–1951. doi: 
10.1175/JAMC-D-12-0291.1 

Bosilovich, M.G., R. Lucchesi & M. Suarez (2016). MERRA-2: file 
specification. GMAO Office Note No. 9 (Version 1.1): p 73. http://
gmao. gsfc.nasa.gov/pubs/office_notes

Buda M, A. Maki & M.A. Mazurowski (2018). A systematic study of 
the class imbalance problem in convolutional neural networks. 
Neural Networks, 106, 249-259.

Carbone, R.E., J.D. Tuttle, D.A. Ahijevych & S.B. Trier (2002). 
Inferences of predictability associated with warm season 
precipitation episodes. J. Atmos. Sci., 59, 2033–2056. 

Casola, J.H. & J.M. Wallace (2007). Identifying weather regimes in the 
wintertime 500-hpa geopotential height field for the Pacific– North 
American sector using a limited-contour clustering technique. 
J. Appl. Meteor., 46, 1619–1630, doi:10.1175/JAM2564.1.

Cavazos, T. (2000). Using self-organizing maps to investigate extreme 
climate events: An application to wintertime precipitation in the 
Balkans. J. Climate, 13, 1718–1732.

Chen, X., L.R. Leung, Y. Gao, et al. (2018). Predictability of extreme 
precipitation in western U.S. watersheds based on atmospheric 
river occurrence, intensity, and duration. Geophys. Res. Lett., 45, 
11,693– 11,701, doi: 10.1029/2018GL079831 

Chen, C. & T. Knutson (2008). On the verification and compari- son 
of extreme rainfall indices from climate models. J. Climate, 21, 
1605–1621, doi:10.1175/2007JCLI1494.1. 

Chollet, F. (2015). Keras. https://keras.io.
Christensen J.H., T.R. Carter, M. Rummukainen & G. Amanatidis 

(2007). Evaluating the performance and utility of regional climate 
models: the PRUDENCE project. Clim. Chang., 81(Suppl 1): 1–6, 
doi: 10.1007/s10584-006-9211-6 

DeAngelis, A.M., A.J. Broccoli & S.G. Decker (2013). A comparison 
of CMIP3 simulations of precipitation over North America 
with observations: Daily statistics and circulation features 
accompanying extreme events. J. Climate, 26, 3209–3230, 
doi:10.1175/JCLI-D-12-00374.1.

Dirmeyer, P.A. & J.L. Kinter III (2010). Floods over the U.S. Midwest: 
A regional water cycle perspective. J. Hydrometeor., 11, 1172–
1181, doi:10.1175/2010JHM1196.1.

Farnham, D.J., J. Doss‐Gollin & U. Lall, U. 2018: Regional extreme 
precipitation events: Robust inference from credibly simulated 
GCM variables. Water Resour. Res., 54, 3809– 3824, doi: 
10.1002/2017WR021318. 

Ferro, C.A.T. & D.B. Stephenson (2011). Extremal dependence indices: 
improved verification measures for deterministic forecasts of rare 
binary events. Weather Forecast. 26: 699–713. 

Gao, X. & C.A. Schlosser (2019). Mid-Western US heavy 
summer-precipitation in regional and global climate models: the 
impact on model skill and consensus through an analogue lens. 
Clim. Dyn., 52, 1569–1582, doi: 10.1007/s00382-018-4209-0

Gao, X., C.A. Schlosser, P.A. O’Gorman, E. Monier & D. Entekhabi 
(2017). Twenty-first-century changes in US regional heavy 
precipitation frequency based on resolved atmospheric patterns. 
J. Clim. 30: 2501–2521. 

Gao, X., C.A. Schlosser, P. Xie, E. Monier & D. Entekhabi (2014). 
An analogue approach to identify heavy precipitation events: 
Evaluation and application to CMIP5 climate models in 
the United States. J. Climate, 27, 5941–5963, doi:10.1175/ 
JCLI-D-13-00598.1.

Gao, Y., J. Lu, L.R. Leung, et al. (2015). Dynamical and 
thermodynamical modulations on future changes of landfalling 
atmospheric rivers over western North America, Geophys. Res. 
Lett., 42, 7179– 7186, doi:10.1002/2015GL065435. 

Gershunov, A. et al., (2019). Precipitation regime change in Western 
North America: The role of Atmospheric Rivers. Sci. Rep., 9, 9944. 
https://doi.org/10.1038/s41598-019-46169-w

MIT JOInT PROGRAM On THe SCIenCe AnD POLICY OF GLOBAL CHAnGe  RePORT 353

19

https://doi.org/10.1007/s00382-017-3724-8
https://doi.org/10.1002/joc.1529
https://doi.org/10.1007/s00382-019-04958-z
https://doi.org/10.1175/JAMC-D-12-0291.1
http://gmao. gsfc.nasa.gov/pubs/office_notes
http://gmao. gsfc.nasa.gov/pubs/office_notes
http://doi.org/10.1175/JAM2564.1
https://doi.org/10.1029/2018GL079831
http://doi.org/10.1175/2007JCLI1494.1
https://keras.io
https://doi.org/10.1007/s10584-006-9211-6
http://doi.org/10.1175/JCLI-D-12-00374.1
http://doi.org/10.1175/2010JHM1196.1
https://doi.org/10.1002/2017WR021318
https://doi.org/10.1007/s00382-018-4209-0
http://doi.org/10.1175/ JCLI-D-13-00598.1
http://doi.org/10.1175/ JCLI-D-13-00598.1
https://doi.org/10.1002/2015GL065435
https://doi.org/10.1038/s41598-019-46169-w


Haiden, T. and S. Duffy (2016). Use of high-density observations in 
precipitation verification.

ECMWF Newsletter No. 147.
Higgins, R.W., W. Shi, E. Yarosh & R. Joyce (2000). Improved United 

States Precipitation Quality Control System and Analysis. NCEP/
Climate Prediction Center Atlas No. 7. [Available online at http://
www.cpc.ncep.noaa.gov/research_papers/ ncep_cpc_atlas/7/
index.html.] 

Higgins, R.W., V. Silva, W. Shi & J. Larson (2007). Relationships between 
climate variability and fluctuations in daily precipitation over the 
United States. J. Climate, 20, 3561–3579, doi:10.1175/JCLI4196.1. 

Hohenegger, C. & C. Schar (2007). Atmospheric Predictability at 
Synoptic Versus Cloud-Resolving Scales. Bull. Amer. Meteor. Soc., 
88, 1783–1794, doi: 10.1175/BAMS-88-11-1783.

Hope, P.K. (2006). Projected future changes in synoptic systems 
influencing southwest Western Australia. Clim. Dyn., 26, 
765–780, doi: 10.1007/s00382-006-0116-x.

Huff, F.A. & James R. Angel (1992). Rainfall Frequency Atlas of the 
Midwest. Illinois State Water Survey, Champaign, Bulletin 71. 

Japkowicz, N. & S. Stephen (2002). The class imbalance problem: A 
systematic study. Intelligent Data Analysis, 6(5):429–449. 

Jewson, S. (2020). An Alternative to PCA for Estimating Dominant 
Patterns of Climate Variability and Extremes, with Application 
to U.S. and China Seasonal Rainfall. Atmosphere, 11, 354, doi: 
10.3390/atmos11040354.

Kawazoe, S. & W.J. Gutowski (2013). Regional, very heavy daily 
precipitation in CMIP5 simulations. J. Hydrometeor., 14: 1228–1242. 

Kharin, V.V., F.W. Zwiers & M. Wehner (2013). Changes in 
temperature and precipitation extremes in the CMIP5 ensemble. 
Climatic Change, 119, 345–357, doi:10.1007/s10584-013-0705-8. 

Knighton, J., G. Pleiss, E. Carter, et al. (2019). Potential Predictability 
of Regional Precipitation and Discharge Extremes Using 
Synoptic-Scale Climate Information via Machine Learning: 
An Evaluation for the Eastern Continental United States. 
J. Hydrometeor., 20, 883–900, doi: 10.1175/JHM-D-18-0196.1.

Lamjiri, M.A., M.D. Dettinger, F.M. Ralph & B. Guan (2017). 
Hourly storm characteristics along the U.S. west coast: Role of 
atmospheric rivers in extreme precipitation. Geophys. Res. Lett., 
44, 7020–7028, doi: 10.1002/2017GL074193

Lennard, C. & G. Hegerl (2015). Relating changes in synoptic 
circulation to the surface rainfall response using self-organising 
maps. Clim. Dyn., 44, 861–879, doi: 10.1007/s00382-014-2169-6.

Leung, L.R. & Y. Qian (2009). Atmospheric rivers induced heavy 
precipitation and flooding in the western U.S. simulated by the 
WRF regional climate model. Geophys. Res. Lett., 36, L03820, doi: 
10.1029/2008GL036445

Li, J. & B. Wang (2018). Predictability of summer extreme 
precipitation days over eastern China. Clim. Dyn., 51, 4543–4554, 
doi: 10.1007/s00382-017-3848-x

Loikith, P.C., B.R. Lintner & A. Sweeney (2017). Characterizing 
Large-Scale Meteorological Patterns and Associated Temperature 
and Precipitation Extremes over the Northwestern United States 
Using Self-Organizing Maps. J. Climate, 30, 2829–2847, doi: 
10.1175/JCLI-D-16-0670.1.

Lu, M., U. Lall, J. Kawale, S. Liess & V. Kumar (2016). Exploring the 
Predictability of 30-Day Extreme Precipitation Occurrence Using 
a Global SST–SLP Correlation Network. J. Climate, 29, 1013–
1029, doi: 10.1175/JCLI-D-14-00452.1.

Maraun, D. et al., (2010). Precipitation downscaling under climate 
change: Recent developments to bridge the gap between 
dynamical models and the end user. Rev. Geophys., 48, RG3003, 
doi:10.1029/2009RG000314. 

Mazurowski,  M.A., P.A. Habas, J.M. Zurada, J.Y. Lo, J.A. Baker & 
G.D. Tourassi. (2008). Training neural network classifiers for 
medical decision making: The effects of imbalanced datasets on 
classification performance. Neural Networks, 21(2):427– 436.

Milrad, S.M., E.H. Atallah, J.R. Gyakum & G. Dookhie (2014). 
Synoptic typing and precursors of heavy warm-season 
precipitation events at Montreal, Quebec. Weather Forecast, 29, 
419–444, doi: 10.1175/WAF-D-13-00030.1. 

Min, S.K., X. Zhang, F.W. Zwiers & G.C. Hegerl (2011). Human 
contribution to more-intense precipitation extremes. Nature, 470, 
378–381, doi:10.1038/nature09763. 

Molod, A., L. Takacs, M. Suarez & J. Bacmeister (2015). Development of 
the GEOS-5 atmospheric general circulation model: evolution from 
MERRA to MERRA2. Geosci. Model Dev., 8:1339–1356. 

Nakamura, J., U. Lall, Y. Kushnir, et al.  (2013). Dynamical Structure 
of Extreme Floods in the U.S. Midwest and the United Kingdom. 
J. Hydrometeorology, 14(2): 485-504. 

North, R., M. Trueman, M. Mittermaier & M.J. Rodwell (2013). An 
assessment of the SEEPS and SEDI metrics for the verification of 
6 h forecast precipitation accumulations. Met. Apps, 20: 164-175, 
doi: 10.1002/met.1405

Ralph, F.M., P.J. Neiman, G.A. Wick, et al. (2006). Flooding on 
California’s Russian River: Role of atmospheric rivers. Geophys. 
Res. Lett., 33, L13801, doi: 10.1029/2006GL026689 

Reichle R., Q. Liu, R. Koster, et al. (2017). Land Surface Precipitation 
in MERRA-2. J. Clim., 30, 1643–1664. 

Reusch, D.B., R.B. Alley & B.C. Hewitson (2005). Relative 
performance of self-organizing maps and principal component 
analysis in pattern extraction from synthetic climatological data. 
Polar Geogr., 29, 188–212, doi:10.1080/789610199. 

Rodwell, M.J. et al., (2015). New developments in the diagnosis and 
verification of high-impact weather forecasts. ECMWF Technical 
Memorandum No. 759.

Sachindra, D.A., F. Huang, A. Barton & B.J.C. Perera (2014). Statistical 
downscaling of general circulation model outputs to catchment 
scale hydroclimatic variables: Issues, challenges and possible 
solutions. J. Water Clim. Change, 5(4): 496-525.

Schlef, K.E., H. Moradkhani & U. Lall (2019). Atmospheric 
circulation patterns associated with extreme united states floods 
identified via machine learning. Sci. Rep., 9, 7171, doi: 10.1038/
s41598-019-43496-w

Schumacher, R.S. & C.A. Davis (2010). Ensemble-Based Forecast 
Uncertainty Analysis of Diverse Heavy Rainfall Events. Wea. 
Forecasting, 25, 1103–1122, doi: 10.1175/2010WAF2222378.1.

Sillmann, J., V.V. Kharin, F.W. Zwiers, et al. (2013). Climate extremes 
indices in the CMIP5 multimodel ensemble: Part 2. Future 
climate projections. J. Geophys. Res. Atmos., 118, 2473–2493, doi: 
10.1002/ jgrd.50188. 

Sukovich, E.M., F.M. Ralph, F.E. Barthold, et al. (2014). Extreme 
quantitative precipitation forecast performance at the weather 
prediction center from 2001 to 2011. Wea. Forecasting, 29, 894-911.

Wang, C. (2014). On the calculation and correction of Equitable 
Threat Score for model quantitative precipitation forecasts for 
small verification areas: the example of Taiwan. Weather and 
Forecasting, 29(4): 788-798.

Wehner, M.F. (2013). Very extreme seasonal precipitation in the 
NARCCAP ensemble: model performance and projections. Clim. 
Dyn. 40, 59–80, doi: 10.1007/s00382-012-1393-1 

Wehner, M.F. et al., (2014). The effect of horizontal resolution on 
simulation quality in the Community Atmospheric Model, CAM5.1. 
J Model Earth Syst 6: 980–997, doi: 10.1002/2013MS000276 

RePORT 353 MIT JOInT PROGRAM On THe SCIenCe AnD POLICY OF GLOBAL CHAnGe

20

http://www.cpc.ncep.noaa.gov/research_papers/ ncep_cpc_atlas/7/index.html
http://www.cpc.ncep.noaa.gov/research_papers/ ncep_cpc_atlas/7/index.html
http://www.cpc.ncep.noaa.gov/research_papers/ ncep_cpc_atlas/7/index.html
http://doi.org/10.1175/JCLI4196.1
https://doi.org/10.1175/BAMS-88-11-1783
https://doi.org/10.1007/s00382-006-0116-x
https://doi.org/10.3390/atmos11040354
http://doi.org/10.1007/s10584-013-0705-8
https://doi.org/10.1175/JHM-D-18-0196.1
https://doi.org/10.1002/2017GL074193
https://doi.org/10.1007/s00382-014-2169-6
https://doi.org/10.1029/2008GL036445
https://doi.org/10.1007/s00382-017-3848-x
https://doi.org/10.1175/JCLI-D-16-0670.1
https://doi.org/10.1175/JCLI-D-14-00452.1
https://doi.org/10.1029/2009RG000314
https://doi.org/10.1175/WAF-D-13-00030.1
http://doi.org/10.1038/nature09763
https://doi.org/10.1002/met.1405
https://doi.org/10.1029/2006GL026689
http://doi.org/10.1080/789610199
https://doi.org/10.1038/s41598-019-43496-w
https://doi.org/10.1038/s41598-019-43496-w
https://doi.org/10.1175/2010WAF2222378.1
http://doi.org/10.1002/ jgrd.50188
https://doi.org/10.1007/s00382-012-1393-1
https://doi.org/10.1002/2013MS000276


Joint Program Report Series - Recent Articles
For limited quantities, Joint Program Reports are available free of charge. Contact the Joint Program Office to order.  

Complete list: http://globalchange.mit.edu/publications

MIT Joint Program on the Science and Policy  
of Global Change

Massachusetts Institute of Technology 
77 Massachusetts Ave., E19-411  
Cambridge MA 02139-4307 (USA)

T (617) 253-7492 F (617) 253-9845 
globalchange@mit.edu 
http://globalchange.mit.edu/

353. Predictability of U.S. Regional Extreme Precipitation 
Occurrence Based on Large-Scale Meteorological Patterns 
(LSMPs). Gao & Mathur, Jun 2021

352. Toward Resilient Energy Infrastructure: Understanding 
the Effects of Changes in the Climate Mean and Extreme 
Events in the Northeastern United States. Komurcu & 
Paltsev, Jun 2021

351. Meeting Potential New U.S. Climate Goals. Yuan et al., 
Apr 2021

350. Hydroclimatic Analysis of Climate Change Risks to Global 
Corporate Assets in Support of Deep-Dive Valuation. 
Strzepek et al., Apr 2021

349. A Consistent Framework for Uncertainty in Coupled 
Human-Earth System Models. Morris et al., Mar 2021

348. Changing the Global Energy System: Temperature 
Implications of the Different Storylines in the 2021 Shell 
Energy Transformation Scenarios. Paltsev et al., Feb 2021

347. Representing Socio-Economic Uncertainty in Human 
System Models. Morris et al., Feb 2021

346. Renewable energy transition in the Turkish power sector: 
A techno-economic analysis with a high-resolution power 
expansion model, TR-Power. Kat, Feb 2021

345. The economics of bioenergy with carbon capture and 
storage (BECCS) deployment in a 1.5°C or 2°C world. 
Fajardy et al., Nov 2020

344. Future energy: In search of a scenario reflecting current and 
future pressures and trends. Morris et al., Nov 2020

343. Challenges in Simulating Economic Effects of Climate 
Change on Global Agricultural Markets. Reilly et al., 
Aug 2020

342. The Changing Nature of Hydroclimatic Risks across South 
Africa. Schlosser et al., Aug 2020

341. Emulation of Community Land Model Version 5 (CLM5) 
to Quantify Sensitivity of Soil Moisture to Uncertain 
Parameters. Gao et al., Feb 2020

340. Can a growing world be fed when the climate is changing? 
Dietz and Lanz, Feb 2020

339. MIT Scenarios for Assessing Climate-Related Financial Risk. 
Landry et al., Dec 2019

338. Deep Decarbonization of the U.S. Electricity Sector: Is 
There a Role for Nuclear Power? Tapia-Ahumada et al., 
Sep 2019

337. Health Co-Benefits of Sub-National Renewable Energy 
Policy in the U.S. Dimanchev et al., Jun 2019

336. Did the shale gas boom reduce US CO2 emissions? Chen 
et al., Apr 2019

335. Designing Successful Greenhouse Gas Emission Reduction 
Policies: A Primer for Policymakers – The Perfect or the 
Good? Phillips & Reilly, Feb 2019

334. Implications of Updating the Input-output Database of 
a Computable General Equilibrium Model on Emissions 
Mitigation Policy Analyses. Hong et al., Feb 2019

333. Statistical Emulators of Irrigated Crop Yields and Irrigation 
Water Requirements. Blanc, Aug 2018

332. Turkish Energy Sector Development and the Paris 
Agreement Goals: A CGE Model Assessment. Kat et al., 
Jul 2018

331. The economic and emissions benefits of engineered wood 
products in a low-carbon future. Winchester & Reilly, Jun 2018

330. Meeting the Goals of the Paris Agreement: Temperature 
Implications of the Shell Sky Scenario. Paltsev et al., 
Mar 2018

329. Next Steps in Tax Reform. Jacoby et al., Mar 2018

328. The Economic, Energy, and Emissions Impacts of Climate 
Policy in South Korea. Winchester & Reilly, Mar 2018

327. Evaluating India’s climate targets: the implications of 
economy-wide and sector specific policies. Singh et al., 
Mar 2018

326. MIT Climate Resilience Planning: Flood Vulnerability Study. 
Strzepek et al., Mar 2018

325. Description and Evaluation of the MIT Earth System Model 
(MESM). Sokolov et al., Feb 2018

324. Finding Itself in the Post-Paris World: Russia in the New 
Global Energy Landscape. Makarov et al., Dec 2017

323. The Economic Projection and Policy Analysis Model for 
Taiwan: A Global Computable General Equilibrium Analysis. 
Chai et al., Nov 2017

322. Mid-Western U.S. Heavy Summer-Precipitation in Regional 
and Global Climate Models: The Impact on Model Skill and 
Consensus Through an Analogue Lens. Gao & Schlosser, 
Oct 2017

321. New data for representing irrigated agriculture in 
economy-wide models. Ledvina et al., Oct 2017

320. Probabilistic projections of the future climate for the world 
and the continental USA. Sokolov et al., Sep 2017


	_GoBack
	1.	Introduction
	2.	Datasets 
	3.	Methods
	3.1	Analogue method
	3.2	CNN
	3.3	Measures of prediction skill

	4.	Results
	4.1	Precipitation characteristics
	4.2	Composites for analogue schemes
	4.3	Prediction skill of analogue schemes
	4.3.1	PCCA
	4.3.2	MWST

	4.4	Prediction skill of CNN schemes
	4.4.1	Oversampling in PCCA
	4.4.2	Oversampling in MWST
	4.4.3	Interannual Variability
	4.4.4	No-balance 


	5.	Summary and Discussions
	6.	References

