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Abstract: The amount of water in the soil is a critical determinant in many complex processes of the Earth system. 
Model-simulated soil moisture has been widely used to understand these processes attributed to its large spatial 
and long temporal coverage at any desirable location and time. However, it is known that land surface models are 
strongly limited in their ability to reproduce observed soil moisture, often with biases in the mean, dynamic range, 
and time variability. In this study, we presented a cost-effective application of variance-based sensitivity analysis 
to quantify the relative contribution of different parameters and their interactions to the overall uncertainty in 
the modeled surface and root zone soil moisture from the Community Land Model 5.0 (CLM5). We focus on 
four parameters associated with the hydraulic property of mineral soil (saturated hydraulic conductivity, porosity, 
saturated soil matric potential, and shape-parameter) and organic matter fraction. A Gaussian process emulator 
is used to estimate the soil moisture across the five-dimensional parameter uncertainty space, based on a small 
number of CLM5 simulations at combinations of parameter values sampled with Maximin Latin hypercube. The 
procedure is exemplified for four seasons (DJF, MAM, JJA, and SON) across various sites of distinct soil and 
vegetation types in the continental US. Our results have shown that the emulator captures well the behavior of 
CLM5 across the entire parameter uncertainty space for different soil textures and seasons, with high correlations 
and low RMSEs between the emulator-predicted and CLM5-simulated soil moisture as well as small emulator 
uncertainty. We found that the large portion of the variances of both surface and root zone soil moisture is 
described by uncertainty in five parameters (excluding their interactions) and is dominated by the uncertainty in 
porosity and shape parameter for almost all the sites and seasons. Generally, the lower the fraction of sand is, the 
stronger (weaker) the individual parameter effects (the interaction effects) are. However, the relative importance 
of porosity versus shape parameter varies strongly with variables (surface versus root zone), soil textures (sites), 
and seasons. Over the majority of sites, the variance in surface soil moisture is attributed distinctly more to 
the uncertainty in shape parameter, while the uncertainty in porosity is more important in the variance of root 
zone soil moisture. Also, both individual parameter effects and interaction effects for root zone soil moisture 
demonstrate less variability across different soil textures and seasons than for surface soil moisture. These 
sensitivity results clearly indicate which parameters should be focused on to improve the model simulations of 
surface versus root zone soil moisture for different soil textures and seasons, which serves as a useful guidance to 
achieve improved modeling of soil moisture on a large scale.
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1. Introduction
The state and amount of water in the soil is a critical de-
terminant in many complex Earth System processes. Soil 
moisture serves as the reservoir for the land surface hydro-
logic cycle and a boundary condition for the atmosphere. 
It regulates the partitioning of land surface heat fluxes, 
affects the status of overlying vegetation, modulates the 
thermal properties of the soil, and controls exchange of 
trace gases at the Earths’ surface. Knowledge of the tem-
poral and spatial variation of soil moisture is essential for 
climate predictability on seasonal to annual time scales 
(van den Hurk et al., 2012; Sospedra-Alfonso and Merry-
field, 2018), flood and drought forecasts (Sheffield et al., 
2014; Wanders et al., 2014), and climate impact studies 
(Seneviratne et al., 2010). 
Soil moisture can be estimated in three ways: in-situ 
measurement, satellite remote sensing, and model-based 
simulation. Each of these techniques has its own specific 
properties and limitations. In-situ measurements are gen-
erally sparse both in time and space because soil moisture 
is difficult to measure in situ—particularly under a sus-
tained, coordinated large-scale effort. There is no global 
in situ observation network for soil moisture. Regional 
and national networks exist of varying density and quality 
(e.g. Soil Climate Analysis Network (SCAN); U.S. Climate 
Reference Network (USCRN)), but many stations do not 
possess long continuous histories of operation. A critical 
shortcoming of these point-based measurements is the lack 
of representativeness of the surrounding area due to spatial 
variability of soil moisture which generally increases with 
extent scale (Famiglietti et al., 2008). Such heterogeneity 
impedes meaningful assessment of area-representative soil 
moisture from a single point. Area-average soil moisture of a 
desired precision is attainable with sufficient point measure-
ments made over the area (Zreda et al., 2012), but is costly 
and impractical. As a result, in situ measurement is not 
suitable for large-scale atmospheric and other applications. 
A non-invasive technique that reduces the scale-related 
representativeness of point-based in situ measurement is the 
COsmic-ray Soil Moisture Observing System (COSMOS), 
which is designed to improve the availability of continen-
tal-scale soil moisture measurements. COSMOS consists of 
a network of portable probes that provide intermediate scale 
average soil moisture by measuring cosmic-ray neutrons 
above the land surface (Zreda et al., 2008). Each probe 
measures average soil water content within a diameter of 
a few hectometers (~ 660m at sea level) and to a depth of a 
few decimeters (Zreda et al., 2008), thereby averaging soil 
moisture heterogeneities. The measurement takes minutes 
to hours, permitting long-term monitoring of undisturbed 
soil moisture conditions. The horizontal footprint depends 
on the atmospheric pressure and humidity. It increases 
approximately by 25% between sea level and 3000 m of 

altitude and decreases by 10 % between dry air and saturated 
air (Zreda et al., 2012). The effective measurement depth 
depends strongly on soil moisture, ranging from 76cm in 
dry soils (zero water content) to 12cm in saturated soils 
(0.4 m3m-3). The precision of soil moisture measurement 
can be improved by increasing integration time. The unique 
features of the cosmic-ray neutron probe make it ideal for 
providing measurements with the precision and the scale 
appropriate for intermediate- to large-scale meteorological, 
hydrological, and ecological applications. 
Satellite remote sensing, mostly by microwave sensors, can 
provide near-surface soil moisture of global coverage at 
coarse-scale, moderate temporal resolution. Currently sev-
eral satellite missions provide global surface soil moisture 
products, including the Soil Moisture Active Passive (SMAP) 
(Entekhabi et al., 2010b), the Soil Moisture and Ocean Salin-
ity (SMOS) (Kerr et al., 2012), the METOP-A/B Advanced 
Scatterometer (ASCAT) (Wagner et al., 2013), the Special 
Sensor Microwave/Imager (SSM/I) mission, the Advanced 
Microwave Scanning Radiometer for the Earth Observing 
System (AMSR-E) (Njoku et al., 2003) and Advanced Mi-
crowave Scanning Radiometer 2 (AMSR2) mission (Pari-
nussa et al., 2015). Satellite retrievals of soil moisture suffer 
from several limitations (Entekhabi et al., 2004), including 
a shallow vertical penetration depth of centimeters, limited 
capability to penetrate vegetation or snow, sensitivity to sur-
face roughness, discontinuous temporal coverage, and the 
short life span of satellite missions. The retrieved upper few 
centimeters of soil moisture represents the fast manifold of 
the soil moisture reservoir that provides little memory to the 
climate system and is thus of limited value for the numerical 
weather and seasonal climate prediction. Some sort of model 
has to be employed to propagate this information down into 
the soil to derive the slow manifold of the subsurface soil 
moisture reservoir relevant for predictability.
Global long-term analyses of surface and subsurface soil 
moisture can be produced with the Land Surface Model 
(LSM) either coupled to an atmospheric General Circulation 
Model (GCM), or driven by observations-based near-surface 
meteorological forcing. This approach has been widely em-
ployed to understand many complex Earth System processes 
in the past and future, mostly attributed to its continuous 
spatial and temporal coverage of flexible resolutions at 
any desirable location and time. However, the simulated 
soil moisture is heavily dependent on the character of the 
chosen LSM and the quality of the meteorological data to 
which the model is exposed (Guo et al., 2006). Soil moisture 
parameterizations can vary considerably among models 
and result in a wide range in their fidelity (Dirmeyer et al., 
2004). These models need to be assessed in terms of their 
validity and accuracy in representing soil moisture and if 
necessary, be optimized with improved parameterizations 
before being used in various applications. 
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Model calibration/optimization usually involves attributing 
the uncertainty in model simulations (i.e. soil moisture) 
to various processes and the poorly constrained model 
parameters that describe these processes via sensitivity 
analysis. Assessing the effect of parameter uncertainty in 
complex models is often limited by computational resource 
constraints. The most commonly used sensitivity analy-
sis approach used in complex models is single parameter 
perturbation or one-at-a-time (OAT) approach, which 
quantifies the departure of the model output from some 
baseline calculated using “default” parameters as a result 
of a perturbation in a single model parameter. However, 
this approach is inadequate because it ignores interac-
tions between parameters with all sensitivity information 
calculated at one point in a parameter space. Recently, 
variance-based sensitivity analysis has been increasingly 
used to understand the sensitivity of complex models at 
the process level by quantifying the relative contribution 
of different model parameters and their interactions to the 
overall uncertainty in the model simulation. Variance-based 
methods require a very large number of model runs for 
complete specification of the model output throughout the 
parameter uncertainty space. Such Monte Carlo simula-
tion is not feasible for complex models such as LSMs. The 
alternative is the emulation in which the complex model is 
replaced by a computationally-efficient statistical surrogate 
model. The emulator estimates the output of the model 
at a large number of unsampled parameter combinations 
across multi-dimensional parameter uncertainty space, 
using information from a small number of model simu-
lations at chosen parameter values so that variance-based 
sensitivity analysis becomes feasible. 
The aim of this study is to demonstrate the use of the em-
ulation approach to quantify variance-based sensitivity of 
simulated soil moisture from a complex LSM to uncertain 
parameters and further to calibrate/optimize these param-
eters for improved soil moisture prediction. In this paper 
we focus on the emulation and sensitivity analysis, and 
leave parameter calibration as the subject of a subsequent 
paper. We use the Community Land Model 5.0 (CLM5), 
the latest in a series of land models developed and em-
bedded in the Community Earth System Model (CESM), 
and focus on key parameters that control vertical water 
flow in multi-layer soil column. We use a Gaussian process 
emulator to estimate the soil moisture across multi-di-
mensional parameter space, based on information from 
a small number of CLM5 simulations at parameter values 
chosen using a Maximin Latin hypercube space-filling 
design, quantify the uncertainty and carry out sensitivity 
analysis. We also evaluate the SMAP L3 surface soil mois-
ture product against the COSMOS measurements with 
various performance metrics and choose the sites with 
the high-quality soil moisture observations. The entire 
procedure is exemplified for seasonal (DJF, MAM, JJA, 

and SON) soil moisture across various test sites of distinct 
soil and vegetation types in the continental US. We will 
look at both surface (0–5cm) and root zone (0–100cm) 
soil moisture to examine if there exists any difference in 
their parametric uncertainties.
The structure of the paper is as follows: In Section 2, we 
describe the datasets (COSMOS, SMAP soil moisture prod-
uct, meteorological forcing) and the model (CESM2) used 
in this study. The method is given in Section 3, including 
the choice of study sites and uncertain model parameters, 
Gaussian process emulator, variance-based sensitivity anal-
yses, and model experiment design. Section 4 describes the 
brief comparison of soil moisture simulated with the default 
CLM5 model parameters against the SMAP at the selected 
study sites, the validation of emulator, and variance-based 
sensitivity analysis of uncertain parameters using emula-
tion. Summary and conclusions are provided in Section 5. 

2. Datasets and Model

2.1 COSMOS
The COSMOS serves as an option, particularly in hetero-
geneous regions, to fill the scale gap between point in situ 
soil moisture measurements and low-resolution satellite 
products by providing area-average soil moisture within a 
150–250 m radius footprint. The instrument, called “cos-
mic-ray moisture probe”, measures low-energy cosmic-ray 
neutrons above the ground, whose intensity is inversely 
correlated with soil moisture content and with water in 
any form above the ground surface (i.e. snow/vegetation 
water) (Zreda et al., 2008). It is built on existing and tested 
technologies to ensure its continuous operation after de-
ployment and provide long-term measurements. The data 
are available in near-real time, including neutron counts 
in two energy bands (fast, >1 keV; and thermal, <0.5 eV), 
ancillary data (atmospheric temperature, atmospheric pres-
sure and relative humidity), and computed soil moisture. 
In this study, we focus on the network of probes installed 
at sites throughout the USA with most of these sites lying 
in existing facilities. We use level 3 data, which have gone 
through quality control and correction for various factors 
(i.e. temporal change in pressure, other sources of water) 
that could affect the accuracy of computed soil moisture 
from the measured neutron intensity (Zreda et al., 2012). 
Level 3 data includes the hourly and 12-hour boxcar-fil-
tered soil moisture as well as effective measurement depth. 

2.2 SMAP
Currently, multiple global surface soil moisture products 
from passive microwave satellites are available to the com-
munity, including the AMSR-E/AMSR2, SMOS, and the 
latest launched SMAP. Extensive evaluation efforts have 
been conducted to assess the reliability and accuracy of 
these products across different regions. These results gen-
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erally showed the SMAP soil moisture mostly outperforms 
its counterparts and well reproduces the anomalies and 
temporal variation of in situ measurements with favorable 
performance metric values (Chen et al., 2017; Montzka et al., 
2017; Zhang et al., 2017; Chan et al., 2018; Cui et al., 2018; 
El Hajj et al., 2018). Therefore, we will focus on the SMAP 
soil moisture only in this study.
The SMAP is launched on 31 January 2015 and is dedicated 
to providing global top 5cm soil moisture with an accuracy 
of 0.04 m3/m3 and freeze/thaw state through moderate 
vegetation cover. SMAP instruments observe the Earth’s 
surface with a near-polar, Sun-synchronous 6:00 A.M. (de-
scending)/ 6:00 P.M. (ascending) orbit. Despite the failure 
of the SMAP radar on 7 July 2015, its L band radiometer 
continues to operate as planned and provides routine data 
starting from March 31, 2015. Among five alternative al-
gorithms developed to produce soil moisture retrievals, 
the Single Channel Algorithm V-pol (SCA-V), which uses 
the vertically polarized brightness temperature for surface 
soil moisture estimation, is selected as the operational 
baseline algorithm. In this study, the SMAP Level-3 (L3) 
radiometer global daily soil moisture product (SPL3SMP, 
version 5) is used. The L3 SMAP soil moisture products 
are resampled to a global, cylindrical 36 km Equal-Area 
Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0). In the 
SCA-V algorithm, the soil temperature and vegetation 
canopy temperature are assumed equal to be the effective 
soil temperature. This assumption is more reliable in the 
early morning due to the increased thermal equilibrium of 
vegetation canopy and near-surface soil. Therefore, here we 
only consider the SMAP radiometer soil moisture products 
from the 6:00 A.M. (local solar time) descending passes, 
spanning from March 31, 2015 to present.

2.3 Near-surface Meteorological Forcing - 
CRUNCEP Version 7

CRUNCEP V7 is a combination of the CRU TS v3.2 
0.5° × 0.5° monthly data from 1901 to 2002 (Mitchell and 
Jones, 2005) and the NCEP reanalysis 2.5° × 2.5° 6-hourly 
data from 1948 to 2016 (Kalnay et al., 1996). It combines 
NCEP’s temporal advantage and CRU’s better spatial res-
olution to achieve the 6-hourly 0.5° global forcing product 
spanning from 1901 to 2016. The NCEP reanalysis is only 
used to generate the diurnal and daily variability added 
to CRU TS monthly means. The NCEP is first bi-linearly 
interpolated to the 0.5° × 0.5° resolution of CRU for all 
fields except for precipitation which is linearly interpolated. 
Rainfall, cloudiness, relative humidity and temperature 
are taken from the CRU, while the other fields (pressure, 
longwave radiation, windspeed) are directly derived from 
NCEP. Cloudiness is converted to incoming solar radiation 
based on calculation of clear sky incoming solar radiation 
as a function of date and latitude, while relative humidity is 
converted to specific humidity as a function of temperature 

and surface pressure. Prior to 1948, the procedure is the 
same except that the variability from 1948 is applied every 
year (there is no interannual variability for these fields), 
while after CRU period the fields are directly extrapolated 
from NCEP1. The missing data is filled with Qian et al. 
(2006) from 1948 that is interpolated to the 0.5o grid. The 
CRUNCEP dataset has been used for studies of vegetation 
growth (Mao et al., 2013), evapotranspiration (Shi et al., 
2013) and trends in net land-atmosphere carbon exchange 
(Piao et al., 2012), among many other use cases.

2.4 Community Earth System Model Version 2  
(CESM2)

The Community Land Model (CLM) is a well‐established 
mathematical model of land surface processes, developed 
for use as the land component in the fully coupled CESM. 
It is a fully prognostic model, and calculates the cycling of 
energy, water, C, and nitrogen and updates state variables at 
each 30 minutes for each grid cell. Compared to CLM 3.5, 
later versions (CLM4, CLM4.5, and CLM5) include many 
updates relevant to representations of soil hydrology. In par-
ticular, the new implementations include a revised solution 
to the Richard’s equation which improves the accuracy and 
stability of the numerical soil water solution (Zeng and Deck-
er, 2009), a dry surface layer-based evaporation resistance 
parameterization (Swenson and Lawrence, 2014), a spatially 
variable soil thickness (0.4 ~ 8.5 m depth, Brunke et al., 2016), 
increased model soil layer resolution, revised treatments of 
soil column-groundwater interactions, a revised determi-
nation of hydraulic properties of frozen soils, corrections 
that increase the consistency between soil water state and 
water table position, and a representation of the thermal and 
hydraulic properties of organic soil in conjunction with the 
mineral soil properties (Lawrence and Slater, 2008). These 
augmentations to CLM3.5 result in improved soil moisture 
dynamics that lead to higher soil moisture variability and drier 
soils. Excessively wet and unvarying soil moisture was rec-
ognized as a deficiency in CLM3.5 (Decker and Zeng, 2009).

2.5 Data Processing
We derive the CLM surface (0–5cm) and root zone 
(0–100cm) volumetric soil moisture as the weighted av-
erages of those from the first two and twelve soil layers, 
respectively. We assume that soil density remains the same 
in various layers and thus weights are proportional to the 
thickness of each layer. The analyses of various soil moisture 
data are conducted on a monthly time scale. For COSMOS, 
the hourly soil moisture measurement is first averaged into 
daily values and further averaged into monthly values. We 
compared the monthly values from the directly-measured 
hourly and 12-hour boxcar-filtered hourly data and find 

1 See more details at ftp://nacp.ornl.gov/synthesis/2009/fresca-
ti/model_driver/cru_ncep/analysis/readme.htm.
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that the resulting differences were fairly small. In this study, 
we show the results from the 12-hour smoothed hourly 
COSMOS data. The daily SMAP data is extracted at an 
individual 36km EASE grid in which each COSMOS site is 
located and then averaged into monthly value for compar-
ison with COSMOS. The comparison between COSMOS 
and SMAP is performed between their greatest overlap 
period—April 2015 to May 2019. The analyses involved 
with CLM are focused on year 2016 only.

3. Methods
An understanding of model sensitivity to uncertain param-
eters can not only help attribute the uncertainty in modelled 
variable of interest (i.e. soil moisture) to various processes 
and the poorly constrained parameters that describe these 
processes, but also guide future model development. How-
ever, the computational demand involved in sensitivity 
analysis of complex global models often prevents the source 
of uncertainty at the process level from being rigorously 
quantified. In addition, the most commonly used single 
parameter perturbation or one-at-a-time (OAT) approach, 
is inadequate for sensitivity analysis in two aspects: 1) It 
severely undersamples the parameter uncertainty space 
when the number of parameters is large.; and 2) It does 
not account for interactions among parameters. Here we 
apply well-established Gaussian process emulator (O’Hagan, 
2006) to the CLM5 embedded in CESM model to quantify 
the effect of parametric uncertainty on model-simulated 
soil moisture. The overall approach has been described in 
detail by Lee et al. (2011, 2013), we briefly elaborate the pro-
cedure here. First, we choose uncertain model parameters 
associated with the simulation of soil moisture in CLM5 
and determine their uncertainty ranges and probability dis-
tributions to represent the uncertainty in these parameters. 
Second, we use a maximin Latin Hypercube to sample an 
appropriate number of sets of parameter values covering the 
multidimensional parameter uncertainty space for CLM5 
simulations. Third, we use Gaussian process emulation con-
ditioned on the performed CLM5 simulations to generate 
continuous soil moisture distribution throughout the entire 
parameter uncertainty space. Lastly, a full variance-based 
sensitivity analysis is carried out using the emulator for a 
Monte Carlo-type sampling of soil moisture to quantify 
its sensitivity to the parameters and their interactions. We 
exemplify the entire procedure at the selected COSMOS 
sites in the continental United States.
It is worth noting that Gaussian process emulation and 
variance-based sensitivity analysis do not involve the use 
of any observational data, while model parameter calibra-
tion is attained by optimizing (or iteratively changing) the 
parameter values to minimize the errors between model 
simulations and observations (the subject of a subsequent 
paper). Our criteria for site selection is to include differ-

ent major soil types and also ensure the availability of 
high-quality soil moisture observations. In addition, we will 
examine how CLM-simulated soil moisture with default 
model parameters performs again the observations at the 
selected sites. This could provide us a useful insight into 
various extents to which parameter calibration improves 
model simulated soil moisture across different soil types.

3.1 Choice of Study Sites
Since neither COSMOS nor SMAP soil moisture could be 
considered as “pure” truth, we evaluate the consistency 
between two measurements over all the USA COSMOS 
sites. Through such cross-validation exercise, the consis-
tency between the two may increase the confidence in both 
data sets. Among the total of 78 USA COSMOS sites, we 
excluded all the sites where the measurements do not over-
lap with the SMAP data period or overlap with the SMAP 
for less than a year, as well as all the sites uncalibrated or 
with gravimetric calibration. The soil moisture values at the 
uncalibrated sites are obtained with an assumed calibration 
parameter and thus may be unreliable, while the gravimetric 
soil moisture value (in unit g/g) may lead to a bias when 
converted to the volumetric unit (cm3/cm3) due to unknown 
bulk density (M. Zreda, personal communication, July 30, 
2019). This results in a total of 30 sites remaining (Table 1). 
One potential limitation in the cosmic-ray method is the 
presence in the footprint of any surface water (i.e. snow, 
runoff, or intercepted precipitation) other than that in the 
soil. Water at the surface can depress the neutron intensity 
and lead to overestimated soil moisture. Zreda et al. (2012) 
suggested not to determine soil moisture in the presence 
of snow because the correction may be substantial and the 
signal due to soil moisture too weak to produce a well-de-
fined calibration function. The SMAP retrievals during the 
frozen season are not available as well. In consideration 
of these facts, the evaluation of the consistency between 
SMAP and COSMOS soil moisture measurements will be 
conducted in unfrozen and snow-free seasons for any site. 
Four standard statistic metrics were employed to provide 
a more comprehensive description of their consistency 
performance (Entekhabi et al., 2010a), including the bias, 
the Root Mean Square Error (RMSE), the unbiased RMSE 
(ubRMSE), and the Pearson correlation coefficient (r). 
Soil moisture time series usually show a strong season-
al pattern, which may artificially increase the perceived 
agreement in term of r between satellite retrievals and 
in situ observation. To avoid seasonal effects, time series 
of anomalies after removing the mean seasonal cycle are 
also computed. To summarize, bias is computed using the 
original time series, while RMSE and r are computed using 
both the original and anomaly time series. The RMSE of 
soil moisture anomalies are assumed to reflect ubRMSE by 
accounting for slowly varying seasonal bias. These statistics 
are computed for each site using the entire overlapping 
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monthly time series between SMAP and COSMOS from 
April 2015 to May 2019. Mean seasonal cycle is computed 
with maximum available years of data after excluding any 
missing or flagged values from SMAP or COSMOS (i.e. 
those under frozen conditions or outside the valid range). 

In comparison with COSMOS, SMAP soil moisture may 
underestimate or overestimate the soil moisture to various 
extents across the sites with a bias from -0.3 cm3/cm3 (NJ 
Meadowlands) to 0.39 cm3/cm3 (Park Falls) (Table 2). The 
RMSE is fairly large as well, ranging from 0.03 cm3/cm3 
to 0.4 cm3/cm3 and with about 2/3 of the sites larger than 
0.1 cm3/cm3. However, after the bias (temporal dynamic 

variability) is removed, the SMAP product can achieve 
modest accuracy with the ubRMSE of half the sites smaller 
than 0.04 cm3/cm3 and of only one site larger than 0.08 
cm3/cm3, which are overall comparable to the SMAP mission 
requirement of 0.04 cm3/cm3. The time series correlations 
based on both the original (r) and anomaly (r_A) time series 
are largely consistent and statistically significant at the 99% 
confidence level for most of the sites, which suggests that 
the SMAP generally captures well the temporal variation 
of the COSMOS soil moisture.

We will build an emulator and carry out variance-based 
sensitivity analysis for each soil type. The USA COSMOS 

Table 1. Characteristics of CoSMoS sites used in this study. Soil organic C and vegetation are from CoSMoS data. the soil type is 
determined from CLM surface data for the corresponding grid cell at which each CoSMoS site is located. the shading is placed to 
differentiate various CLM soil type groups across the sites.

COSMOS Site Lat (N) Lon (E)
Soil organic C 
(wt %)

Vegetation CLM Soil

ARM-1 36.61 262.51 0.59 grass Loam
CC_Pasture 41.27 262.05 1 pasture Loam
Daniel Forest 41.87 248.49 1.72 mixed conifer, aspen forest Loam
Fort Peck 48.31 254.9 1.18 grassland Loam
Howland 45.2 291.26 8.15 mixed forest Loam
Manitou Forest 39.1 254.9 0.5 forest Loam
Metolius 44.45 238.44 1.36 ponderosa pine Loam
P301 37.07 240.81 2.36 mixed conifer forest Loam
Park Falls 45.95 269.73 1.42 forest, wetland Loam
Reynolds Creek 43.12 243.28 2.62 sagebush, aspen Loam
Rosemount2 44.69 266.94 1.49 corn-soybean Loam
Shale Hills 40.66 282.09 1.26 forest Loam
SMAP-OK 36.06 262.78 0.65 pasture/sparse tree Loam
Tenderfoot Creek 46.95 249.11 1.11 pine Loam
York Irrigated Soybean 40.93 262.54 1.26 soybean Loam
Bondville 40.01 271.71 1.57 corn-soy Clay loam
Coastal Sage UCI 33.73 242.3 1.21 open shrublands Clay loam
Flag Wildfire 35.45 248.23 1.96 grass, forbes Clay loam
Iowa Validation Site 41.98 266.32 1.59 corn-soybean Clay loam
Mozark 38.74 267.8 1.45 deciduous forest Clay loam
Neb Field 3 41.16 263.53 1.26 soy-corn cropland Clay loam
NJ meadowlands 40.77 285.91 1.6 grassland Clay loam
Silver Sword 19.76 204.58 1.81 silver sword Clay loam
Desert Chaparral UCI 33.61 243.55 0.17 open shrublands Sandy loam
JERC 31.24 275.54 0.66 evergreen forest, grass understory Sandy loam
Santa Rita Creosote 31.91 249.16 0.3 shrubland Sandy loam
Freeman Ranch 29.95 262 1.98 woody savanna Clay
Goodwin Creek 34.25 270.13 1.6 pasture Sandy clay loam
Tonzi Ranch 38.43 239.03 0.55 oak savanna Sandy clay loam
Harvard Forest 42.54 287.83 6.05 mixed forest Silt loam
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sites are characterized by six major soil types. We selected 
all the available sites for the soil types of Sandy Loam (SL, 
3), Clay (C, 1), Sandy Clay Loam (SCL, 2), and Silt Loam 
(SiL, 1). In consideration of computational demand, we 
chosen a few sites for the Loam (L, 3) and Clay Loam (CL, 
2), which have relatively higher and statistically significant 
(99% level) anomaly correlations (r_A), lower ubRMSE, 
and larger sample size. This selection is not meant to be 
exclusive but to be illustrative, so other sites can be used 
as well. This resulted in a total of 12 sites (marked with 
“*” in Table 2). Inclusion of multiple sites for the same 
soil type helps us understand the impact on the emulator 

performance of the factors other than soil texture (i.e. 
vegetation, soil organic C content, etc.).

3.2 Choice of Uncertain Model Parameters 
The experiment design for building emulator depends 
primarily on the range of uncertainty given to individual 
parameter rather than the shape of the uncertainty distri-
bution (assumed as Gaussian in this study). Therefore, it 
is crucial to get the uncertainty range within which each 
parameter normally falls. We identify five uncertain pa-
rameters associated with the hydraulic properties of the 
soil (Table 3). In CLM5, the bulk hydraulic properties of 
each soil layer are computed as weighted averages of the 

Table 2. Statistics of performance metrics for the consistency between SMap and CoSMoS soil moisture measurements across the 
sites listed in table 1. the unit for bias, rMSe, ubrMSe is cm3/cm3; ubrMSe and r_a is the rMSe and r calculated from the anomaly 
time series, respectively. N is the number of samples. Italic and bold numbers indicate that correlation coefficient is statistically 
significant at the 95% and 99% confidence levels, respectively. * indicates the sites selected for the emulator and variance-based 
sensitivity analyses (See the text for details).

Soil Type Site Bias RMSE ubRMSE r r_A N

Loam

* ARM-1 0.042 0.053 0.026 0.83 0.83 43
CC_Pasture -0.023 0.054 0.027 0.27 0.28 23
Daniel Forest -0.152 0.260 0.061 0.67 0.57 19
Fort Peck 0.006 0.048 0.011 0.43 0.90 30
Howland 0.035 0.188 0.076 -0.10 0.37 37
Manitou Forest -0.022 0.063 0.050 0.52 0.62 46
Metolius -0.094 0.167 0.078 0.69 0.48 49

* P301 0.037 0.079 0.047 0.88 0.71 50
Park Falls 0.385 0.401 0.068 -0.60 -0.81 25
Reynolds Creek -0.048 0.092 0.037 0.80 0.46 43
Rosemount2 0.053 0.141 0.110 -0.54 -0.58 43
Shale Hills 0.094 0.100 0.025 0.50 0.59 49

* SMAP-OK 0.060 0.062 0.014 0.92 0.92 40
Tenderfoot Creek -0.100 0.182 0.060 0.44 0.06 32
York Irrigated Soybean -0.118 0.129 0.030 0.53 0.76 48

Clay Loam

Bondville -0.282 0.293 0.054 0.42 0.64 50
Coastal Sage UCI 0.244 0.251 0.039 0.63 0.57 25
Flag Wildfire -0.098 0.138 0.062 0.56 0.76 39
Iowa Validation Site -0.074 0.122 0.051 0.02 0.37 49

* Mozark 0.042 0.064 0.027 0.63 0.82 50
Neb Field 3 -0.151 0.166 0.050 0.35 0.45 48
NJ Meadowlands -0.303 0.330 0.052 -0.01 0.25 49

* Silver Sword -0.211 0.217 0.047 0.88 0.87 50

Sandy Loam
* Desert Chaparral UCI 0.010 0.030 0.015 0.85 0.80 50

* JERC 0.145 0.150 0.007 0.80 0.73 20

* Santa Rita Creosote 0.038 0.040 0.012 0.87 0.65 30
Clay * Freeman Ranch -0.096 0.107 0.040 0.64 0.66 44

Sandy Clay Loam * Goodwin Creek 0.191 0.194 0.014 0.71 0.71 25

* Tonzi Ranch 0.010 0.026 0.017 0.97 0.81 46
Silt Loam * Harvard Forest 0.139 0.183 0.069 -0.49 -0.14 48
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organic and mineral components with weights equal to 
soil organic matter fraction (ƒ om) and (1-ƒ om), respectively. 
The properties of the mineral soil (saturated hydraulic 
conductivity Κsat,min, porosity Θsat,min, saturated soil matric 
potential Ψsat,min, and shape parameter bmin) are determined 
by the soil texture (fractions of sand and clay), while those 
of organic matter remain constant. In this paper, we thus 
focus on the properties of the mineral soil as uncertain 
parameters. The uncertainty ranges of mineral soil spec-
ified in this study are derived from Clapp and Hornberg-
er (1978), which provided representative values (µ) and 
standard deviations (σ) for porosity Θsat, saturated soil 
matric potential Ψsat, and shape parameter b of different 
soil textures based on analysis of 1845 soils. The range 
of Θsat,min is specified as µ±3σ. Ψsat,min is given as ranging 
from the greater of 1 and -3σ to 3σ, while shape parameter 
bmin is given as ranging from the greater of 3 and -2σ to 
2σ. The statistics (µ and σ) of ƒ om for each soil texture are 
determined from all the gridpoints of specific soil texture 
over the USA based on the CLM global surface data of 
0.5º resolution. ƒ om is given as ranging from the greater 
of 0 and -2σ to the lesser of 0.95 and 2σ. These addition-
al constrains for the minimum and maximum values of 
parameters are imposed to maintain the required water 
balance. The mean Κsat values are estimated from USDA2, 
where we assume the corresponding fractions of sand are 
0%, 25%, 50%, 75%, and 100% for coarse, moderate coarse, 
medium, moderate fine, fine and very fine textural classes, 
respectively. We fit two new exponential functions across 
the range of sand fraction for the low and high limits of 
Κsat, by adjusting the coefficients (the initial value of the 
function or the y-intercept) of Κsat exponential function 
used in CLM (the base and exponent are unchanged). The 
coefficients are determined so that the mean Κsat values lie 
in the middle of two Κsat limits. The range of Κsat for each 
soil texture is then estimated by feeding the low and high 
sand fractions of specific soil texture into the corresponding 
new exponential functions, respectively.

2 https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/ 
office/ssr10/tr/?cid=nrcs144p2_074846

3.3 Gaussian Process Emulator
Emulation is the process by which a complex model is 
replaced by a statistical surrogate model that can be run 
more efficiently to estimate the model output at a large 
number of unsampled parameter combinations so that 
variance-based sensitivity analysis becomes feasible. Various 
emulation methods are available and have been applied to 
climate and ocean models (Gold- stein and Rougier, 2006; 
Sanderson et al., 2008; Lee et al., 2011; Lee et al., 2013) as 
well as dynamic vegetation model (Kennedy et al., 2008). In 
this study, we demonstrate that Gaussian process emulator 
(O’Hangan, 2006) can be used to study the sensitivity of 
land surface model (i.e. CLM5) simulated soil moisture 
across the uncertainty space of multiple parameters. 

Gaussian process emulation combines prior beliefs on 
parameter uncertainty and model behavior (step 1) with 
soil moisture simulated from a designated number of 
CLM5 runs (training data, step 2) to produce a posterior 
probability distribution of soil moisture across the same 
parameter uncertainty space. Prior belief on model be-
havior is represented by a prior probability distribution 
which is assumed to be the Gaussian process in this study. 
This indicates that the posterior probability distribution 
conditioned on the training data is also a Gaussian process 
and both distributions can be specified completely by a 
mean function and a covariance function. The mean of 
the posterior distribution is used as an approximation for 
the CLM5 and the covariance provides the information 
on uncertainty resulting from using emulation rather than 
direct CLM5 simulation. Sampling from the posterior dis-
tribution provides the necessary data for sensitivity anal-
ysis. Any realization from the Gaussian process emulator 
passes exactly through all the training points. It is worth 
noting that there are two assumptions behind the use of 
the Gaussian process emulator for sensitivity analysis: 1) 
The response of the CLM5-simulated monthly soil mois-
ture to the parameter uncertainty space is smooth and 
continuous. Such assumed smoothness denotes that each 
designated CLM5 simulation provides information about 
the soil moisture at neighboring parameter values and thus 
ensures a lower uncertainty in predictions far from the 

Table 3. range of the chosen uncertain parameters associated with hydraulic properties of mineral soils in CLM5. 

Sand%
Saturated Hydraulic 
Conductivity (mm/s)

Porosity 
(vol/vol)

Saturated Soil Matric 
Potential (mm)

Shape 
Parameter

Soil Organic 
Matter Fraction

Sandy Clay Loam 45 - 100 0.00223 - 0.18286 0.243 - 0.597 1.0 - 143.3 3.0 - 11.98 0.055-0.490
Sandy Loam 43 - 85 0.00208 - 0.09165 0.177 - 0.693 1.0 - 114.8 3.0 -   8.40 0.000-0.553
Loam 23 - 52 0.00103 - 0.02005 0.217 - 0.685 1.0 - 201.4 3.0 -   9.13 0.000-0.598
Silt Loam   0 - 50 0.00046 - 0.01829 0.308 - 0.662 1.0 - 232.2 3.0 -   9.22 0.000-0.950
Clay Loam 20 - 45 0.00092 - 0.01453 0.317 - 0.635 1.0 - 216.0 3.0 - 13.00 0.077-0.556
Clay   0 - 45 0.00046 - 0.01453 0.332 - 0.632 1.0 - 159.6 4.0 - 18.00 0.151-0.352
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training data. If there is discontinuity in the model with 
respect to its uncertain parameters, many runs would be 
required to build the emulator and its increased efficiency 
is lost. The smoothness assumption can be tested in the 
emulator validation (Section 4.2). 2) The uncertain model 
parameters should be separately identifiable (Section 3.2).  

3.4 Variance-based Sensitivity Analyses
Variance-based sensitivity analysis decomposes the uncer-
tainty in the model simulations into its parametric sources. 
Here we quantify the sensitivity of CLM5-simulated soil 
moisture to each of the five parameters in Table 3 and their 
interactions. In this study, parameter sensitivity is referred to 
as “contribution to the uncertainty”. The uncertainty of soil 
moisture is presented here as the standard deviation of its 
probability distribution around the mean and is estimated by 
sampling from the emulator mean function. Two measures 
of sensitivity are calculated. The main effect measures the 
percentage of the total variance (uncertainty) that will be 
reduced if a parameter is known precisely. The total effect 
measures all variance components involving a parameter, 
specifically both the individual effect and the interaction 
effect of each parameter with all others, as a percentage of 
the total variance. The two sensitivity measures are compared 
to assess the sensitivity of the soil moisture to interactions 
between uncertain parameters. If there is no interaction 
with a parameter, two measures are equivalent. 
We use readily available software, the Gaussian Emulation 
Machine for Sensitivity Analysis (GEM-SA)3. GEM-SA 
will provide 1) 200 realizations from a five-dimensional 
emulator based on 50 points. The mean of the realizations 
is used to estimate the soil moisture and the spread of the 
realizations gives the emulator uncertainty; and 2) The 
main effect and total effect sensitivity measures for each 
of the uncertain parameters. 

3.5 Model Experiments
We used a maximin Latin hypercube (McKay et al., 1979) 
to sample parameter values across the uncertainty rang-
es of 5 parameters in Table 3. Latin hypercube sampling 
splits the range in every dimension into N equal intervals 
and then makes sure that each interval is sampled exact-
ly once. As recommended by Loeppky et al., (2009), the 
number of points sampled in the Latin hypercube should 
be ten times the number of chosen uncertain parameters. 
Therefore, we configured 50 initial CESM model runs. To 
ensure that the designed emulator is adequate to describe 
the model behavior at the unsampled points, additional 15 
model runs, equal to three times the number of uncertain 
parameters, were employed to validate the emulator. Pa-
rameter values for a third of these runs (5) were chosen 
deliberately close to those in the original 50 runs and for 

3 http://www.tonyohagan.co.uk/academic/GEM/

the remaining two-thirds (10) were placed further away, 
determined by a separate Latin hypercube design. The 
validation process helped identify potential failures with 
the statistical assumptions made to build the emulator. We 
build an emulator for each month over the year 2016 and 
each of the 12 selected sites in Table 2. 
In this study, the CESM2 simulations were conducted in 
land-only mode in which the default land component CLM5 
was forced with historical forcing CRUNCEPv7 and with 
satellite phenology (SP)—prescribed LAI and 20th century 
aerosol deposition rates (described by an I2000Clm50SpGs 
component set). The CLM5 with default model parameters 
was first run from 1951 to 2015. The parameter perturbations 
were then applied with all model runs having identical initial 
conditions. Additional 4-year simulations driven with 2016 
CRUNCEPv7 forcing were carried out for each model run 
to ensure that the perturbations take effect. The first year is 
treated as a spin-up period and the analysis is performed on 
the monthly soil moisture averaged for the last three years. 

4. Results 

4.1 CLM5-simulated Soil Moisture
We first examined the performance of surface soil mois-
ture (0–5cm) simulated from CLM5 with default mod-
el parameters against its SMAP counterpart from April 
2015 to December 2016 at the selected 12 COSMOS sites 
listed in Table 2 (Figure 1). This exercise serves as the 
main motivation to use the emulator for understanding 
the relative contribution of various model parameters to 
the uncertainty in model-simulated soil moisture and fur-
ther to calibrate/optimize these parameters for improved 
soil moisture prediction. All the performance metrics are 
calculated from the original time series because such a 
short period does not justify the derivation of anoma-
lies. ubRMSE is calculated by removing the mean bias 
(ubRMSE = ) (Entekhabi et al., 2010a). 
We did not include the comparison of CLM5 soil moisture 
with COSMOS due to the missing data at several sites, 
particularly Goodwin Creek.
The CLM5 simulations tend to overestimate the soil mois-
ture with positive biases in all the sites, except for Goodwin 
Creek and Harvard Forest (Table 4). The CLM5-simulated 
soil moisture at Silver Sword and Harvard Forest have 
the worst performances with the largest positive (0.238 
cm3/cm3) and negative (-0.253 cm3/cm3) biases, respectively. 
Their RMSE values are also larger than those at other sites, 
with 0.24 cm3/cm3 and 0.3 cm3/cm3 at Silver Sword and 
Harvard Forest, respectively. It is worth noting that Silver 
Sword attains one of the lowest ubRMSE values (0.025 
cm3/cm3) after the bias is removed, while Harvard Forest 
still retains the highest ubRMSE (0.16 cm3/cm3). This in-
dicates that the mismatch between CLM5-simulated and 
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SMAP soil moisture at Silver Sword is mostly attributed 
to its mean bias. In fact, all the sites, except for Harvard 
Forest, P301 and Mozark, meet the accuracy requirement 
of the SMAP mission with the ubRMSE values no greater 
than 0.04 cm3/cm3. Except for Silver Sword and Harvard 

Forest, the CLM5-simulated soil moisture at all the other 
sites well captures the temporal variation of SMAP soil 
moisture with the time series correlation coefficients ranging 
from 0.56 to 0.95 and statistically significant at 99% level. 
Although the correlation coefficient of Silver Sword (0.4) 

Figure 1. Comparison of monthly soil moisture from CLM5 with default model parameters and SMap retrieval from apr 2015 to 
December 2016 over the selected 12 CoSMoS sites (table 2) of different soil types (see text for details). 
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is statistically significant at 95% level, the dynamic range 
of SMAP soil moisture is much constrained and damped 
(temporal standard deviation of 0.009 cm3/cm3 in contrast 
to that of 0.028 cm3/cm3 for CLM5), which makes the 
resulting correlation coefficient severely compromised. 
Harvard forest is the only site showing a strong negative 
correlation (-0.7), indicating that CLM5 simulation fails 
to capture the temporal variation of SMAP soil moisture. 
The reason behind this feature needs further examination 
but is beyond the scope of this study.
It is known that land surface models are strongly limited in 
their ability to reproduce observed soil moisture by a lack of 
critical information on soil hydraulic properties and, more 
importantly, by the need to represent complex, nonlinear, 
and nonresolvable processes across large distances in a 
very simple way. There are often considerable mean biases 
or biases in the dynamic range and time variability of the 
modeled soil moisture (Reichle et al., 2004). The poor per-
formances of CLM5-simulated soil moisture, particularly 
at such sites as Harvard Forest and Silver Sword, confirm 
these biases and further inspires us to explore the potential 
for an improved prediction. And understanding the effect 
of parameter uncertainty in the modeled soil moisture is 
the first step to achieve this goal. 

4.2 Validation of the Emulator
The evaluation of the emulator is conducted by compar-
ing the CLM5-simulated and emulator-predicted surface 
(0–5cm) soil moisture from 15 validation simulations at 
the 12 USA COSMOS sites of different soil types for the 
winter (DJF), spring (MAM), summer (JJA), and autumn 
(SON) seasons (Figure 2). Also shown is the 95% probability 
bound as a measure of the “confidence” of the emulator 
prediction based on 200 realizations. It is desirable to have 
CLM-simulated soil moisture from 95% of the validation 

runs contained within the corresponding 95% probability 
bound of the emulator. Based on this criterion, we see 
that emulation of surface soil moisture performs best in 
JJA across various sites, followed by SON and MAM, and 
performs worst in DJF (Table 5). Two sites with clay loam 
performs best across different seasons, while three sites 
with sandy loam performs worst. At Harvard forest (silt 
loam), only 80% of the CLM simulations lie within the 
95% confidence interval of the emulator for all the seasons, 
except for JJA. However, it is unfeasible to generalize the 
performance on this soil texture based on just one site. 
The five validation points placed close to the training data 
are generally characterized by very small 95% probability 
bounds that cover the CLM simulations for all the sites 
and seasons (indiscernible in Figure 2), indicating that the 

Table 4. performance metrics of CLM5-simulated soil moisture against its SMap counterpart across the 12 sites selected in table 2. the 
unit for bias, rMSe, ubrMSe is cm3/cm3; all the metrics are calculated from the original time series. N is the number of samples. Italic and 
bold numbers indicate that correlation coefficient is statistically significant at the 95% and 99% confidence levels, respectively.

Site Bias RMSE ubRMSE r N

Loam
ARM-1 0.128 0.134 0.042 0.627 21
P301 0.071 0.114 0.090 0.935 21
SMAP-OK 0.136 0.140 0.030 0.678 21

Clay Loam
Mozark 0.025 0.056 0.050 0.671 21
Silver Sword 0.238 0.239 0.025 0.395 21

Sandy Loam
Desert Chaparral UCI 0.040 0.047 0.024 0.697 21
JERC 0.031 0.047 0.035 0.811 21
Santa Rita Creosote 0.067 0.077 0.037 0.558 21

Clay Freeman Ranch 0.144 0.149 0.038 0.730 21

Sandy Clay Loam
Goodwin_Creek -0.105 0.108 0.025 0.905 21
Tonzi Ranch 0.023 0.035 0.027 0.954 21

Silt Loam Harvard Forest -0.253 0.299 0.159 -0.694 21

Table 5. Number of the validation runs in which CLM-simulated 
soil moisture is contained within the corresponding 95% 
probability bound of the emulator. bold number indicates 
approximately 93% of validation runs that meet the criterion.

DJF MAM JJA SON

ARM-1 13 12 13 14
P301 13 14 14 13
SMAP-OK 14 13 14 14
Mozark 12 14 15 14
Silver Sword 14 14 14 14
Desert Chaparral UCI 10 13 14 13
JERC 13 12 14 13
Santa Rita Creosote 13 13 13 12
Freeman Ranch 12 12 15 14
Goodwin Creek 13 13 15 14
Tonzi Ranch 14 14 13 13
Harvard Forest 12 12 14 12
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Figure 2. Comparison between CLM5-simulated and emulator predicted seasonal surface (0-5cm) soil moisture (cm3/cm3) of year 
2016 across various selected uSa CoSMoS sites. the uncertainty of emulator prediction is presented as 95% probability (2σ ) limits. 
the points with indiscernible uncertainty bars are those deliberately placed close to the training data. 
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emulator estimates well close to the training data. With 
the exception of DJF at Desert Chaparral UCI, the emu-
lator also estimates fairly well at points far away from the 
training data, with at least 7 out of these 10 points having 
95% confidence intervals that cover the CLM simulations 
across various sites and seasons. In terms of the comparison 
between the emulator-predicted mean and CLM-simulated 
surface soil moisture, the correlations are all above 0.90 
(ranging from 0.91–1.0) with the exception of the DJF at 
Desert Chaparral UCI (0.82) and the RMSEs range from 
0.01to 0.02 cm3/cm3 which is much lower than the SMAP 
mission requirement of 0.04 cm3/cm3 (Appendix B). The 
emulation of root zone soil moisture exhibits similar per-
formances and statistics (Appendix C). Overall, the em-
ulator captures well the model behavior across the entire 
parameter uncertainty space for different soil textures and 
seasons and is considered to be accurate and robust. The 
small emulator standard deviation indicates that its mean 
is representative of the CLM simulation and there will be a 
very small effect on the accuracy to estimate the parameter 
sensitivities using the emulator.

4.3 Sensitivity Analysis
The sensitivity analysis partitions the variance due to the 
five parameters into the variance due to each parameter and 
their interactions. The results for surface and root zone soil 
moisture are summarized in Figures 3 and 4, respectively, 
as well as in Appendix. The main effect variance is the 
percentage of the total variance due to the perturbation 
of each parameter individually. The interaction variance is 
the percentage of the total variance due to the interaction 
between each parameter and other parameters. Note the 
total variance contributions will typically not add to 100% 
because the variance contributions are shared between 
parameters in the presence of interactions (Appendix D). 
The further it is away from 100% gives an indication of 
the strength of interaction effects. The main effects for 
surface soil moisture are much more important than the 
interactions, with the portion of the variance contributed 
by the individual parameters ranging from 81% to 98% 
across almost all the sites and seasons (Appendix D). The 
only exception is MAM at Goodwin Creek where param-
eter interactions become strong with the summed total 
effect variance being 155% and main effect accounting 
for only 57% of the total variance. The main effects are 
generally stronger in soil textures with lower fraction than 
higher fraction of sand. For example, the summed total 
effect variances are generally smaller than 105% (standard 
deviation σ = 0.9%, number of samples N = 12) and the 
main effects account for more than 95% (σ = 0.8%) of the 
variance consistently across all the seasons for clay loam 
and clay, whose fractions of sand are 20–45% and 0–45% 
(Table 3), respectively. For sandy clam loam and sandy 
loam whose respective fractions of sand are 45–100% 

and 43–85%, the main effects largely account for around 
85–90% of the variance (excluding MAM at Goodwin 
Creek), variably across the seasons and sites (σ = 3.9%, 
N=20). Among the main effects of five parameters, the 
majority of surface soil moisture variance is described by 
the uncertainties in porosity and shape parameter. The 
combination of porosity and shape parameters explains 
about 60–94% of the total variance across different sites 
and seasons, with the exception of MAM at Goodwin Creek 
which has only 40% of the total variance explained. Simi-
larly, for soil textures with lower sand fractions (clay loam 
and clay), we see higher percentage (> 85%) of the variance 
explained by the combined porosity and shape parameter 
across different seasons, in comparison with soil textures 
of higher sand fractions. The other three parameters are 
shown to have relatively small individual effects with the 
explained variances by Κsat,min, ƒ om, and Ψsat,min less than 
10%, 18%, and 25%, respectively. However, the median 
and 75th percentile of their explained variances across all 
the sites and seasons (N = 48) are only 2% and 3.7% for 
Κsat,min, 2.6% and 5% for ƒ om, as well as 1.8% and 4.5% for 
Ψsat,min, respectively. 
Nevertheless, the relative importance of porosity versus 
shape parameter varies strongly with sites and seasons. 
The majority of the sites, including Desert Chaparral UCI, 
Santa Rita Creosote, Mozark, Silver Sword, Goodwin Creek, 
Tonzi Ranch, and Freeman Ranch, show that the variance 
in surface soil moisture is attributed distinctly more to the 
uncertainty in shape parameter than to that in porosity 
across different seasons. Over these sites, the explained 
variance by shape parameter ranges from about 45% to 
75% (excluding MAM at Goodwin Creek), while those 
by porosity ranges from about 9% to 45%. The relative 
dominance by shape parameter is generally the weakest in 
DJF. Different pattern of parameter sensitivity is observed 
at the sites of ARM-1 and Harvard forest, where porosity 
contributes markedly more to the total variance than shape 
parameter across the seasons. The explained variance by 
porosity ranges from about 40% to 65%, while that by 
shape parameter ranges from 7% to 40%. Such difference 
in parametric variance contribution is more evident in DJF 
and MAM, but becomes smaller in JJA and SON. The sites 
of P301, SMAP-OK and JERC show mixed responses. The 
porosity at P301 and JERC presents their dominances in 
variance contribution in all the seasons except for SON, 
while shape parameter at SMAP-OK exhibit its dominance 
in all the seasons except for DJF. Overall, there is no simple 
rule of thumb for the parametric sensitivity across different 
sites and seasons. The same soil texture can exhibit different 
relative importance of uncertain parameters, while different 
soil textures can present the similar pattern of variance 
dominance. Examining the parametric sensitivity at more 
sites of the same soil texture would be useful to generalize 
these conclusions. These results suggest that some factors 
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Figure 3. the parameter sensitivities of surface soil moisture at the selected uSa CoSMoS sites. the gray and black bars show the main 
effect sensitivities and how much the interaction of each parameter with the others contributes to the surface soil moisture variance.
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Figure 4. Same as Figure 3, but for root zone soil moisture.
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other than soil texture, such as overlaid land cover type, 
may also contribute to the process of determining the 
parametric sensitivity of soil moisture. 
The parametric sensitivity of root zone soil moisture shares 
similar features to that of surface soil moisture but with 
several differences. The main effects prominently dominate 
the total variances in all the sites and seasons with the inter-
actions between the model parameters much weaker for root 
zone than for surface soil moisture. With two sites (Goodwin 
Creek and Tonzi Branch) of sandy clay loam excluded, the 
total variances and the explained variances by individual 
parameters range from 101% to 107% (σ = 1.2%, N = 40) 
and 93% to 99% (σ = 1.1%), respectively (Appendix E). The 
sandy clay loam shows stronger parametric interactions 
than other soil textures, with the total variances and the 
variances explained by the main effects ranging from 104% 
to 130% (σ = 8.8%, N= 8) and from 74% to 97% (σ = 7.4%), 
respectively. For surface soil moisture, the corresponding 
total variances and the explained variances by individual 
parameters are 102–119% (σ = 4.2%, N=40) and 83–98% 
(σ = 3.8%) for soil textures other than sandy clay loam as 
well as 106–155% (σ = 16.4%, N=8) and 57–95% (σ = 12.8%) 
for sandy clay loam. Also, the maximum interaction effect 
occurs at MAM of Goodwin Creek. The larger standard 
deviations of surface soil moisture indicate that both main 
and interaction effects are more variable across different soil 
textures and seasons than root zone soil moisture. 
The main effects for root zone soil moisture are differ-
entiated by parameter as well. However, the majority of 
the sites (8) show that uncertainty of porosity is more 
important than that of shape parameter in the variance 
of root zone soil moisture in all the seasons, with the ex-
plained variances by porosity ranging from 50% to 90% 
(median 77%, 75th percentile 83%, N = 32) in contrast to 
5–45% by shape parameter (median 17%, 75th percentile 
29%). Desert Chaparral UCI is the only site in which shape 
parameter contributes slightly more to the variance of 
root zone soil moisture than porosity across the seasons, 
with the explained variances by shape parameter being 
55–58% in contrast to 34–38% by porosity. Several sites, 
including Mozark, Goodwin Creek, and Tonzi Branch, 
give mixed responses with relative dominance of two pa-
rameters divided across the seasons. All three sites exhibit 
dominance of porosity in DJF and MAM, while Mozark 
and Goodwin Creek show dominance of shape param-
eter in SON. Overall, ƒ om and Κsat,min are shown to have 
negligible individual effects for root zone soil moisture 
with the explained variances less than 1% and 3% for all 
the sites and seasons, respectively. Ψsat,min exhibits a small 
individual effect with the explained variance less than 17% 
but its median and 75th percentile (N=48) being only 1.3% 
and 3.8%, respectively. The individual effects of all three 
parameters (ƒ om, Κsat,min, and Ψsat,min) are smaller for root 

zone than for surface soil moisture. However, the largest 
reduction in the individual effect occurs to ƒ om, which is 
likely attributed to the specification of depth as 0.5 meter 
where organic matter is assumed to act like peat. 
We also examine the relationships between the anomaly 
of emulator-estimated surface soil moisture and each pa-
rameter (all other parameters fixed) for all the sites and 
seasons (Figure 5). The anomaly is calculated relative to 
the mean of surface soil moisture across the range of each 
parameter and 200 realizations. The dominance of Θsat,min 

(2nd column) and b min (4th column) in the main effect re-
lationships is immediately evident. There are clear posi-
tive linear relationships of surface soil moisture to Θsat,min 
and bmin in all the sites and seasons, with the exception of 
MAM at Goodwin Creek (row j) which exhibits a distinct 
curvilinear relationship between surface soil moisture and 
Θsat,min. MAM at Goodwin Creek is also characterized by 
the larger emulator uncertainties (the spread of the green 
lines) than other seasons and sites for all the parameters, 
which are likely attributed to the stronger interaction effects. 
As expected, emulator uncertainty increases as parameter 
approaches the edges of parameter range in all the sites 
and seasons. There are also negative linear relationships 
of surface soil moisture to Κsat,min (1st column) and positive 
linear relationships to Ψsat,min (3rd column) in all the sites 
and seasons, except for curvilinear relationships to Κsat,min 
at Goodwin Creek caused by interaction effects. Howev-
er, these relationships are not strong with soil moisture 
anomalies generally in the range of ±0.025 cm3/cm3, except 
for relatively stronger relationships to Ψsat,min at P301 and 
Tonzi Ranch as well as to Κsat,min at Goodwin Creek. The 
soil moisture anomalies due to the changes of  Θsat,min or 
bmin generally range from -0.1 to 0.1 cm3/cm3, with the 
relative strength of relationships to Θsat,min versus bmin con-
sistent with what were shown in Figure 3. Surface soil 
moisture presents a mixed response to ƒ om. with weak in-
verted U-shaped curvilinear relationships in most sites and 
seasons but strong linear relationships for DJF and MAM 
at P301. The resulting soil moisture anomalies largely vary 
between -0.025 and 0.025 cm3/cm3, but could reach -0.075 
~ 0.05 cm3/cm3 for Harvard Forest as well as DJF and MAM 
of P301. The main effects relationships also demonstrate 
seasonal differences which are reflected by the changes 
in the direction (positive or negative), the shape (linear 
or curvilinear), and the strength of the relationship. Most 
sites present little seasonal differences with the realizations 
of all the seasons clustered into a single thick line, while 
P301, Harvard Forest, Goodwin Creek and Tonzi Ranch 
exhibit all kinds of changes in relationship characteristics 
across the seasons for different parameters. The high sea-
sonal sensitivity of the main effect relationships is likely 
attributed to the strong parametric interactions at two 
sites of high sand fraction, but to the poor model perfor-
mances at two forest sites. Figure 5 also reveals the values 
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Figure 5. the relationship between surface soil moisture and each of the parameters listed in table 3 at the selected uSa CoSMoS 
sites. In each panel, the thickness of the line for each season (each color) represents the emulator uncertainty from 200 realizations. 
the y-axis is plotted as the anomaly of surface soil moisture relative to the mean across the range of each parameter and 200 
realizations. the spread on the y-axis represents the effects of the parametric uncertainty on soil moisture.
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of each parameter around which soil moisture anomalies 
change the signs at various sites. When the parameters 
are smaller than these values, the main effects will lead 
to drier (wetter) conditions relative to their mean states 
for Θsat,min, Ψsat,min and bmin (Κsat,min) and vice versa. These 
values range from 0.005 to 0.1 mm/s for Κsat,min, 0.4 to 0.5 
for Θsat,min, 50 to 100 mm for Ψsat,min, and 5 to 10 for bmin, 
respectively. The higher fraction of sand the soil contains, 
the lower (higher) these values are for Θsat,min, Ψsat,min and 
bmin (Κsat,min). The main effect relationships of root zone soil 
moisture to each parameter have a lot in common with 
surface soil moisture, except that they consistently exhibit 
smaller emulator uncertainties and seasonal differences 
across all the sites (Figure 6). Regardless of the shape (linear 
or curvilinear), the strength of these relationships is also 
weaker, particularly with ƒ om. These results are consistent 
with what were shown in Figure 4.

5. Summary and Conclusions
Sensitivity analysis is essential for attributing the uncertainty 
in the output of a mathematical model to different sources 
of uncertainty in its inputs (parameters), identifying the 
parameters that have the most impact on model output, and 
for guiding further model development. The most commonly 
used sensitivity analysis method is one-at-a-time (OAT), 
which is straightforward to implement but presents two 
serious downsides: 1) It is unable to study the interactions 
between parameters; and 2) It severely undersamples the 
parameter uncertainty space when the number of parameters 
is large. An alternative that overcomes these downsides is 
variance-based methods, which decompose the variance 
of the output(s) into terms corresponding to the different 
parameters and their interactions. A full variance-based 
sensitivity analysis often requires information of the model 
output throughout the entire parameter uncertainty space, 
which is achieved by a large number of model runs in a 
Monte Carlo style. For complex global models with many 
parameters, the computational expense thus prevents the 
source of uncertainty from being rigorously quantified. In this 
study, we employed Gaussian process emulation, in which a 
statistical surrogate model is first trained with considerably 
fewer model runs than Monte Carlo, then used to estimate 
the model output at a large number of unsampled parameter 
combinations. Such statistical model can be run efficiently 
to generate the same level of information required by a full 
variance-based sensitivity analysis. The emulation approach 
has been applied to climate and ocean models as well as 
dynamic vegetation model. The primary aim of this study 
was to assess the method for carrying out a variance-based 
sensitivity analysis of Land Surface Model (LSM).
LSM-simulated soil moisture has been widely used to un-
derstand many complex processes in the Earth system, 
but it often presents considerable biases in its mean, dy-

namic range, and time variability. A realistic estimate of 
the parametric uncertainty of model-simulated soil mois-
ture provides more useful information for improving its 
prediction. We quantified the relative contributions of 
different parameters and their interactions to the overall 
uncertainty in the CLM5-simulated surface and root zone 
soil moisture for four seasons in USA. The study sites were 
chosen to have high-quality soil moisture observations (will 
be used for parameter calibration in a subsequent paper) 
and also represent different major soil types. We focus on 
four hydraulic property parameters of mineral soil whose 
values are determined by soil texture, including saturated 
hydraulic conductivity, porosity, saturated matric potential, 
and shape parameter as well as organic matter fraction 
that constitutes the weight to calculate the bulk hydraulic 
properties from the weighted average of the organic and 
mineral components. The ranges of each parameter for 
different soil types were specified based on a widely-cited 
literature. A maximin Latin Hypercube was used to sample 
an appropriate number of combinations of parameter values 
covering the five-dimensional parameter uncertainty space 
for conducting CLM5 simulations to train the emulator.
The validation simulations have shown that the emulator 
captures well the model behavior across the entire parameter 
uncertainty space for different soil textures and seasons. 
The comparison between the emulator-predicted mean and 
CLM-simulated surface soil moisture indicates that the cor-
relations are all above 0.90 (ranging from 0.91–1.0) with the 
exception of the DJF at Desert Chaparral UCI (0.82) and 
the RMSEs range from 0.01to 0.02 cm3/cm3 which is much 
lower than the SMAP mission requirement of 0.04 cm3/cm3. 
The emulation of root zone soil moisture exhibits even better 
performance statistics with the correlations all above 0.95 
and RMSEs below 0.01 cm3/cm3. The uncertainty in using 
the emulator instead of the model simulation is very small 
for the validation points placed both close to and far away 
from the training data, indicating that the emulator mean 
is representative of the CLM simulation and there will be a 
very small effect on the accuracy to estimate the parametric 
uncertainties using the emulator. These results suggest that 
the emulator is accurate and robust across different variables 
(surface versus root zone soil moisture), seasons, and soil 
textures. In particular, the number of model simulations 
required to train the emulator increases linearly with the 
number of parameters (10*number of parameters). The 
approach is therefore much more efficient than widely used 
factorial methods for a comprehensive coverage of parameter 
space of a large number of uncertain parameters.
The sensitivity analysis has shown that main effects for 
surface soil moisture are much more important than the 
interactions with the large portion of the variance con-
tributed by individual parameters for almost all the sites 
and seasons. The majority of surface soil moisture vari-
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Figure 6. Same as Figure 5, but for root zone soil moisture.
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ance is dominated by the uncertainties in porosity and 
shape parameter, while the other three parameters exhibit 
small individual effects with the 75th percentile of explained 
variances by Κsat,min, ƒ om, and Ψsat,min across all the sites and 
seasons being 3.7%, 5%, and 4.5%, respectively. However, 
the relative importance of porosity versus shape param-
eter varies strongly with sites and seasons. The majority 
of the sites (7 out of 12) show that the variance in surface 
soil moisture is attributed distinctly more to the uncer-
tainty in shape parameter than to that in porosity across 
different seasons, while two sites (ARM-1 and Harvard 
Forest) present the opposite uncertainty pattern of the 
two parameters and the other remaining sites give mixed 
responses. There seems no simple rule of thumb for the 
parametric uncertainty across different sites. The same 
soil texture can exhibit different relative importance of 
uncertain parameters, while different soil textures can 
present similar pattern of variance dominance. These results 
suggest that some factors other than soil texture, such as 
overlaid land cover type, may also contribute to the process 
of determining the parametric sensitivity of soil moisture. 
For root zone soil moisture, the main effects prominently 
dominate the total variances in all the sites and seasons 
with the interactions between the model parameters much 
weaker than for surface soil moisture. Also, both main 
and interaction effects are less variable for root zone soil 
moisture across different soil textures and seasons with 
smaller standard deviations of the explained variances by 
two effects. However, the majority of the sites show that 
uncertainty of porosity is more important than that of 
shape parameter in the variance of root zone soil moisture 
in all the seasons. The individual effects of the other three 
parameters (ƒom, Κsat,min, and Ψsat,min) are smaller for root zone 
than for surface soil moisture, with the explained variances 
less than 1% and 3% for ƒ om and Κsat,min as well as the 75th 
percentile of the explained variances for Ψsat,min being 3.8% 
across all the sites and seasons. One common feature for 
both surface and root zone soil moisture is that the main 
effects are generally stronger in soil textures with lower 
fraction of sand (or parametric interactions are stronger 
in soil textures with higher fraction of sand).
We found that there are clear positive linear relationships 
of surface soil moisture to Θsat,min and bmin, weak negative 
linear relationship to Κsat,min, as well as weak positive linear 
relationships to Ψsat,min in all the sites and seasons. Surface 
soil moisture presents a mixed response to ƒ om. with weak 
inverted U-shaped curvilinear relationships in most sites 
and seasons. These main effects relationships present little 
seasonal differences at most sites, except for two sites of 
mixed Forest and two sites of high sand fraction whose 

relationships exhibit the changes in the direction, the shape, 
and the strength across the seasons for different parameters. 
In comparison with surface soil moisture, the main effects 
relationships of root zone soil moisture to each parameter 
consistently exhibit smaller emulator uncertainties and 
seasonal differences for all the sites. Regardless of the shape 
(linear or curvilinear), the strength of these relationships 
is also weaker, particularly with ƒ om.
Although our study focuses on soil moisture, the approach 
presented here could be applied to other key quantities 
of land surface model, such as trace gas flux (N2O, CH4), 
whose estimates exhibit considerable uncertainty and are 
affected by many poorly constrained parameters whose 
values are not unambiguously known or even knowable. 
The approach can also be carried out to quantify the un-
certainty of the variable and its sources from different land 
surface models. The resulting sensitivity analyses can then 
be compared to better understand the uncertainty in model 
simulations attributed to model structure differences, and 
perhaps reduce such uncertainty. Our immediate future 
work will focus on reducing the uncertainty and biases in 
the model-simulated soil moisture, which can be achieved 
by constraining the results with the observation data, i.e. 
calibration. Calibration is the process to tune parameter 
values for optimal model simulations (against the obser-
vations), which simultaneously reduces the uncertainty in 
the model parameters and improve knowledge about them. 
Our study shows which parameters should be focused on 
to improve the model simulations of surface versus root 
zone soil moisture for different soil textures and seasons, 
which serves as a useful guidance for model development 
and improvement. The availability of global high-reso-
lution soil moisture from SMAP, including the Level-3 
surface soil moisture product (SPL3SMP) as well as the 
model-derived, value-added Level 4 surface and root zone 
soil moisture product (SPL4SMGP), will certainly provide 
an unprecedented potential in support of this exercise. 
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Appendix A

Figure A1. Comparison of soil moisture from CLM5 with default model parameters, CoSMoS measurement, and SMap retrieval 
over the selected 12 CoSMoS sites (table 2) of different soil types (see text for details). 

ARM-1 – LOAM P301 – LOAM SMAP-OK – LOAM

DESERT CHAPARRAL UCI – SANDY LOAM JERC – SANDY LOAM SANTA RITA CREOSOTE  – SANDY LOAM

MOZARK – CLAY LOAM SILVER SWORD – CLAY LOAM HARVARD FOREST – SILT LOAM

GOODWIN CREEK – SANDY CLAY LOAM TONZI RANCH – SANDY CLAY LOAM FREEMAN RANCH – CLAY
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Appendix B

Appendix C

Table B1. Correlations and rMSes (cm3/cm3) between CLM5-simulated and emulator-predicted surface soil moisture for 15 
validation runs.

Correlation RMSE

DJF MAM JJA SON DJF MAM JJA SON

Loam
ARM-1 0.99 0.98 0.96 0.97 0.01 0.01 0.02 0.01
P301 0.99 0.99 0.99 0.94 0.01 0.01 0.01 0.01
SMAP-OK 0.99 0.99 0.96 0.97 0.01 0.01 0.02 0.01

Clay Loam
Mozark 0.99 0.99 0.99 1.00 0.01 0.01 0.01 0.00
Silver Sword 0.99 0.99 0.98 0.97 0.01 0.01 0.01 0.01

Sandy Loam
Desert Chaparral UCI 0.82 0.96 0.99 0.97 0.02 0.01 0.00 0.01
JERC 0.96 0.95 0.96 0.97 0.02 0.02 0.01 0.01
Santa Rita Creosote 0.94 0.99 0.97 0.96 0.01 0.01 0.01 0.01

Clay Freeman Ranch 0.99 0.98 1.00 0.98 0.01 0.01 0.00 0.01

Sandy Clay Loam
Goodwin Creek 0.97 0.95 0.99 0.98 0.02 0.02 0.01 0.01
Tonzi Ranch 0.92 0.97 0.99 0.98 0.02 0.02 0.01 0.01

Silt Loam Harvard Forest 0.99 0.99 0.96 0.91 0.01 0.01 0.01 0.02

Table C1. Correlations and rMSes (cm3/cm3) between CLM5-simulated and emulator-predicted root zone soil moisture for 15 
validation runs.

Correlation RMSE

DJF MAM JJA SON DJF MAM JJA SON

Loam
ARM-1 1.00 1.00 1.00 1.00 0.01 0.01 0.01 0.01
P301 0.98 1.00 0.98 0.95 0.01 0.00 0.01 0.01
SMAP-OK 1.00 1.00 1.00 0.99 0.00 0.00 0.01 0.01

Clay Loam
Mozark 1.00 1.00 0.99 1.00 0.01 0.00 0.01 0.01
Silver Sword 0.99 1.00 1.00 0.99 0.01 0.01 0.01 0.01

Sandy Loam
Desert Chaparral UCI 0.99 0.99 0.99 0.99 0.01 0.01 0.01 0.00
JERC 0.99 0.99 0.99 1.00 0.01 0.01 0.01 0.01
Santa Rita Creosote 0.99 0.99 1.00 0.99 0.01 0.00 0.00 0.01

Clay Freeman Ranch 1.00 0.99 0.99 1.00 0.01 0.01 0.01 0.01

Sandy Clay Loam
Goodwin Creek 0.99 0.98 1.00 0.99 0.01 0.01 0.01 0.01
Tonzi Ranch 0.99 0.98 0.99 0.99 0.01 0.01 0.01 0.01

Silt Loam Harvard Forest 1.00 0.99 0.99 0.99 0.01 0.01 0.01 0.01
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Figure C1. Comparison between CLM5-simulated and emulator predicted seasonal root zone (0-100cm) soil moisture (cm3/cm3) 
of year 2016 across various selected USA COSMOS sites. The uncertainty of emulator prediction is presented as 95% probability 
(2σ ) limits. The points with indiscernible uncertainty bars are those deliberately placed close to the training data.

ARM-1 P301 SMAP-OK

DESERT CHAPARRAL UCI JERC SANTA RITA CREOSOTE 
SANDY LOAM SANDY LOAM SANDY LOAM

CLAY LOAM CLAY LOAM SILT LOAM

SANDY CLAY LOAM SANDY CLAY LOAM CLAY

LOAM LOAM LOAM

MOZARK SILVER SWORD HARVARD FOREST

GOODWIN CREEK TONZI RANCH FREEMAN RANCH
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Appendix D

Table D1. Model parameters and their effects on the variance of surface soil moisture at the arM-1 site (Loam). “Main” and “total” 
represents main and total effect variance contribution (%), respectively.

Parameter
DJF MAM JJA SON

Main Total Main Total Main Total Main Total

Κ sat,min 3.65 4.19 3.42 3.99 3.41 4.07 3.34 4.03

Θ sat,min 57.03 63.45 51.07 57.96 46.10 53.80 44.24 52.62

Ψ sat,min 1.50 1.81 1.78 2.02 1.00 1.23 1.22 1.47
bmin 25.49 26.91 33.14 34.70 38.80 41.37 39.42 41.92
ƒ om 5.36 11.09 3.18 9.27 2.31 8.52 2.68 9.64
All 93.02 107.45 92.60 107.94 91.63 108.99 90.90 109.68

Table D2. Same as table D1 but at the p301 site (Loam). 

Parameter
DJF MAM JJA SON

Main Total Main Total Main Total Main Total

Κ sat,min 0.21 1.03 0.03 0.39 0.91 2.44 3.72 4.48

Θ sat,min 37.54 48.97 42.64 49.50 33.20 37.25 34.94 43.06

Ψ sat,min 9.08 9.99 24.80 27.00 24.71 27.68 0.07 0.32
bmin 22.28 25.80 16.87 22.13 31.56 36.64 49.86 52.60
ƒ om 18.02 28.00 6.24 13.53 1.67 6.10 2.04 9.78
All 87.12 113.79 90.57 112.55 92.05 110.11 90.63 110.24

Table D3. Same as table D1 but at the SMap-oK site (Loam). 

Parameter
DJF MAM JJA SON

Main Total Main Total Main Total Main Total

Κ sat,min 0.21 1.03 0.03 0.39 0.91 2.44 3.72 4.48

Θ sat,min 37.54 48.97 42.64 49.50 33.20 37.25 34.94 43.06

Ψ sat,min 9.08 9.99 24.80 27.00 24.71 27.68 0.07 0.32
bmin 22.28 25.80 16.87 22.13 31.56 36.64 49.86 52.60
ƒ om 18.02 28.00 6.24 13.53 1.67 6.10 2.04 9.78
All 87.12 113.79 90.57 112.55 92.05 110.11 90.63 110.24

Table D4. Same as table D1 but at the Desert Chaparral uCI site (Sandy Loam). 

Parameter
DJF MAM JJA SON

Main Total Main Total Main Total Main Total

Κ sat,min 4.36 6.80 1.10 2.15 0.85 1.34 2.40 3.36

Θ sat,min 22.76 38.25 12.44 18.26 14.08 20.36 20.62 28.80

Ψ sat,min 0.34 2.36 1.27 2.74 3.04 3.50 0.40 0.71
bmin 53.59 58.19 75.42 78.35 73.25 78.88 65.30 71.99
ƒ om 2.13 13.09 2.58 6.88 0.71 5.50 1.07 6.95
All 83.19 118.69 92.81 108.38 91.93 109.58 89.80 111.81
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Table D5. Same as table D1 but at the JerC site (Sandy Loam). 

Parameter
DJF MAM JJA SON

Main Total Main Total Main Total Main Total

Κ sat,min 2.49 6.51 1.68 8.90 2.09 5.06 1.03 2.54

Θ sat,min 57.11 66.42 48.47 60.36 41.99 51.37 35.18 43.52

Ψ sat,min 0.70 1.47 1.23 2.01 0.79 1.86 2.80 3.69
bmin 23.75 25.76 32.04 34.49 42.87 46.47 50.41 52.98
ƒ om 5.10 12.29 3.03 9.77 1.31 7.09 1.10 7.45
All 89.15 112.45 86.44 115.53 89.05 111.85 90.52 110.18

Table D6. Same as table D1 but at the Santa rita Creosote site (Sandy Loam). 

Parameter
DJF MAM JJA SON

Main Total Main Total Main Total Main Total

Κ sat,min 3.70 4.77 0.51 0.89 2.97 3.71 1.96 2.75

Θ sat,min 31.05 43.93 10.41 16.58 27.36 33.62 17.99 26.78

Ψ sat,min 0.09 2.26 6.56 8.99 0.30 0.99 3.06 5.83
bmin 48.69 50.55 70.87 74.65 60.53 63.50 64.20 67.16
ƒ om 1.84 14.20 3.04 9.24 1.04 6.77 1.47 10.25
All 85.38 115.71 91.39 110.35 92.20 108.59 88.67 112.77

Table D7. Same as table D1 but at the Mozark site (Clay Loam). 

Parameter
DJF MAM JJA SON

Main Total Main Total Main Total Main Total

Κ sat,min 3.05 4.06 3.74 4.40 4.19 5.13 2.39 3.05

Θ sat,min 39.92 42.58 30.14 32.98 22.89 25.69 18.03 20.27

Ψ sat,min 2.08 2.41 0.46 0.56 0.02 0.21 0.56 0.79
bmin 45.43 47.45 59.34 61.47 67.08 69.70 73.80 76.16
ƒ om 5.66 8.16 2.42 4.84 1.57 3.98 1.59 3.75
All 96.14 104.66 96.10 104.25 95.74 104.71 96.37 104.02

Table D8. Same as table D1 but at the Silver Sword site (Clay Loam). 

Parameter
DJF MAM JJA SON

Main Total Main Total Main Total Main Total

Κ sat,min 3.05 4.06 3.74 4.40 4.19 5.13 2.39 3.05

Θ sat,min 39.92 42.58 30.14 32.98 22.89 25.69 18.03 20.27

Ψ sat,min 2.08 2.41 0.46 0.56 0.02 0.21 0.56 0.79
bmin 45.43 47.45 59.34 61.47 67.08 69.70 73.80 76.16
ƒ om 5.66 8.16 2.42 4.84 1.57 3.98 1.59 3.75
All 96.14 104.66 96.10 104.25 95.74 104.71 96.37 104.02
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Table D9. Same as table D1 but at the Harvard Forest site (Silt Loam). 

Parameter
DJF MAM JJA SON

Main Total Main Total Main Total Main Total

Κ sat,min 3.76 5.31 3.93 4.67 4.81 6.38 9.58 12.95

Θ sat,min 60.41 70.04 64.01 71.05 39.78 47.77 41.44 54.27

Ψ sat,min 3.19 6.20 1.29 2.42 0.06 0.31 0.44 1.91
bmin 6.79 9.16 15.09 16.14 38.69 42.95 26.05 33.23
ƒ om 13.74 23.08 7.18 14.79 6.92 13.30 5.93 16.72
All 87.89 113.79 91.51 109.07 90.28 110.71 83.45 119.08

Table D10. Same as table D1 but at the Goodwin Creek site (Sandy Clay Loam). 

Parameter
DJF MAM JJA SON

Main Total Main Total Main Total Main Total

Κ sat,min 1.92 8.98 4.01 27.97 3.29 12.85 1.09 4.01

Θ sat,min 27.35 40.67 9.03 44.25 10.48 25.78 15.09 22.92

Ψ sat,min 1.12 5.14 3.59 13.83 3.59 6.92 1.91 4.25
bmin 43.36 48.74 30.13 43.53 62.61 69.64 68.82 74.76
ƒ om 9.59 16.79 9.90 25.24 1.44 6.74 2.40 6.27
All 83.34 120.32 56.67 154.82 81.41 121.93 89.31 112.21

Table D11. Same as table D1 but at the tonzi ranch site (Sandy Clay Loam). 

Parameter
DJF MAM JJA SON

Main Total Main Total Main Total Main Total

Κ sat,min 4.61 6.24 0.38 1.26 2.20 4.16 0.15 1.49

Θ sat,min 36.85 42.46 22.89 26.31 9.18 12.51 23.45 27.33

Ψ sat,min 0.19 0.73 9.44 10.23 22.69 27.13 4.03 5.63
bmin 46.50 50.68 59.56 62.24 58.76 63.30 66.32 69.25
ƒ om 4.40 8.44 2.91 5.52 0.23 0.75 0.35 2.92
All 92.56 108.55 95.17 105.56 93.06 107.85 94.30 106.62

Table D12. Same as table D1 but at the Freeman ranch site (Clay). 

Parameter
DJF MAM JJA SON

Main Total Main Total Main Total Main Total

Κ sat,min 2.21 2.97 3.60 4.64 0.43 0.78 3.65 4.61

Θ sat,min 37.74 39.53 46.42 48.74 18.13 19.60 31.50 33.34

Ψ sat,min 2.56 3.11 0.82 1.18 3.78 4.03 0.03 0.23
bmin 53.20 55.49 43.82 46.41 75.47 77.25 61.25 63.46
ƒ om 1.32 2.53 1.81 3.49 0.12 0.71 0.53 1.96
All 97.03 103.63 96.48 104.46 97.92 102.37 96.96 103.60
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Appendix E

Table E1. Model parameters and their effects on the variance of root zone soil moisture at the arM-1 site (Loam). “Main” and “total” 
represents main and total effect variance contribution (%), respectively. 

Parameter
DJF MAM JJA SON

Main Total Main Total Main Total Main Total

Κ sat,min 2.57 2.96 2.22 2.62 1.81 2.25 1.46 1.86

Θ sat,min 85.96 87.09 83.12 84.41 81.18 82.74 76.87 78.91

Ψ sat,min 0.05 0.09 0.27 0.35 0.50 0.63 1.01 1.23
bmin 9.79 10.98 12.63 13.94 14.40 15.97 17.85 19.88
ƒ om 0.12 0.64 0.09 0.62 0.14 0.75 0.29 1.14
All 98.49 101.76 98.33 101.94 98.03 102.34 97.48 103.02

Table E2. Same as table e1 but at the p301 site (Loam). 

Parameter
DJF MAM JJA SON

Main Total Main Total Main Total Main Total

Κ sat,min 0.01 0.03 0.02 0.02 0.89 1.24 1.39 2.01

Θ sat,min 89.80 92.34 90.83 91.57 81.23 82.08 54.10 55.75

Ψ sat,min 0.05 0.37 2.05 2.69 0.24 0.56 0.02 0.65
bmin 6.93 9.11 5.58 6.36 15.80 16.53 41.25 42.95
ƒ om 0.19 1.59 0.34 0.89 0.53 1.25 0.56 1.93
All 96.98 103.44 98.81 101.53 98.69 101.66 97.32 103.29

Table E3. Same as table e1 but at the SMap-oK site (Loam). 

Parameter
DJF MAM JJA SON

Main Total Main Total Main Total Main Total

Κ sat,min 0.54 0.77 0.19 0.43 0.03 0.05 0.14 0.29

Θ sat,min 78.85 81.02 76.52 79.17 67.81 70.87 62.77 65.03

Ψ sat,min 2.67 3.23 4.65 5.05 9.35 10.20 11.57 13.27
bmin 15.07 17.15 15.30 17.77 18.19 21.60 21.88 23.59
ƒ om 0.18 1.04 0.31 1.10 0.54 2.26 0.52 1.45
All 97.31 103.21 96.97 103.52 95.91 104.98 96.88 103.63

Table E4. Same as table e1 but at the Desert Chaparral uCI site (Sandy Loam). 

Parameter
DJF MAM JJA SON

Main Total Main Total Main Total Main Total

Κ sat,min 0.08 0.17 0.13 0.27 0.16 0.28 0.11 0.29

Θ sat,min 34.30 36.72 35.90 38.02 38.13 40.34 37.71 40.06

Ψ sat,min 4.02 4.69 3.17 3.82 2.83 3.45 3.10 3.67
bmin 57.63 60.68 56.79 59.50 55.30 58.13 55.58 58.55
ƒ om 0.30 2.17 0.51 2.56 0.21 1.73 0.10 1.27
All 96.33 104.43 96.50 104.17 96.63 103.93 96.61 103.84
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Table E5. Same as table e1 but at the JerC site (Sandy Loam). 

Parameter
DJF MAM JJA SON

Main Total Main Total Main Total Main Total

Κ sat,min 1.70 3.40 1.14 5.04 0.30 1.98 0.04 0.76

Θ sat,min 84.45 87.35 79.05 84.89 67.81 71.88 61.80 64.86

Ψ sat,min 0.11 0.19 0.51 0.75 3.77 4.14 5.87 6.32
bmin 10.15 12.02 12.53 15.05 23.33 26.08 28.45 31.18
ƒ om 0.10 1.10 0.24 1.59 0.23 1.01 0.19 0.98
All 96.52 104.06 93.48 107.32 95.45 105.09 96.35 104.10

Table E6. Same as table e1 but at the Santa rita Creosote site (Sandy Loam). 

Parameter
DJF MAM JJA SON

Main Total Main Total Main Total Main Total

Κ sat,min 2.40 3.03 2.57 3.31 1.67 2.29 1.56 2.06

Θ sat,min 64.24 66.12 60.96 62.99 52.47 54.95 55.28 58.02

Ψ sat,min 0.01 0.27 0.04 0.87 0.29 0.75 0.04 0.17
bmin 30.37 32.01 32.82 34.45 41.73 44.19 38.64 41.62
ƒ om 0.43 1.73 0.74 1.79 0.57 1.65 0.61 2.61
All 97.45 103.16 97.14 103.41 96.73 103.83 96.12 104.48

Table E7. Same as table e1 but at the Mozark site (Clay Loam). 

Parameter
DJF MAM JJA SON

Main Total Main Total Main Total Main Total

Κ sat,min 2.60 3.06 2.16 2.60 1.37 1.82 0.71 1.00

Θ sat,min 70.10 71.62 82.69 64.19 47.69 50.06 36.83 39.02

Ψ sat,min 0.35 0.42 0.33 0.42 1.42 1.66 2.84 3.10
bmin 24.81 26.50 32.72 34.45 46.34 48.96 56.61 59.04
ƒ om 0.12 0.84 0.08 0.73 0.14 1.11 0.25 1.02
All 97.98 102.44 97.98 102.39 96.96 103.61 97.25 103.18

Table E8. Same as table e1 but at the Silver Sword site (Clay Loam). 

Parameter
DJF MAM JJA SON

Main Total Main Total Main Total Main Total

Κ sat,min 0.85 1.31 0.36 0.58 0.83 1.15 1.95 2.40

Θ sat,min 80.54 81.53 76.90 78.27 80.53 81.72 84.49 85.69

Ψ sat,min 3.80 4.14 6.26 6.76 3.29 3.52 1.00 1.11
bmin 13.28 14.24 14.65 15.87 13.74 14.94 10.80 12.13
ƒ om 0.08 0.49 0.10 0.62 0.09 0.44 0.10 0.60
All 98.55 101.71 98.26 102.10 98.48 101.77 98.34 101.93
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Table E9. Same as table e1 but for at the Harvard Forest site (Silt Loam). 

Parameter
DJF MAM JJA SON

Main Total Main Total Main Total Main Total

Κ sat,min 2.15 2.43 2.76 3.10 1.08 1.59 0.48 0.83

Θ sat,min 84.53 85.73 85.04 85.92 66.57 68.18 65.01 67.26

Ψ sat,min 0.10 0.35 0.11 0.21 1.46 1.73 1.81 2.69
bmin 11.34 12.42 10.60 11.51 28.57 30.29 29.70 31.68
ƒ om 0.38 0.79 0.24 0.72 0.15 0.68 0.08 0.93
All 98.50 101.72 98.75 101.46 97.83 102.47 97.08 103.39

Table E10. Same as table e1 but for at the Goodwin Creek site (Sandy Clay Loam). 

Parameter
DJF MAM JJA SON

Main Total Main Total Main Total Main Total

Κ sat,min 2.34 6.72 2.27 18.64 3.07 11.33 1.21 3.66

Θ sat,min 65.53 71.61 47.53 69.55 27.89 39.47 23.45 30.27

Ψ sat,min 0.48 3.06 2.22 6.81 8.69 11.24 9.26 10.39
bmin 23.00 27.67 21.91 32.64 46.75 52.97 57.86 63.91
ƒ om 0.43 1.53 0.34 3.01 0.06 1.08 0.14 1.02
All 91.79 110.59 74.26 130.65 86.46 116.09 91.93 109.25

Table E11. Same as table e1 but at the tonzi ranch site (Sandy Clay Loam). 

Parameter
DJF MAM JJA SON

Main Total Main Total Main Total Main Total

Κ sat,min 2.26 3.08 0.53 1.31 0.53 1.42 0.04 0.16

Θ sat,min 67.32 69.75 55.37 57.76 36.63 40.52 40.57 48.51

Ψ sat,min 0.33 0.50 5.15 5.69 16.68 18.15 9.87 13.64
bmin 26.62 29.36 35.55 38.07 40.74 44.45 36.68 47.48
ƒ om 0.11 1.33 0.08 1.00 0.11 1.82 0.70 5.59
All 96.63 104.02 96.69 103.83 94.69 106.36 87.86 115.38

Table E12. Same as table e1 but at the Freeman ranch site (Clay). 

Parameter
DJF MAM JJA SON

Main Total Main Total Main Total Main Total

Κ sat,min 2.47 3.01 2.78 3.32 1.79 2.29 1.10 1.47

Θ sat,min 68.41 69.71 72.83 73.98 59.15 60.38 49.73 51.82

Ψ sat,min 0.05 0.10 0.03 0.05 0.70 0.79 1.27 1.43
bmin 27.09 28.71 22.57 24.01 36.53 38.02 45.20 47.48
ƒ om 0.07 0.74 0.06 0.72 0.05 0.63 0.06 0.85
All 98.08 102.27 98.26 102.08 98.21 102.11 97.36 103.05
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