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Abstract: Future global socio-economic development pathways and their implications for the environment 
are highly uncertain as are the technology mixes associated with different global environmental targets.  To 
develop a range of possible future outcomes, we develop probability distribution estimates for key input 
parameters of a model of global human activity. Latin Hypercube Sampling is applied to draw 400 samples 
from the probability distributions for each uncertain input variable, including costs of advanced energy 
technologies, energy efficiency trends, fossil fuel resource availability, elasticities of substitution, population, 
and labor and capital productivity. The sampled values are simulated through a multi-sector, multi-region, 
recursively dynamic model of the world economy. The results are 400-member ensemble simulations 
describing future energy and technology mixes as well as GDP and emissions. We find that many patterns 
of energy and technology development are consistent with various long-term environmental pathways 
and that sectoral output for most sectors is little affected through 2050 by the long-term temperature 
target, but with tight constraints on emissions, emission intensities must fall much more rapidly. We also 
combine uncertainty quantification and scenario discovery to investigate scenarios with similar values 
for one outcome and the range of other outcomes in those scenarios. This analysis illustrates how many 
combinations of outcomes can be consistent with an outcome of interest. For example, many different 
technology outcomes can be consistent with high or low economic growth. 
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1. Introduction
There are major uncertainties in human systems that af-
fect how they will evolve over time. Past work to quantify 
these uncertainties has shown them to be of importance 
similar to those in the Earth system itself in determining 
likely future environmental outcomes (Sokolov et al., 2009; 
Webster et al., 2012). There have been a number of un-
certainty studies of future global economic development 
and emissions dating back to the 1980’s (e.g. Reilly, et al. 
1987; Peck and Teisberg, 1993; Nordhaus and Popp, 1997; 
Pizer, 1999; Webster, et al., 2002; Baker, 2005; Hope, 2006; 
Nordhaus, 2008; Webster et al, 2012, Anthoff and Tol, 
2013; Lemoin and McJeon, 2013). However, the global 
economic outlook, technology costs, and other factors 
have changed considerably over the past decade, mak-
ing it useful to revisit these uncertainties. For example, 
there has been slower economic growth than previously 
assumed, falling costs of low-carbon energy options and 
government interventions worldwide directed at expanding 
the role of renewables. Gillingham, et al. (2018) is a more 
recent multi-model uncertainty study, but it focused on 
only two uncertain socio-economic variables—population 
and economic growth. 
A contribution of our study is to undertake an extensive 
assessment of uncertain socio-economic variables. This 
includes uncertainty in the nature of technology develop-
ment and available physical resources to determine what 
patterns of technology and resource use are consistent 
with various environmental outcomes. It also includes 
uncertainty related to the ease of substitution between 
inputs to production.
We undertake formal uncertainty quantification of future 
global socio-economic outcomes—developing probability 
distributions of key model parameters, sampling from the 
distributions, and exploring the range and likelihoods of 
model outcomes. This approach is complementary to other 
approaches for understanding the range of possible future 
outcomes. These include: sensitivity analysis (varying one 
parameter at a time), scenario analysis (creating multiple 
storylines and varying many parameters simultaneously to 
match the story), and comparisons of results from different 
models. An advantage of formal uncertainty quantification 
is that it more completely explores the range of values of 
inputs, and reveals how uncertainties in different variables 
interact. Formal uncertainty quantification is also a way to 
put error bars on projections, increasingly seen as a nec-
essary component of research (CBO, 2005; InterAcademy 
Council, 2010; Gillingham, et al, 2018; Hausfather and 
Peters, 2020).
In our paper, we focus on sectoral outcomes and the tech-
nology mix consistent with different 21st century glob-
al temperature pathways. Section 2 outlines the overall 
methodology. Section 3 briefly describes features of the 

global economic-emissions model used in the uncertainty 
analysis. In Section 4, we discuss the parameters modeled 
as uncertain and the development of probability density 
functions for each. Section 5 provides results. Section 6 
offers concluding remarks.

2. Methodology
To quantify socio-economic uncertainties, we employ 
Monte Carlo analysis. In this approach, we choose prob-
ability-weighted values of all uncertain parameters, and 
then simulate the model hundreds or thousands of times to 
generate probability distributions of outcomes of interest.  
There are several important steps, including: (1) choosing 
a model appropriate to the task, (2) identifying the most 
important uncertain variables and obtaining probability 
distributions for each, (3) sampling from the distribu-
tions, (4) simulating an ensemble of model runs, and (5) 
analyzing the results.
Given our focus on the range of sectoral outcomes and 
technology pathways consistent with different global mean 
surface temperature outcomes, an appropriate model must 
simulate emissions of radiatively active pollutants over the 
longer horizon to capture the long-lasting effects of those 
emissions, include multiple economic sectors, and include 
detail on energy technologies.  The Economic Projection and 
Policy Analysis (EPPA) was designed to be linked with an 
earth system model and, as described in the next section, 
covers multiple sectors of the economy and includes tech-
nology and resource detail so that the cost of technologies 
and availability of different resources can be easily varied.
This study builds on earlier work (Webster et al. 2012; 
2008) where extensive sensitivity analysis was conducted to 
identify the most important model parameters for consid-
eration. A similar set of parameters, with a few additions, 
is included as uncertain here.  Distributions of parameter 
values were developed using statistical analysis of historical 
data, review of the scientific literature and, expert elicitation 
as appropriate (described in Section 3). For example, there 
is substantial econometric work that estimates elasticities of 
substitution among inputs, and standard errors estimated 
in that work is used to estimate uncertainty around the 
elasticity values. For advanced technologies that remain 
immature and without widespread commercialization, there 
is little historical data that could be the basis of statistical 
analysis. Moreover, as the technology matures, historical 
costs are likely not going to be indicative of future costs. 
Fortunately, interest in the potential future cost of these 
technologies has led to studies that attempt to quantify 
future cost ranges, relying on explicit expert elicitation 
methods, or one way or another relying on the judgement 
of experts.
We employ Monte Carlo simulation, using Latin Hypercube 
Sampling (LHS) to draw samples from each input proba-
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bility distribution (Iman and Helton, 1988; McKay et al., 
1979). LHS simply divides the distribution for each variable 
into equal probability segments. The mid-point values for 
each segment of each variable are chosen randomly, without 
replacement.  Each random selection across all variables 
creates one ensemble member. The process generates an 
ensemble size equal to the number of probability segments.  
We used 400-member ensembles, shown to be adequate 
when using LHS, whereas simple random sampling often 
requires thousands or tens of thousands of samples (Web-
ster et al, 2008). This improvement in sampling efficiency is 
important when simulating more computationally-intensive 
models. This sampling strategy assures that every segment 
of the distribution, including segments in the distribution 
tails, is sampled exactly once.
An important contribution to uncertainty is how govern-
ments around the world might intervene to limit emissions 
or advance or limit different technologies.  Our simulation 
strategy is to develop different ensembles that represent 
different levels of intervention in markets rather than rep-
resenting the government interventions as explicitly uncer-
tain. In particular, we introduce constraints on emissions 
consistent with different global mean temperature outcomes.  
This allows us to investigate our primary question: What 
sectoral outcomes and technology mixes are consistent 
with different temperature outcomes?

3. An Economic-Emissions Model of 
the Global Economy

The Economic Projection and Policy Analysis (EPPA) model 
is a recursive-dynamic, multi-region, multi-sector general 
equilibrium model of the world economy (Chen et al., 2016; 
Paltsev et al., 2005).  The version applied here includes an 
updated and expanded number of technology options as 
described below. It was designed to develop projections 

of economic growth, energy transitions and anthropo-
genic emissions of greenhouse gases and air pollutants. 
The model projects economic variables (GDP, energy use, 
sectoral output, consumption, prices, etc.) and emissions 
of greenhouse gases (CO2, CH4, N2O, HFCs, PFCs and 
SF6) and other air pollutants (CO, VOC, NOx, SO2, NH3, 
black carbon, and organic carbon) from combustion of 
carbon-based fuels, industrial processes, waste handling, 
agricultural activities and land use change. The MIT In-
tegrated Global Systems Model (IGSM) (Sokolov et al., 
2017) combines the EPPA model of human activity and the 
MIT Earth System Model (MESM) (Sokolov, et al., 2018) 
of the Earth’s physical and biological systems. It projects 
environmental conditions that result from human activity, 
including concentrations, temperature, precipitation, ice 
and snow extent, sea level, ocean acidity and temperature, 
and vegetation among other outcomes. The IGSM allows 
the development of emissions pathways consistent with 
different 21st century temperature outcomes.

The economic model used in this paper is built on the 
Global Trade Analysis Project Version 8 (GTAP 8) eco-
nomic dataset (Narayanan et al., 2012) which provides a 
consistent representation of regional production, bilateral 
trade flows, and markets. Energy and land markets are 
supplemented with accounting in physical units. This eco-
nomic data is augmented with additional information on 
advanced technologies, greenhouse gases and air pollutants 
emissions, taxes and details of selected economic sectors. 
The data are aggregated to 18 regions (Figure 1) and 18 
sectors (Table 1). Additional detail in the energy sector 
is added in the form of advanced technology alternatives 
that are incorporated using bottom-up engineering detail 
(Table 2). The approaches for defining the costs and pen-
etration of these advanced technologies are described in 
Morris et al. (2019a,b).

Figure 1. regional representation in the global economic model.
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The model’s production and consumption sectors are 
represented by nested Constant Elasticity of Substitution 
(CES) production functions (or the Cobb-Douglas and 
Leontief special cases of the CES) shown in Figure 2 (also 
see Chen et al., 2016; Paltsev et al., 2005 for deviations from 
this structure for specialized sectors such as oil refining 
and agriculture). The base year of the model is 2007. It 
is calibrated to economic and energy data from the IMF 
(2018) and IEA (2017) for 2010 and 2015 and then it is 
solved recursively in 5-year time steps from 2020 to 2100. 
The model is designed for projecting long-term trends, so 
it does not capture business cycles or short-term shocks 
such as those that often occur in, for example, commodity 
markets that play out over periods of less than the 5-year 
time step of the model.

A model solution must meet three conditions: market 
clearance conditions (supply must equal demand), zero 
profits (the cost of inputs should not exceed the price of 
the output), and income balance (expenditures must equal 
income, accounting for savings, subsidies and taxes). Pro-
duction technologies are chosen based on their relative 
competitiveness given the characterization of input re-
quirements for the technology, which, in turn, determine 
the cost of the technology given prices for the inputs. Base 
year prices for all inputs are in the base economic data of 
the model, and future technology costs depend on how 
prices change for inputs used by the technology.  Input 
prices change over time depending on the dynamics of the 
model, including changes in the labor force, investment 
and capital availability, resource availability/depletion and 

Table 1. Sectors and abbreviations.

Abbr. Sector Abbr. Sector Abbr. Sector

CROP Agriculture - Crops ROIL Refined Oil ELEC: hydro Hydro Electricity 
LIVE Agriculture - Livestock GAS Gas EINT Energy-Intensive Industries
FORS Agriculture - Forestry ELEC: coal Coal Electricity OTHR Other Industries
FOOD Food Products ELEC: gas Gas Electricity DWE Dwellings
COAL Coal ELEC: petro Petroleum Electricity SERV Services
OIL Crude Oil ELEC: nucl Nuclear Electricity TRAN Commercial Transport

Table 2. advanced technologies in the energy sector.

First generation biofuels Hydrogen Advanced gas (NGCC) Bio-electricity w/ CCS 
Second generation biofuels Advanced nuclear Advanced gas w/ CCS Wind power combined with bio-electricity 
Oil shale Advanced coal Wind Wind power combined with gas-fired power
Synthetic gas from coal Advanced coal w/ CCS Bio-electricity Solar generation

*CCS = carbon capture and storage. 

Figure 2. example of the CeS nest structure for production sectors in ePPa. Parameters that govern energy demand (and abatement 
costs) are substitution elasticities for energy-non-energy (σ eVa

), labor-capital (σ
Va

), electricity-fuels (σ
eNOe

) and that among fuels (σ
eN

).  
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existing or new policies or constraints. All technologies 
require capital and labor inputs, and so capital and labor 
productivity improvement (a major component of the 
dynamics of the model) drives down technology costs over 
time. The model also traces inter-industry and inter-re-
gional demands. These influences combine to determine 
the resulting technology mix. As applied here, there are 
no environmental feedbacks on the economy.

4. Development of Distributions for 
Uncertain Model Parameters

An uncertainty assessment of a previous version of the 
economic model (Webster et al., 2008) serves as a point of 
departure.  That effort included extensive sensitivity testing 
to identity the most important uncertain parameters. New 
distributions were created for those parameters where a 
review of data and information indicated revisions were 

needed. These include new distributions for population 
growth, GDP growth (determined by labor and capital 
productivity), energy technology costs, energy productivity 
(i.e., autonomous energy efficiency improvement (AEEI)), 
fossil fuel resource availability and the rate of technology 
penetration. Distributions for all uncertain parameters 
are presented in Table 3, followed by a discussion of how 
these were developed. Distributions are normalized to 
have a median of 1 so that when applied the median is the 
reference level for the parameter in the model. Accounting 
for region- and sector-specific distributions, a total of over 
150 distributions are developed. For technology-related 
variables that are sampled separately for regions or sectors 
(e.g., AEEI coefficients and elasticities of substitution), as 
well as other parameters, we specify a correlation structure 
(Table 4), following Webster et al. (2008). Other variables 
such as GDP and population growth among regions also 
are correlated as described in the following sections.  

Table 3. Distributions for uncertain Socio-economic Model Parameters.              * Table continued on next page

Parameter Category Parameter Specific Region/Sector Distribution

Population By Region See Figure 3

GDP (Capital & Labor Productivity) By Region See Table 5

AEEI Each region w/ separate distribution Normal(1,0.55)

Advanced Technology Costs

(Uniform distributions of cost 
scalars with 50% probability 
between minimum and median, 
and 50% between median and 
maximum. Median = 1. [MIN, 
MAX] is given here for each 
technology.)

NGCC [0.798, 1.148]
New Coal [0.643, 1.410]
Nuclear [0.590, 1.558]
Solar [0.542, 2.083]
Wind [0.489, 2.035]
Bioelec [0.504, 1.659]
Gas CCS [0.816, 1.335]
Coal CCS [0.840, 1.536]
BioCCS [0.553, 1.767]
WindGas [0.544, 1.767]
WindBio [0.378, 2.282]
Bio-Oil Pearson5(14.8, 40.6,  Shift(1))

Fossil Fuel Resource Stocks
Oil Beta(1.537,3.5787,0.3405,2.7563)
Gas, Coal Beta(1.1127,2.213,0.2552.7501)

Technology Penetration Rates All advanced technologies Uniform(1.014, 1.589)

Urban Pollutant Initial Inventories

SO2 Each region w/ separate distribution Normal(1,0.3) 
CO ALL Normal(1, 0.25) 
BC, OC, VOC, 
NOx, NH3

ALL Lognormal(1.0439, 0.3132)

CH4

AGRI Beta(1.8, 1.8, 0.4, 1.6)
COAL, OTHR, FOOD Beta(2, 2, 0.89, 1.11)
GAS, OIL, EINT Beta(2, 2, 0.86, 1.14)
FD Beta(1.8, 1.8, 0.96, 1.04)
ROIL Beta(2, 2, 0.86, 1.14)

Note: all distributions are normalized to have a median of 1.               * Table continued on next page
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Table 3 (continued). Distributions for uncertain Socio-economic Model Parameters. 

Parameter Category Parameter Specific Region/Sector Distribution

Urban Emission Trends
SO2, BC, OC Beta(7, 7, 0.155, 3.107) 
NOx, VOC, CO, NH3 Beta(3, 7, 0.4114, 2.467)

Elasticities of Substitution

Energy vs. 
Capital/Labor ALL Normal(1, 0.3)

Electric vs. 
Non-Electric ALL Normal(1, 0.15)

Interfuel 
Substitution

Electricity, Energy Int. Normal(1, 0.25)
All Others Normal(1, 0.15)

Labor vs. 
Capital

Agriculture Gamma(1.2564, 1.0666)
Oil, Coal, Natural Gas Normal(1, 0.087229)
Electricity Gamma(1.2564, 1.0666)
Energy Intensive Normal(1, 0.2158)
Services Gamma(25.82, 0.03923)
Other Beta(4.9776, 5.1354, 0, 2.0338)
Transportation Gamma(42.252, 0.02119) 
Dwellings Beta(4.9776, 5.1354 ,0, 2.0338)
Food Beta(4.9776 ,5.1354, 0, 2.0338)

Energy vs. 
Non-Energy Final Demand Loglogistic(0, 1, 3.9743)

Resource 
Supply Coal, Oil, Natural Gas Beta(1.5, 2.8 ,0.507, 2.03)

Abatement Cost Elasticities

CH4 Elas. In 
Agriculture

USA, CAN Pearson5(4.8285, 4.044)
MEX, IDZ, BRA, AFR, LAM Beta(3.2254, 3.1, 0, 1.957)
JPN Beta(3.207, 4.709, 0.143, 2.303)
ANZ Beta(7.8, 7.8, 0, 2.0)
EUR Beta(2.8, 5.6, 0.042, 2.23)
ROE Beta(5.6, 6.8, 0.024, 0.193)
RUS Beta(3.7, 5.6, 0, 2.56)
ASI, KOR Beta(2.1, 4.1, 0, 3.121)
CHN Loglogistic(-0.053, 1.053, 3.657)
IND Beta(7.57, 11.355, 0.0017, 2.53)
MES Beta(3.2284, 3.46, 0, 2.079)
REA Beta(3.229, 3.4608, 0, 2.0795)

N2O Elas. in 
Agriculture

USA, CAN, JPN, EUR, ANZ, KOR Beta(8.7, 7.8, 0, 1.89)
MEX, ROE, RUS, ASI, CHN, IND, 
BRA, AFR, MES, LAM, REA, IDZ Beta(5.094, 5.294, 0, 2.042)

RUS Beta(7.795, 5.5, 0.2532, 1.517)
ROE Beta(4.2, 4.3, 0, 2.026)

Vintaging ALL Gamma(10.428, 0.09904)

Note: all distributions are normalized to have a median of 1.
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4.1 Population

An advance from the earlier uncertainty analysis using 
the EPPA model is the availability of revised population 
projections that are now explicitly probabilistic (UN, 2015 
Revision). The UN Population Division provides 1,000 
country-level samples of population projections from 2015 
to 2100 in five-year time steps. We aggregated the coun-
try-level projections to the regions in our model, and to 
world population projections. From the 1,000 world pro-
jections, we draw 400 Latin hypercube samples for 2100. 
We then identify the UN projections associated with the 
400 sampled 2100 world populations, and use the corre-
sponding projections for EPPA regions from 2020-2100 
as our 400 samples. These samples reflect the correlation 
of population growth between countries assumed by the 
UN. Figure 3 shows the 5th, 50th and 95th percentiles based 
on the 400 samples, the 1,000 samples from the UN and 
the 10,000 samples from the UN 2015 report. The 400 
samples approximate well the distributions for the larger 
sample sizes. 

4.2 GDP and Labor and Capital Productivity

Under the main formulation of the economic model, GDP 
is endogenous, determined by assumptions about labor 
and capital productivity trends, labor growth, savings and 
investment, and other features of the model’s dynamics.  
The model also has an option to target specific GDP levels 
through a multiplier instrument on capital and labor pro-
ductivity. Because data on GDP growth and its variability 
are more readily available than data on labor and capital 
productivity, we estimate uncertainty in future GDP.  We fol-
low the approach of Webster et al. (2008) using econometric 
forecasting techniques to specify long-run GDP growth in 
each region as a random walk with drift.  Parameterization 
of the stochastic growth model is based on analysis of 
country-level GDP data (Conference Board, 2015) for the 
period 1950-2015 for each region, extending the data series 
by 15 years from that available in Webster et al. (2008). 
We aggregate the historical data to the regional aggrega-
tions in our model so that we directly estimate uncertainty 
in regions relevant to our simulations. We calculate the 
volatility (standard deviation) from the growth rate time 

Table 4. Correlated subsets of uncertainty parameters. 

Parameter
Correlated Across  
(dimensions of matrix)

Correlation Coefficient

AEEI Regions (16x16) 0.9
Elasticity of Substitution (L,K) Sectors (8x8) 0.8
Methane Elasticities (cost) Regions (16x16) 0.8
N2O Elasticities (cost) OECD, LCD, FSU, EET (4x4) 0.8
Fossil Resources Oil, Natural Gas (2x2) 0.9
Urban Pollutant Time Trends Urban Pollutants (7x7) 0.9

Figure 3. World population for the 5th, 50th and 95th percentiles based on 400 samples, 1,000 samples and 10,000 samples 
from the uN. 
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series and use that result to develop normal probability 
distributions of shocks to GDP growth in each region. We 
also estimate the correlation of shocks (excursions from 
the mean) across regions. The drift term (mean) in the 
random walk procedure is based on reference growth rates 
in the model for each region, which reflect current judge-
ments of long-term growth for regions as well as factors 
such as slowing population and labor force growth.  The 
random walk uses the drift term plus randomly sampled 
stochastic shocks to generate 400 sample GDP paths for 
each region in one-year steps from 2015 to 2100. GDP 
growth rates in 5-year steps are then calculated for each 
of the 400 sampled GDP paths. 

For each region and the world aggregate, Table 5 shows 
the average annual GDP growth rates and standard devi-
ations for the historic period of 1950-2015, as well as the 
5th, 50th and 95th percentiles of the projected average annual 
growth rates from 2015-2100.  The random walk with drift 
approach to specifying uncertainty means that growth 
over the long term for any region exhibits less variability 
than for any 5-year time period. Also, global growth is less 
variable (90% probability bounds of 2.1% to 2.5%) than 
any individual region because regional growth rates are 

not perfectly correlated, so that it is unlikely that a sample 
with high (or low) growth in all regions will be drawn.

Each GDP path is consistent with a set of capital and labor 
productivity values. We run an initial ensemble target-
ing the 400 sample GDP paths by using the multiplier 
instrument on labor and capital productivity, holding all 
other variables at their reference levels. From this initial 
ensemble, we obtain a set of 400 trajectories of labor and 
capital productivities over time by region consistent with 
the variability of historical GDP in each region. This set 
of labor and capital productivities is then used in all final 
ensembles, using the endogenous GDP model setting, al-
lowing other uncertain factors such as the population and 
labor force growth, resource availability, energy productivity, 
technology costs, and ease of substitution among inputs 
to affect simulated GDP growth in the final ensembles.

4.3 Advanced Energy Technology Costs 
A principle contribution of this study is to investigate pat-
terns of technology deployment that are consistent with 
different global mean surface temperature targets.  Spec-
ification of the cost of advanced energy technologies will 
directly affect those patterns as the lowest cost technology 
options are chosen in model solutions. Each advanced tech-

Table 5. Mean and standard deviation of historical annual growth rates, and 5th, 50th and 95th percentiles of projected average 
annual growth rates for 2015-2100.

Region
Historical 1950-2015 Projected Average Annual Growth Rate 2015-2100

Av Annual Std Dev 5th 50th 95th

AFR 3.9% 1.7% 3.1% 3.4% 3.7%
ANZ 3.5% 1.7% 1.7% 2.1% 2.5%
ASI 5.8% 2.5% 1.8% 2.3% 2.8%
BRA 4.4% 3.7% 2.1% 3.0% 3.8%
CAN 3.5% 2.4% 1.3% 1.8% 2.3%
CHN 6.9% 5.1% 2.0% 2.9% 3.9%
EUR 2.9% 2.0% 1.1% 1.5% 1.9%
KOR 6.8% 5.1% 1.4% 2.3% 3.3%
IDZ 4.9% 4.2% 1.8% 2.7% 3.5%
IND 5.0% 3.1% 2.7% 3.4% 4.0%
JPN 4.5% 4.2% 0.7% 1.5% 2.2%
LAM 3.4% 2.7% 2.3% 2.7% 3.3%
MES 4.9% 4.0% 2.0% 2.7% 3.3%
MEX 4.2% 3.5% 2.1% 2.7% 3.4%
REA 4.6% 1.9% 3.0% 3.4% 3.7%
ROE 2.7% 5.3% 1.6% 2.6% 3.7%
RUS 2.7% 6.0% 0.9% 1.9% 3.0%
USA 3.1% 2.3% 1.3% 1.7% 2.2%

WORLD 3.9% 1.4% 2.1% 2.3% 2.5%
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nology shown in Table 3 is represented with a nested CES 
production structure. We define the relative costs of each 
in the base year of the model using a “markup” approach as 
described in Morris et al. (2019a). The markup represents 
the cost of an advanced technology relative to the cost of 
the conventional technology against which it competes. For 
electricity generation technologies, the markup is relative 
to the price received for electricity generation. A markup 
of 1.5 therefore means that the technology is 50% more 
expensive in the base year than the price of electricity in 
that year. The multiplier can be less than 1.0. The base 
year markups are determined based on a levelized cost of 
electricity (LCOE) approach, and are region-specific. Over 
time, the relative costs of technologies change endogenously 
as the costs of inputs change and substitution of inputs 
occurs. Advanced technologies endogenously enter if and 
when they become economically competitive with existing 
technologies, or disappear if they are no longer competitive. 
There has been great interest in the costs of advanced tech-
nologies, which has lead to a variety of attempts to describe 
uncertainty around these costs. Because historical data is 
limited, does not exist at all, or is not relevant to future costs 
of the technologies, a common approach for developing 
estimates of uncertainty has been expert elicitation (e.g. 
Baker et al., 2009; Bosetti et al., 2012; Anadon et al, 2012) 
and further attempts to aggregate various expert elicitation 
studies (e.g. Baker et al., 2015). These approaches are an 
option for assigning probability distributions to technology 
costs. However, there are well-known issues with overcon-
fidence by experts in their assessments (e.g. Lin and Bier, 
2008), and aggregating distributions across experts and 
across studies tends to lead to multi-modal probability 
distributions. Another source of estimates of uncertainty 
are cost ranges developed by the IEA (IEA, 2015a). This 
source provides minimum, median and maximum esti-
mates for energy technology cost components of different 
technologies (e.g., overnight capital cost, fixed operation 
and maintenance (O&M) costs, variable O&M costs, effi-
ciency, capacity factor). While these IEA estimares do not 
provide a full quantification of the distribution of costs, 
there appears to be more consistency across technologies 
than in other expert elicitation studies.  We use the IEA 
ranges for each cost component to calculate minimum, 
median and maximum LCOE values for each advanced 
electricity generation technology.
We convert the cost ranges to a unitless scalar by dividing 
by the median cost. We construct probability distributions 
of the cost scalars, making use of the limited information we 
have for them, by assuming half of the probability weight is 
uniformly distributed between the minimum and median 
cost scalars, and half is uniformly distributed between the 
median and maximum cost scalars. For most technologies 
the minimum cost is more tightly constrained—there is 

a clear lower bound because costs cannot fall below zero.  
An exception is natural gas combined cycle (NGCC) where 
the maximum cost is more tightly constrained, because 
this technology is relatively well-known so the high end 
is well-constrained but there is still uncertainty about how 
much costs may fall. Note that mark-up multipliers are not 
applied to fuel inputs, as the significant effect of fuel cost 
uncertainty is simulated in the ensemble. 
We take 400 samples from the cost scalar distributions and 
multiply each sample by the base region-specific markup 
costs that account for regionally varying cost factors such 
as different fuel and capital costs. Technology costs vary 
across regions, but the sampled cost scalar is applied in 
all regions, and is intended to represent uncertainty in the 
basic technology costs, as opposed to the variation that 
exists across regions due to variation in regional input costs.
While costs are a key driver, there are other factors that 
affect the penetration of advanced technologies, including 
model assumptions about the pace of deployment (see 
Section 3.6), technology-specific policies (e.g., renewable 
portfolio standards), political constraints and public ac-
ceptance. Political and social acceptance is particularly 
important for advanced nuclear and CCS technologies, 
especially bioelectricity with CCS (BECCS). Whether these 
technologies will be pursued/allowed/publically accepted 
or not, and to what extent, is extremely uncertain, and 
varies by region. In this study, we assume that coal and gas 
CCS are not limited by acceptance, but advanced nuclear 
faces additional costs to overcome social, political and 
regulatory barriers.  We have chosen to specify BECCS as 
unavailable because the costs remain too uncertain, land 
use implications are a major concern, and the potential 
constraints and concerns around storage are issues. BECCS, 
if available, and not exceptionally costly, can become the 
dominating low-carbon solution, allowing emissions from 
other sectors to continue (Fajardy et al., 2020).  

4.4 Energy Productivity Growth (Autonomous 
Energy Efficiency Improvement (AEEI))

The economic model assumes an exogenous rate of ener-
gy productivity growth (often referred to as autonomous 
energy efficiency improvement, AEEI). We estimate un-
certainty in the rate of AEEI, using historical data and a 
simple aggregate model following those widely used in 
demand studies (e.g., Bohi, 1981; Yatchew and No, 2001; 
Li and Maddala, 1999). In these, the good’s own-price and 
GDP are the main explanatory factors, allowing for an ad-
ditional time trend effect—the residual AEEI. We use GDP 
data from the Penn World Tables (PWT) (Feenstra, 2015), 
energy consumption data from IEA (2015b), and energy 
price data from IEA (2015c). We limit our investigation 
to the period 1970 to 2007 given data availability and to 
avoid complications introduced by the global recession 
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of 2008-2009. We combine coal, oil, gas, and electricity 
prices using a divisia price index by weighting each fuel 
by its value share of total energy. 
The estimated model is:

  (1)

where Et is aggregate energy use in year t, Pt-1 is the ag-
gregate energy price, GDPt-1 is the Gross
Domestic Product, α, β, θ, and γ are estimated parameters, 
ε is the error term, and “ln” is the natural logarithm. In 
this logged form, parameters are directly interpretable as 
elasticities. 
To estimate the long-term effect, we then introduce a 
lagged dependent variable, the Koyck lag transformation 
(Kmenta, 1971):

  (2) 

where ηt = εt− λεt-1, and λ is the strength of the lag effect. 
The directly estimated parameters include the (1-λ) factor 
and are the short-run response, as shown in Kmenta (1971). 
The long-run response is derived by dividing the estimated 
parameter by (1-λ). We estimate equations (1) and (2) with 
different variation (e.g., omissions and restrictions on the 
estimated parameters) (Table 6). We ultimately use the lagged 

effects model (specification 4 in Table 6), for which standard 
errors of estimates of γ (the coefficient on the time trend term 
reflecting AEEI) are about 55% relative to the best estimate. 

For AEEI, we assume a normal distribution, with a standard 
deviation of 0.55, and apply sampled values as a multipli-
cative factor for AEEI as specified in the default settings, 
which vary by region and sector.  We assume the AEEI 
is driven in part by technology, which would be to some 
extent commonly available across the world, so impose a 
correlation of 0.9 among all regions. Uncertainty, sampled 
for each region with correlation among other regions, is 
applied to scale the time path of energy efficiency up or 
down relative to the median EPPA path. 

4.5 Fossil Fuel Resource Availability

The model includes a specification of the total stock of 
remaining fossil resources, depleting them over time. The 
total physical amount of the resource and the elasticity of 
substitution between the resource and other inputs in the 
production function are important assumptions. Together, 
they determine the cost increase as depletion occurs. We 
use the distribution from Webster et al. (2008) for the fossil 
resource supply elasticity. For uncertainty in the available 
fossil resources, we use the global resource assessment 
by the U.S. Geological Survey (USGS, 2013). This report 
gives a detailed assessment of fossil resources in terms of 
undiscovered, reserve growth, remaining reserves, and cu-
mulative production for geologic formations in all regions. 

Table 6. energy consumption as function of price, GDP, and time with and without lagged effects.

Estimated Parameters Calculated Values

Equation 
Specification

α β θ γ λ R2

Constant Short-Term 
Price 
Elasticity

Income 
Elasticity

Residual 
Time 
Trend

Short-Run 
AEEI% per 
year

Dependent 
Variable 
Lag

% 
Variance 
Explained

Long-Run 
AEEI% 
per year

Long-Run  
Price 
Elasticity

Long-Run   
GDP 
Elasticity

(1) 1 All 5.384 
(6.924)

-0.120*** 
(0.0371)

0.269 
(0.208)

0.00268 
(0.0066)

-0.268359 
(0.6650)

0.954

(1) 2 Const, 
Price, 
GDP

8.185*** 
(0.391)

-0.112*** 
(0.0314)

0.353*** 
(0.0136)

0.954

(1) 3 θ=1 29.55*** 
(0.974)

-0.0543 
(0.0372)

1 
(0)

-0.0205*** 
(0.0005)

2.0291304 
(0.0498)

(2) 4 Koyck 
LAG, 
Pr, 
GDP, t

-7.30 
(5.787)

-0.0686*** 
(0.0297)

-0.196 
(0.182)

0.00934* 
(0.0051)

0.716*** 
(0.142)

0.975 -3.3434 
(1.8911)

-0.24155 -0.6901

(2) 5 Koyck 
LAG, 
PR, 
GDP

2.992*** 
(1.176)

-0.0480 
(0.0284)

0.121** 
(0.0518)

0.650*** 
(0.142)

0.972 -0.1371 0.3457

(2) 6 Koyck 
θ=1

30.45*** 
(1.187)

-0.023 
(0.0440)

1 
(0)

-0.0232*** 
(0.0022)

0.242 
(0.186)

3.0143 
(0.2768)

-0.0303 1.3193

Notes: Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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We use the 5th and 95th percentiles relative to the median 
for the world resource estimates, which gives a range of 
46% to 190% of the median value for oil and 33% to 215% 
of the median value for natural gas. These standard errors 
are then applied to a normal distribution. We assume the 
same distribution for coal and natural gas. The samples are 
then multiplied by the default regional resource estimate 
in the model. For sampling, correlation of 0.9 is assumed 
between oil and gas resources.

4.6 Rate of Technology Penetration
As described in Morris et al. (2019b), the model includes 
an adjustment cost formulation to represent the scaling 
up of advanced technologies.  The representative agent in 
each region is endowed with small amounts of specialized 
resources—technology-specific factors (TSF)—that are an 
input in each advanced technology. The endowment of this 
resource (investment in TSF, INVTSF) grows as a function 
of output of the technology (OUT) in the previous period, 
accounting for depreciation (δ): 

INVTSF s , r , t+1 =   θ TSF *ba[OUT s , r , t- (OUT s , r , t- 1(1- δ O)]

Capacity expansion is thus constrained in any period by 
the amount of the TSF resource and the ability to substi-
tute other inputs for it. As output expands over time, the 
endowment of TSF increases, and it eventually becomes 
a non-binding factor on capacity expansion. Morris et al. 
(2019b) estimated the rate of penetration (the ba coeffi-
cient) for several historical examples of new technologies 
(Table 7). Here, we represent uncertainty in the rate of 
technology penetration by assuming a uniform distribu-
tion for ba spanning the range of ba estimates for different 
technologies in Table 5 (e.g., 1.014 to 1.589).

4.7 Additional Uncertain Parameters  
The elasticities of substitution at each level of the nested 
CES functions determine the relative ease of substituting 
one input for another—the flexibility of the technology. 
Critical elasticities of substitution in the production struc-

tures in the model (Figure 2) to which results are sensitive 
include those between labor and capital, electricity and fuels, 
energy and value-added (labor and capital), and different 
fuels. Econometric estimates of these parameters include 
standard errors.  Based on a review of the literature, we did 
not find significant reason to update the distributions used 
in Webster et al. (2008) that were based on econometric 
estimates in the literature. Similarly, the evidence on the 
probability distribution for the resource supply elastici-
ties for fossil fuels did not provide a reason to update the 
estimates in Webster et al. (2008). Each fuel is sampled 
independently from this distribution (i.e. no correlation).
Conventional pollutants such as particulates and ozone 
precursors are associated with fossil fuel combustion and 
other activities. They are modeled by specifying an initial 
inventory for each substance and activity-specific emis-
sions factors for each sectors. A combination of technology 
advances and regulation has generally led to a decline in 
emissions per unit of activity, similar to the decline in energy 
use explained by the AEEI. We model the evolution of the 
activity-specific emissions factors over time, according to:

where Fi,j,t is the emissions factor for economic sector i, 
pollutant j, and time t, Fi,j,0 is the emissions factor in the 
initial year, and γj is the uncertain trend parameter for 
pollutant j. Webster et al. (2008) based the uncertainty 
in the time trend γ on data and analysis by Stern (2006,
2005; Stern and Common, 2001), which used observed 
emissions to estimate a stochastic emissions frontier for 
15 different countries. While we have updated the initial 
inventories for pollutants for the current version of the 
model (EC, 2013), we continue to use the distributions 
from Webster et al. (2008) for uncertainty around the initial 
inventories and uncertainty in the pollutant trends as we 
did not find compelling evidence to update them. 
The ability to reduce methane (CH4) and nitrous oxide 
(N2O) emissions is implemented by using a nested CES 

Table 7. range of estimates for technology penetration rate parameter. 

Regression Information

Start Year End Year % in Start β1 Intercept Standard Error

Nuclear US 1970 1987 1.40% 1.014* 21685* 0.042
Nuclear France 1966 1982 1.45% 1.199* 1942 0.097
Solar Germany 2009 2014 1.18% 1.014* 4891 0.093
Wind US 2008 2013 1.18% 1.053* 17788* 0.027
Wind China 2010 2013 1.13% 1.315* 9495 0.157
Shale Gas US 1999 2011 1.42% 1.589* -169* 0.035
Hybrid Vehicles US 2005 2014 1.15% 1.098* 201702* 0.025

*Statistically significant with a P-value < 0.05
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production function where conventional inputs can be 
substituted for CH4 or N2O emissions (Reilly et al., 2006; 
Hyman et al., 2003). The value of the elasticity of substi-
tution between emissions and conventional inputs can 
be estimated from marginal abatement curves developed 
from bottom-up studies of abatement potential in various 
sectors that emit these gases. We have not found reason 
to update the uncertainty ranges used in Webster et al. 
(2008) as applied to these elasticities.
Another factor shown to be important is the rate of cap-
ital turnover. The capital stock is dynamically updated 
in the model for each region and sector, as determined 
by the capital vintaging procedure (Chen et al, 2016). In 
each period, a fraction of the malleable capital becomes 
non-malleable for future periods. Letting Km represent 
the malleable portion of capital and Kr the rigid portion, 
the procedure can be described as follows. New capital 
installed at the beginning of each period starts out in a 
malleable form. At the end of the period a fraction φ of 
this capital becomes non-malleable (vintaged) and frozen 
into the prevailing techniques of production. The fraction 
(1 – φ) is that proportion of previously installed capital that 
is able to have its input proportions adjust to new input 
prices to take advantage of intervening improvements in 
energy efficiency or changing prices—essentially allowing 
the possibility of retrofitting previously installed capital. 
We treat the share of vintaged (non-malleable) capital as 
uncertain. There was no compelling evidence to support an 
update of the uncertainty estimates in Webster et al. (2008). 

5. Monte Carlo Simulation Results 
We develop four ensemble simulations differing in the 
assumed degree of government intervention in markets 
to limit emissions. The first ensemble ensemble reflects 
a “business-as-usual” scenario including existing inter-
ventions in energy markets, including renewable energy 
targets that many countries have, nuclear and hydro power 
development plans, and the like, as reflected in the IEA 
world energy outlook (IEA, 2018).  A second ensemble 
includes, in addition, the assumption that countries will 
meet their Nationally Determined Contribution pledges 
and maintain those commitments through the end of the 
simulation period, modeled as a constraint on covered 
emissions (Reilly et. al., 2018). A third ensemble assumes 
a constraint on emissions such that the global mean tem-
perature stabilizes at less than 2oC above preindustrial 
levels with a 66% likelihood given uncertainty in the Earth 
system response to radiative forcing.  A fourth ensemble 
assumes a constraint on emissions that limits the global 
mean temperature increase to less than 1.5oC with a 50% 
likelihood. We determined the emissions constraint needed 
to meet the temperature goals for the third and fourth 
ensemble using the MIT Earth System Model (MESM). 

With these constraints determined, we use the same sam-
ples of uncertain parameters in each ensemble to ensure 
comparability.
Once the ensembles are completed, we use the emissions 
results to simulate 400-member ensembles of earth system 
outcomes that include uncertainty in the earth system 
response to determine the temperature outcome in all four 
ensembles. By design, the 3rd and 4th ensembles produce 
the 2oC and 1.5oC warming results with a 66% and 50% 
likelihood, respectively. The focus in this paper is on the 
technology mix and sectoral emissions consistent with 
these various environmental goals and interventions. The 
outcomes of the climate ensembles are described in detail 
in Morris et al. (2020). Briefly, the median and standard 
deviation of 2091-2100 temperature increases above prein-
dustrial in these four ensembles are 3.5°C (+/- 0.45), 3.1°C 
(+/-0.39), 1.9 C (+/- 0.23) and 1.5°C (+/- 0.18).  
As a shorthand, in the figures below we refer to ensembles by 
the median temperature outcome at the end of the century.

5.1 Sectoral Output and Emissions 
As various sectors and industries consider their relationship 
to environmental outcomes, there has been increasing 
interest in what level of emissions from different indus-
tries are consistent with various global temperature levels.  
One might expect there to be considerable uncertainty 
given that overall economic growth, and hence the level 
of output from each industry, is uncertain, as is the size of 
and emissions from other sectors and industries. We use 
box and whisker plots to summarize output (in trillions of 
2019 U.S. dollars) from our ensembles for six aggregated 
sectors that together cover all of industry—agriculture, 
commercial services, electricity, energy intensive industry 
& mining (which includes the supply of fossil fuels), other 
manufacturing, and commercial transportation.  The low 
end of the whisker for global output in nearly all sectors 
(reported in trillion 2019 US dollars) is above the 2020 
level in all reported years (2030, 2040, 2050, and 2100) 
and growing over time (Figure 4). Our primary focus is 
the next few decades, but we include a boxplot for 2100 as 
well.  By that time, the median output of most sectors is 
generally more than 4 times larger than the level in 2020.  
The interquartile range (the boxes) are quite tightly con-
strained through 2050 for most sectors. Even the whiskers 
(1.5 times the interquartile range) are fairly narrow, although 
graphically this is somewhat distorted by the year 2100 
results being much higher.  Also, through 2050, there is not 
much difference among the various temperature ensembles.  
The exceptions are that the 1.5C ensemble distributions, 
especially by 2050, drop somewhat compared with the 
other three ensembles.  Thus, except in those cases, the 
constraints on emissions and other interventions do not 
have a significant effect on sector output through 2050.
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The primary exceptions to the observations above are the 
electricity sector and the 2100 results for all sectors where 
there is a greater difference in sector output among the four 
ensembles. The median electricity output is about flat at or 
slightly decreasing from the 2020 level through 2050 for 
the 1.5C ensemble, indicating electricity output consistent 
with that temperature level has a significant chance of being 
lower than 2020 output by 2040 and 2050. While there is 
difference among ensembles, the lower end of the whiskers 
in 2050 remains at or above 2020 electricity output for all 
other ensembles, including the 1.9C ensemble.  By 2100, 
it is likely that electricity sector output will be above 2020 
output, although at the extreme it could be at or slightly 
below the 2020 level. These trajectories are affected by 
demand response and energy efficiency improvements. It is 
important to note that because output reflects price times 
quantity, it could be the case in some ensemble members 

that very low electricity prices (e.g. due to penetration of 
cheap renewables) drive lower sector output.

The year 2100 results show more effect on output of all 
sectors from the constraints on emissions.  The results for 
2100 should be interpreted with care as the ongoing need to 
reduce emissions could well lead to innovations that would 
allow sector output to remain higher.  While innovation is 
implicitly captured in our representation of uncertainty in 
sector response via the range of substitution elasticities, as 
well as energy efficiency improvements, the central tenden-
cy of those distributions are around the current estimated 
response and the elasticity formulation does not allow for 
radical transformation of production processes. 

It is also of note is that, embedded in results for Energy 
Intensive Industry & Mining, we find that output from the 
fossil fuel supply sectors (coal, oil and gas) falls to near 
zero by 2100 under the 1.9C and 1.5C scenarios. This is 

Figure 4. box and whisker plots for global sectoral output (trillions of 2019 uS Dollars). The 2020 output level is shown as a black 
line in front of the scenario results in each time period to easily compare future output to current levels. 
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consistent with the dramatic decline in fossil fuel use in 
primary energy under those scenarios (see Figure 8). 

For specific companies in various sectors seeking to be on 
a path consistent with given temperature targets, a useful 
metric is emissions intensity per unit of output.  This can 
be evaluated within a company without consideration of 
the company’s size relative to the overall sector.  Note that 
many current environmental standards focus not only on 
direct emissions coming from a company’s operations, but 
also emissions attributed to electricity they use, and emis-
sions related to the production of inputs used in the sector.  
Since this analysis comprehensively treats all emissions in 
all sectors simultaneously, however, the focus here is on the 
direct emissions from the sector.  The current (year 2020) 
global emissions intensities of output vary considerably by 
sector, with electricity by far the most intensive (45 tonnes 

of CO2 equivalent per unit of output measured in thou-
sands of 2019 dollars, tCO2eq/$1000) and the commercial 
sector the least intensive (0.12 tCO2eq/$1000) (Figure 5). 
Commercial Transportation is the second highest, after 
electricity, at just under 9 tCO2eq/$1000. Agriculture and 
Energy Industry & Mining come in at just over 6 tCO-
2eq/$1000.  Other Manufacturing is quite low at just under 
0.4 tCO2eq/$1000.  

The emissions intensities drop in all sectors over time in 
all four ensembles.  Even in the least constrained 3.5C 
ensemble, intensities drop by around 40% by 2050 from 
their 2020 levels.  There is a fairly wide range of sectoral 
emissions intensities potentially consistent with each tem-
perature target at least through 2050, but by 2100 all sectors 
need to have emissions intensities near zero in the 1.9C 
and 1.5C ensembles. As constructed, global emissions over 

Figure 5. box and whisker plots for global sectoral emissions intensity (tons of CO2 
eq/$1000 of output in 2019 uS dollars). The 

2020 emissions intensity is shown as a black line in front of the scenario results in each time period to easily compare future 
emissions intensity to current levels. 
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time in the 1.9C and 1.5C cases are constrained to meet 
an identical global path in all ensemble members. Thus, 
if emissions in one sector are relatively higher, emissions 
in other sectors must be commensurately lower to meet 
the global emissions target for that year.  Emissions from 
agriculture drop the least among the sector because of 
the difficulty of reducing methane from rice paddies and 
livestock, and nitrous oxide from soils.  Emissions or sinks 
for CO2 from land use change are not included in the ag-
riculture total, and are accounted as a separate land use 
source or sink. Representation of additional abatement 
opportunities in the model could also affect how quickly 
emissions and emissions intensities fall in the sectors. 
For households and private vehicles, a more common 
measure of intensity is emissions per capita. Here we also 
include only direct emissions from households and private 
vehicles, and not emissions attributable to vehicle produc-
tion, electricity consumption or other consumption goods. 
In this case, the emissions paths among the ensembles 
diverge over time with average global per capita emissions 
growing considerably in the 3.5C and 3.1C ensembles, 
but falling in the 1.9C and 1.5C ensembles (Figure 6). In 
the 3.5C and 3.1C ensembles, the median average global 
per capita emissions by 2100 is near the level of emissions 
per capita in the US in 2020.  The range of emissions in-
tensities in the 3.5 C and 3.1C ensembles are also fairly 
wide. In these ensembles, the modeled interventions in 
the market are not targeted to meet a specific emissions 
or temperature goal, and so higher emissions contribute 
to higher temperatures, other things equal. 
Current emissions per capita vary substantially among 
countries. Our model is resolved for 18 countries/regions. 
Emissions per capita in several regions are currently near or 
somewhat below the levels we estimate as consistent with 
the 1.9C and 1.5C ensembles. There is room for modest 
growth in emissions per person in Africa, on average, and 
to remain about where they currently are in Mexico, India, 
Latin America and other similar regions, if Canada, the US, 
and other more developed regions reduce their emissions to 

the global average that is associated with these ensembles. 
In general, all of regional economies are growing over time, 
and so if we measured emissions intensity for households 
as emissions per $1000 dollars of final consumption, that 
would tend to show a pattern similar to industry sectors 
(emissions per $1000 dollars declining in all scenarios). 

Total global emissions across all sectors also diverge in the 
ensembles. As indicated above, the 3.5C and 3.1C ensem-
bles are not targeted to meet a specific global emissions 
or temperature goal, and global emissions are therefore 
uncertain, but growing, in these ensembles. The 1.9C and 
1.5C ensembles, however, are constrained to meet a specific 
global emissions path in all ensemble members which 
requires emissions to decrease over time. Figure 7 com-
pares total global GHG emissions results from our four 
ensembles with those from the IPCC 5th Assessment Report 
(AR5) (IPCC, 2014). Our ensembles span much of the AR5 
range of emissions. Our high end of emissions is lower 
than that in the AR5. Updated model assumptions based 
on slower economic growth, falling costs of low-carbon 
energy options and government interventions worldwide 
directed at expanding the role of renewables result in our 
lower high end of emissions.  

5.2 Primary Energy and Electricity 
Generation Technologies 

Investment plans in the energy sector will depend on how 
demand for and use of energy sources change over time.  
The pattern over time for use of a specific fuel or technology 
depends on both how demand changes (due to popula-
tion, economic growth, and elasticities of substitution, 
among other variables) and how resource availabilities 
and the costs of competing technologies change in the 
future. These uncertainties are captured in each ensemble. 
Patterns of use also depend on the nature of interventions 
in the market, captured by the different ensembles.  We 
show results for global primary energy sources including 
primary electricity (Figure 8).

Figure 6. box and whisker plots for residential (including private vehicles) emissions (tons CO2 
eq) per capita and 2020 emissions 

per capita by region.
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Figure 7. Total global GHG emissions range (for the 3.5C and 3.1C ensembles) and emissions constraint (for the 1.9C and 1.5C 
ensembles) in Gt CO2eq compared with scenarios in the IPCC Fifth assessment report (ar5) (IPCC, 2014)..

Figure 8. box and whisker plots for global primary energy production (eJ) including coal, oil, gas, biomass, and primary electricity 
(nuclear, hydro, wind & solar). The 2020 primary energy level is shown as a black line in front of the scenario results in each time period 
to easily compare future primary energy production to current levels. Oil in 2100 for 1.9C and 1.5C is not visible in the figure as it is zero.
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The median use of primary electricity (the sum of nuclear, 
hydro, wind & solar electricity converted to primary energy 
equivalance) grows robustly in all four ensembles.  By 2050, 
median primary electricity has increased by 50 to 100 percent 
compared with its production in 2020, and by 2100 median 
production has doubled to nearly tripled. The range of use 
in the future widens considerably by 2040, especially in the 
1.9C and 1.5C ensembles. On the low extreme of the boxplot, 
global production for 2040, 2050 and 2100 is roughly equal 
to production in 2020 in the 1.5C ensemble, but lower than 
2020 in the 1.9C ensemble. On the high-end, production is 
around 5 times the 2020 level by 2100 in all four ensembles. 
Median production of biomass energy also grows consider-
ably in all ensembles by 2100, expanding 7.5 to 12.5 times.  
Through 2050, expansion of median biomass production 
is similar to primary electricity, increasing around 2 to 2.5 

times. There is greater uncertainty in the role of biomass 
production in the 3.5C and 3.1C ensembles in 2100.
Natural gas and oil use share a similar general pattern, ex-
panding substantially in the 3.5C and 3.1C ensembles and 
contracting to near zero (for gas) and zero (for oil) by 2100 
in the 1.9C and 1.5C ensembles. Of greater interest from an 
investment perspective, in all but the 1.5C ensemble, median 
gas and oil use does not decline through 2040 and remains 
substantial in 2050. This reflects the fact that the emissions 
constraint needed to remain consistent with the 1.5C tem-
perature outcome is quite tight even in the near term. In 
contrast, median coal use declines in 2030 from 2020, and 
continues to decline further in all but the 3.5C ensemble.
Some of the results for fossil fuel use can be explained by 
results for the fossil technologies used globally for electricity 
production (Figure 9). Specifically, coal and gas generation 
disappear by 2050 in the 1.9C and 1.5C ensembles, coal 

Figure 9. box and whisker plots for fossil fuel-based electricity generation technologies. The 2020 generation level is shown as a black 
line in front of the scenario results in each time period to easily compare future generation to current levels. boxplots that do not appear 
in future years indicate that the generation technology in question is no longer part of the electricity mix under that scenario. 
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as early as 2040 in the 1.5C ensemble. However, the range 
for use of coal and gas generation with carbon capture and 
storage (CCS) is wide, although the median amount of gen-
eration with these CCS technologies tends to be at zero or 
quite low relative to current generation levels for coal and 
gas without CCS. The sizable chance that coal or gas CCS or 
both may be used in the 1.9C and 1.5C ensembles explains 
why some of these fuels remain in primary energy, whereas 
oil disappears completely. Oil-based electricity generation 
is only about 3.5% of current coal or gas generation largely 
because it is generally not cost competitive given oil prices.  
Given the limited role of oil-based generation, and the 
fact that a CCS version of oil-based generation is not an 
option in the model, it is not surprising that oil generation 
disappears completely from the generation and primary 
energy mix.  In a situation of tight constraints on carbon 
emissions, which greatly lowers demands of oil products 
elsewhere in the economy, oil prices fall, and so in reality 
oil-based generation with CCS could be competitive in 
some situations.  However, there is no reason to expect oil 
to be more competitive than gas or coal generation with 
CCS because the steam-based generation is similar to coal, 
and any of the approaches for carbon capture that would 
be used with coal or gas could be used with oil as well.
The non-fossil fuel-based electric generation tech-
nologies generally all show significant growth in all 
ensembles at median results, even at the low end of the 
interquartile range (Figure 10). Wind & solar show 

the most potential, producing in the range of 10,000 to 
15,000 TWh annually by 2100 at median levels across 
the ensembles. In 2100, wind & solar production is 
actually somewhat higher in the 3.5C and 3.1C ensem-
bles. This result is driven by the fact that there is less 
overall demand for electricity under the 1.9C and 1.5C 
(which may not be the case with additional electrifica-
tion options represented in the model), as well as the 
potential for nuclear to outcompete renewables in the 
future (particularly given integration costs associated 
with higher renewable penetration levels). Wind & 
solar also show more potential in the next few decades. 
Nuclear and biomass-based generation show more 
moderate potential through 2050, but greater potential 
in 2100. Nuclear in particular shows the possibility of 
production in 2100 as large or larger than wind & solar. 
As one might expect, there is generally a larger range 
for these individual technologies than for the primary 
electricity combined—if one of the non-fossil technolo-
gies is particularly low cost, the others are squeezed out, 
and there is a good chance that at least one of them will 
be lower cost. Hydro generation is tightly constrained 
at the high end given the specification of resource 
availability and assumptions about the time path over 
which these resources could be developed. Much of the 
potentially available hydro power is in Africa, and so its 
development depends on growth in electricity demand 
in the region.

Figure 10. box and whisker plots for non-fossil fuel-based electricity generation technologies. The 2020 generation level is shown as 
a black line in front of the scenario results in each time period to easily compare future generation to current levels.
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5.3 Scenario Discovery
A limitation of results of a formal uncertainty analysis as 
presented above is that they do not maintain the relationship 
of a particular outcome (e.g. nuclear power production) as 
part of a scenario where all other outcomes have specific 
values.  For example, a scenario with a lot of nuclear gen-
eration would likely mean lower levels of production from 
other generation sources, other things equal.  Of course, 
other things may not be equal: for example, a scenario may 
have rapid economic growth with overall high electricity 
demand and similar costs for all technologies so that they 
all operate at a relatively high level. The uncertainty analysis 
above does not focus on individual internally consistent 
scenarios. However, combining uncertainty quantification 
with scenario discovery approaches can identify individual 
scenarios of interest from the ensembles. 
Scenario discovery is a model-based approach for scenario 
development aimed at finding areas of interest within large, 
multi-dimensional databases of simulation model results. 
It involves screening databases of model simulations (often 
through statistical/machine learning/data-mining algo-
rithms) to identify outcomes of interest and their condid-
ions for occurring. It can then inform the development of 
specific individual scenarios to explore in depth.  Another 
common mode of scenario development is to create one 
or more “consistent” stories that hang together. However, 
a danger with the storyline approach is that one may be 
over confident that only one narrow set of outcomes can 
be part of a consistent story. Scenario discovery approaches 
can avoid this error and can identify variables associated 
with given outcomes of interest without defining a priori 
which variables are likely to be most important. Scenar-
io discovery is a particularly useful tool in multisector 
dynamics research where the complexity of interacting 
systems, multiple uncertainties and emergent behavior 
make it difficult to know a priori what factors are most 
important. Several recent studies have employed the ap-
proach (e.g. Lamontagne et al., 2018; Quinn et al., 2018; 
Herman et al., 2015).
Here we employ a scenario discovery approach designed to 
make use of the large ensembles we developed in the previ-
ous sections of the paper in order to investigate scenarios 
with similar values for one outcome and evaluate the range 
of other outcomes in those scenarios. Our hypothesis is 
that there are wide ranging values of other outcomes con-
sistent with a given outcome of interest.  Combinations of 
values of other outcomes are “consistent” in that they were 
produced with a model that connects them all together.   
To explore this scenario discovery approach, we focus 
on the 1.9C ensemble, and choose scenarios where this 
target is met under high, median, and low US economic 
growth. We focus on the 95th, 50th, and 5th percentile values 
of economic growth. We include the +/- 1 scenario (the 

scenarios directly below or above the 95th, 50th, and 5th), so 
that we have 3 separate scenarios for each of the 3 economic 
growth levels. We then plot the percentiles for the values 
of other outcomes in 2050 in each of the scenarios as radar 
plots (Figure 11). The percentiles reflect where the value 
of an outcome falls for the given scenario compared to its 
value in all of the 400 ensemble members. 
The top panel in Figure 11 is the radar plot for high US 
economic growth.  The dark green line is the 95th percen-
tile economic growth scenario. It has very high biomass 
electricity (“Biomass”) in 2050—near the 95th percentile of 
biomass electricity production, but wind & solar production 
(“Wind&Solar”) are only at about the 50th percentile, gas 
with CCS (“Gas CCS”) is near the 5th percentile, and gas 
generation (“Gas”) is at the 50th percentile level.  GDP in 
the rest of the world (“ROW USA”) in this case is relatively 
low (20th percentile), suggesting relatively low non-US 
emissions, which allows for higher US emissions – non-elec-
tricity US emissions (“USA Non-Elec Emi”) are at their 
90th percentile level, while emissions from the US electric 
sector (“USA Elec Emi”) are near their 60th percentile level. 
In contrast, the 95th-1 scenario of US economic growth 
(light green) has gas generation near the 90th percentile, 
more gas with CCS, more wind and solar, and again high 
levels of biomass-based generation.  US electric sector and 
non-electric sector emissions are near their extreme high 
outcome.  GDP in the rest of the world is very low (10th 
percentile), suggesting less emissions in other parts of 
the world allow for more emissions in the US. The 95th+1 
scenario (dashed green) has moderate levels for all the 
plotted outcomes except biomass generation is again at a 
relatively high level. While not plotted, coal, coal with CCS, 
oil, and nuclear generation in the US are all non-existent 
in 2050 in all of these scenarios.
At median economic growth (middle panel, dark blue), gas 
with CCS is the major electricity supply source (near the 
90th percentile), gas is near the 30th percentile, and wind and 
solar are near their lowest level, as is biomass generation. 
GDP in the rest of the world is relatively high, uggesting 
higher non-US emissions, which means US emissions must 
be relatively low. In the 50th+1 scenario (dashed blue), 
electricity production is mainly wind & solar with some 
biomass, but very little gas or gas with CCS.  US emissions 
are very low, with non-electric emissions at about the 30th 
percentile level and electric sector emissions near their 
extreme low.  GDP in the rest of the world is high, at about 
their 90th percentile level. The 50th-1 scenario (light blue) is 
one with a lot of generation from gas with CCS, and wind 
& solar, but little from biomass. 
The low US economic growth outcomes (bottom panel), 
again shows three fairly different patterns of electric gen-
eration technology use.
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An important note to these results: because we are plotting 
the percentile outcome for each technology, the same per-
centile values do not mean the same levels of generation 
for each technology.  In the earlier boxplots, the median 
case for gas with CCS in 2050 was for no production, while 

even the lowest outcome for wind and solar was a slight 
increase from present, at least for the world total.  So even 
a relatively low percentile for wind & solar may mean 
these technologies are generating more electricity than 
gas with CCS. The percentiles do, however, tell us how the 

Figure 11. radar plots for scenarios with high (95th percentile), median (50th percentile), and low (5th percentile) uS economic 
growth through 2100, showing the 2050 values of other outcomes in those scenarios.
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technology’s generation in a specific scenario compares to 
that technology’s generation in all 400 ensemble members 
and whether it is above or below average for the ensemble.  
Comparing among the three growth outcomes (high, low 
and median), it appears there is some tendency for high 
growth to be associated with high emissions in the US, 
though not necessarily. We might expect this tendency 
given that high economic growth would tend to create 
greater US demand for all energy types and higher emis-
sions such that it is more likely that more abatement will 
occur outside the US where economic growth is unlikely 
to be as high as in the US.  However, given all the other 
uncertainties that can counter the tendency for higher 
emissions, it appears only weakly present.  There is very 
high biomass electricity in all three high scenarios, but that 
is more coincidental. To test that further, we extended the 
exploration to more high growth scenarios (95th +/-10) 
and found that while biomass electricity tends to be above 
average in the high US economic growth cases, it is not 
always at very high percentiles.
This approach demonstrates that there are many different 
pathways for technology development that are consistent 
with the 1.9C long-term temperature goal. There are also 
many different pathways that are consistent with a particular 
US GDP outcome under the 1.9C target. 

6. Concluding Remarks
This paper demonstrates how available information (his-
torical data, scientific literature, expert judgment, etc.) can 
be used to develop probability distributions for import-
ant socio-economic uncertainties in economic-emissions 
models. We can then sample from those distributions, 
employing Monte Carlo simulation, in order to quantify the 
uncertainty in key human system model outcomes. Here 
we focus on sectoral and technology outcomes, exploring 
results consistent with different 21st century global tem-
perature pathways. We find that for most sectors, overall 
output is little affected by the long-term environmental 
pathway through mid-century. The electricity sector is 
an exception, with the level of government intervention 
leading to differences in output as early as 2040. 
While sectoral output is little affected by the level of gov-
ernment intervention, emissions intensities for industries 

must fall more with tighter constraints. Although emissions 
intensities fall for all sectors in all ensembles, they fall more 
rapidly under the 1.9C and 1.5C ensembles, reaching near 
zero for all sectors. We find a divergence in ensembles for 
residential emissions per capita, with the 3.5C and 3.1C 
ensembles leading to growing emissions per capita over 
time and the 1.9C and 1.5C leading to falling emissions per 
capita over time. In terms of total global GHG emissions, 
our ensembles span much of the AR5 range provided by 
IPCC (2014). 
We also find that there are many patterns of energy and 
technology development consistent with long-term en-
vironmental pathways. The distributions of energy and 
technology developments we estimate provide information 
for assessing risks of investing in different technologies.
We also combine our ensembles with scenario discovery, 
providing the ability to explore a full range of outcomes 
while also maintaining intact individual scenarios. We are 
able to identify scenarios that have similar outcomes in one 
dimension and explore the range of outcomes along other 
dimensions in those scenarios. This approach provides 
a foundation to identify individual scenarios of interest 
and further explore tipping points in scenarios (e.g. what 
might lead one scenario toward a lot of wind & solar vs. 
other technologies). 
In addition to providing information about risks that can 
aide decision-making and identifying scenarios of interest, 
our uncertainty quantification approach can also provide a 
better understanding of model responses and offer insight 
into areas for further research and model development. 
For example, under tight emissions constraints, there is a 
question as to whether the model has sufficient abatement 
opportunities represented (e.g., for agriculture, energy in-
tensive industry and residential sectors) after mid-century 
when emissions need to trend toward zero. 
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