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Abstract: State and local policy-makers in the U.S. have shown interest in transitioning electricity systems 
toward renewable energy sources and in mitigating harmful air pollution. However, the extent to which 
sub-national renewable energy policies can improve air quality remains unclear. To investigate this issue, 
we develop a systemic modeling framework that combines economic and air-pollution models to assess 
the projected sub-national impacts of Renewable Portfolio Standards (RPSs) on air quality and human 
health, as well as on the economy and on climate change. We contribute to existing RPS cost-benefit 
literature by providing a comprehensive assessment of economic costs and estimating economy-wide 
changes in emissions and their impacts, using a general equilibrium modeling approach. This study is also 
the first to our knowledge to directly compare the health co-benefits of RPSs to those of carbon pricing. 
We estimate that existing RPSs in the “Rust Belt” region generate a health co-benefit of $94 per ton CO2 
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dollars. Our central estimate is 34% larger than total policy costs. We estimate that the central marginal 
benefit of raising renewable energy requirements exceed the marginal cost, suggesting that strengthening 
RPSs increases net societal benefits. We also calculate that carbon pricing delivers health co-benefits of 
$211/tCO2 in 2030, 63% greater than the health co-benefit of reducing the same amount of CO2 through an 
RPS approach.
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1. Introduction
Policies that address climate change can, as a co-benefit, 
improve air quality (Smith et al., 2014). In the U.S., air 
pollution continues to harm human health despite improve-
ments in air quality over the past decades (EPA, 2018b). In 
2016, ~93,000 premature deaths and ~1,600,000 years of 
life lost were attributed to ambient concentrations of fine 
particulate matter (PM2.5) (IHME, 2017), the deadliest 
form of air pollution (Dockery et al., 1993; WHO, 2006) 
Air quality effects can form a large portion of the overall 
benefits of climate policy. A global summary of previous 
studies found that estimates of the air quality related health 
co-benefit of climate policy fell in the range of $2–196/tCO2 
(Nemet et al., 2010). Health co-benefits can thus be on the 
same order of magnitude as estimates for the Social Cost 
of Carbon (SCC) of $12–123/tCO2 in 2020 (IWG, 2016). 
Recent modeling work for the U.S. and other regions has 
also found that health co-benefits alone can exceed the cost 
of climate policy (West et al., 2013; Thompson et al., 2014; 
Shindell et al., 2016; Thompson et al., 2016; EPA, 2015b). 
Renewable energy policy is a particularly popular type of 
climate policy in the U.S. (Leiserowitz et al., 2018), fre-
quently supported for reasons additional to climate change 
mitigation (Rabe, 2006). Renewable Portfolio Standards 
(RPSs) are among the most prevalent types of renewable 
energy policies (Carley and Miller, 2012). An RPS requires 
electricity suppliers to source a given percent of electricity 
from eligible renewable power generating technologies. 
Such policies exist in 29 states and the District of Columbia, 
and in the European Union, China, India, and elsewhere 
(IRENA, 2015).
Previous literature on the health co-benefits of U.S. RPSs has 
focused on national-level effects (Eastin, 2014; Mai et al., 
2016; Wiser et al., 2016). State-level regulatory assessments 
have typically focused on the economic effects of RPSs 
(Heeter et al., 2014). To our knowledge, only a small num-
ber of peer-reviewed studies have estimated state-level air 
quality impacts (Rouhani et al., 2016; Hannum et al., 2017). 
Rouhani et al. (2016) estimated costs and benefits of an RPS 
in California using a bottom-up, partial equilibrium model 
(representing a sub-sector of economy with a large number 
of discrete technologies) for the power generation mix 
resulting from different RPS targets. The authors estimated 
health benefits using marginal benefits per unit of emission 
abatement from Siler-Evans et al. (2013). Hannum et al. 
(2017) used a top-down, computable general equilibrium 
(CGE) model (providing an economy-wide perspective 
taking into account market distortions and income effects) 
to estimate RPS costs in Colorado and the reduced-form 
air pollution model APEEP to estimate health benefits. 
Evaluating RPS impacts in other areas of the U.S. continues 
to be relevant, especially in the absence of federal climate 
policy. Local effects can differ substantially from national 

averages, as marginal damages of pollution vary by source 
and location (Tietenberg, 1995; Siler-Evans et al., 2013; 
Saari et al., 2015).
A challenge concerning RPS evaluation is the quantifica-
tion of economic impacts. Modeling studies that estimate 
the impacts of RPSs have commonly employed partial 
equilibrium electricity system models (Mai et al., 2016; 
Rouhani et al., 2016; Wiser et al., 2016). While electricity 
system models offer detailed bottom-up representation of 
power markets, they generally preclude considerations of 
the ripple effects and feedbacks that such policies can cause 
beyond the electricity sector. An alternative approach is the 
use of CGE modeling (Thompson et al., 2014; Saari et al., 
2015; Hannum et al., 2017). Such models represent the 
whole economy and capture feedbacks between producers 
and consumers based on the economic theory of general 
equilibrium formalized by Arrow and Debreu (1954). While 
CGE models usually represent energy sector technologies in 
less detail relative to bottom-up approaches, CGE models 
enable researchers to estimate the economy-wide costs 
of climate policy and assess how sector-specific policies 
influence emissions from unregulated sectors. The U.S. 
Environmental Protection Agency (EPA) has stated that 
a general equilibrium approach may be preferable when a 
policy can be expected to impact a wide number of sectors 
(EPA, 2014). Previous literature has argued that CGE-based 
methods are particularly appropriate for analyzing climate 
policy (Bhattacharyya, 1996; Sue Wing, 2009). To our knowl-
edge, Hannum et al. (2017) represents the only sub-national 
RPS study to quantify future health co-benefits and total 
economic costs using a general equilibrium approach.
Decision making can also benefit from an understanding 
of how RPSs compare to alternative policies. Economists 
often recommend carbon pricing as the most cost-effec-
tive climate mitigation policy (Pigou, 1932; Stern, 2006; 
Stiglitz et al., 2017). Rausch and Mowers (2014) estimated 
that a carbon price reduces CO2 emissions at 25% of the 
cost of an RPS. However, studies that account for air quality 
effects found that factoring in such co-benefits alters the 
relative cost-effectiveness of carbon pricing compared to 
other policies (Boyce and Pastor, 2013; Thompson et al., 
2014; Driscoll et al., 2015; Knittel and Sandler, 2011). 
Here, we assess future PM2.5 related health co-benefits of 
RPSs in the “Rust-Belt” region, comprised of Pennsylvania, 
Ohio, Wisconsin, Michigan, Illinois, Indiana, West Virginia, 
New Jersey, Maryland, and Delaware. We further estimate 
the total economic costs of this region’s RPSs, quantified as 
the loss of household consumption, a common economic 
measure for societal policy costs (Paltsev and Carpos, 2013), 
by using a general equilibrium approach that captures the 
ripple effects of RPSs beyond the electricity sector. This study 
also represents, to our knowledge, the first direct comparison 
of the health co-benefits of RPSs and carbon pricing. 
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2. Methods
We link a series of models to estimate how climate policy 
influences the economy, emissions, PM2.5 concentrations, 
human health, and climate. We integrate the MIT U.S. 
Regional Energy Policy (USREP) model, a CGE model 
for the US economy, with a reduced-form air pollution 
model, the Intervention Model for Air Pollution (InMAP). 
We use USREP to simulate the 2030 economic impacts 
and CO2 effects of climate policy. We estimate resulting 
air pollutant emissions by scaling a base-year emissions 
inventory to account for changes in the economy simulated 
by USREP. We then use InMAP to translate emissions to 
pollution concentrations and premature mortalities. Finally, 
we estimate the economic benefits of avoided deaths and 
climate change mitigation, quantified using the Value of 
Statistical Life (VSL and the Social Cost of Carbon (SCC)). 
We use these models to evaluate five scenarios designed to 
explore the impacts of alternative policy options.
The USREP model, which was described in detail in 
Rausch et al. (2010) and Yuan et al. (2017), contains 12 
regions and aggregates economic activity into 10 economic 
sectors. Power generating technologies are parameterized 
based on cost data from the U.S. Energy Information Ad-
ministration (EIA, 2017a), compiled by Morris et al. (2019). 
Electric vehicles are modeled as in Chen et al. (2017). RPS 
policies are represented in the model using the approach 
described by Morris et al. (2010). 
Air pollutant emissions in 2030 are estimated by scaling 2014 
emissions from the U.S. National Emissions Inventory (NEI) 
(EPA, 2017) based on region-specific changes in economic 
variables in the period from 2014 to 2030 estimated by US-
REP, following the approach of Thompson et al. (2014). First, 
2014 emissions are aggregated across pollutant species, time, 
and space to match the specifications of InMAP (Tessum et al., 
2018). Next, we match the EPA Source Classification Codes 
used to categorize individual emission sources to relevant 
economic variables estimated by USREP. Unlike Thomp-
son et al. (2014), who matched private transportation air 
pollutant emissions to transportation sector output estimated 
by USREP, we match private transportation emissions to 
USREP’s estimate of CO2 emissions of transportation to 
more accurately represent changes in this sector. 
The estimated 2030 emissions are entered into InMAP 
to estimate 2030 concentrations of PM2.5. InMAP sim-
ulates the formation of secondary PM2.5 and long-range 
transport of pollution particles using spatially-resolved 
annual-average physical and chemical information derived 
from a state-of-the-science Chemical Transport Model 
(WRF-Chem). InMAP makes simplifying assumptions 
regarding atmospheric chemistry such as a linear repre-
sentation of the chemical transformation of emissions into 
secondary PM2.5. The model was described in detail by 
Tessum et al. (2017). InMAP is run statically at a varying 

spatial-resolution containing up to eight nesting levels, 
with the largest grid size equal to 288 km2 and the smallest 
equal to 1 km2. We use 2005 historical meteorology from 
Tessum et al. (2015).
InMAP is also used to estimate premature mortalities. We 
estimate a concentration-response coefficient for the impact 
of PM2.5 concentrations on early deaths by pooling coefficients 
estimated by Krewski et al. (2009) and Lepeule et al. (2012) 
using random effects pooling as described by EPA (2018). To 
estimate premature deaths in 2030, we scale population and 
mortality data to 2030 using U.S.-wide and demographic-spe-
cific population projections (U.S. Census Bureau, 2012). We 
further downscale the spatial resolution of InMAP results 
to the state level to allow the estimation of results specific 
to political jurisdictions. To do so, we intersect InMAP’s 
variable-resolution grid of mortality estimates with state 
boundaries. Where state boundaries cross InMAP grid cells, 
we divide the grid among states and apportion premature 
mortalities in proportion to area. We treat all lives lost due 
to 2030 PM2.5 concentrations as occurring in 2030. This as-
sumption results in a small overestimate of 2030 co-benefits, 
as we do not discount premature mortalities occurring later 
than 2030. A discount rate of 3% and a cessation lag struc-
ture used in regulatory analyses (EPA-SAB, 2004) results in 
an 11% reduction in the dollar value of health co-benefits.
The economic co-benefit of avoided premature mortali-
ties is quantified using the Value of Statistical Life (VSL), 
consistent with regulatory analyses (EPA, 2015a). We use 
a range of VSL estimates published by the EPA, equal to 
$1–23 million in 2015 dollars (EPA, 2014). The EPA’s central 
estimate, equal to $8.6 million in 2015 dollars, is used for 
the central results of this study. We scale VSL estimates 
by changes in GDP from 2015 to 2030 occurring in each 
policy scenario, using an income elasticity of 0.4 based on 
the recommended central value in EPA’s Benefits Mapping 
and Analysis Program-Community Edition model (RTI 
International, 2015). Finally, we estimate climate change 
mitigation benefits using CO2 emission changes estimated 
by USREP and the EPA’s central SCC estimate of $56.6/tCO2 
in 2030 (2015 dollars) (IWG, 2016). All monetary impacts 
presented in this paper are expressed in 2015 dollars.
To evaluate alternative policy options, we design five policy 
scenarios: Business-as-usual (BAU), RPS +50%, RPS +100%, 
No RPS, and CO2 price. The BAU scenario reflects current 
RPS statutes. It simulates a regional RPS for the Rust Belt 
region, with a renewable requirement equal to the aver-
age of the renewable requirements of the existing RPSs in 
individual Rust Belt states (N.C. Clean Energy Technolo-
gy Center, 2018), weighted by 2016 electricity sales (EIA, 
2017c). We subtract any RPS requirements specific to solar 
or distributed generation (known as “carve-outs”) from the 
total renewable requirement, as these technologies are not 
represented in our economic model. These carve-outs repre-
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sent 5% of the total weighted average renewable requirement 
in the Rust Belt region (N.C. Clean Energy Technology 
Center, 2018). The estimated RPS requirement for the Rust 
Belt equals 6% in 2015 and 13% in 2030. Two additional 
scenarios (RPS +50% and RPS +100%) test the impacts of 
strengthening the region’s RPSs. These scenarios reflect a 
gradual increase in the renewable requirement over time to 
reach a 2030 value that is 50% and 100% larger respectively 
than the 2030 requirement under BAU. Additionally, we 
include a counterfactual No RPS scenario. In this scenario, 
all RPSs in the region are assumed to be repealed as of 
2015. Finally, we define a CO2 price scenario to represent 
the impact of implementing a carbon price as an alternative 
to strengthening RPSs. The CO2 price scenario implements 
a cap-and-trade system in the Rust Belt in 2020. The cap 
is specified to be stringent enough to achieve the same 
amount of cumulative CO2 reductions as the RPS +100% 
scenario. The CO2 price scenario includes a BAU-level RPS, 
so that it represents the impacts of a CO2 price in addition 
to existing RPS policy. For each of these five scenarios, we 
present our central results as well as two sensitivity cases 
that change the capital costs of wind turbines by +/- 15% 
(labeled High Cost and Low Cost).

3. Results

3.1 Emissions

The majority of emission impacts occur in the electricity 
sector (Figure 1). These changes take place as RPS pol-

icy causes renewable generation deployment to displace 
coal- and gas-based generation from the power mix. The 
percentage of renewable generation estimated by USREP 
in 2030 is 6%, 13%, 20%, and 26% in the No RPS, BAU, 
RPS +50% and RPS+100% scenarios, respectively. The 
share of electricity produced by coal in 2030 is 33%, 29%, 
23%, and 17%, respectively. This is equivalent to reduc-
tions of 46, 111, and 167 TWh in the BAU, RPS +50% and 
RPS +100% scenarios relative to No RPS. The 2030 gas 
share changes from 30% in the No RPS scenario to 26%, 
25%, 22% (58, 78, 113 TWh) in the three RPS scenarios 
respectively. With regard to CO2 emissions, the three RPS 
scenarios reduce 2030 emissions in the Rust Belt by 50, 
112, 168 Mt CO2 compared to No RPS (equivalent to 4%, 
9%, and 13% respectively). 
RPSs are also estimated to lead to an emission leakage 
effect: a rise in transportation sector emissions that offsets 
reductions in the electricity sector. In the BAU scenario, 
emissions of SO2 and NOx in that sector rise by 3% while 
primary PM2.5 emissions increase by 1% relative to No 
RPS. This occurs as higher electricity prices caused by RPS 
policies incentivize households to increase usage of internal 
combustion engine vehicles relative to electric vehicles. In 
the BAU scenario, the share of vehicle miles traveled by 
electric vehicles in 2030 is 4% (compared with 9% in the 
No RPS), while total vehicle miles traveled are virtually 
the same. This difference is driven by a 3% increase in the 
2030 price of electricity faced by consumers in the Rust 
Belt under BAU relative to No RPS. This strong response 

Figure 1. Changes in 2030 emissions by policy scenario, economic sector, and pollutant for the Rust Belt region
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in vehicle miles traveled to power price changes occurs 
because electric vehicles happen to be on the cusp of being 
competitive against internal combustion engine vehicles 
in our scenario. As a result, small changes in costs have a 
relatively large effect on the uptake of electric vehicles. Thus, 
the magnitude of this result is not generalizable outside 
of our scenarios.

The CO2 price scenario, by design, achieves the same 
emission reductions as the RPS +100% scenario. The 
reductions required to be achieved by the modeled re-
gional cap-and-trade system are 118 Mt. The CO2 price 
generated by the model to achieve these reductions is 
relatively modest at $4/tCO2 in 2030. This scenario exerts 
qualitatively different effects on the economy. In the elec-
tricity sector, the CO2 price increases the marginal cost of 
CO2 emitting technologies based on their CO2 emission 
intensity, bolstering the competitiveness of gas relative 
to coal, thus leading to fuel switching. This scenario re-
sults in a 2030 coal share of 8 percent, and an increased 
gas share of 46 percent, while keeping the renewable 
share unchanged from the BAU scenario. As a result 
of the lower amount of coal generation, carbon pricing 
reduces electricity sector emissions of SO2 and NOx to a 
greater degree than the comparable RPS +100% scenario 
(Figure 1). However, the greater use of gas under carbon 
pricing results in higher emissions of PM2.5, NH3, and 
VOCs in the electricity sector compared to RPS +100%. 

The CO2 price scenario lowers emissions in other sectors 
due to its economy-wide scope. For example, it lowers coal 
consumption in energy intensive industry. It also partially 
offsets the increase in transportation sector emissions 
caused by the BAU RPS. 

3.2 PM2.5 Concentrations and Mortalities

The effect of our policy scenarios on PM2.5 concentrations 
relative to No RPS mostly occur in the Rust Belt region 
(Figure 2). The relative reductions are largest in Maryland, 
Delaware, Pennsylvania, Indiana, Ohio, and West Virginia. 
In the BAU scenario, average population-weighted con-
centration changes in these states range from -0.14 μg/m3 
in Maryland to -0.10 μg/m3 in West Virginia. 

Concentrations of PM2.5 are even lower under the more 
stringent climate policies. We observe the largest reduc-
tions in the CO2 price scenario. Maryland experiences the 
greatest decrease in population-weighted concentrations 
of 0.76 μg/m3 relative to No RPS. The smallest reduction 
occurs in Wisconsin and equals 0.06 μg/m3. Concentra-
tions also decline in downwind states such Virginia (up 
to -0.5 μg/m3), followed by New York (up to -0.2 μg/m3). 
The location of air quality improvements partially reflects 
the distribution of coal plants along the Ohio river. These 
improvements in air quality are estimated to result in 467, 
1,350, and 1,999 avoided annual premature mortalities in 
the Rust Belt in the three RPS scenarios relative to No RPS.

Figure 2. Changes in 2030 PM2.5 concentrations by scenario relative to no RPS
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3.3 Costs and Benefits

The health co-benefits of existing RPSs in the Rust Belt 
exceed both the total policy costs and estimated climate 
benefits according to our central results (Figure 3). This 
finding is robust to the range of different renewable energy 
costs tested (our Low Cost and High Cost scenarios assume 
15% lower or higher wind capital costs respectively). How-
ever, the combined uncertainty in the concentration-re-
sponse coefficient and the VSL leads to a large range of 
health co-benefit values spanning three orders of magnitude 
(Table 1). Uncertainty in the concentration-response coef-
ficient is based on the coefficient’s 95% confidence interval. 

VSL uncertainty accounts for all values published in EPA 
(2014). The VSL uncertainty is responsible for more than 
half of the combined uncertainty reported in Table 1.
The health co-benefits of the BAU, RPS +50%, and RPS +100% 
scenarios correspond to co-benefits of $94, $120, $119  per ton 
of CO2 reduced respectively. These estimates are equivalent 
to health co-benefits of 8¢, 12¢, and 13¢ per kWh of new 
renewable generation. In comparison, the economic costs 
of the three RPS scenarios correspond to 6¢, 5¢, and 6¢ per 
kWh respectively. In percentage terms, the economic costs 
represent a decrease in macroeconomic consumption of 0.1%, 
0.1%, and 0.2% in the three RPS scenarios relative to No RPS.

Figure 3. Costs and benefits of RPS and CO2 pricing scenarios in 2030 relative to no RPS (central results). 

Table 1. Costs and benefits in 2030 by policy scenario (billion 2015 dollars). Climate benefit uncertainty includes uncertainty in 
the discount rate and marginal damages of climate change. The air quality uncertainty includes the 95% confidence interval for the 
concentration-response coefficient and the full range of values for the Value of Statistical Life reported in ePA (2014).

Policy Scenarios Climate Benefits Health Co-benefits Costs

Central 
Results

BAU $2.8 ($0.9–8.6) $4.7 ($0.1–23.7) $3.5

RPS +50% $6.4 ($2.0–19.3) $13.5 ($0.3–68.3) $5.8

RPS +100% $9.5 ($3.0–29.0) $20.0 ($0.4–101.4) $9.1

CO₂ price $9.5 ($3.0–29.0) $29.7 ($0.7–151.0) $6.4

Low 
Cost

BAU $2.9 ($0.9–8.7) $6.0 ($0.1–30.5) $3.4

RPS +50% $6.0 ($1.9–18.4) $13.4 ($0.3–68.1) $5.2

RPS +100% $8.9 ($2.9–27.1) $18.7 ($0.4–95.1) $7.7

CO₂ price $8.9 ($2.9–27.1) $29.3 ($0.6–149.2) $5.9

High 
Cost

BAU $2.9 ($0.9–8.8) $4.9 ($0.1–24.8) $5.2

RPS +50% $6.6 ($2.1–20.2) $14.3 ($0.3–72.4) $8.0

RPS +100% $9.9 ($3.2–30.2) $21.0 ($0.5–106.6) $11.9

CO₂ price $9.9 ($3.2–30.2) $32.4 ($0.7–165.3) $8.1
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Monetized benefits of CO2 reductions (referred to here as 
“climate benefits”) are also comparable to policy costs and 
may substantially exceed them depending on the assumed 
SCC (Table 1). We quantify the uncertainty in climate benefits 
using the four alternative SCC assumptions provided by IWG 
(2016). The high end of the uncertainty range reflects the 95th 
percentile of the SCC probability distribution, recommended 
by the IWG as a way to represent the marginal impact of 
low-probability, high-impact damages caused by climate 
change. The low end represents the use of a 5% discount 
rate (relative to the 3% rate used for the central SCC value).

Carbon pricing results in greater health co-benefits than 
the comparable RPS +100% scenario. Since the CO2 price 
scenario includes a BAU-level RPS, we estimate the co-ben-
efit of carbon pricing based on the additional health ben-
efits relative to the BAU, resulting in an estimated health 
co-benefit of of $211/tCO2 (the equivalent estimate for 
the RPS +100% scenario equals $129/tCO2). The health 
co-benefit of the CO2 price is higher partially due to its 
stronger effect on coal-fired generation. It is also due to 
the increase in transportation sector emissions occurring 
under RPSs, which offsets their overall health co-benefits. 
In addition, carbon pricing results in lower cost by incen-
tivizing the least-cost CO2 abatement options. Relative to 
the BAU, the additional costs of the RPS +100% scenario 
are twice as large as the costs of carbon pricing. 

We test the impact of the emission leakage in the transpor-
tation sector under RPSs by recalculating health co-benefits 
assuming private transportation emissions remain the same 
as in the No RPS scenario, thus eliminating the effect of 
RPSs on private transportation emissions. Under this ex-
periment, health co-benefits in the Rust Belt were 35–79% 
higher depending on the RPS scenario (the BAU scenario 
exhibited the largest increase). This emission leakage effect 
is sensitive to the extent to which RPSs increase electricity 
prices, which is the underlying cause behind the changes 
in emissions from transportation as discussed previously. 
Electricity system modeling by Mai et al. (2016) estimates 
that existing RPSs lead to smaller changes in 2030 power 
prices between +1% and -0.4% depending on region and 
underlying assumptions.

4. Discussion and Conclusions
Health co-benefits may alone justify the implementation of 
RPSs or carbon pricing as our central estimates show. This 
result is consistent with previous literature, which found 
that the health co-benefits of climate policy (including 
RPSs and other instruments) tends to exceed policy costs 
(Thompson et al. 2014, 2016; Mai et al., 2016; Wiser et al., 
2016; Shindell et al., 2016; West et al., 2013). Our estimated 
health co-benefits of 8¢/kWh are greater than the national 
average of 1.2–4.2¢/kWh estimated by Mai et al. (2016), 

consistent with the greater share of coal generation in the 
Rust Belt region (EIA, 2017b). 
We further estimate that increasing the renewable require-
ment of existing RPSs in the Rust Belt region would increase 
net societal benefits. As RPS stringency is raised, health 
co-benefits increase more than costs. The marginal health 
co-benefits (the incremental co-benefit incurred from the 
No RPS to the BAU scenario, and so on) are larger than 
the marginal costs across all RPS scenarios tested. 
Our results also demonstrate that there can be meaningful 
differences between the health co-benefits of alternative 
climate policies. We find that, to 2030, carbon pricing is 
more efficient (greater net benefits) relative to an RPS than 
suggested by cost-per-ton-reduced comparisons that do 
not consider health co-benefits (e.g., Rausch and Mowers 
(2014)). Regardless of efficiency, however, RPS policies 
have been more politically popular, leading to their more 
frequent implementation (Rabe, 2018). Additionally, while 
carbon pricing results in higher health co-benefits in 2030, 
the relative merits of different climate policies would dif-
fer in an assessment that includes the full environmental 
externalities of natural gas extraction (EPA, 2016), the 
Social Cost of Methane (Marten and Newbold, 2012) or 
the implications that increasing natural gas consumption 
may have for long-term policy targets aiming to achieve 
deep reductions in CO2 emissions (Erickson et al., 2015).
Several limitations of this work are worth noting. First, we 
do not attempt to causally attribute the estimated bene-
fits to RPS policies as we do not capture other renewable 
energy policies that may induce deployment. Instead, the 
results of this study are indicative of the effects of renewable 
technology deployment consistent with the requirements 
of modeled RPS scenarios. 
Second, the use of general equilibrium modeling introduces 
the disadvantage of representing the electricity sector in a 
top-down fashion, thus omitting details including intra-day 
power dispatch based on operational limits such as power 
plant ramping flexibility. Recent work has demonstrat-
ed the possibility of leveraging the advantages of both 
approaches through hybrid approaches that iteratively 
combine both types of models (Rausch and Mowers, 2014; 
Tapia-Ahumada et al., 2015). Third, our scenarios do not 
model air pollution policy in the U.S. such as the emission 
trading systems for SO2 and NOx emissions under the 
Cross-State Air Pollution Rule (CSAPR). This may cause 
our results to overestimate the effects of climate policies 
on air pollution if reductions in air pollutant emissions 
from one source cause the transfer of emission permits, 
allowing another source to increase emissions, offsetting 
the original reductions (Groosman et al., 2011). This effect 
is likely to be limited, however, as emission sources already 
have access to a surplus number of permits under CSAPR, 
particularly for SO2 (EPA, 2018a).
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An important area for future work will be to quantify the 
uncertainty in health effects associated with the choice of 
air pollution model. While the health co-benefit results 
presented here compare closely to estimates derived from 
Chemical Transport Models (Thompson et al., 2014; 2016), 
we do not quantify uncertainty related to model choice. 
Subsequent research could apply state-of-the art Chemical 
Transport Models alongside the type of reduced-form model 
used in this work to a variety of relevant policies to help 
understand which atmospheric modeling methodologies 
are best suited to which types of policy evaluations. 
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Appendix A. Additional Sensitivity Analysis
In this Appendix we provide a sensitivity analysis to al-
ternative assumptions for the Concentration-Response 
Function coefficient, value of statistical life, and timing 
for mortalities. 

A.1 Sensitivity of results to 
concentration-response uncertainty

Here we present further detail on how our results vary with 
alternative assumptions for the Concentration-Response 
Function (CRF) coefficient for the impact of air pollution 
concentrations on premature mortality. Our main results 
use a pooled concentration response coefficient calculated 
using random effects pooling, combining the results of two 
epidemiological studies by Krewski et al. (2009) and Lep-
eule et al. (2012). The estimated pooled coefficient equals 
1.092, implying a 9% increase in premature mortalities 
resulting from a 10 μg/m3 increase in PM2.5 concentra-
tions (with a 95% Confidence Interval of: 1.018–1.171). 
This compares to 1.06 and 1.14 coefficients estimated by 
Krewski et al. (2009) and Lepeule et al. (2012) respectively.
Figure A1 illustrates how the health co-benefits based on 
the pooled coefficient compare to results derived from the 
coefficients estimated in each of these studies. As shown, 
the central estimates derived using the two CRFs from the 
literature vary by approximately 30% from central estimate 
using the pooled coefficient. 

A.2 Sensitivity of results to Value of 
Statistical Life assumptions

We further present the sensitivity of the health co-benefit 
results to the choice of the assumed Value of Statistical 
Life (VSL) (Figure A2). We use the full range of values 
published by EPA (2014). The range of health co-benefit 
estimates across all VSLs is approximately 50% larger than 
the variation resulting from the uncertainty associated 
with the pooled CRF. 

A.3 Sensitivity of results to timing for 
mortalities

Estimates of the monetary value of premature mortalities 
depend on when mortalities are assumed to take place in 
relation to a change in PM2.5 concentrations. Our central 
estimates assume that premature mortalities occur in the 
same year in which exposure to PM2.5 occurs. EPA-SAB 
(2004) recommended a cessation lag structure where 30% 
of the mortality changes occur in the first year, 50% occur 
equally in years 2 through 5, and the remaining 20% occur 
equally over years 6 through 20. Applying this lag structure 
and a discount rate of 3% lowers our estimated health 
co-benefits by 11%. A 7% discount rate would lower our 
central health co-benefits by 21%.

A.4 References to Appendix A
[EPA-SAB] U.S. Environmental Protection Agency Science Advisory 

Board. (2004): Advisory Council on Clean Air Compliance 
Analysis Response to Agency Request on Cessation Lag. 
Washington, D.C. https://nepis.epa.gov/Exe/ZyPDF.cgi/
P100JMYX.PDF?Dockey=P100JMYX.PDF.

[EPA] U.S. Environmental Protection Agency (2014): Guidelines for 
Preparing Economic Analyses. Washington, D.C.

Krewski, D., M. Jerrett, R.T. Burnett, R. Ma, E. Hughes, Y. Shi, 
M.C. Turner, C.A. Pope III, G. Thurston, E.E. Calle, M.J. Thun, 
et al. (2009): Extended Follow-Up and Spatial Analysis of the 
American Cancer Society Study Linking Particulate Air Pollution 
and Mortality. Boston, Massachusetts. https://www.healtheffects.
org/publication/extended-follow-and-spatial-analysis-american
-cancer-society-study-linking-particulate.

Lepeule, J., F. Laden, D. Dockery & J. Schwartz (2012): Chronic 
Exposure to Fine Particles and Mortality: An Extended Follow-up 
of the Harvard Six Cities Study from 1974 to 2009. Environmental 
Health Perspectives 120(7): 965–70. doi: 10.1289/ehp.1104660.

RePORT 337 MIT JOInT PROGRAM On THe SCIenCe AnD POLICY OF GLOBAL CHAnGe

10



Figure A1. Health co-benefits in 2030 by scenario relative to no RPS for alternative concentration-response assumptions. 

Figure A2. Health co-benefits in 2030 by scenario relative to no RPS including the range of VSL estimates published by ePA (2014). 
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Appendix B. Ohio Case Study
Emil Dimanchev, Sergey Paltsev, Mei Yuan and Noelle E. Selin

B.1 Introduction
Renewable energy policy is on the agenda of the current 133rd 
General Assembly of the Ohio legislature. In April 2019, Rep-
resentatives Jamie Callender and Shane Wilkin introduced 
House Bill 6. The bill proposes a Clean Air Program that 
would offer financial support for nuclear plants in the state. 
In addition, House Bill 6 repeals Ohio’s Renewable Portfolio 
Standard (RPS) – also referred to as the Alternative Energy 
Portfolio Standard – as proposed in the version reported 
by the House Energy and Natural Resources Committee. 
The future of Ohio’s RPS may have important implications 
for air quality in the state. Emissions from power plants have 
been estimated to result in 4,000 premature deaths in Ohio 
in 2005, more than in any other state (Caiazzo et al., 2013). 
The EPA has determined Cleveland to be in non-attainment 
of the National Ambient Air Quality Standard for PM2.5 
under the Clean Air Act. Thus, approximately 10% of the 
state’s population is exposed to PM2.5 concentrations that 
exceed national health-based standards. 
Here, we explore the potential air quality health benefits 
and the economy-wide costs of Ohio’s RPS. This analysis 
applies the modeling framework developed and described 
previously in this report. In what follows, we describe how 
we apply this methodology to Ohio, and present results 
for the impacts of Ohio’s RPS on power generation, air 
pollutant emissions, PM2.5 concentrations, and avoided 
premature mortalities. Finally, we compare the monetized 
value of premature mortalities avoided by the RPS to the 
total economy-wide cost of the RPS.

B.2 Methods
We apply the modeling framework discussed earlier in this 
report to estimate Ohio’s RPS costs and benefits in 2030. 
Here, we use a more granular, 30-region version of the MIT 
United States Regional Energy Policy (USREP) model, 
which allows us to model Ohio as a separate jurisdiction 
and thus estimate impacts specific to the state.
We evaluate RPS impacts by modeling two policy scenarios: 
BAU and NoRPS. The BAU scenario reflects existing RPS 
requirements (N.C. Clean Energy Technology Center, 2018) 
up to 2030. Solar-carveouts were excluded from our scenarios 
as USREP does not represent solar. We estimate the impacts 
of the BAU scenario by comparing its results to the NoRPS 
scenario, which assumes that Ohio’s RPS is repealed. 
Modeling an RPS at the state level presents an additional 
challenge of accurately representing this policy in a Com-
putable General Equilibrium (CGE) model such as USREP. 
USREP simulates an RPS as a requirement for a certain share 
of generation within a given jurisdiction to be renewable (in 
reality, RPSs place a renewable requirement on consumption 

rather than generation). While this approach is suitable 
to modeling RPSs on a regional level, it may misrepresent 
RPS impacts at the state level. This is because utilities can 
meet RPS requirements by purchasing Renewable Energy 
Credits (RECs) from out-of-state. RPSs therefore do not 
necessarily lead to renewable energy deployment in the 
implementing jurisdiction. In Ohio, load serving entities 
have surrendered RECs from a number of neighboring 
states to comply with the RPS (Table B1) (PUCO, 2018)
To account for the impact of out-of-state REC purchases, we 
implement hypothetical renewable generation requirements 
in Indiana, Kentucky, West Virginia, and Pennsylvania (for 
Pennsylvania we implement a renewable requirement on top 
of the existing RPS), which are proportional to each state’s 
contribution listed in Table B1. Ohio’s renewable generation 
requirement is specified to equal 24% of the total Ohio RPS.

B.3 Results

B.3.1 Electricity generation effects

Figure B1 displays the effects of the RPS on electricity 
generation, USREP estimates an increase in wind gener-
ation in the states from which Ohio sources its RECs. In 
total, the model estimates that the BAU scenario results in 
11 TWh of wind generation relative to NoRPS in 2030 in 
these states. In addition to this new wind generation, Ohio’s 
RPS is met with existing hydro generation in Kentucky 
and West Virginia, consistent with historical compliance 
(PUCO, 2018). Coal generation drops by 19 TWh in affected 
states in total. Generation from other technologies remains 
relatively unaffected. The model estimates a small increase 
in coal combustion in Pennsylvania, which is driven by 
regional electricity trading effects.
It is worth noting that these power market impact results 
are somewhat in contrast to our finding for the Rust Belt 
region in the main portion of this report, where we found 
that new renewable generation displaces both coal and gas 
generation from the power mix. However, our results for 
Ohio are largely consistent with findings by Buonocore et al. 
(2016) who found that renewable deployment in Northern 
Ohio displaces mostly coal generation using a more de-
tailed representation of power sector dispatch. Coal plants 

Table B1. Share of ReCs surrendered for 2017 compliance with 
Ohio’s AePS

Percent of all RECs (non-solar)

Ohio 24
Indiana 30
Kentucky 21
West Virginia 15
Pennsylvania 9
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generally have higher cycling costs compared to gas plants 
(Kumar et al., 2012) suggesting that, all else being equal, 
increasing penetration of variable renewable energy affects 
the revenues of coal plants more than gas plants. Whether 
renewable generation displaces coal or gas generation will 
vary depending on the plant costs and operational charac-
teristics in each state. Differences between our results here 
and for the Rust Belt region are somewhat consistent with 
differences between estimated renewable impacts in Ohio 
and in the region as a whole: Buonocore et al. (2016) found 
that in Pennsylvania and New Jersey (two states included 
in our Rust Belt region) new wind plants displaced more 
natural gas generation than coal.

B.3.2 Emission effects

As a result of the reduction in coal generation, the RPS leads 
to a reduction in emissions of air pollutants. As emission 

reductions are being driven by less coal combustion, the 
majority of the impacts are reflected in the emissions of 
SO2. In Ohio, 2030 SO2 emissions are lower in the BAU 
by 2% relative to No RPS. In Indiana, Kentucky and West 
Virginia, emissions are lower by 3%, 2%, and 7% respective-
ly, reflective of the changes in coal combustion discussed 
above. Emissions of SO2 in Pennsylvania increase by 6% 
as a result of the increased coal use. 

B.3.3 PM2.5 concentration and mortality effects 

We use the InMAP model to estimate how changes in 
emissions translate to changes in concentrations of PM2.5 
(Figure B2). We estimate the RPS reduces PM2.5 concen-
trations throughout Ohio. Across the state, PM2.5 concen-
trations in 2030 are lower in the BAU by 0.04 μg/m3 on a 
population-weighted average basis. This relatively small 
impact reflects the weak stringency of Ohio’s RPS. 

Figure B1. Changes in electricity generation in BAu scenario relative to noRPS.

Figure B2. Changes in 2030 PM2.5 concentrations (μg/m3) in BAu scenario relative to no RPS.
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This reduction in PM2.5 concentrations is estimated to result 
in approximately 50 avoided premature mortalities per year 
in Ohio. This result is based on our pooled concentration 
response function (CRF) described in the main body of 
this report. The 95% confidence interval associated with 
this CRF results in an uncertainty range between 9 and 
93 avoided premature mortalities. Using alternative CRF 
assumptions from Krewski et al. (2009) or Lepeule et al. 
(2012) results in 32 (95% confidence interval of 21–42) and 
75 (37–121) avoided premature mortalities, respectively.

B.3.4 Costs and benefits

Total economic costs are estimated as the annual change in 
household consumption between the BAU and the NoRPS 
scenarios. Changes in household consumption are a com-
mon way to measure total macroeconomic costs (Paltsev 
and Carpos, 2013). RPS costs are to a large extent driven by 
the cost of acquiring RECs, the corresponding impact on 
electricity prices, and the ripple effects of higher electricity 
prices on the rest of the economy (as well as other second-or-
der effects such as the impact of changes in renewable and 
coal generation on these industries and supply chains).
Cost estimates are presented in Figure B3. Our BAU sce-
nario implies a cost of Ohio’s RPS of $70 million (gray bar). 
However, this is an underestimate as our implementation 
of RPS policy in USREP effectively assumes that Ohio elec-
tricity ratepayers do not bear the cost of out-of-state RECs. 
To more closely represent the RPS cost to Ohio, we model 
a renewable generation requirement in Ohio equivalent to 
the total RPS requirement of 12% in 2030. This assumes 
that all RECs come from in-state and more accurately rep-
resents the impact of REC purchases on Ohio’s electricity 
price in our model. Under this case, our BAU RPS scenario 
implies a cost to Ohio of $300 million in 2030 relative to 

No RPS (blue bar). This modeling case may overestimate 
costs somewhat as it assumes that RECs come from more 
expensive generation in Ohio (as opposed to cheaper REC 
sources such as existing hydropower in West Virginia and 
Kentucky). Overall, the cost of Ohio’s RPS may lie between 
the gray and the blue bars (the first two bars in Figure B3). 
It bears mentioning that in relative terms, $300 million is a 
relatively small reduction in total household consumption 
of 0.06% (less than one tenth of one percent).
For the air quality related health benefits of Ohio’s RPS, 
we estimate that as the RPS avoids 50 premature mortal-
ities per year, it results in an annual monetized benefit of 
$470 million in 2030, based on our Value of Statistical Life 
(VSL) assumption discussed previously. This is equivalent 
to approximately $0.03 for each of the 18 kWh of renew-
able generation supported by the RPS in 2030. As noted 
earlier, this is the benefit incurred by Ohio specifically. We 
estimate that the total benefit of Ohio’s RPS to Ohio and 
all surrounding states that experience improvements in 
air quality is equal to $800 million in 2030. These benefit 
estimates are subject to uncertainty, particularly, in our 
CRF and VSL assumptions as discussed in detail in the 
main section of the report. Considering the full uncer-
tainty in the CRF (95% confidence interval) and the VSL 
assumptions (all values published by the EPA), we estimate 
a large uncertainty range around our central $470 million 
estimate of $10–2,390 million.

B.4 Discussion and Conclusions
We find that the air pollution-related health benefits of 
Ohio’s RPS are of a magnitude that justifies their consider-
ation in state policy making. Our best estimate of the 2030 
RPS health benefit to Ohio of $470 million exceeds our 
more conservative estimate of the 2030 total economy-wide 

Figure B3: Costs and benefits of RPS in 2030 relative to no RPS (central results), 2015 dollars.
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cost of $300 million. This is consistent with our findings 
above for the Rust Belt and previous research (Thomp-
son et al., 2014, 2016; Mai et al., 2016; Wiser et al., 2016; 
Shindell et al., 2016; West et al., 2013; EPA, 2015), which 
shows that health benefits for greenhouse gas reduction 
policies tend to exceed policy costs.
The health benefits of Ohio’s RPS, estimated here at 
$0.03/kWh, are of the same order of magnitude as previ-
ous estimates. Jaramillo and Muller (2016) estimated that 
power plant emissions impose a health-related externality 
of $0.05/kWh or $0.09/kWh (depending on the assumed 
relationship between air pollution exposure and mortality). 
Levy et al. (2009) estimated the health-related externality 
of coal plants at $0.14/kWh (median across the U.S.), with 
larger values estimated for Ohio. Mai et al. (2016) estimated 
cumulative national average health benefits of RPSs up to 
2050 of $0.01–0.04/kWh. Our estimate for Ohio is smaller 
than some of these previous findings, in part because we 
estimate health benefits specific to Ohio. As shown in our 
results above, some of the air quality improvements from 
Ohio’s RPS occur in neighboring states.
This analysis further suggests that Ohio benefits from 
out-of-state deployment of renewables. As Ohio’s air quality 

is impacted by power plant emissions originating from 
neighboring states, so changes in the energy mixes of its 
neighbors can lead to better air quality for Ohio residents. 
This is particularly the case in large populated areas close 
to state borders such as Cincinnati. Although some states 
have designed their RPSs to encourage in-state renewable 
investments (Mack et al., 2011), this analysis shows that 
out-of-state renewable generation can also be beneficial to 
individual states due to its effects on regional air quality. 

The limitations of our modeling of Rust Belt RPS effects 
presented in the main body of this report also apply to this 
case study. Most notably, these results should be viewed 
as indicative of the general magnitude of health benefits 
and costs, rather than as deterministic forecasts of policy 
impacts. A limitation specific to this state-level case study 
is that estimating RPS air quality impacts in a given state is 
relatively dependent on where emission reductions occur. 
Our economy-wide model does not aim to represent which 
coal plants, in which parts of the region studied, will be 
impacted by RPS legislation. Future work on state-specific 
impacts will likely benefit from the use of more detailed 
power system models using plant-level data.
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