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“[T]he existence of a problem in knowledge depends 
on the future being different from the past, while the 
possibility of a solution of a problem of knowledge  
depends on the future being like the past.” (Knight, 1921) 

1. Introduction 
The world population is projected to grow from around 
7.6 billion currently to more than 11 billion by the end of 
this century and possibly more than 13 billion (United 
Nations, 2017). Over the same time period, the consensus 
among economic growth forecasters is that global GDP per 
capita will increase several-fold.1 Since food consumption 
per capita is an increasing function of income per capita 
(Tilman et al., 2011), the combination of population growth 
and economic growth will greatly increase food demand. 
This is one reason why food security is a leading global 
concern (e.g. FAO, 2017; World Economic Forum, 2018).

Another reason for concern about food security is climate 
change. Agriculture is among the economic activities most 
exposed to climate change (Schelling, 1992; IPCC, 2014b; 
Carleton and Hsiang, 2016). Weather is a direct input to 
agricultural production, affecting fundamental biophysical 
factors such as plant development, photosynthesis/respira-
tion, water availability, and the prevalence of diseases and 
pests (Hertel and Lobell, 2014; IPCC, 2014b).2 Given the 
pressures coming from economic and population growth, 
evidence on how climate change affects agricultural produc-
tion and in turn the wider economy is a central endeavor 
in climate economics (Dell et al., 2014).

In this paper, we develop a structural economic model to 
study how world food demand can be met under conditions 
of climate change, economic and population growth. We 
make three contributions to the literature. First, we devel-
op a novel model structure, in which the world economy 
co-evolves with the climate system and in which the key 
drivers of food supply and demand are endogenous, i.e. 
fertility and technical change. Second, we extend recent 
developments using simulation methods to condition en-
vironmental macro-economic models on historical data 

1 According to the expert survey by Christensen et al. (2018), for 
example, the median growth rate of global GDP per capita will be 2% 
between 2010 and 2100, which implies that global GDP per capita in 
2100 will be around six times higher than in 2010. Christensen et al. 
also made statistical forecasts based on time-series data from the 20th 
century, using the Müller-Watson method (Müller and Watson, 2016). 
This yielded very similar estimates. The uncertainty around these 
estimates is obviously very large.
2 Agronomic models suggest that crop yields, defined as the ratio of 
crop production to harvested land area, are highly responsive to tem-
perature, with a representative response of -5% per °C (local) warming 
(Challinor et al., 2014). Crop yields also respond positively to rainfall, 
except at very high levels (e.g. Schlenker and Roberts, 2009), and 
heightened atmospheric CO2 (also see Challinor et al., 2014).

(Acemoglu et al., 2016; Fried, 2018; Lanz et al., 2017).3 
We show that our model is able to closely replicate all the 
moments we target, namely 1960–2015 trajectories for 
world population, GDP, agricultural land use and total 
factor productivity (TFP) growth, and fossil and non-fossil 
energy use. We also show that the model reproduces stylized 
facts about a number of moments that we do not target, 
including agricultural yields, agriculture’s share of GDP, 
per-capita consumption growth, sectoral and aggregate 
greenhouse gas (GHG) emissions, and the atmospheric 
GHG concentration. Third, we use the structurally esti-
mated model to solve for counterfactual growth trajecto-
ries and thereby provide new estimates of the impact of 
long-run climate change, both in the past and future.4 We 
also conduct policy experiments with the model, notably 
estimating the optimal Pigouvian tax on GHG emissions 
and increase in global temperatures.

The model builds on a number of seminal contributions to 
the economic growth literature. Households have inter-tem-
poral preferences over consumption of non-agricultural 
goods and fertility, in the tradition of Barro and Becker 
(1989). This means population growth is endogenous, 
but its evolution is constrained by the availability of food 
produced by an explicit agriculture sector (as per Strulik 
and Weisdorf, 2008; Vollrath, 2011; Sharp et al., 2012). It 
follows that agricultural productivity is a determinant of 
the cost of children. A second important determinant of 
the cost of children is economy-wide technical progress and 
the increasing requirements it places on education/skills, 
as emphasized in the economic literature on demographic 
transitions (Galor and Weil, 2000; Galor, 2005).

The manufacturing sector, which produces the consumption 
good, uses fossil energy and emits GHGs, but it can substi-
tute fossil with carbon-free energy. Agricultural production 
also emits GHGs, not just from the use of fossil energy, but 
also directly from production and from land-use change. 
GHG emissions accumulate in the atmosphere and tempera-
tures rise, which reduces productivity in both agriculture 
and manufacturing. Damages differ between agriculture and 
manufacturing, and have different welfare consequences, 
due to the role of food in sustaining population.

3 In the micro-economic literature, this is referred to as structural 
estimation. In the macro-economic literature, this can be interpreted 
as model calibration without closed-form solutions.
4 In this way, our approach complements reduced-form economet-
ric studies that exploit weather variability as a natural experiment, 
particularly where this is done over long time scales (Hsiang, 2016). 
While our approach requires estimates of the ‘biophysical’ impact of 
climate change as primitives, we are able to capture important gener-
al-equilibrium adaptation to these impacts, in a similar fashion to e.g. 
Desmet and Rossi-Hansberg (2015) and Costinot et al. (2016). In our 
case, R&D and agricultural land expansion are key mechanisms.
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Another important element of the model is endogenous 
technical progress, which takes place in the final goods sec-
tors (manufacturing and agriculture) and in energy inter-
mediates (fossil vs. non-fossil). In each sector, productivity 
growth is driven by R&D in the Schumpeterian tradition 
(Aghion and Howitt, 1992) and R&D requires labor. This 
has several implications. First, GHG emissions abatement is 
subject to directed technical change (Acemoglu et al., 2012). 
Second, technical progress in manufacturing and agricul-
ture is a mechanism to compensate for climate damages 
(Fried, 2018). Third, technical progress increases the cost 
of educating children and hence contributes to a population 
growth slowdown (Galor and Weil, 2000). Finally, because 
agricultural production requires land and land is in finite 
supply, endogenous growth allows the economy to escape 
an otherwise inevitable Malthusian trap (Lanz et al., 2017).
We use our structurally-estimated model for three main pur-
poses. First, we construct a counterfactual past sans climate 
change. This provides novel evidence about the impacts of 
climate change over the past 50 years. We find that climate 
change has reduced agricultural and manufacturing output, 
and population. In 2018, our central estimate is that world 
agricultural output was $63 billion (1.2%) lower than it 
would have been in the absence of climate change, aggregate 
output was $1.1 trillion (1.4%) lower, and world population 
was 82 million lower. We also show that macro-economic 
adjustments like crop land expansion and increased R&D 
have reduced climate damages substantially, but not wholly. 
Second, we make laissez-faire projections for the 21st cen-
tury, with and without climate change. That is, we make 
future projections of the consequences of not acting globally 
to internalize the climate change externality. Our findings 
suggest that, without a Pigouvian tax on GHG emissions (or 
equivalent means of pricing those emissions), the model is 
able to sustain an increasing path of GDP and population 
that is not too far from the no-climate-damages counter-
factual. However, we find that doing so comes at the cost of 
large-scale adaptation, including further cropland expansion 
and more agricultural R&D. Third, we solve the model to 
evaluate the optimal climate policy from 2015 onward; the 
Pigouvian GHG tax is high and significantly reduces GHG 
emissions, so that optimal global warming is well below 2°C 
in 2100. This implies that while macro-economic adapta-
tion is effective in reducing climate impacts, it is costly, and 
welfare is improved by curbing GHG emissions.
We conduct extensive sensitivity analysis of the welfare 
impacts of future climate change. First, we analyze the 
mechanism by which the agricultural impacts of climate 
change affect welfare. To do so, we compare our main 
specification, in which climate change increases the cost 
of producing food and therefore implies lower population 
growth, with an alternative model, in which climate change 
only affects the manufactured, non-food consumption good. 

By keeping the economy-wide productivity loss the same in 
both specifications, we effectively compare our mechanism 
with the more standard approach in climate economics, 
which implicitly treats food and other consumption goods 
as perfect substitutes. We show that the optimal GHG tax 
is three to four times higher when climate impacts on 
agriculture affect population.
Second, we explore the effect of endogenizing fertility. To 
do this, we impose on the model an exogenous population 
trajectory, which we take from the United Nations (2017). 
Relative to our main specification of endogenous fertili-
ty, these projections happen to imply lower fertility and 
therefore higher per-capita consumption. Consequently 
the optimal GHG tax path starts lower, but increases much 
more steeply than in our main specification. This indicates 
that modeling of fertility/population is important in the 
debate about the shape of the optimal GHG tax path (ini-
tiated by Golosov et al., 2014).
Lastly we test the sensitivity of the optimal GHG tax and 
associated trajectories for GHG emissions, cropland and 
population to a number of parametric assumptions. We find 
that optimal trajectories are relatively robust to variations in 
most of the parameters we consider, including the elasticity 
of substitution between fossil and clean energy, the elasticity 
of substitution between land and other inputs in agriculture, 
and household time, consumption and fertility preferenc-
es. This illustrates how fitting the model to more than 50 
years of data implies consistent policy implications across a 
range of plausible parameter values. The exceptions are the 
biophysical impact of climate change on agricultural yields 
and equivalent productivity damages in manufacturing, on 
which optimal trajectories depend sensitively.

1.1 Related literature
We contribute to quantitative research on how climate 
change and economic growth interact, in our case with a 
particular focus on the role of agriculture. This literature 
includes Integrated Assessment Models (IAMs), pioneered 
by William Nordhaus (e.g. Nordhaus, 1991; Nordhaus and 
Boyer, 2000; Nordhaus, 2017). Recent contributions include 
Golosov et al. (2014), Cai and Lontzek (2019) and Barrage 
(2019).5 Like these studies, our empirical framework can be 
used to estimate the optimal GHG tax. Unlike previous IAM 
studies, our model is structurally estimated on more than 
50 years of data. This enables us to constrain key parameters 
with limited evidential bases (Millner and McDermott, 2016, 
discuss the problems of not doing so), and conduct coun-

5 There is a similar strand of literature in agricultural economics 
concerned with building quantitative economic models of global 
agriculture (von Lampe et al., 2014; Cai et al., 2014). A feature of these 
models is that they are exceptionally detailed (e.g. spatially), but they 
are fundamentally partial-equilibrium and rely on exogenous income 
and productivity projections.
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terfactual analyses. Unlike existing IAMs, our model also 
contains a mechanism whereby climate change constrains 
population expansion, the omission of which has previously 
been described as “an elephant in the room” (Millner, 2013).6

An alternative approach is offered by reduced-form econo-
metric studies, which use exogenous variation in past climate 
and weather as a natural experiment. Dell et al. (2014) and 
Carleton and Hsiang (2016) provide reviews. This literature 
comes closest to our model when it looks at the impact of 
changes in long-run climate; long differences. Our model 
does not substitute for this work, since we require estimates 
of the biophysical impact of climate change on crop yields, 
and of equivalent impacts on manufacturing, as primitives. 
Rather, it complements it by explicitly identifying general 
equilibrium effects, including how production factors are 
re-allocated across final goods, energy and R&D sectors 
globally to adapt to climate pressures. In doing so, our 
approach relates to recent work on climate change using 
structural models, such as Costinot et al. (2016) and Desmet 
and Rossi-Hansberg (2015). While these papers major on the 
geographical dimension, including the location of economic 
activities and trade patterns, we instead emphasize adapta-
tion to climate change through R&D and land-use change.
As indicated above, our model applies and extends the lit-
erature on endogenous fertility in growth models, starting 
with Barro and Becker (1989). Ideas from unified growth 
theory are important, in particular that falling birth rates 
in the latter stages of the demographic transition are funda-
mentally driven by technological progress (Galor and Weil, 
1999, 2000). Our framework also builds on endogenous 
growth models, in particular Schumpeterian models (Agh-

6 Our climate model is based on the benchmark simple climate 
models employed in the last report of the Intergovernmental Panel on 
Climate Change (Geoffroy et al., 2013; Joos et al., 2013) and thereby 
avoids the physically inconsistent climate dynamics recently identified 
in the leading IAMs (Calel and Stainforth, 2017; Rose et al., 2017).

ion and Howitt, 1992) and, within this class, growth models 
that do not exhibit a population scale effect (Aghion and 
Howitt, 1998; Dinopoulos and Thompson, 1998; Peretto, 
1998; Young, 1998; Laincz and Peretto, 2006; Chu et al., 
2013).7 Since we model the choice between fossil and clean 
energy, our model also relates to previous work on directed 
technical change and the environment, notably Acemoglu 
(2002) and Acemoglu et al. (2012).8

The remainder of the paper is set out as follows. Section 
2 briefly characterizes the data we target, as well as rele-
vant future projections of growth, population, agriculture, 
energy and climate from other leading sources. Section 3 
discusses our empirical strategy, including the structure of 
the model. In Section 4, we evaluate the goodness of fit of 
our model and construct counterfactual estimates of climate 
impacts over the 1960–2015 period, i.e. what has the impact 
of climate change already been? In Section 5, we turn to 
the future and derive projections for the 21st century both 
under a laissez-faire scenario and when GHG emissions are 
optimally controlled. Section 6 reports sensitivity analysis. 
Section 7 provides a discussion and concludes.

2. Data
Table 1 summarizes the data we target with our model over 
the period 1960 to 2015: world population (United Nations, 
2017), aggregate GDP (World Bank, 2018), cropland area 
(FAO, 2018), and global fossil and non-fossil energy use 
(BP, 2017). Though we do not target these variables, for 
context we also report estimated global GHG emissions 
(Meinshausen et al., 2011) and mean temperature change 

7 Although economic growth has been positively associated with the 
level and growth of world population on a millennial time-scale (Kremer, 
1993), it is harder to find evidence of scale effects in more contemporary 
data (Jones, 1995) and our question is contemporary in nature.
8 Also see Acemoglu et al. (2016, 2019) and Fried (2018).

Table 1. Summary of global growth and climate data

Observed data
Projected 

data Source
1960 1990 2015 2050

Population (billion) 3.0 5.3 7.4 9.8 United Nations (2017)
GDP (trillion 2010 USD) 11.2 37.9 75.5 223.7 World Bank (2018); Christensen et al. (2018)
Agricultural land (billion ha) 1.4 1.5 1.6 1.7 FAO (2018); Alexandratos & Bruinsma (2012)
Fossil energy (Gt oil eq.) 2.7 7.2 11.3 24.6 BP (2017); EIA (2017)
Non-fossil energy (Gt oil eq.) 0.2 1.0 1.8 11.7 BP (2017); EIA (2017)
GHG emissions (Gt C eq.) 5.7 10.4 14.9 28 Meinshausen et al. (2011)
Temperature (°C rel. to 1951–1980) 0 0.5 0.9 2.4 NASA/GISS; IPCC (2013)

Notes: This table provides estimates of a number of moments captured by our empirical framework. When two alternative sources 
are provided, the first refers to pre-2015 data and the second to post-2015 projections. The 2050 emissions and temperature pro-
jections relate to the IPCC’s rCP8.5 scenario, which is a business-as-usual scenario compatible with the eIa energy projection.
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(NASA-GISS, 2019). To these historical estimates we add 
2050 projections, in some cases from alternative sources.
In the context of an historical population explosion, world 
population has grown not much more than arithmetically 
over the past half century, from just over 3 billion in 1960 to 
7.4 billion in 2015. Between 1998 and 2011 alone, another 
billion people were added. The average annual growth rate 
was 2.5 percent between 1960 and 1990, and 1.5 percent 
between 1990 and 2015. Over the same period, GDP has 
grown nearly seven-fold, driving a well-documented in-
crease in global living standards. The average annual growth 
rate was about eight percent between 1960 and 1990, and 
about four percent between 1990 and 2015. Future pro-
jections of both population and GDP show considerable 
further expansion. Central estimates suggest this will be 
at a continuing declining rate.
The global agricultural land area, as measured by arable 
land and permanent crops, has grown more slowly and 
there are indications that it may not expand much further 
over the course of this century. Historical research suggests 
global cropland roughly doubled in each of the 19th and 
20th centuries (Klein Goldewijk et al., 2011). Between 1960 
and 2015 it grew by about 15 percent, with the expansion 
concentrated in places such as tropical developing countries 
(Alexandratos and Bruinsma, 2012).9 This did not constrain 
global food production, however. Alston and Pardey (2014) 
report that the value of global food production more than 
tripled from 1961 to 2011, corresponding to a growth rate 
of about 2.3 percent. This reflects significant productivity 
gains, yet Alston and Pardey (2014) also report a slowdown 
of agricultural productivity growth, with global average 
agricultural yields (the ratio of crop production to harvested 
land area) evoking Malthus by growing arithmetically.10

To accompany the great expansion of the global economy, 
energy use has increased by a factor of around five over the 
period 1960 to 2015. The vast majority of that energy has 
been derived from fossil-fuel combustion, with non-fossil 
sources having been trivial until the last decade or two. 
Nonetheless the share of non-fossil energy reached 12% in 
1990 and 14% in 2015. Energy use has grown more slowly 
than GDP due to improvements in energy efficiency. En-
ergy intensity, defined as energy use per unit of GDP, fell 
by about one third between 1970 and 2010 (IPCC, 2014c). 

9 In this paper we focus on cropland rather than crop and pasture 
land. Global pasture land increased by a factor of 2.5 in each of the 
19th and 20th centuries. It expanded by 39% between 1950 and 2000 
(Klein Goldewijk et al., 2011).
10 For example, Alston and Pardey (2014) report a decline in the the 
global average annual growth rate of maize yields from 2.3 percent 
between 1961 and 1990 to 1.8 percent between 1990 and 2011, and 
corresponding figures of 2.7 percent and 1.1 percent for wheat yields, 
2.1 percent and 1.1 percent for rice (paddy) yields, and so on (see also 
Alston et al., 2009).

What happens to energy use this century depends centrally 
on policy choices across the world. A business-as-usual or 
laissez faire projection sees fossil energy use more than 
doubling to nearly 25 gigatonnes of oil equivalent in 2050, 
but non-fossil energy use increases even more strongly to 
11.7 Gt oil eq. in 2050, a 32% share.
Fossil-fuel combustion is the primary source of GHG emis-
sions and so the four-fold increase in fossil energy between 
1960 and 2015 has resulted in a substantial increase in an-
nual global GHG emissions, from 5.7 gigatonnes of carbon 
equivalent in 1960 to 14.9 Gt C eq. in 2015. The slower rate 
of increase relative to fossil energy reflects reductions in the 
carbon intensity of energy and that other sources of GHGs 
such as land-use change have increased more slowly (IPCC, 
2014c). Climate science unequivocally attributes the increase 
in the global mean temperature over the period 1960–2015 
to anthropogenic GHG emissions (IPCC, 2013). The global 
mean temperature in 2015 was already 0.9°C above the 
1951–1980 average. Along a high-emissions scenario it is 
projected to be 2.4°C above the 1951–1980 average in 2050.
In a nutshell, world population and GDP have expand-
ed significantly, albeit at a decreasing rate. Agricultur-
al productivity has so far more than kept up with this 
growth, resulting in declining relative food prices (Alston 
and Pardey, 2014) and undernourishment (World Bank, 
2018), but a slowdown of productivity growth is raising 
concerns about the capacity of agriculture to keep pace 
(Alston et al., 2009; Godfray et al., 2010). These concerns 
come in part from rising global temperatures, driven by 
agricultural land expansion, but most especially by fossil 
energy use. We now move to developing a structural model 
of this co-evolving system.

3. Empirical strategy
This section starts by motivating our empirical approach. 
We then present a structural economic model that can be 
used to quantify general equilibrium impacts of climate 
change on food production. Finally, we discuss how we 
take the model to the data.

3.1 Motivation
This paper asks: can a growing world population be fed under 
changing climatic conditions? The pessimistic, Neo-Malthu-
sian emphasizes limits to the availability of natural resources 
that are essential inputs to agriculture, especially under cli-
mate change. The optimistic view focuses on technological 
progress in agriculture and substitution away from finite nat-
ural resources, enabling farmers and the agricultural system 
to adapt. It follows from these contrasting perspectives that 
a structured assessment of the question must consider the 
joint evolution of the world economy and the climate, and 
integrate the key drivers of food supply and demand, such as 
fertility choices, land as a primary factor and technological 

MIT JOINT PrOGraM ON THe SCIeNCe aND POLICy OF GLObaL CHaNGe  rePOrT 340

5



progress. It must also consider the potential role of policies 
to internalize the climate-change externality.
Accordingly, we formulate a dynamic, general-equilibrium 
model that allows us to endogenously determine the joint 
evolution of the world economy, including agriculture, and 
the climate system. The model is intended to be ‘canonical’ 
in the specific sense of being as simple as possible, while 
integrating all the structure necessary to study the problem. 
Building on Acemoglu et al. (2016) and Lanz et al. (2017), 
we then employ a simulated method-of-moments procedure 
to discipline the parameters, which does not require solving 
the model in closed form, something that is impossible 
given the variety of drivers at play. Intuitively, estimation 
requires solving the model a large number of times, and 
selecting the parameters so as to minimize a measure of the 
distance between simulated trajectories and those observed 
over the period 1960 to 2015.11 This approach implies that 
estimands ‘rationalize’ observed trajectories conditional on 
the structure of the model and a set of imposed parameters.
Given our focus on the external cost of climate change, and 
since simulation-based estimation requires us to compute 
the model for a large set of candidate estimates, we formulate 
the model as a discrete-time planning problem.12 Specifi-
cally, our solution concept maximizes the preferences of a 
representative household, expressed from the perspective 
of the dynastic head, subject to technological and feasibility 
constraints. It follows that, when studying optimal paths 
that internalize the climate change externality, the objective 
function can be interpreted as a social welfare function 
(SWF). As we discuss further below, our baseline objec-
tive function belongs to the class of number-dampened, 
critical-level utilitarian SWFs (Asheim and Zuber, 2014).
Nevertheless, it is important to appreciate our structural esti-
mation procedure implies the model fits observed trajectories, 
and therefore rationalizes a laissez-faire equilibrium too.13 In 
this case, trajectories derived from the estimated model account 
for pre-existing market imperfections in the economy, such 
as tax distortions, despite the planner representation. One 
implication, however, is that estimands cannot be interpreted 

11 The choice of estimation period is mainly driven by the availability 
of consistent data. Below we provide evidence that the model approx-
imates a number of non-targeted quantities, which are observed only 
during the more recent past.
12 As we show below, a social planner formulation affords a number 
of simplifications, including reducing the number of state variables 
that need to be computed. Moreover, we use a primal formulation, so 
that we only compute quantities, while prices are implicitly given by 
Lagrange multipliers and can be retrieved at the solution point. Finally, 
this formulation allows us to exploit efficient solvers for non-linear 
mathematical programs.
13 Towards the end of the estimation period, prototypical climate 
policies such as the Kyoto Protocol and the European Union Emissions 
Trading System were introduced. However, these attempts have had a 
trivial effect on total global GHG emissions.

as representing technology parameters for a representative 
household or firm. In line with this, we do not seek to inter-
pret the value of estimates, or carry-out statistical inference.

3.2 A structural economic model of global 
agriculture climate change

This section presents our model, including production, 
energy and land use, sectoral technical change, fertility 
decisions and welfare, emissions and climate dynamics.
Production in manufacturing Aggregate manufacturing 
output at time t, denoted Y _ (t , m n ), is described by a con-
stant-returns-toscale, Cobb-Douglas production function 
that combines capital K _(t ,mn ), labor L _(t ,mn ), and energy E _(t ,mn ):

  (1)

where A _(t ,mn ) is an endogenous, Hicks-neutral technology 
index and 𝜗_(i ∈  (0, 1), i  ∈  {K , E}, are technology parameters 
satisfying Σ _(i𝜗_(i < 1.14 Manufacturing output is also a function 
of the climate state variable S _(t ), the atmospheric GHG con-
centration. This is a reduced-form simplification that was 
introduced by Golosov et al. (2014) and made possible by 
the fact that temperature responds almost instantaneously to 
GHG emissions (Dietz and Venmans, 2019). As we describe 
below, GHG emissions from energy, agricultural production 
and land use increase S _(t ) and this in turn reduces TFP in 
manufacturing. The scale of climate damages in manufac-
turing is measured by the parameter  Ωmn ) > 0. This should 
be an estimate of the primal impact of climate change on 
manufacturing productivity, i.e. prior to adaptation through 
the mechanisms we identify.

Production in agriculture

In our model, the agricultural sector produces food, the sole 
purpose of which is to sustain contemporaneous population, 
as in e.g. Strulik and Weisdorf (2008). Agricultural output 
Y _(t ,ag ) is described by a constant-returns-to-scale and con-
stant-elasticity-of-substitution (CES) production function 
that combines land X _(t ) with a Cobb-Douglas composite of 
non-land inputs (e.g. Ashraf et al., 2008):

  (2) 

                             

14 This is a plausible representation of substitution patterns in the 
long run (conditional on Hicks-neutral technological progress; see 
Antràs, 2004). For short- and medium-run analyses, it may be more 
appropriate to use a constant-elasticity-of-substitution function, in 
which the elasticity of substitution between energy and other inputs 
is less than unity (Fried, 2018; Hassler et al., 2016b). Baqaee and Farhi 
(2018) show that complementarity between energy and non-energy 
inputs in the short run can be used to explain the disproportionate 
macroeconomic impact of the 1970s oil shock.
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where non-land inputs include capital K _(t , ag ), labor L _(t ,ag ) 
and energy E _(t ,ag ). A _(t ,ag ) is a gross agricultural TFP index 
and 𝜃 _(i ), i  ∈  {K , E} are technology parameters again satisfy-
ing 𝜃 _(i ) ∈  (0, 1) and Σ _(i𝜃 _(i ) < 1. In our main specification, we 
assume the elasticity of substitution between land and the 
capital-energy-labor composite 𝜎 X ) is below unity, reflecting 
long-run empirical evidence (Wilde, 2013).15 As in man-
ufacturing, climate change affects aggregate productivity 
through the parameter Ωag. This is the biophysical impact 
of climate change on crop yields, in essence.

Clean and dirty energy intermediates

Final energy E _(t ) is used as an input in both manufactur-
ing and agriculture. We characterize an energy sector that 
produces E _(t ) by combining clean and dirty/fossil energy 
intermediates (denoted respectively by E _(t ,c l ) and E _(t ,dt )) in a 
CES function (Acemoglu et al., 2016):

  (3)

where 𝜗 _(D ∈  (0, 1) represents the relative efficiency of clean 
and dirty energy sources in final energy production, and 
𝜎 E ) is the elasticity of substitution between clean and dirty 
energy intermediates. In our main specification, we assume 
that 𝜎 E ) is greater than unity (Stern, 2012; Papageorgiou et al., 
2017). The production of clean and dirty intermediates is a 
function of labor (respectively L _(t ,c l ) and L _(t ,dt )):

  (4)

where A _(t ,c l ) and A _(t ,dt ) are endogenous technology indices. 
We assume that dirty energy is in finite supply, and denote 
global reserves by R  > 0. This yields the following fossil 
resource constraint:

  (5)

where T  > 0 is the time at which reserves are exhausted.

Land input

Land used in agriculture has to be converted from a finite 
reserve stock of natural land X  and slowly reverts back to 
its natural state if left unmanaged. As in Lanz et al. (2017), 
the evolution of land available for agricultural production 
is given by

  (6)

15 The Cobb-Douglas (𝜎 _X = 1) formulation is used in applied work 
(e.g. Mundlak, 2000; Hansen and Prescott, 2002). However, it implies 
land is asymptotically inessential for agricultural production, which is 
problematic for long-run analysis.

where 𝛿 _(X > 0 is a depreciation rate and  t represents addi-
tions to the agricultural land area (subject to the constraint 
that X _(t ) ≤ X , ∀t). Land conversion is a function of labor L _(t ,X ):

  (7)

where  > 0 and 𝜀  ∈  (0, 1) are productivity parameters.
Note that linear depreciation, which allows agricultural land 
to revert back to its natural state over time, together with de-
creasing labor productivity in land conversion as measured by 
𝜀, implies that the marginal cost of land conversion increases 
with the total agricultural land area, in the spirit of Ricardo.

Innovations

Innovations drive the evolution of sectoral TFP. We formu-
late a simple discrete-time version of the model of Aghion 
and Howitt (1992, 1998), in which the use of labor deter-
mines the arrival rate of new innovations. In each sector 
j  ∈  {mn, ag, cl,  dt}, we denote productivity improvements 
of each innovation by s _(j ) > 0, and, without loss of generality, 
we assume there is a maximum of I _(j ) > 0 innovations in 
each time period. This implies the sectoral TFP growth rate 
in each period is bounded above by λ j  = (1+s _(j ))I j

) −1.16 It 
follows that the evolution of sectoral TFP can be written as:

  (8)

where 𝜌 _(t , j is the endogenous arrival rate of innovations in 
the sector and represents the fraction of maximum growth 
λ j  that is achieved over the course of each time period.
Further, the arrival rate of innovations is assumed to be an 
increasing function of labor employed in sectoral R&D, L _(t ,Aj

) :

  (9)

where 𝜇 _(j ∈  (0, 1) is a labor productivity parameter that 
captures the duplication of ideas among researchers (Jones 
and Williams, 2000). One important feature of this repre-
sentation is that we dispose of the population scale effect 
by dividing the labor force in R&D by total population N_(t ). 
In particular, along a balanced growth path in which the 
share of labor allocated to each sector is constant, the size of 
the population does not affect the growth rate of output. As 
shown by Laincz and Peretto (2006), the R&D employment 
share can be interpreted as a proxy for average employment 

16 In the model by Aghion and Howitt (1992), s _(j ) represents the size 
of an innovation required to obtain a patent, and the firm that holds 
the most productive technology has a monopoly until a new innovation 
arrives. In continuous time, the arrival of innovations is modeled as 
a Poisson process, and our discrete-time representation uses the law 
of large numbers to integrate out the random nature of short-term 
growth over discrete time intervals. Thus λ j  can be interpreted as the 
maximum growth rate of sectoral TFP in each period.
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hired to improve the quality of a growing number of product 
varieties, a feature that is consistent with micro-founded 
firm-level models by Dinopoulos and Thompson (1998), 
Peretto (1998), and Young (1998), among others.17

Population dynamics

Population, described by state variable N_(t), is endogenous in 
the model. We make the usual assumption that population 
equals the total labor force,18 and consider three drivers of 
the cost of incremental labor units. First, child rearing and 
education are time-intensive and compete with other la-
bor-market activities, so the opportunity cost of time affects 
fertility (Becker, 1960). Second, there is a trade-off between 
child quantity and quality, because the cost of educating chil-
dren increases with technological progress in the economy 
(Galor, 2005). Third, the population needs food produced 
by the agricultural sector. We introduce a constraint to the 
population trajectory by requiring that the market for food 
clears each period (Strulik and Weisdorf, 2008; Vollrath, 2011; 
Sharp et al., 2012). We now discuss each of these in turn.
The evolution of population over time is given by

  (10)

where n _(t ) is the endogenous fertility rate (see below for 
its determination) and 𝛿_(N > 0 is the mortality rate, so that 
1/𝛿_(N can be interpreted as the expected working lifetime. 
Therefore, since we do not explicitly model human capi-
tal, n_(t )N_(t ) captures net increments of effective labor units, 
which are an increasing function of L _(t ,N ), the time spent 
rearing and educating workers:

  (11)

where 1/χ t measures the time-cost of workforce incre-
ments (as per Becker, 1960). The second driver of popu-
lation dynamics in our model is technology. In particular, 
complementarity between skills and technology (Goldin 
and Katz, 1998) implies that the cost of incremental work-
ers increases with the level of technology in the economy 
(proxied by the TFP index in manufacturing, A _(t ,mn )):

  (12)

where χ > 0 and ζ ∈ (0, 1) are labor productivity parameters. 
With this representation, technological progress increases 
the cost of children through the parameter 𝜔 > 0. This is 
intended as a reduced-form representation of the model 

17 Dinopoulos and Thompson (1999) show that a model in which ag-
gregate TFP growth increases with the share of labor allocated to R&D 
is equivalent to Schumpeterian growth models in which R&D firms hire 
workers and entry of new firms is allowed. See also Chu et al. (2013).
18 See Mierau and Turnovsky (2014) for a growth model 
with age-structured population, albeit with exogenous popula-
tion dynamics.

of Galor and Weil (2000), in which technological progress 
induces an increase in the demand for human capital and ed-
ucation. Our model can therefore generate a gradual decline 
in fertility reflective of the trade-off between child quantity 
and quality, without the need to explicitly model human 
capital.19 The final component of population dynamics is 
the food constraint, which requires that agricultural output 
is used to meet the demand for food by contemporaneous 
population. This constitutes a constraint on the development 
of population over time, making food production – and the 
impact of climate change on food production – a key driver 
of the cost of fertility. Formally, clearing of the food market 
links agricultural output to aggregate food consumption:

  (13)

where 𝜉 _(t ) is per-capita food demand. This formulation is in 
line with Strulik and Weisdorf (2008), Vollrath (2011) and 
Sharp et al. (2012). However, while these models assume 
constant per-capita food demand, we account for empirical 
evidence suggesting that diets evolve with affluence, such 
that the demand for calories is increasing and concave in 
per-capita income (e.g. Subramanian and Deaton, 1996; 
Thomas and Strauss, 1997):

  (14)

where 𝜉  > 0 is a scale parameter and 𝜅 ∈ (0, 1) is the 
income elasticity of food consumption.
Note that for simplicity per-capita income is measured by 
manufacturing output, which implies food and the man-
ufactured good are complementary and a declining food 
expenditure share as consumption per capita grows.20

Intertemporal preferences

The representative household/agent has preferences over 
own consumption of the manufactured good c _(t, the num-
ber of children it produces n _(t ), indexed by k , and the total 
future utility of their children Σ k )U _(k , t+1. All children are 
assumed identical, so that Σ k )U _(k , t+1 = n t )U _(t+1, and parents 
care equally about their own future utility (conditional on 
survival probability 1 −  𝛿_(N) and the future utility of their 
children (see Jones and Schoonbroodt, 2010), so the number 

19 Note also that, combining (11) and (12), the parameter  captures 
possible scarce factors in child-rearing and education, so that the cost 
of incremental labor units is convex (see Barro and Sala-i Martin, 
2004, p.412, Moav, 2005, and Bretschger, 2013).
20 Following the literature, we model food demand as a constraint 
on the growth trajectory rather than an element of the utility function. 
A leading alternative is Stone-Geary preferences, which allow explicit 
modelling of subsistence needs, but imply an implausible degree of 
substitutability between food and other consumption goods. CES pref-
erences could be used to capture low substitutability instead, but such 
preferences would require a strong homotheticitity assumption at odds 
with empirical evidence on the income elasticity of food demand.
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of agents entering utility at t+1  is ñ  = (1−  𝛿_(N)+n _(t ). 
Using the recursive formulation of Barro and Becker (1989), 
the utility function in period t  is then

  (15)

where 𝛽 ∈ (0, 1) is the discount factor. Per-period utility 
from consumption is assumed to be isoelastic u(c _(t )) = , 
where   is the inverse of the intertemporal elasticity of 
substitution and u > 0 represents the consumption level 
at which per-period utility becomes positive. Similarly, 
we follow Barro and Becker (1989) and assume fertility 
preferences are isoelastic b(ñ _(t )) = ñ −𝜂, where 𝜂 ∈ (0, 1) 
determines how fast marginal utility declines as ñ  increases.
Under these assumptions, we can exploit the recursive 
nature of Barro-Becker preferences to derive the inter-
temporal welfare function of a dynastic household head:21

  (16)

Because population is endogenous in our model and one of 
our core aims is to evaluate the Pigouvian GHG tax that opti-
mally internalizes the climate-change externality, (16) can be 
interpreted as a social welfare function (SWF) and therefore 
implies a position on population ethics. Specifically, equation 
(16) belongs to the class of (discounted) number-dampened 
critical-level utilitarian SWFs (Asheim and Zuber, 2014). The 
critical level u captures the level of consumption that makes the 
life of an additional person worth living. Number-dampened 
critical-level utilitarian SWFs multiply average utility, minus 
the critical level, by a positive valued function of population 
size. In the limit as  𝜂 → 1, the special case of discounted average 
utilitarianism is obtained, whereby social welfare depends 
only on average utility in the population. Conversely in the 
limit as 𝜂 → 0 the special case of discounted classical/total 
utilitarianism is obtained, whereby social welfare is the sum 
of the utilities of each member of the population and is in-
creasing in population size. Appendix A provides further 
discussion of the ethical properties of number-dampened 
critical-level utilitarian SWFs.
Aggregate consumption C _ (t  = c _ (t )N _ (t ) in equation (16) is 
produced by the manufacturing sector. Manufacturing 
output (only) can be either consumed C _(t or invested I _(t 
into a stock of capital:22

  (17)

21 This is obtained though sequential substitution in U _(0 ) = u(c _(0 ))  + 
𝛽b(ñ _(0 ))ñ _(0 )U _(1 ), yielding U _(0 ) = Σ ^(

∞
)_(t=0 ) 𝛽 ^(

t
)u(c _(t ))Π ^(

t
)_(𝜏=0 )b(ñ _(𝜏 ))ñ _(𝜏 ). Further, 

noting that equation (10) can be rewritten as N _(t+1 ) = N _(t )ñ _(t ), we have 
Π ^(

t
)_(𝜏=0 )b(ñ _(𝜏 ))ñ _(𝜏 ) =  (N _(t )=N _(0 )) ^(

(1−𝜂
)

).
22 See Ngai and Pissarides (2007) for a similar treatment of savings 
and capital accumulation in a multi-sector growth context.

In turn,
  (18)

where 𝛿_(K > 0 the capital depreciation rate. In this setting, 
aggregate consumption C _(t (or equivalently the savings rate 
I _(t =Y _(t ,mn )) is one of the key decision variables, along with 
the allocation of capital, labor and energy across sectors, 
which is discussed next.

Sectoral allocation of capital, labor and energy

The allocation of capital, labor and energy across activities 
is driven by relative marginal productivities and constrained 
by feasibility conditions. For all three inputs, we take a 
long-run perspective and assume that these inputs can be 
moved from one sector to another at no cost. Capital is used 
in either manufacturing or agriculture, K _(t ) = K _(t ,mn ) + K _(t ,ag ), as 
is final energy, E _(t ) = E _(t ,mn ) + E _(t ,ag ). The allocation constraint 
for labor is extended to include R&D activities, land clearing 
and fertility, as well as the clean and dirty energy sectors:

Emissions and climate 

We include three GHGs – CO2, methane and nitrous ox-
ide – which have four sources: (i) CO2 emissions from burn-
ing fossil fuels, (ii) methane and nitrous oxide emissions 
associated with burning fossil fuels (primarily methane 
emissions as a waste product of fossil-fuel extraction and 
distribution), (iii) CO2 emissions from expanding agricul-
tural land (e.g. deforestation), and (iv) methane and nitrous 
oxide emissions from agricultural production. Total GHG 
emissions at time t  are given by

  (19) 

where 𝜋_(E,CO2 is CO2 emissions per unit of dirty energy, 𝜋_(E,NCO2 
is non-CO2 emissions per unit of dirty energy (i.e. methane 
and nitrous oxide), 𝜋_(X is CO2 emissions per unit of agri-
cultural land expansion, and 𝜋_(ag is methane and nitrous 
oxide emissions per unit input of the capital-laborenergy 
composite in agriculture.23 𝜋_(E,NCO2 and 𝜋_(ag are expressed in 
units of CO2-equivalent. The state variable S_(t) represents 
the atmospheric GHG concentration. The evolution of S_(t)

is based on the carbon-cycle model of Joos et al. (2013) 
used extensively in the Fifth Assessment Report of the In-
tergovernmental Panel on Climate Change (IPCC). This 
model was built to replicate the behavior of more complex 
carbon-cycle models and it conforms better with them than 
the carbon cycles used in some key economic models (Dietz 
and Venmans, 2019; Mattauch et al., 2018). In the model, 

23 We assume net radiative forcing from other GHGs and aerosols is 
zero, which has been approximately true in recent years (IPCC, 2013).
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atmospheric CO2 is divided into four reservoirs, indexed 
by r, with S_(t) = Σ(r)S_(t,r), each of which decays at a different rate:

  (20)

  (21)

  (22)

Since methane and nitrous oxide emissions are converted 
into CO2-equivalent using their 100- year Global Warming 
Potential, we exclude them from the first reservoir. Doing 
so ensures these two gases are approximately completely re-
moved from the atmosphere 100 years after their emission.24

Optimization

The model is solved as a constrained non-linear optimiza-
tion problem. The intertemporal welfare function (16) is 
maximized by selecting aggregate consumption, as well as 
the allocation of capital, energy and labor across activities, 
subject to technological constraints. Given the parameter 
restrictions, the ensuing mathematical programming prob-
lem is convex, which ensures a global optimum.
We formulate the numerical problem with the algebraic 
modeling language GAMS, and solve it with the KNITRO 
package (Byrd et al., 2006). This combination allows us to 
rely on analytical expressions for the Jacobian and Hessian 
matrices associated with the optimization problem, and 
use these in a solver that flexibly alternates between an 
interior point type algorithm, looking for an optimum 
of the objective function in the feasible region defined by 
the constraints, and an active set algorithm, which stays at 
the boundary of the feasible region.25 Appendix B contains 
a formal statement of the primal optimization problem, 
and discusses some further computational considerations.

3.3 Estimation
In this section we describe how we take the model to the 
data. Our approach builds on Acemoglu et al. (2016) and 

24 A more complete model would have fully independent climate 
dynamics for methane and nitrous oxide, but this would add excessive 
complexity.
25 Note that, for the numerical solution, the domain of per-capita 
consumption is constrained to be strictly greater than one, so that 
per-period utility is positive for any possible values (see Jones and 
Schoonbroodt, 2010, for a discussion). This restriction does not affect 
the actual solution of the problem, since per-capita consumption is 
initialized above one and grows thereafter. Therefore, this additional 
constraint only serves the purpose of avoiding bad function calls by 
the solver, which could compromise the optimization algorithm.

Lanz et al. (2017) and proceeds in two steps. First, a num-
ber of model parameters are imposed on the estimation 
procedure. These include parameters determining house-
holds’ preferences and firms’ technology (Table 2). Most 
parameter values are either standard in the literature, or set 
to match external sources, and a discussion of parameter 
selection is relegated to Appendix C.26 We also discuss how 
we calibrate initial values of the eleven state variables so as 
to initialize the model on observed quantities at the start 
of the estimation period in 1960.
In a second step, conditional on imposed parameter values 
and initial values of the state variables, we use a simulated 
method-of-moments procedure developed in Lanz et al. 
(2017) to identify the vector comprising the remaining 
nine parameters: Θ  = {𝜒 , ζ,  𝜔 , ,  𝜀 ,  𝜇 _ (m n ),  𝜇 _ (a g ),  𝜇 _ (c l ), 
𝜇 _(d t )). Intuitively, we select values for the elements of the 
vector that jointly minimize the distance between targeted 
variables over the 1960–2015 period and corresponding 
trajectories simulated by the model. We now discuss the set 
of individual parameters together with targeted quantities.
First, parameters determining the cost of incremental labor 
units, 𝜒 and ζ, and those driving the cost of technological 
progress in the production of the consumption good, 𝜇_(mn) and 
𝜔 (i.e. the drivers of the demographic transition), are iden-
tified from the joint evolution of global population (United 
Nations, 2017) and aggregate GDP World Bank (2018). The 
corresponding quantities in the model are N_(t) and Y_(t,mn) + Y_(t,ag).27

Second, the parameter driving labor productivity in agri-
cultural R&D, 𝜇 _(ag ), is pinned down by data on the evolu-
tion of agricultural TFP growth (Martin and Mitra, 2001; 
Fuglie, 2012).28 Importantly, because observed agricultural 
TFP is based on data on agricultural output, it includes 
potential impacts of climate change. We therefore identify 
the parameter 𝜇 _(ag ) by minimizing the distance between 
agricultural TFP (in levels) and agricultural TFP derived 
from the model, as measured by A _(t ,ag ) ·  exp(−Ω _(ag ) [S _(t ) −  S]).
Third, parameters determining labor productivity in land 
clearing for agriculture (  and 𝜀) are used to minimize the 
distance between X_(t) in the model and observed data on agri-
cultural land area from FAO (2018). Lastly, 𝜇_(cl) and 𝜇_(dt), which 
determine labor productivity in R&D activities for clean and 

26 Appendix C also reports parametrization of the climate module 
by Joos et al. (2013).
27 Note that investment in land conversion and sectoral TFP should 
in principle be included in aggregate GDP, since they are not used in 
production. These activities, however, represent a very small share of 
total output, and for simplicity we exclude these from the calculations.
28 We note that TFP estimates vary across sources and are subject 
to a number of caveats, and here we assume that global agricultural 
TFP has grown at 1.5 percent per annum over the first twenty years 
of the estimation period (1960 to 1980), 1.2 percent in the subsequent 
twenty years (1981 to 2000), and at 1 percent in the recent past (2001 
to 2015). See Lanz et al. (2017) for further discussion.
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dirty energy intermediates, are selected to fit global fossil and 
non-fossil energy use, respectively, using data from BP (2017).
Formally, for a given vector of candidate estimates Θ _(v ), 
with estimated parameters indexed by v , we solve the 
model to obtain simulated trajectories for the set of k  tar-
geted quantities Z model ,Θv

𝜏 ,k , where  indexes years from 1960 
to 2015. Denoting the observations of each targeted quan-
tity k  by Z data

𝜏 ,k , we measure the error-distance e _(k ,Θv ) asso-
ciated with Θ _(v ) as the squared relative deviation summed 
over the estimation period:

  (23)

The vector of estimated parameters Θ̂  is then selected to 
minimize total model error:

  (24)

Note that total model error refers to one instance of the 
model, and therefore results from solving the model with 
the vector of parameters Θ _(v ), plus all other fixed parameters. 
In other words, parameters are jointly estimated, which 
requires running the solution algorithm once for all vectors 
of candidate estimates.

In order to find a solution to Eq. 24, we use an iterative 
procedure. We start with a vector Θ ^(

1
)_(v ) of parameters that 

coarsely approximates observed trajectories, and solve the 
model for 1,000 vectors randomly drawn from a uniform 
distribution around Θ ^(

1
)_(v ). This allows us to identify a subset 

of parameter values that improves the objective function, 
and we repeat the sampling process for a vector of esti-
mates Θ ^(

2
)_(v ), solving the model again for 1,000 draws. This 

procedure leads us to gradually update the distribution 
of parameters considered until we converge to the set of 
estimates reported in Table 3.

Table 2. Parameters imposed for estimation

Parameter value Definition Source

Preferences and population

𝛽  = {0.99, 0.97} Discount factor Giglio et al. (2015)
γ  = {2, 1} Intertemporal elasticity of substitution Guvenen (2006)
u  = 1 Critical level of utility Calibrated
𝜂  = {0.001, 0.5} Parental altruism Calibrated
𝜅  = 0.25 Food income elasticity Thomas and Strauss (1997)
𝜉  = 0.4 Unit food demand Echevarria (1997)
𝛿 _N = 0.022 Mortality rate Calibrated
Manufacturing and capital accumulation

𝜗 _K = 0.3 Capital share Various
𝜗 _E = 0.04 Energy share Golosov et al. (2014)
𝛿 _K = 0.1 Capital depreciation Various
Ω _mn = {1.66E -5,-0.8E -5, 3.73E -5} Manufacturing damage intensity Nordhaus and Moffat (2017)
Agricultural sector

𝜎 _X = {0.6, 0.2} Substitutability of land in agriculture Wilde (2013)
𝜃 _K = 0.25 Capital share Various
𝜃 _X = 0.3 Land share Lanz et al. (2017)
𝜃 _E = 0.04 Energy share Golosov et al. (2014)
𝛿 _X = 0.02 Land depreciation Calibrated
X  = 3 Land reserves (billion ha) Alexandratos and Bruinsma (2012)
Ω _ag = {0.000207, 0.00015, 0.000415} Agricultural damage intensity Nelson et al. (2014)
Energy sector and R&D activities

𝜎 _E = {1.5, 0.95} Substitutability of energy intermediates Stern (2012)
𝜗 _D = 0.65 Dirty intermediates share Golosov et al. (2014)
R  = 5000 Dirty energy (Gt oil eq) Rogner (1997)
λ _j = 0.05 Innovation size in R&D Fuglie (2012)

Notes: This table reports model parameters imposed during the estimation of the model. For parameters considered in the sensitivity 
analysis we report multiple values, starting with our baseline assumption. See also appendix C for a discussion.
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Because estimation results and ensuing simulations with 
the model are conditioned by the value of fixed parame-
ters, we evaluate the sensitivity of our results with respect 
to a number of alternative assumptions about these fixed 
parameters. These include, for example, the discount factor, 
the intensity of damages in manufacturing and agriculture, 
and the substitutability between clean and dirty energy 
intermediates, etc. These alternative values are reported 
in Table 2, and discussed in Appendix C.
In practice, sensitivity analysis requires updating one of the 
fixed parameters (e.g. the discount factor), keeping all the 
other parameters at their baseline values, and re-estimating 
the model in order to fit 1960–2015 trajectories. Estimates 
supporting sensitivity analysis are reported in Appendix 
D. Importantly, estimates derived under an alternative set 
of imposed parameters provide a different rationalization 
of the observed past, resulting in very similar laissezfaire 
projections from 2015 forward. However, this is not nec-
essarily the case for policy simulations.

4. Estimation results and 
counterfactual analysis

This section focuses on the period from 1960 to 2015. First, 
we document how well the model is able to track the evolution 
of observed outcomes. Second, we use the model to provide 
evidence on the impact of climate change in the recent past.

4.1 Estimated model: goodness of fit
Figure 1 reports simulated trajectories for the variables 
targeted in our structural estimation procedure: world 
population (panel a); world GDP (b); total agricultural 
land area (c); agricultural TFP (net of climate damages, 
i.e. A _(t ,ag ) ·  exp(−Ω _(ag ) [S _(t ) −  S]), panel d); and global fossil 
and nonfossil energy use (e and f respectively). These tra-
jectories result from solving the model with the baseline 
parameter values listed in Table 2, 1960 values of the state 

variables (Appendix C, Table C1), and structurally estimated 
parameters reported in Table 3. We also include observed 
trajectories of these variables in the figure.
The comparison shows the model is able to replicate ob-
served trajectories quite closely. Absolute percentage de-
viations are largest for clean and dirty energy use, with 
13.6% and 6.0% average errors over the estimation period 
respectively, which reflect relatively high variability of these 
two variables. The average deviation of world GDP is 3.8 
percent, while those for population, agricultural land, and 
agricultural TFP are all below one percent.
A more stringent test of the model’s goodness of fit is provided 
by comparing trajectories from the estimated model with data 
on untargeted quantities. Figure 2 panel (a) reports simulated 
trajectories for the growth rate of agricultural yields, together 
with observed data from FAO (2018). Using data from the 
World Bank (2018), panel (b) compares the share of agriculture 
in total GDP derived from the model with observations, panel 
(c) makes the same comparison for per-capita consumption 
growth, and panel (d) focuses on investment (gross fixed 
capital formation, see World Bank, 2018).29

In general, the model fits the untargeted moments reasonably 
well, without of course capturing the short-run volatility 
inherent in empirical data. The slowdown in agricultural 
yield growth, which has resulted in an approximately linear 
trend in absolute yields (e.g. Alston and Pardey, 2014), is 
captured by our model with a declining trend in agricultural 
yield growth. Similarly, the historical decrease in agriculture’s 
share of GDP is also qualitatively replicated by the model, 
although the decline is somewhat underestimated. Similarly, 

29 Note that, by construction, some of these variables indirectly relate 
to the targeted moments. For example, given the definition of agricul-
tural yields, declining yield growth partly results from a slowdown in 
agricultural land expansion (Figure 1, panel c) and from agricultural 
TFP growth (Figure 1, panel d). Agricultural output itself is not targeted 
in the estimation, however, and it in part driven by the demand for food.

Table 3. Parameters estimated with simulated method of moments

Parameter 
estimates

Definition

𝜒  = 0.123 Labor productivity in fertility and education

ζ = 0.509 Elasticity of labor productivity in fertility and education

𝜔  = 0.071 Elasticity parameter for technology in fertility and education

 = 0.083 Labor productivity in agricultural land conversion

𝜀  = 0.2535 Elasticity of labor productivity in agricultural land conversion

𝜇 _(mn ) = 0.298 Elasticity of labor productivity in manufacturing R&D

𝜇 _(ag ) = 0.431 Elasticity of labor productivity in agricultural R&D

𝜇 _(c l ) = 0.077 Elasticity of labor productivity in clean energy R&D

𝜇 _(d t ) = 0.159 Elasticity of labor productivity in dirty energy R&D

Notes: This table reports parameters estimated for the baseline model.
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the model exhibits the declining per-capita consumption 
growth found in the data, but the growth rate itself is some-
what underestimated. This is related to the model somewhat 
overestimating the historical growth in investment.
We next consider the fit of the model to the emissions/climate 
variables, also untargeted. Figure 3 reports total GHG emis-
sions (panel a), agricultural GHG emissions (b), the share of 
GHG emissions from fossil fuels (c), and the atmospheric 
GHG stock (d). Observed emissions data are taken from 
Boden et al. (2017), FAO (2018), Janssens-Maenhout et al. 
(2017) and Le Quéré et al. (2018), while estimates of the 
GHG stock are from Meinshausen et al. (2011).

Results suggest that the model closely tracks observed 
quantities. Aggregate GHG emissions almost triple over 
the estimation period, an increase captured well by our 
representation. The model tracks agricultural GHG emis-
sions well until after 2000, when it misses out on a jump 
in observed emissions from land-use change. It is uncer-
tain whether this is a transitory phenomenon. However, 
because the share of emissions from burning fossil fuels 
increased significantly over the estimation period, this 
does not translate into a significant deviation in total GHG 
emissions. One implication is that the trajectory of the GHG 
stock estimated by our model closely aligns with the data.

Figure 1. estimation results for targeted variables
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Figure 3. estimation results for climate dynamics

Figure 2. estimation results for untargeted variables
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4.2 Counterfactual analysis: an evaluation of 
global climate impacts

Anthropogenic GHG emissions have already caused c. 
1°C global warming relative to preindustrial levels (IPCC, 
2018). Simulation models of climate impacts, as well as 
reduced-form empirical studies looking mainly at short-run 
climate variability, imply this observed warming has al-
ready affected productivity in agriculture and the rest of 
the economy (see Dell et al., 2014; Carleton and Hsiang, 
2016). We now use our estimated model to provide novel 
evidence on how much, and quantify the role of possible 
adjustment channels for the economy and population. This 
is achieved by simulating a counterfactual global economy 
in the absence of climate change. The counterfactual is 
constructed by taking the model estimated when climate 
damages to agriculture and manufacturing are included, 
and then re-running it – without re-estimation – with 
damages ‘turned off ’, that is when Ω _(ag ) = Ω _(mn ) = 0.
Figure 4 plots historical climate damages derived from the 
estimated model, that is, estimates of Ω _(ag ) (panel a) and Ω _(mn ) 
(panel b).30 It is important to remember that these estimates 
constitute the ‘gross’ productivity loss from climate change, 
before adaptation through factor re-allocation and (dis)
investment. Therefore they can be compared, as we do 
below, with ‘net’ productivity, which means we can also 
provide estimates of the effects of adaptation.
We estimate climate damages equal to a 3.2% reduction in 
agricultural TFP in 1970, relative to a counterfactual world 
without climate change. This is within a range of 1.8% to 
6.4%, estimated by running the model with Ω _(ag )set to its 
lower and upper bounds respectively (see Appendix C for 
further details of the parameter values). By 2018, rising 
temperatures caused agricultural damages to rise to 8.2%, 
with a range of 4.6–16.0%. In the rest of the economy, 

30 Although the model is structurally estimated on data from 1960, 
our comparison here focuses on the period from 1970 onwards, be-
cause we want the effect of initial conditions on variables such as land, 
output and population to be eliminated.

climate damages amounted to a 0.3% reduction in TFP in 
1970, with a range of a 0.1% increase to a 0.6% reduction, 
obtained by setting Ω _(mn ) to its lower and upper bounds 
respectively. By 2018, damages in the rest of the economy 
rose to 0.7% of TFP (range -0.3–1.5%).
In Figure 5, we document climate impacts by differenc-
ing a world with a changing climate and a counterfactual 
world absent climate change, taking general equilibrium 
effects and adaptation into account. The top row examines 
differences in two key inputs: land and agricultural innova-
tion/technology. We see that the world agricultural system 
has responded to reduced yields as a result of climate change 
by employing more agricultural land. We estimate that by 
2018 an additional 19 million hectares of arable/cropland 
had been brought into use just to cope with climate change 
(with a range of 11 to 36 million ha), which is 1.2% above 
the counterfactual level, or in the ballpark of the amount 
of cropland currently in use in France.31

Climate change has also increased agricultural innovation, 
as measured by the growth rate of the gross technology 
index A _(t ,ag ). We estimate that in 1970 the innovation rate 
for global agriculture was 5.4% higher than in the absence 
of climate change (range 3.0–11.0%). To put this in context, 
the counterfactual innovation rate was 1.5% in 1970, so 
this equates to an absolute increase of 0.08 percentage 
points. By 2018, the difference in the agricultural innovation 
rates with and without climate change had risen to 10.3% 
(range 5.6–21.4%). This equates to an absolute increase of 
0.09 ppts. on the counterfactual innovation rate of 1.0%. 
Beginning in 1970, this additional innovation would have 
cumulatively raised the level of agricultural productivity 
by about 5.1% by 2018 (range 2.8–10.8%).
However, as the middle left panel shows, the additional 
R&D has not fully compensated the negative effect of cli-
mate damages on overall agricultural productivity. Instead, 

31 36 million ha is closer to the amount of arable land currently in 
use in Argentina. Data on France and Argentina both from World 
Bank (2018).

Figure 4. Climate damages since 1970; reduction in TFP relative to a counterfactual with no climate damage
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this net agricultural technology index was 2.4% lower than 
in the counterfactual in 1970 (range 1.4- 4.8%) and 3.6% 
lower in 2018 (2.0% to 6.8%). Nonetheless, this estimate 
should be compared with damages from Figure 4 of 8.2% 
in 2018 to demonstrate the effectiveness of innovation as 
an adaptation mechanism in our model, reducing the im-
pact of climate change on agricultural productivity/yields.
Even after taking into account the adaptation mechanisms 
available in our model, we estimate that climate change has 
depressed agricultural output (middle right panel). In 2018, 
we estimate that it was about $63 billion (1.2%) lower than 
the counterfactual (range $27 to $132 billion; 2010 prices). 
The bottom row examines effects on world population 
and economywide GDP respectively. World population 
is lower as a result of climate change. In particular, we 

estimate that by 2018 world population was reduced by 82 
million (1.1%) relative to the counterfactual (range 38 to 
171 million). In our model, the mechanism bringing this 
about is an increase in the cost of feeding children, which 
affects fertility choices. World GDP was reduced by $1.1 
trillion in 2018 (1.4%) relative to the counterfactual, with 
a range of $0.4 to $2.4 trillion.

5. Future projections and policy 
simulations

We now use the model to produce projections over the rest 
of the 21st century. Our first set of projections is an extension 
of the comparison made in the previous section between the 
world in a changing climate and the counterfactual world 
absent climate change. This is under a continued, laissez-faire 

Figure 5. Historical estimates of climate change impacts relative to a counterfactual with no climate damages
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emissions scenario, in which the climate-change externality 
is left uncorrected. Our second set of projections is of the 
optimal policy that internalizes climate damages. Finally, 
we present results from a sensitivity analysis.

5.1 Laissez-faire equilibrium

Figure 6 reports our estimates of laissez-faire output (both 
aggregate output and agricultural output specifically) and 
population in a changing climate. Panels (a), (c) and (e) plot the 
level of each. Despite climate change, baseline GDP increases 
nearly four-fold over the course of the century, from around 
$80 trillion currently to $277 trillion in 2100 (in year 2010 
$US). Agricultural output also increases, but only by a factor 
of two. Population increases from around 7.7 billion currently 

to 12.8 billion in 2100. Our estimate for 2100 is within the 95% 
confidence interval of the United Nations (2017) projections, 
which do not factor in future climate change.

Panels (b), (d) and (f) report the differences in output and 
population with respect to the counterfactual and also 
include low and high damage specifications. We estimate 
that climate change will reduce GDP by $3.8 trillion in 2100 
relative to the counterfactual (-1.4%), with a range of $0.4 
to $8.2 trillion (-0.1% to -2.9%). It will reduce agricultural 
output by $138 billion in 2100 relative to the counterfactual 
(-1.3%), with a range of $44 to $298 billion (-0.4% to - 2.7%). 
The corresponding reduction in population due to climate 
change is 157 million in 2100 (-1.2%), with a range of 62 
to 338 million (-0.4% to -2.6%).

Figure 6. Future projections and estimates of future climate change impacts on output and population relative to a counterfactual 
with no climate damages
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Figure 7 reports laissez-faire cropland and agricultural 
innovation (that is, the gross agricultural TFP index). Again, 
panels (a) and (c) report the level of each, while panels 
(b) and (d) report differences with the counterfactual, 
including low and high damage specifications. Projections 
suggest a modest amount of further cropland expansion 
over the course of the century, reaching 1.7 billion ha in 
2100. In order to adapt to the changing climate, however, 
this constitutes a non-trivial 80 million ha increase relative 
to the counterfactual scenario (+4.9%), with a range of 46 
to 162 million ha (+2.8% to +9.8%). Moreover panel (d) 
shows that much more effort is expended on agricultural 
R&D in a changing climate compared with the counter-
factual, such that by 2100 gross agricultural TFP is more 
than 15% higher, with a range of 8–35%. This does not 
fully compensate climate damages, however, such that 
net TFP is lower than in the counterfactual (not shown).
Consistent with our historical estimates, adaptation to cli-
mate change through general equilibrium factor reallocation 
is therefore effective in mitigating the impacts of climate 
change. This is exemplified by cropland expansion and 
especially by agricultural innovation, which compensate 
for yield losses due to climate change. It is striking that 
climate change has a smaller effect, in relative terms, on 
agricultural output than on aggregate output (Figure 6), 

despite gross productivity damages being much larger in 
agriculture according to the parametrization of Ω _(ag ) and 
Ω _(mn ). That population is relatively impervious to climate 
change implies a strong preference for fertility in spite of 
rising costs. Below we test the robustness of these predic-
tions to weaker preferences for fertility, lower substitut-
ability of land in agriculture and lower substitutability of 
fossil/clean energy in industry, inter alia.

5.2 Optimal policy
Figure 8 shows projections of the Pigouvian GHG tax (panel 
a),32 resulting total GHG emissions (b), the atmospheric 
concentration of GHGs (c), atmospheric temperature (d), 
and damages to agriculture and manufacturing (e and f).

The Pigouvian GHG tax is $66/tCO2eq in 2020 (in 2010 
US dollars). This increases in real terms to $81 in 2030 and 
$182 in 2100 (we comment on the shape of this GHG tax 
trajectory in the following section). As a result, total GHG 
emissions are significantly reduced relative the baseline, 
laissez-faire equilibrium under climate change. By 2030, 
optimal total GHG emissions are 7.3GtCeq, and emis-
sions are held broadly constant at this level throughout the 

32 This tax is implicitly levied not only on CO2, but also on methane 
and nitrous oxide in proportion to their CO2-equivalence.

Figure 7. Future estimates of cropland and agricultural innovation, and and estimates of future climate change impacts relative to 
counterfactual with no climate damages
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century. By contrast, laissez-faire emissions rise steadily 
from 15GtCeq in 2019 to 33GtCeq in 2100, which means 
our baseline is close to IPCC’s high-emissions ‘RCP8.5’ 
scenario (IPCC, 2014c).

This large difference in emissions between the laissez-faire 
equilibrium and the optimal policy translates into large dif-
ferences in the atmospheric stock of GHGs and atmospheric 
temperatures. The optimal policy reduces the atmospheric 
stock of GHGs in 2100 by 40%. Although temperature 
plays no explicit role in our model, here we use the IPCC’s 
two-box temperature model (Geoffroy et al., 2013) to esti-
mate what temperature increase these GHG stocks would 

lead to.33 The optimal policy reduces warming from 3.3°C 
in 2100 on the baseline path to only 1.8°C on the optimal 
path. This means optimal warming in 2100 according to 
our model is in agreement with the goal of the 2015 UN 

33 As we feed not only CO2 emissions into the model of Geof-
froy et al. (2013), but also methane and nitrous oxide (in tCO2eq), 
we make a bias correction of -0.372°C to the level of temperature in 
all years, which corresponds with the difference between the model 
projection of warming in 2005 relative to the 1850/1900 average, and 
observations obtained from IPCC (2013). The 2005 temperature in 
the model is obtained by feeding historical emissions of CO2, methane 
and nitrous oxide through our carbon cycle and the temperature 
model of Geoffroy et al. (2013), starting in 1765.

Figure 8. baseline and optimal paths for carbon prices, emissions, concentrations, temperatures and damages
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Paris Agreement on climate change to hold “the increase 
in the global average temperature to well below 2°C above 
pre-industrial levels”.

The optimal policy significantly reduces climate damages 
to both agriculture and manufacturing. Taking the year 
2050 as an example, agricultural damages are equal to 13% 
of sectoral TFP in the laissez-faire equilibrium, but only 
8% on the optimal path. Manufacturing damages are 1% 
in the laissez-faire equilibrium in 2050 and 0.6% on the 
optimal path. Below we test the sensitivity of the optimal 
path to alternative damage intensities.

Figure 9 brings together projections of energy inputs and 
also shows agricultural GHG emissions. Panel (a) shows 
that the GHG tax significantly reduces total global energy 
use. In 2050, the baseline world economy uses 26Gt oil 
eq, while on the optimal path energy use is only 12 Gt oil 
eq. Moreover panels (b) and (c) show that the GHG tax 
results in a significant shift away from dirty/fossil energy 
towards clean energy. Panel (d) shows that total GHG 
emissions from agriculture are significantly lower than on 
the baseline, about one third lower in 2030, for instance.

Figure 10 looks at what the baseline and optimal paths 
mean for agriculture (panels a, b and c), population (panel 
d) and consumption (panels e and f). On the optimal path, 

substantially less cropland is used. The difference is 72 
million hectares in 2050 and 137 million ha in 2100 (-8%). 
This reflects two factors. First, land conversion results in 
CO2 emissions; limiting agricultural land expansion thus 
avoids CO2 emissions and the GHG tax. Second, climate 
damages are lower on the optimal path, necessitating less 
expansion in order to compensate for productivity/yield 
losses. Agricultural innovation is also higher on the optimal 
path. The difference is about 12% in 2100. Under pressure 
from the GHG tax to use comparatively less land and to 
abate associated agricultural emissions, increased agri-
cultural R&D compensates through higher productivity 
growth. Agricultural output is initially lower on the opti-
mal path than on the baseline, by $16 billion in 2030 for 
instance, but around 2075 the situation is reversed and by 
2100 agricultural output on the optimal path is $21 billion 
higher. In effect there is an optimal investment in long-term 
agricultural production, with an up-front cost. The optimal 
path sustains a larger world population than the baseline 
path. The world population is 22 million higher in 2050 
and 57 million higher in 2100. Per-capita consumption 
of food and the manufactured good are both fractionally 
lower on the optimal path, although consumption of the 
manufactured good is higher than on the baseline path 
after 2100.

Figure 9. baseline and optimal paths for energy and agricultural emissions
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6. Sensitivity analysis
Table 4 reports a sensitivity analysis of our future projections, 
focusing on the optimal policy. We report the sensitivity of 
four key variables: the GHG tax, total GHG emissions, crop-
land and population, each for three representative points in 
time. We explore three issues. First, we consider the welfare 
impacts of food-related climate change damages. Second, 
we document the effect of population growth by integrating 
UN population projections in our model. Third, we test the 
robustness of our results with respect to the parameters used 
in the model. We now discuss each set of results in turn, and 
provides underlying trajectories in Appendix E.

Starting with our main damage specification, we compare 
it with results derived from a model in which total econo-

my-wide damages are the same, but climate change does not 
directly impact food supply. This allows us to quantify the 
impact of incorporating a separate channel through which 
agricultural damages impact welfare, namely via the role 
of food in sustaining population, with how climate climate 
damages are modeled in standard IAMs (treating food and 
other consumption goods as perfect substitutes in welfare). To 
construct this alternative, we set Ω_(ag) = 0 and Ω_(mn) = 2.612E−4.34

It is clear that the specification of damages, specifically how 
damages to the agricultural sector impact welfare, matters 

34 Using the estimated damages to agricultural and manufacturing 
output from the main specification of Ω_(ag ) = 0.000207 and Ω_(mn ) = 
1.66E−5 respectively, weighted by the respective shares of agricultural 
and manufacturing (i.e. non-agricultural) output, 5% and 95%.

Figure 10. Optimal paths for agriculture, population and consumption relative to the baseline
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a great deal. Take the optimal GHG tax for instance. If the 
impact of climate change is concentrated on the manufac-
turing sector, the optimal GHG tax is only $18/tCO2eq in 
2020, 72% lower than in our main specification. Conse-
quently optimal GHG emissions are significantly higher, 
roughly double in the second half of the century. Given 
smaller incentives to reduces emissions, agricultural land 
area declines significantly less than in the baseline. And 
given a lack of climate damages in agriculture, the cost of 
population increments does not rise as in the baseline, 
which in turn implies that the difference in population 
is negligible.
Second, we compare our main specification, in which 
population is endogenous, with a model run in which we 
impose exogenous population growth from 2015, based 
on the UN projections (United Nations, 2017, medium 
fertility variant). This generates a world population in 
2100 of 11.2 billion, compared with 12.8 billion in our 
main specification. Unable to satisfy their preferences for 
fertility, households in this model variant increase their 

consumption of manufactured goods instead (see Appendix 
E.2). This demand is met by expansion of the manufac-
turing sector, and the resulting optimal GHG tax has a 
markedly different trajectory to our main specification, 
starting lower but increasing at a much faster rate to end 
the century more than 2.5 times higher.
A corollary of this finding is that the relatively flat GHG 
tax path in our main specification fundamentally derives 
from endogenous population and its prediction of rela-
tively strong population growth. Previous findings that 
GHG taxes increase rapidly, either at or above the rate 
of growth of GDP per capita (Golosov et al., 2014; Rezai 
and van der Ploeg, 2016; Dietz and Venmans, 2019), may 
not be robust to assumptions about population and/or 
preferences for population.
Third, we analyze the robustness/sensitivity of the optimal 
policy in our main damage specification to variation in 
seven parameters: the joint intensity of agricultural and 
manufacturing damages Ω _(ag ) and Ω _(mn ); the elasticity of sub-
stitution between clean and dirty energy 𝜎 E; the elasticity 

Table 4. Sensitivity of key variables to parameter variations

2020 2050 2100 2020 2050 2100

GHG tax ($/tCO2 eq) Total GHG emissions (GtCeq)

Main spec. 66.23 112.47 182.02 6.93 7.58 7.31
Alternative damages 18.27 32.56 63.98 11.92 14.45 16.13
Exogenous population 39.33 100.87 485.09 8.87 15.19 16.30

Parameter variations

Ωag, Ωmn ) low 26.04 41.83 61.54 10.63 13.23 16.67

Ω _(ag, Ωmn high 127.03 220.14 353.19 3.55 4.26 3.92

σE  = 0.95 66.28 114.23 190.15 7.09 8.68 10.68

σX  = 0.2 73.16 124.20 198.52 7.31 7.43 6.63

β  = 0.97 37.07 64.25 115.59 9.62 11.94 12.82

γ=1 59.95 88.72 139.46 7.19 8.65 9.41

η  = 0.5 54.74 87.16 131.10 7.87 8.67 8.52

∆ cropland from baseline (mn ha) ∆ population from baseline (mn)

Main spec. -13.52 -71.83 -136.72 3.43 22.12 56.56
Alternative damages -2.20 -11.60 -20.77 0.11 0.07 -2.39
Exogenous population -14.62 -83.63 -199.73 n/a n/a n/a

Parameter variations

Ωag, Ωmn ) low -5.11 -26.42 -48.16 1.24 7.19 14.45

Ω _(ag, Ωmn high -31.62 -164.04 -300.88 8.07 56.04 149.84

σE  = 0.95 -13.62 -71.31 -130.73 2.96 18.50 44.97

σX  = 0.2 -9.52 -53.72 -126.93 3.90 26.76 66.85

β  = 0.97 -14.38 -76.72 -157.76 3.03 24.76 90.29

γ=  1 -14.92 -81.50 -151.75 5.47 36.11 90.73

η  = 0.5 -13.19 -70.31 -132.99 3.31 29.33 88.68
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of substitution between land and the capital-labor-energy 
composite in agriculture 𝜎 X; the elasticity of marginal utility 
with respect to fertility 𝜂 ; the discount factor 𝛽 ; and the 
inverse of the elasticity of intertemporal substitution γ . 
Changing these parameters necessitates re-estimating the 
models, with ensuing estimates reported in Appendix D.

One finding is that the optimal path is highly sensitive to 
the intensity of damages, and generally less sensitive to 
variations in the other parameters. Higher damages imply 
much higher GHG taxes, much lower GHG emissions, 
bigger differences in cropland and population relative to 
the baseline, and vice versa. By contrast, the optimal path is 
much less sensitive to variation in 𝜎 E and 𝜎 X, although an 
exception to this is the difference in cropland relative to the 
baseline initially. When land is less substitutable with other 
inputs in agriculture, it becomes harder for the economy 
to adapt to changing climatic conditions by varying the 
amount of cropland. Accordingly, the difference between 
the area of cropland on the baseline and optimal paths is 
only 9.5 million hectares in 2020 when 𝜎 X = 0.2, compared 
with 13.5 million ha when 𝜎 X = 0.6. However, by the end 
of the century, adaptation implies that land-use change is 
very similar to our baseline specification.

With less weight placed on future utility, a higher utility 
discount rate (𝛽  = 0:97) yields lower optimal GHG tax-
es, higher optimal GHG emissions, but little difference 
in cropland and population. Increasing the elasticity of 
intertemporal substitution results in a somewhat lower 
optimal carbon price than the main specification, higher 
GHG emissions, a slightly larger difference in cropland 
relative to the baseline, and a large difference in population 
relative to the baseline. Reducing γ  reduces the marginal 
value of population relative to consumption,35 which results 
in higher consumption per capita, lower population and 
greater sensitivity of population to climate policy.

Given the difficulty of calibrating this parameter, it is par-
ticularly noteworthy that the optimal path is relatively 
robust to the value of 𝜂 . Placing a lower value on fertility in 
household decision-making does lead to a 17% reduction 
in the optimal carbon price initially, leading to emissions 
that are 14% higher. As intuition would dictate, doing 
so also leads to smaller population differences between 
the baseline and optimal paths, and in turn differences 
in cropland. The effect of varying 𝜂  on the difference in 
population and cropland is small, however.

35 Supressing time subscripts, 

, which is positive 

over the domains of c , N , 𝜂  and γ  that we consider when u  = 1. So 
when γ  is reduced from 2 to c. 1, MRS(N , c) falls.

7. Discussion and conclusion
In this paper, we have proposed a structural model of the 
world economy as a laboratory to study the relationship 
between climate change, population growth and food se-
curity, both in the past and in the future. Our approach 
builds on a number of seminal contributions to economic 
thought, including on fertility choice (Barro and Becker, 
1989), the demographic transition (Galor and Weil, 2000) 
and technical change (Aghion and Howitt, 1992; Ace-
moglu et al., 2012). We also include a climate model that 
follows best practice in the physical-science literature on 
carbon stock dynamics (Joos et al., 2013).
The model structure, combined with our estimation ap-
proach using more than half a century of data on key ag-
gregates, constitutes a novel way of estimating damages 
from long-run climate change.36 In particular, our structural 
approach allows us to quantify the extent of adaptation to 
climate change, in the form of agricultural land expansion 
and R&D investments, as a way to compensate reduced 
agricultural productivity. Our work therefore complements 
recent empirical work on the issue, especially estimates de-
rived from long differences (Dell et al., 2012; Hsiang, 2016).
In a nutshell, we estimate that the effects of climate change 
on the world economy and population have been and will 
be large, particularly when it comes to the agricultural 
system. We find climate change has already substantially 
depressed agricultural yields and would do so much more 
in a laissez-faire future. However, we estimate that this has 
not led to equivalently large reductions in agricultural 
output, or in turn population, mainly due to general equilib-
rium adjustments such as agricultural land expansion and 
R&D. In our model, market mechanisms make the world 
economy highly adaptive to climate change. In turn this 
limits the climate costs of agricultural and manufacturing 
production, so that household consumption and fertility 
patterns are notably stable across scenarios.
This is not to say, however, that from the point of view of 
maximizing social welfare GHG emissions should be left 
uncontrolled. On the contrary, we estimate a relatively high 
optimal GHG tax, which implies the welfare cost of a lais-
sez-faire future is large, despite the adjustments projected 
to take place. Our estimates naturally rest to an extent on 
uncertain parameters, but our sensitivity analysis implies 
these qualitative conclusions are fairly robust, notably to 
variations in the marginal utility of fertility.
We can sense-check some of our model projections by 
comparing them with others in the literature. The United 

36 While the structural estimation ensures future trajectories are to 
some extent conditioned on past trends, the model is far from fully 
constrained to reproduce the past. Climate damages, for instance, are 
calibrated on simulation models that explicitly look at future tempera-
tures and their effects on crop yields (Nelson and Shively, 2014).
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Nations (2017) population projections are often regarded 
as the benchmark in demography. Our population projec-
tions are within their 95% confidence interval, towards the 
upper end. In any case, low population projections typically 
depend on the assumption of relatively rapid convergence 
to replacement fertility levels, which the data do not clearly 
support (Strulik and Vollmer, 2015). Conversely we project 
average GDP per capita growth between 2015 and 2100 
of around 1%. This is within the 90% confidence interval 
of expert forecasts reported in Christensen et al. (2018), 
towards the lower end, but below the 10th percentile of 
the statistical forecast reported in the same paper. We can 
generate much higher GDP growth per capita in a scenario 
with an exogenous population projection based on the 
United Nations medium fertility variant. Our projection 
of global cropland in 2050 is almost identical to that of the 
FAO (Alexandratos and Bruinsma, 2012). As mentioned 
above, our laissez-faire GHG emissions scenario closely 
tracks the IPCC’s RCP8.5 scenario, as does our estimated 
atmospheric GHG concentration.37

We close by emphasizing that our model has necessarily 
made a number of simplifying assumptions, which suggests 

37 This can be verified by comparing Figure 8 panel (c) with Figure 
12.43 of Collins et al. (2013), noting that the conversion rate between 
ppm and GtC is 2.13.

a number of avenues open for future research. In particular, 
the high level of adaptability displayed by our model econo-
my deserves further comment. Our model does not include 
any adjustment costs to re-allocating capital or labor, which 
may overstate the economy’s adaptability, particularly in 
relation to labor and issues such as migration and reskilling. 
The lack of explicit sectoral capital stocks in energy and 
R&D – for tractability reasons – also means that we are 
unable to interpret the model’s labor shares literally and 
compare them with observed values. Our framework could 
therefore be augmented with sectoral and geographical 
constraints to factor mobility, which are likely to increase 
the expected cost of coping with climate change.
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Appendix A. A sketch of the ethical properties of number-dampened 
critical-level utilitarianism

Our SWF is given by

where 𝜂 ∈ (0, 1). As such it is a so-called (discounted) 
number-dampened critical-level utilitarian social welfare 
ordering (NDCLU). An NDCLU SWF multiplies average 
utility, minus the critical level, by a positive-valued func-
tion of population size. A number of well-known SWFs 
are sub-classes of NDCLU. These include critical-level 
utilitarianism if 𝜂  = 0 , classical or total utilitarianism if 
𝜂  = 𝑢  = 0 , and average utilitarianism if 𝜂  = 1  and 𝑢  = 0 .

Here we sketch the ethical properties of NDCLU for 
0 < 𝜂  < 1 , following closely the expositional approach 
and terminology of Blackorby et al. (2005, chapter 5, part 
A). A formal treatment has been provided by Asheim and 
Zuber (2014). First, since average utility is multiplied by a 
positive-valued function of population size and this func-
tion is increasing and strictly concave, NDCLU does not 
satisfy existence independence. Existence independence 
requires that the ranking of any two social alternatives does 
not depend on the existence of individuals who ever live 
and have the same utility in both alternatives.

Second, NDCLU does not satisfy priority for lives worth 
living, which requires that all alternatives in which each 
person has a utility above zero (neutrality; a life worth 
living) are preferred to all those in which each person has 
negative utility. It is the existence of a positive critical level 
that causes this. This is illustrated in Figure 1, which plots 
iso-value curves corresponding with an average utility of 
60, 30, 0 and -30 in a population of one individual. The 

NDCLU function is based on 𝛽  = 1, 𝜂  = 0.5 and 𝑢  = 30. 
The alternative in which one person is alive with a utility 
of -30 is preferred to the alternative in which ten people 
are alive and all have a utility of ten.

Third, adding a positive critical level means that NDCLU 
satisfies both negative expansion and avoids the repugnant 
conclusion. Negative expansion requires that when an 
individual with utility below zero is added to the popu-
lation, welfare is reduced. This is guaranteed by the pos-
itive critical level. The repugnant conclusion is that any 
alternative, in which each member of the population has 
positive utility, is ranked as worse than some alternative 
in which a larger population has an average utility above 
zero, but arbitrarily close to it. CU falls into this trap, since 
the iso-value curve approaches an average utility of zero 
as population increases. Either a positive critical level or 
strict concavity of the multiplying function avoid this (in 
the latter case, because utility no longer increases without 
bound as population increases). NDCLU has both features.

It is an impossibility theorem in population ethics that no 
SWF satisfies all four of these axioms. See Blackorby et al. 
(2005) for a full discussion. Classical/total utilitarianism 
satisfies existence independence, negative expansion and 
priority for lives worth living, but does not avoid Parfit’s 
(1984) repugnant conclusion. Average Utilitarianism 
avoids the repugnant conclusion and satisfies priority for 
lives worth living, but neither existence independence nor 
negative expansion. Critical-level utilitarianism avoids the 
repugnant conclusion and satisfies existence independence 
as well as negative expansion, but now priority for lives 
worth living is not satisfied.

Figure A1. Critical-level number-dampened utilitarianism
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Appendix B. Optimization problem
Collecting terms, the optimization problem can be stated formally as:

This problem falls in the class of infinite horizon non-linear 
optimal control problem, and we can rely on efficient math-
ematical programming solvers to search for an optimum 
in the intertemporal welfare function subject to the set of 
technological constraints and feasibility constraints. Numeri-
cally, however, direct optimization methods cannot explicitly 
accommodate an infinite horizon: the problem includes both 
an infinite number of terms in the objective function and an 
infinite number of constraints, which can only be approximated 
when working with limited computer memory.1

Our approximation relies on the presence of a discount fac-
tor 𝛽  < 1, which implies that only a finite number of terms 
matter for the numerical solution. We therefore approximate 
the solution to the infinite horizon problem by truncating 
the time-horizon to the first T years. One implication of this 
approach is that shadow values for state variables drop to zero 
in period T, and we therefore need to select a value for T that 
is large enough to avoid that these terminal effect influence the 
solution over the period of interest. In our context, since we 
are interested in outcomes up to 90 periods after initialization 
(i.e. up to 2100 when the model is initialized in 2015), we 
select T = 300 based on evidence that an increase in T  does 
not affect 2100 outcomes by more than 0.1 percent.

1 A leading alternative formulation is dynamic programming, which 
uses a recursive formulation to accommodate infinite horizon prob-
lems (see e.g. Judd, 1998). This approach, however, also involves ap-
proximations to determine optimal transition rules, and computational 
requirements quickly increases with the number of state variables 
considered. In our case, we consider a problem with a large number 
of continuous state variables, and we need to solve the problem many 
times for different vectors of parameters, which makes mathematical 
programming more attractive.

Concretely, the ensuing numerical mathematical program 
includes eleven continuous state variables, and for estimation 
and estimation of past climate change impacts we initialize 
the model to match observations in 1960, and solve it up to 
year 2260. For future projections and optimal climate policy 
runs, the model is re-initialized in 2015 based on optimal 
values determined in the corresponding 1960 solution, 
and solved up to year 2315. Once appropriately scaled, the 
nonlinear program solves in a matter of seconds, which is 
particularly important for the simulation-based estimation.
Finally, in order to solve for a laissez-faire allocation, we em-
ploy the decomposition procedure by Böhringer et al. (2007). 
Specifically, to computing a laissez-faire equilibrium in which 
the planner does not act to reduce climate damages, we set 
the stock of GHGs entering the damage function in equations 
1 and 2 as fixed and exogenous. Doing so, however, creates a 
potential discrepancy between the GHG stock determining 
economic damages, which is exogenous, and the GHG stock 
resulting from emissions, which is controlled by the planner.
To reconcile both stocks, we follow the iterative procedure 
described in Böhringer et al. (2007), we sequentially update 
the exogenous stock variable entering climate damages 
with the GHG stock resulting from the decisions by the 
planner.2 Our experience with the model suggests that, 
after two iterations, the exogenous GHG stock entering 
climate damages approximates the GHG stock resulting 
from emissions with an accuracy of 0.1 percent.

2 Note that this approach requires a first guess as to the trajectory of 
the exogenous GHG stock entering the damage function. For this pur-
pose, we simply solve the model under an assumption of zero damages.
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Appendix C. Selection of parameter values
This section provides a discussion for some of the key 
parameters of the model, reported in Table 2. Starting 
with households preferences, we set the discount factor 
𝛽  = 0.99, which corresponds with a utility discount rate 
of 1%. This is consistent with empirical evidence on very 
long-run investments by Giglio et al. (2015), and with a 
recent survey of economists by Drupp et al. (2018). As an 
alternative, we also consider 𝛽  = 0.97 in sensitivity anal-
ysis, which corresponds to a utility discount rate of 3%. 
The inverse of the elasticity of intertemporal substitution 
𝛾   = 2 is consistent with the macro-economic estimates 
reported in Guvenen (2006). For reasons of tractability, 
logarithmic utility (𝛾  →  1) is often used instead, and we 
consider this alternative in the sensitivity analysis.
The two remaining preference parameters are 𝑢  and 𝜂 , 
which represent the critical level of utility and the elasticity 
of marginal utility with respect to fertility. We calibrate 
𝑢  = 1, so that the consumption level that makes incremental 
population units desirable is 1,000 US dollars (given 𝛾  = 2). 
This is broadly in line with the definition of a poverty level 
by the World Bank, and it also implies that our model is 
consistent with logarithmic utility as a limiting case. Fur-
ther, in our baseline model we set 𝜂  = 0.001 so that the 
SWF approximates (critical-level) classical utilitarianism, 
which is consistent with most previous analysis of optimal 
GHG taxes in the context of IAMs (e.g. Nordhaus, 2017; 
Golosov et al., 2014; Lemoine and Traeger, 2014; Cai and 
Lontzek, 2019).3 Evidence reported in Lanz et al. (2017) 
suggest that a model with 𝜂  = 0.001 is able to provide a 
better representation of the demographic transition as 
compared to higher values, although one implication is 
that the marginal utility of children is (almost) constant 
as the number of children increases. Despite this, we also 
consider 𝜂  = 0.5 as a robustness test.4

In the food constraint, the income elasticity of food con-
sumption is 𝜅  = 0.25, which matches econometric estimates 
reported in Thomas and Strauss (1997, see also Beatty and 
LaFrance, 2005). The scale parameter 𝜉  = 0.4 is calibrated 
such that 1960 food consumption represents around 15 
percent of world GDP, which is in line with Echevarria 
(1997). The last parameter determining population dy-
namics is the mortality rate 𝛿 _(N = 0.022, which is calibrated 
so that expected working lifetime of agents in the model 
is 45 years (United Nations, 2013).
In manufacturing, the value of the capital share parameter 
is 𝜗 _(K = 0.3 and the depreciation rate of capital is 𝛿 _(K = 0.1, 

3 We avoid setting 𝜂  = 0 to ensure that the objective function of the 
problem remains strictly concave.
4 Experimentation with the model suggests that increasing the 
value of 𝜂  substantially increases computational burden, which makes 
simulation-based estimation impractical for values above  = 0:5.

both standard values in the literature (see e.g. Hassler et al., 
2016a). The share of energy is 𝜗 _(E = 0.04, which is taken 
from Golosov et al. (2014).
In agriculture, we take the elasticity of substitution be-
tween land and the capital-labor-energy composite from 
long-run econometric evidence reported in Wilde (2013), 
which suggests 𝜎 _(X = 0.6. Because there is uncertainty about 
this parameter, and because land use is an important GHG 
abatement channel in our model, we consider 𝜎 _(X = 0.2 in 
the sensitivity analysis. Share parameters for capital and land 
are respectively 𝜃 _(K = 0.3 and 𝜃 _(X = 0.25, which is consistent 
with the work of Ashraf et al. (2008), and we set 𝜃 _(E = 0.04 
to be in line with Golosov et al. (2014). Taken together, 
this implies that our agricultural technology is broadly in 
line with factor shares reported in the aggregate database 
of Hertel et al. (2012). The reconversion rate for agricul-
tural land 𝛿 _(X = 0.02 is set so that agricultural land reverts 
back to natural land over a period of 50 years (Lanz et al., 
2017), and the stock of natural land that can be converted 
is X = 3 billion hectares (as discussed in Alexandratos and 
Bruinsma, 2012).
In the energy sector, we set the elasticity of substitution 
between clean and dirty intermediates 𝜎 _(E = 1.5, drawing 
on evidence from inter-fuel substitution by Stern (2012). 
This assumption is also consistent with empirical evidence 
for non-electric energy reported in Papageorgiou et al. 
(2017). In the sensitivity analysis, we consider a case with 
lower substitution possibilities, and use 𝜎 _(E = 0.95 as an 
alternative estimate (following Golosov et al., 2014). The 
share parameter for dirty energy 𝜗 _(D = 0.65 is also taken 
from Golosov et al. (2014), and total reserves for dirty 
energy is set to R  = 5,000 Gt of oil equivalent, in line with 
Rogner (1997). Note that the latter estimate takes into ac-
count all fossil fuels, as well as technological progress and 
new discoveries (this estimate is also used in Golosov et al., 
2014; Acemoglu et al., 2016). The last parameter is 𝜆 _(j ) = 
0.05, which can be interpreted as the maximum feasible 
rate of yearly TFP growth.
The extent of sectoral climate damages is determined by the 
parameters Ω _(ag and Ω _(mn ). We calibrate Ω _(ag on the major 
agricultural model inter-comparison exercise (AgMIP) 
reported in Nelson et al. (2014). This work shows that 
baseline climate change (along the RCP8.5 emissions sce-
nario by IPCC, 2014a) reduces agricultural yields by an 
average of 15.4 percent in 2050 (range 8.9 to 28.5 percent), 
relative to a reference scenario without climate change.5 
Using IPCC (2014a), we estimate the atmospheric GHG 
concentration (CO2, methane and nitrous oxide) in the 

5 This is an unweighted average across the four combinations of 
global circulation models and crop models, seven AgMIP models and 
5 crop types.
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RCP8.5 scenario will be 1399 GtCeq in 2050, yielding 
Ω _(ag = 0.000207 (sensitivity range: 0.000115 to 0.000415). 
We lack estimates of the pre-adaptation or gross damages 
from climate change on manufacturing productivity. As a 
pragmatic approach we therefore calibrate manufacturing 
damages on the best estimate in the recent meta-analysis 
by Nordhaus and Moffat (2017), giving Ω _(mn ) = 1.66E −5 
(sensitivity range: −0.8E −5 to 3.73E −5).6 We note there re-
mains large uncertainty about this parameter and concern 
has been expressed that, in effect, all estimates included in 
Nordhaus and Moffat (2017) may be biased downwards 
(Stern, 2013; Weitzman, 2013). Implicitly the same criticism 
applies to the agricultural modeling estimates.
In Table C1, we report initial values for the stock vari-
ables. We set population in 1960 N 0 = 3.03 billion (United 
Nations, 2017) and cropland is X 0 = 1.38 billion hectares 
(FAO, 2018). By contrast, initial values for sectoral TFP 
and capital are not observed, and we target the following 

6 This is after having stripped out the contribution of agriculture, 
using the corresponding estimate of Ωag ) and based on agriculture 
having a 5% share of global GDP currently.

moments. First, we use 1960 world GDP of USD 11.19 
trillion (2010 prices) from World Bank (2018), and target 
agricultural output (assumed to be 15 percent of GDP, as 
discussed above) and manufacturing output (the remaining 
85 percent). Second, based on evidence reported in Caselli 
and Feyrer (see 2007), we set the marginal product of capital 
in 1960 to 15 percent. Third, for energy intermediates, we 
use 1960 data from BP (2017) on non-fossil energy use (0.2 
Gt of oil equivalent) and fossil energy use (2.67 Gt of oil 
equivalent). Taken together, this gives A 0,mn = 6.2, A 0,ag = 
1.52, A 0,cl = 22.02, A 0,dt = 68.76, and K 0 = 22.38.
Last, Table C1 also provides parameter values for the cli-
mate module of Joos et al. (2013). We note that initial 
values of the unobserved carbon stocks S0,i are obtained 
by feeding estimated GHG emissions from 1750 to 1960 
(Boden et al., 2017; FAO, 2018; Janssens-Maenhout et al., 
2017; Le Quéré et al., 2018; Meinshausen et al., 2011) into 
the carbon-cycle model (20)- (22) under a pre-industrial 
parametrization (Millar et al., 2017). From 1960 onwards, 
the model is re-parametrized to match the contemporary 
response of carbon sinks to CO2 accumulating in the at-
mosphere (again see Millar et al., 2017).

Table C1. Starting values and parameters for the climate module 

Parameter value Definition Source

State variable: Initial values

N 0 = 3.03 World population in 1960 (billion) United Nations (2017)
X _0 = 1 .38 Agricultural cropland in 1960 (billion ha) FAO (2018)
A 0,mn ) = 6 .20 Initial TFP in manufacturing Calibrated on 1960 world GDP, share of 

agricultural output in 1960 world GDP, and 
assumed capital depreciation

A 0,ag ) = 1 .52 Initial TFP in agriculture
K 0 = 22.38 Initial stock of capital (trillion 2010 USD)
A 0,cl ) = 22.02 Initial TFP in clean energy Calibrated on 1960 fossil and non-fossil 

energy useA _(0 ,dt ) = 68.76 Initial TFP in dirty energy
S _(0 ,0 ) = 28.115 Stock of carbon in reservoir 0 in 1960 (GtC eq)

Obtained by initializing model in pre-in-
dustrial conditions and running forward to 
1960 with reported parameters

S 0,1 ) = 29.570 Stock of carbon in reservoir 1 in 1960 (GtC eq)
S 0,2 ) = 16.017 Stock of carbon in reservoir 2 in 1960 (GtC eq)
S 0,3 ) = 6 .257 Stock of carbon in reservoir 3 in 1960 (GtC eq)
Parameters for the climate module

S = 590 Pre-industrial stock of atmospheric carbon (GtC eq) IPCC (2013))
π E,CO2 ) = 0 .858 Dirty energy CO2 emissions factor (GtC eq. per Gt oil eq.) Boden et al. (2017)
π _(E ,NCO2 ) = 0 .211 Dirty energy non-CO2 emissions factor (GtC eq. per Gt oil eq.) Meinshausen et al. (2011); World Bank (2018)
π X = 350.685 Land use change emissions factor (Gt C eq. per bn ha) Le Quéré et al. (2018)
π ag = 0 .747 Agricultural emissions factor (Gt C eq. per unit of input) Meinshausen et al. (2011); World Bank (2018)
𝑎0 = 0 .217 Share of CO2 going to geological re-absorption

Joos et al. (2013)

𝑎1 = 0 .224 Share of CO2 going to deep ocean
𝑎2 = 0 .282 Share of CO2 going to biospheric uptake / ocean thermocline
𝑎3 = 0 .276 Share of CO2 going to rapid biospheric uptake / ocean mixed layer
𝛿 S,0 ) = 1E −6 Geological re-absorption rate
𝛿 S,1 ) = 0 .00254 Deep ocean invasion/equilibration rate
𝛿 _(S ,2 ) = 0 .0325 Biospheric uptake/ocean thermocline invasion rate
𝛿 S,3 ) = 0 .232 Rapid biospheric uptake/ocean mixed layer invasion rate
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Appendix D. Parameter estimates for sensitivity analysis

Table D1. Structurally estimated parameters

Parameter Baseline Alternative 
damages

Ωag, Ωmn 
low

Ωag, Ωmn 
high 𝜎 _E = 0.95 𝜎 _X = 0.2 𝛽 = 0.97 𝛾 = 1 𝜂 = 0.5

𝜒 0.123 0.122 0.123 0.123 0.123 0.123 0.133 0.168 0.202

𝜁 0.509 0.508 0.508 0.508 0.509 0.509 0.509 0.577 0.392

𝜔 0.071 0.07 0.072 0.072 0.071 0.071 0.067 0.225 0.123

𝜓 0.083 0.084 0.083 0.083 0.083 0.075 0.08 0.081 0.073

𝜀 0.2535 0.2525 0.2535 0.2535 0.2535 0.228 0.245 0.233 0.262

𝜇 _mn 0.298 0.297 0.301 0.294 0.298 0.298 0.378 0.696 0.691

𝜇 _ag 0.431 0.43863 0.433 0.428 0.431 0.456 0.369 0.464 0.511

𝜇 _c l 0.077 0.077 0.077 0.077 0.062 0.077 0.069 0.121 0.114

𝜇 _d t 0.159 0.159 0.159 0.159 0.127 0.159 0.142 0.257 0.229

Notes: This table reports parameters estimated for the baseline model and sensitivity runs.
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Appendix E. Sensitivity analysis: Further results

Appendix E.1 Alternative damages
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Appendix E.2 Exogenous population
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Appendix E.3 Low damages
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Appendix E.4 High damages
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Appendix E.5 Low substitutability of clean and dirty energy intermediates
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Appendix E.6 Low substitutability of land in agriculture
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Appendix E.7 High discount rate
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Appendix E.8 Low elasticity of marginal utility with respect to consumption
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Appendix E.9 High elasticity of marginal utility with respect to fertility
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