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Learning about climate change uncertainty enables
flexible water infrastructure planning
Sarah Fletcher 1,2, Megan Lickley 3 & Kenneth Strzepek2

Water resources planning requires decision-making about infrastructure development under

uncertainty in future regional climate conditions. However, uncertainty in climate change

projections will evolve over the 100-year lifetime of a dam as new climate observations

become available. Flexible strategies in which infrastructure is proactively designed to be

changed in the future have the potential to meet water supply needs without expensive over-

building. Evaluating tradeoffs between flexible and traditional static planning approaches

requires extension of current paradigms for planning under climate change uncertainty which

do not assess opportunities to reduce uncertainty in the future. We develop a new planning

framework that assesses the potential to learn about regional climate change over time and

therefore evaluates the appropriateness of flexible approaches today. We demonstrate it on a

reservoir planning problem in Mombasa, Kenya. This approach identifies opportunities to

reliably use incremental approaches, enabling adaptation investments to reach more vul-

nerable communities with fewer resources.
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Uncertainty in climate change projections poses a challenge
to infrastructure planning for climate change adaptation1.
Because of the large expense and widespread need for

adaptation investments, planning models play a critical role in
targeting resources. Traditional water infrastructure planning
accounts for uncertainty by adding a safety factor to new infra-
structure2. However, these large projects are typically irreversible,
expensive, and last for multiple decades; the same is true across
many infrastructure domains3. Preparing for climate change by
adding extra capacity, therefore, incurs high risk of expensive
overbuilding in resource-scare areas. Flexible infrastructure
planning has the potential to manage uncertainty at reduced cost
by building less infrastructure up front but enabling expansion in
the future if needed2,4,5. However, enabling flexibility often
requires substantial proactive planning or upfront investment6. In
water resources, it is difficult to know whether recent trends in
streamflow are a result of climate change or short-tern variability
and therefore whether they are predictive of future trends7. It is
therefore difficult for planners to know if and when to trigger
adaptive actions. Short-term reliability outages can occur if
infrastructure cannot be adapted quickly8. Further, flexibility can
ultimately be more expensive by not taking advantage of econo-
mies of scale6. Appropriate methods are therefore needed to
weigh the risks and benefits of static vs. flexible infrastructure
approaches in responding to climate change uncertainty.

Several recent studies provide methods to develop and assess
flexible (also called adaptive) infrastructure planning under cli-
mate change uncertainty. Robust decision making (RDM) uses
iterative scenario development to minimize the regret from
both overbuilding unnecessary infrastructure and being
unprepared9–11. RDM has been used to develop and evaluate
adaptive infrastructure planning strategies12–14. New policy-
making processes design adaptive pathways that allow planners to
switch from one action to another if specified thresholds are
reached15 and can be combined with optimization approaches to
identify adaptive thresholds and actions16. Recent approaches
have provided methods for adaptive sequencing of infrastructure
investments8,17. Finally, advances in search algorithms18,19 have
enabled assessment of adaptive and cooperative approaches
against many performance measures using ensembles of
streamflow projections20.

Adaptive management requires an ability to learn over time as
more information is collected5. A challenge faced by the afore-
mentioned approaches is the difficulty in assessing opportunities
to learn in the future. General circulation model (GCM, i.e. cli-
mate model) projections provide us with the best available esti-
mates of how the global climate system will evolve under a given
emissions scenario. However, as time passes and new climate
observations are available, some GCM trajectories will prove to be
more reliable than others. For example, suppose current regional
projections estimate a range between 0.5 and 1.5 °C of change
over the next 20 years. If after 20 years we observe 1.5 °C of
change, this suggests the climate is warming in this region more
rapidly than expected. We may now shift our projections of
change upward for the following 20 years. While existing fra-
meworks provide an iterative process for planners to change
course in the future, they do not provide an upfront assessment of
the opportunity to learn about climate change in the future. This
upfront assessment is critical to deciding whether investments in
flexibility are worthwhile or whether a traditional static approach
is more appropriate. Existing flexible approaches either assume a
priori that flexibility is needed8, assume perfect information about
the future21, or rely on thresholds or signposts that are unrelated
to learning about climate change13, but do not provide a
mechanism for assessing opportunities to learn about climate
change in the future. Recent studies have incorporated learning

feedback from short-term nonstationary streamflow, but not
long-term climate change13,22,23. Note that while this study
focuses on water supply infrastructure, the challenge of char-
acterizing learning about climate uncertainty to enable adaptive
planning has been highlighted in a range of other disciplines (for
example in forest management24).

We develop a planning framework that explicitly models the
potential to learn about climate uncertainty over time and uses
potential learning to develop and evaluate flexible planning
strategies in comparison to static approaches. First, we use GCM
projections to develop a wide range of possible future mean
regional temperature (T) and precipitation (P) outcomes over a
planning horizon. We finely discretize mean annual T and P
within that range. This develops a comprehensive set of virtual
climate observations of mean T and P that reflect many possible
future regional climates, some of which are drier and some of
which are wetter. Next, we adapt a Bayesian statistical model25 to
update initial climate uncertainty estimates for each virtual cli-
mate observation. The updated estimates reflect what we will have
learned if the virtual observation comes to pass. These updated
uncertainty estimates characterize the transition probabilities in a
non-stationary stochastic dynamic program (SDP); each possible
change in SDP climate state is equivalent to a virtual climate
observation. This SDP planning formulation therefore takes into
account all the potential new information that may be learned in
the future as it develops optimal planning policies. We use these
polices to evaluate flexible infrastructure planning approaches
and compare them to static approaches.

The United Nations Environment Program estimates that the
cost of climate change adaptation investments in the developing
world may reach $500 billion per year by 2050;26 the World Bank
estimates that the infrastructure and water sector adaptation costs
may be $28 billion and $20 billion per year, respectively27. It is
therefore essential to target infrastructure investments efficiently
to reach the widest number of vulnerable communities. Flexible
planning strategies can substantially reduce the cost of infra-
structure investments. To the authors’ knowledge, this is the first
framework that values the ability of flexible approaches to
respond to climate learning, therefore more comprehensively
evaluating the tradeoffs of robust and flexible adaptation
strategies.

Results show that climate change uncertainty can be reduced
over the lifetime of an infrastructure project across different cli-
mate change trajectories. Flexibility is effective in preventing
unnecessary infrastructure additions while maintaining similar
reliability. However, the planning choice is informed by the social
context including value of reliability and discount rate.

Results
Planning framework and scenarios. We demonstrate this plan-
ning framework, illustrated in Fig. 1, with an application for
Mombasa, Kenya. Mombasa is the second largest city in Kenya
with an estimated population of 1.1 million28. Urban water
demand is currently estimated at 150,000 m3day−1 and expected
to grow to 300,000 m3day−1 by 203529. Mombasa has a warm,
humid climate with average annual precipitation of 900 mm
year−1 and a mean annual temperature of 26 °C30. Mean annual
runoff (MAR) in the nearby Mwache river, the site of a proposed
dam, is 113 MCM year−1 31. While GCMs all project warming in
the region, there is disagreement on the direction of precipitation
change. This creates substantial uncertainty in future runoff and
therefore the reservoir capacity needed to meet yield targets over
its lifetime. We apply our framework to develop and assess a
flexible infrastructure design. The flexible design enables extra
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Fig. 1 Schematic of integrated modeling framework. a Full planning framework. b Detail on characterizing transition probabilities using Bayesian statistical
model applied to each virtual climate observation
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storage capacity to be added if the initial dam becomes insuffi-
cient due to warmer, drier climates.

We assess three planning scenarios, described in Table 1,
intended to evaluate the sensitivity of our results to social and
technological planning assumptions. In the low-demand scenar-
ios (A and B), we assume a target yield of 150,000 m3 day−1

(54.8 MCM year−1) with 90% reliability from the Mwache dam.
We evaluate the two dam sizes proposed by the previous World
Bank study21, 80 MCM and 120 MCM, as well as a flexible
alternative in which the height of the smaller dam can be raised,
increasing the reservoir capacity to 120 MCM. In planning
scenario C we assume a target yield of 300,000 m3 day−1

(109.6 MCM year−1) with 90% reliability over the entire planning
horizon, reflecting the potential for rapid demand growth on
relatively short timescales based on 2035 projections from29.

In this scenario, the target yield is greater than observed MAR
in the Mwache river, and therefore the dam cannot meet the
target yield in today’s climate regardless of its size. Therefore, we
model the combination of a 120 MCM dam and a desalination
plant that is used to supply demand when reservoir storage is low.
Three desalination alternatives are chosen, analogous to the dam
design alternatives. A low capacity alternative designed to meet
reliability targets in the current and expected future climate with
60 MCM capacity; the large alternative that meets the reliability
targets across all projected future climates with 80 MCM capacity;
a flexible alternative starts with 60 MCM and can be expanded to
80 MCM. Evaluating this second scenario allows us to compare
the value of flexibility across two technology options, earthen
dams and desalination, which have unique water supply profiles
and cost structures.

Bayesian learning about climate change uncertainty. Figure 2a,
b show historical observed regional annual T and P from the
Climate Research Unit (CRU)32, as well as individual GCMs’
projected changes in T and P relative to 1990. 90% confidence
intervals (CIs) of GCM projections are developed using the
Bayesian uncertainty approach, assuming the historical period is
prior to 1990, and compared to CIs developed using a traditional
democratic weighting. The Bayesian approach weights models
based on how well they match historical observed changes in T
and P (see Methods). The democratic approach assumes all
models perform equally well33. Between these two methods, the
Bayesian approach produces smaller CIs because it assigns more
weight to a subset of models that best match historical change in
this region.

While Fig. 2 presents Bayesian CIs based on historical
observations, the SDP transition probabilities require Bayesian
uncertainty estimates that reflect what will have been learned for
many possible virtual future observations. We assume that
precipitation change will range between −30% and +30% by
end of century; we discretize this range at 2% for a total of 31
unique virtual precipitation change observations. We apply the
Bayesian uncertainty analysis to each of these 31 virtual

precipitation change observations in each time period. For
example, two sample time series of virtual T and P observations
and their corresponding updated uncertainty estimates are shown
in Fig. 3. An example of strongly increasing P is shown at top; an
example of modestly decreasing P is at bottom. For each virtual
observation, we simulate 10,000 virtual climate time series from
the current observation to the end of the planning period and
construct a 90% CI, shown by the shaded regions. This process is
repeated for each time step, with darker colors in the plot
corresponding to the CIs developed from virtual observations
sampled later in the planning period. The darker CIs therefore
reflect uncertainty estimates updated with information farther
into the future. The sample of virtual observations showing strong
increases in P (Fig. 3a–d), leads to high certainty by the end of the
century that negligible water shortages will be incurred, assuming
the small 80 MCM of dam capacity. Strong asymmetric
uncertainty reflects the low-probability, high-severity risk of
droughts; shortages occur only when runoff is substantially below
MAR for several months. The alternate sample of virtual
observations showing modest decreases in P (Fig. 3e–h) demon-
strates a reduction in uncertainty in both P and MAR. Expected
water shortages increase substantially as more observations are
collected, and the uncertainty increases as well due to non-linear
relationships between MAR and shortages.

While two sample time series of observations are illustrated in
Fig. 3, the SDP optimal strategy accounts for a wide range of
possible future observations and what would be learned if they
were to be observed. This is achieved through the multistage
stochastic optimization formulation, which allows for uncertain,
rather than deterministic, transitions to new climate states in each
period. In the first time period, shown in Fig. 4a, the SDP
develops a threshold as a function of T and P during the
2001–2020 time period when the initial infrastructure decision is
made. Above the threshold, in hotter and drier climates, the large
dam is optimal and below it the flexible dam is. Due to the small
cost difference between the flexible and large dam, investing in
the large dam option upfront is preferred if the risk of shortages
at the outset is high enough. This reduces expected costs by
leveraging economies of scale. Panel b shows expansion thresh-
olds for time periods 2–5 for the flexible dam. Expanding
infrastructure capacity is optimal in drier and warmer states. In
the 2041–2060 time period, the policy threshold shifts right,
reflecting the narrowing of uncertainty due to additional
information in later time periods. In later time periods, however,
it shifts left, reflecting the influence of the end of the planning
horizon which disincentivizes investment.

Figure 5 shows infrastructure decisions under the optimal
policy across 1000 simulated climate time series. In planning
scenario A, the flexible alternative is chosen in 90% of
simulations, shown in panel a. When the flexible alternative is
chosen, the option to expand is never chosen in about 90% of
simulations. This highlights the low probability of reaching a
climate dry enough to generate shortages beyond 10% of demand.
The time period at which expansion is exercised varies; more

Table 1 Planning scenario definitions

Planning scenario Technology DR Capacity [MCM] Capex [M$]

Demand Small Large Small Large Exp Flex+ Exp

A Low Earthen dam 3% 80 120 76.5 99.2 49.6 148.8
B Low Earthen dam 0% 80 120 76.5 99.2 49.6 148.8
C High RO desalination 0% 60 80 183.1 232.2 72.4 255.5

DR discount rate, RO reverse osmosis, Capex capital expenditure

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09677-x

4 NATURE COMMUNICATIONS |         (2019) 10:1782 | https://doi.org/10.1038/s41467-019-09677-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


rapid warming and drying leads to earlier expansion. Panel b
shows cumulative distribution functions (CDFs) of the total cost
(including shortage damages) of each alternative across the
1000 simulations under planning scenario A. The large static
alternative has the same cost across simulations; as designed, no
shortage damages are incurred in any feasible climate. The small
dam performs better than the large dam in about 70% of
simulations, but has substantially higher costs in 30% of
simulations due to large damages from water shortages. The
flexible dam mirrors the small dam in 70% of simulations, but the
reliability risk is substantially mitigated because of the potential to
expand. The high-end costs are higher than the large dam
because, first, the cost of building the 80 MCM dam and
expanding to 120 MCM is higher than building the 120 MCM
dam upfront and, second, sometimes the dam is not expanded
even when modest water shortages are incurred. The ability of the
flexible alternative to mitigate both the risk of overbuilding and
the risk of severe shortages demonstrates the high value of
flexibility in this case.

The value of flexibility changes under planning scenarios B (no
discounting; panels c and d) and C (high demand with
desalination plant; panels e and f). Without discounting, the
large dam is more favorable; it performs best in 60% of
simulations, has no cost variability risk, and is chosen in 80%
of simulations. Large economies of scale in the dam mean that a
120 MCM dam is only 30% more expensive than an 80 MCM
dam for 50% additional capacity. This suggests it is often better to

build the large dam upfront even if there is a relatively low
probability that it will be needed. Scenario C evaluates a 120
MCM dam combined with a desalination plant. We find a high
value of flexibility even without discounting. The flexible
alternative is chosen upfront in over 80% of forward simulations.
The CDF demonstrates that it outperforms the static alternatives
by substantially mitigating the over build risk in comparison to
the robust alternative. The flexible alternative also modestly
reduces the shortage damage risk in comparison to the small
alternative. While the flexible alternative only reduces cost at the
90th percentile and above, this substantially reduces the expected
value as the maximum cost of the small plant reaches almost M
$400.

Looking across scenarios, the flexible alternative is chosen most
often in scenario A because discounting incentivizes delayed
capital investments. This is not the case in scenario B because
large economies of scale incentivize a single, large investment. In
scenario C more modest economies of scale lead to high value of
flexibility in the absence of discounting, highlighting differences
in the value of flexibility across technologies. Across all scenarios,
the flexible dam is expanded in no more than 10% of simulations,
highlighting the low probability of reaching a climate that is hot
and dry enough to incur substantial shortages.

Finally, while the previous analysis has relied on a top-down
analysis that uses GCM projections to develop probabilistic
forecast, Fig. 6 presents an illustrative bottom-up analysis that
demonstrates the average cost and regret of each of the three dam
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alternatives in planning scenario A under different end-of-
century climates without relying on probabilistic forecasts. Regret
is defined as the difference between the cost of the chosen
infrastructure alternative and the best possible infrastructure

alternative in a given climate state. Three illustrative climates are
chosen to demonstrate the tradeoffs across alternatives: a dry
climate of 68 mmmonth−1, an moderate climate of 78 mm
month−1, and a wet climate of 88 mmmonth−1. Differences in
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T are not considered because its impact on water shortages is
limited. The small dam without expansion has the highest
maximum regret of any alternative of M$77, incurred in the dry
climate. The large dam incurs positive regret in both the
moderate and wet climates, with the latter incurring M$19 of
regret. The flexible dam has the lowest maximum regret, with a
modest M$4 of regret in the dry climate. This bottom up
approach also highlights the ability of the flexible dam design and
expansion strategy to mitigate risk in a range of different potential
future climates.

Discussion
We develop a method that integrates iterative Bayesian learning
about climate uncertainty into a multi-stage stochastic infra-
structure planning model in order to address a critical limitation
of adaptive infrastructure planning in both water supply and
other domains: estimating upfront how much planners can expect
to learn about climate change in the future and therefore whether
adaptive approaches are likely to be reliable and cost effective.
Our approach quantifies, for example, the extent to which a wet
trajectory over the next 20 years increases the likelihood of a wet
trajectory 40 years into the future. By applying the Bayesian
model to a wide range of discrete virtual future climate obser-
vations, we develop adaptive policies that take into account all
future opportunities for learning. While all approaches that use
GCM ensembles face limitations, this approach provides a rea-
sonable quantitative estimate of future learning that enables
better-informed assessment of tradeoffs between planning
approaches. This allows us to evaluate the effectiveness of flexible
planning, which relies on learning processes that remain
unquantified in previous methods, rather than assuming a priori
that flexibility is a worthwhile planning goal. This is especially
important for infrastructure planning where planners must pre-
pare in advance to take a flexible approach due to the large,
irreversible nature of infrastructure investments.

The results in the Mombasa application demonstrate the
nuances and tradeoffs inherent in comparing flexible and robust
approaches for planning under climate uncertainty. Although the
uncertainty and learning is driven by the climate system, deci-
sions about whether flexibility is a valuable tool in mitigating risk
are strongly influenced by social, technological, and economic
factors. The large economies of scale in earthen dams make
flexibility less valuable; it is better to choose a robust alternative
when it is not much more expensive to do so. Reverse osmosis
(RO) desalination, however, is an inherent modular technology
with modest economies of scale, lending itself more readily to
flexible planning. The discount rate, which trades off future
adaptation goals for immediate rewards, promotes flexible
approaches. Flexibility often delays investment, which can be
especially impactful in resource-scarce areas where unused capital
could support other critical infrastructure services. The value
society places on access to reliable, sustainable water supplies, and
the damage of short-term outages is also influential.

Future extensions to other planning problems which have
differences in degree and nature of uncertainty, hydrological
sensitivity to climate change, and social context can be used to
assess under what conditions flexible or static planning approa-
ches are more appropriate. Future work combining this learning
approach with bottom-up vulnerability assessments can address
the limitations of GCM-based probability distributions34. This
framework shows promise in identifying areas where smaller,
flexible infrastructure is reliable vs. those that require a traditional
static approach, enabling billions of dollars of potential savings in
climate change adaptation investments across civil infrastructure
domains.

Methods
Bayesian modeling of climate change uncertainty. We extend previous Bayesian
uncertainty analysis of climate change25 (hereafter called previous Bayesian model)
to characterize the SDP transition probabilities. Previous work shows that the
uncertainty in climate projections due to natural variability remains relatively

70 75 80

Mean P (mm/m)

26

27

28

29

30

31

32

33

M
ea

n 
T

 (
de

gr
ee

s 
C

)

Initial dam threshold

70 75 80

Mean P (mm/m)

26

27

28

29

30

31

32

33

M
ea

n 
T

 (
de

gr
ee

s 
C

)

Flexible dam expansion threshold

2021–2040
2041–2060
2061–2080
2081–2100

Flexible
 dam

Expand
 dam

Large
 static
 dam

Do not
expand

dam

a b

Fig. 4 Optimal policies from SDP. a Threshold for initial decision between large static and flexible design as a function of T and P during the first time period
(2000–2020). b Thresholds for exercising the option to increase height of flexible dam as a function of T and P during the latter time periods as indicated
on the legend. Results shown for planning scenario A

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09677-x ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:1782 | https://doi.org/10.1038/s41467-019-09677-x | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


constant throughout the 21st century, but that as the climate signal emerges from
the noise, the uncertainty in projections is dominated by the GCMs’ climate sen-
sitivity, and hence structure35. We therefore limit our focus to uncertainty in model
structure rather than emissions or stochasticity because, first, structural uncertainty
dominates long-term precipitation uncertainty35 and, second, to utilize recent
statistical methods for characterizing structural climate uncertainty25,36. The pre-
vious Bayesian model25 uses ensembles of projections from the fifth phase of the
Coupled Model Intercomparison Project (CMIP5)37 to derive a single distribution
describing uncertainty in climate change. Following the previous Bayesian model25,
we use historical observations or virtual observations to estimate the reliability of
each model run and therefore its weight in the resulting probability distribution.
This is in contrast to the democratic approach38 which each model projection is
assumed equally likely and the multi-model mean and standard deviation is used to
derive a single probability distribution.

We extend the previous Bayesian model25 in three ways. First, we apply the
model to annually averaged P and T values separately, assuming that T and P are
independent. This reflects that a model’s performance in estimating T may be
unrelated to its ability to estimate P. Second, we apply the model to observed and
projected change in T and P (i.e. ΔT and %ΔP) rather than absolute T and P due to
greater model skill in GCM projected changes in temperature and precipitation
rather than absolute values39,40. This is especially important in our application in
Mombasa where there is less disagreement in temperature change than there is
disagreement in hind-casted absolute temperature.

Finally, we apply the model to multiple pairs of time windows and also to many
virtual observations of change in T and percentage change in P. The previous
Bayesian model25 assumed two periods: a historical climate (1961–1990) and a
future climate (2071–2100). We also use a historical and future climate in each
estimation of the Bayesian model; however, we define 6 time periods using pairs of
adjacent 20-year windows and calculate the change in T and percentage change in
P between adjacent windows. This gives a total of five pairs of historical and future
adjacent windows within 1960–2099. In each pair of adjacent windows, the

historical window corresponds to the current time period in the SDP and the future
window corresponds to the next 20-year period; this is necessary for the 1-stage
transition probabilities needed in the SDP. The 20-year time interval was chosen so
that interannual variability was not driving the trend in precipitation and
temperature across time periods. The previous Bayesian model25 used historical
observations of climate data (X0 in (Eq. 1)); we repeat the analysis many times
using unique virtual climate observations, ΔVt,i, corresponding to changes in the
SDP climate states, where t denotes the time period and i denotes an index between
1 and N, the possible virtual observations. Virtual temperature change observations
range from 0 to 1.5 °C using discrete steps of 0.05 °C (N= 31). Virtual observations
of percentage change in precipitation range from −30% to 30% using discrete steps
of 2% (N= 30). These were chosen in order to be comprehensive of all potential
future climate states. Therefore, they must be, first, granular enough that adjacent
observations result in similar distributions and therefore approximate a continuous
set of observations and, second, span a range that exceeds the full range of change
predicted by models (i.e. a range of 0–1.5 °C per 20-years is equivalent to 0–7.5 °C
of change after 100 years; the CMIP5 ensemble projections a temperature change in
the range of 2–4 °C by 2100, fitting well within the range resulting from the virtual
observations).

The evaluation of GCMs’ performance in reproducing climate observations will
depend on time scale, region, and variable of interest41,42. Because our ultimate
goal is to update our learning of regional climate in the Mwache catchment with
respect to multi-decadal trends in precipitation and temperature, we choose to
weight GCMs based on their performance in reproducing multi-decadal trends of
precipitation and temperature averaged over the catchment area. Therefore, to
implement the Bayesian uncertainty analysis in Mombasa, we use a total of 21
CMIP5 members whose modeling group and model run are included in
Supplementary Table 1. The 21 GCM simulations come from 10 different
institutions and 15 different GCMs, with three GCMs providing more than one
simulation. Models were selected based on the most readily available models at the
time of the analysis, with 21 being in line with previous studies, providing a
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reasonable balance between computational limits and model diversity33. All models
are forced by the RCP 8.5 scenario, which is the high emissions scenario from the
IPCC AR5. For each GCM, monthly temperature and precipitation values are
averaged over 2–6°S and 38–42°E, overlaying the Mwache catchment; GCM
projections are regridded from their original resolution following the approach
in43. These regional temperature and precipitation GCM outputs, rather than
global outputs, provide the basis for model weighting in the Bayesian analysis.

Our statistical model is formulated as follows for ΔT; an identical and
independent model is used for %ΔP. The estimate of future change in mean
temperature between t= 0 and t= 1, υ1, is based on historical observed
temperature change to t= 0, ΔX0:

ΔX0 � Nðμ0; λ�1
0 Þ

ΔXj
0 � Nðμ0; λj�1

0 Þ
ΔXj

1jΔXj
0 � Nðυ1 þ β0 � ðΔXj

0 � μ0Þ; ðθ0 � λj0Þ�1Þ
ð1Þ

where ΔX0 is the historical observed temperature change to t= 0. ΔXj
0 is model j’s

projection of temperature change to t= 0, and ΔX j
1 is the same for t= 1. ΔX0,

ΔXj
0, and ΔXj

1 are treated as samples from unique normal distributions. μ0 and υ1
are random variables representing the underlying distributions of temperature
change in the current (t= 0) and future (t= 1) time periods respectively. λj0 is the
inverse variance of ΔXj

0, representing the reliability of model j. β0 is a regression
parameter that introduces correlation between ΔXj

0 and ΔXj
1; it is estimated by the

model rather than assumed. θ0 is also an estimated parameter that enables a model
to have different reliability in the future compared to the present. The marginal
densities for each of the parameters are estimated using MCMC methods; we use
the Gibbs sampling approach, parametric assumptions including priors, and code
developed in ref. 25. The Gibbs sampler collected 1000 samples, discarded the first
150,000 samples as a burn-in, and saved 1 in every 1500 samples; convergence was
checked using standard diagnostics including trace plots and auto-correlation plots.

When t > 1, unique estimates of future change in mean temperature from t−1
to t, υ(ΔVt−1,i), are based on each virtual observation of temperature change from
the previous time period, ΔVt−1,i, as follows:

ΔVt�1;i � NðμðΔVt�1;iÞ; λðΔVt�1;iÞ�1Þ
ΔXj

t�1 � NðμðΔVt�1;iÞ; λjðΔVt�1;iÞ�1Þ
ΔXj

t jΔXj
t�1 � NðυðΔVt�1;iÞ þ βðΔVt�1;iÞ � ðΔXj

t�1 � μðΔVt�1;iÞÞ; ½θðΔVt�1;iÞ � λjðΔVt�1;iÞ��1Þ
8i ¼ 1; ¼ ;N; t ¼ 2; ¼ ; 5

ð2Þ

where the notation is analogous to that in Eq. (1) except that now N unique
distributions are estimated corresponding to each virtual observation. Virtual
observation ΔVt−1,i is treated as a sample from an underlying normal distribution;
μ(ΔVt−1,i) and υ(ΔVt−1,i) are the underlying change in mean temperature in the
current (t−1) and future (t) time periods, respectively, given each virtual
observation ΔVt−1,i; λj(ΔVt−1,i) is the reliability of model j for virtual observation i
in time t; and β(ΔVt−1,i) and θ(ΔVt−1,i) are estimated uniquely for each virtual
observation ΔVt−1,i.

This approach does have limitations. First, it assumes that GCMs are
independent of one another, when in fact some models borrow entire components
from other models44. Second, we assume that a GCM’s ability to reproduce ΔT or
%ΔP is a better indication of model performance than another metric, such as
model variability. Third, we assume that change in time t depends on t−1 and not
previous time periods. Additionally, we assume climate models will not change in
the future; repeating the analysis in 40 years with a broader range of models

reflecting the new state of the science may produce larger shifts in CIs. However,
this approach is the best available to estimate learning in the future, which impacts
planning decisions today. It enables a more precise measure of uncertainty in
comparison to the democratic approach used by the IPCC; it has also been
statistically validated using a cross validation approach25.

Estimating transition probabilities. Each estimate for υ(ΔVt−1,i) (or υ1 if t= 1) is
then used to estimate the probability of change in each temperature state Tt in the
SDP temperature state space ST. (Note we treat υ(ΔVt−1,i) as a probability mass
function discretized at the same granularity as the virtual observations):

PðΔTt jΔTt�1 ¼ ΔVt�1Þ ¼ υðΔVt�1;iÞ
PðΔTt ¼ ajΔTt�1 ¼ ΔVt�1Þ ¼ PðυðΔVt�1;iÞ ¼ aÞ

8i ¼ 1; ¼ ;N; t ¼ 1; ¼ ; 5

ð3Þ

We then define the joint distribution for the relative change probabilities using
the chain rule and the Markov assumption, which is consistent with our
assumption in the Bayesian model that the next time period is informed only by the
previous one.

PðΔT0;ΔT1; ¼ ;ΔT5Þ ¼ PðΔT0Þ � PðΔT1jΔT0Þ � ¼ � PðΔT5jΔT4Þ ð4Þ
Combining Eqs. (3) and (4), we relate the joint density of the temperature

change probabilities to the Bayesian model from Eqs. (1) and (2):

PðΔT0 ¼ ΔX0;ΔT1 ¼ ΔV1;i; ¼ ;ΔT5 ¼ ΔV5;mÞ
¼ PðΔT0 ¼ ΔX0Þ � PðΔT1 ¼ ΔV1;ijΔT0 ¼ ΔX0Þ � ¼ � PðΔT5 ¼ ΔV5;mjΔT4 ¼ ΔV4;lÞ

¼ Pðμ0 ¼ ΔX0Þ � Pðυ1 ¼ ΔV1;iÞ � ¼ � PðυðΔV4;lÞ ¼ ΔV5;mÞ
8i; j; k; l; m ¼ 1; ¼ ;N

ð5Þ

Next, we develop a joint distribution for the absolute mean temperatures in
each time period, which correspond to the SDP temperature states ST. To do this,
we assume T0= X∗+ μ0, where X∗ is a constant reflecting the historical observed
temperature in time t−1, and recognize that the absolute temperature in t is the
sum of all the relative changes between 0 and t plus T0. The joint density of the
temperature states is therefore:

P T0 ¼ a;T1 ¼ b; ¼ ;T5 ¼ fð Þ
¼ Pðμ0 ¼ a� X�Þ � Pðυ1 ¼ b� aÞ � ¼ � PðυðΔV4;lÞ ¼ ΔV5;mÞ

8i; j; k; l; m ¼ 1; ¼ ;N

ð6Þ

where

a ¼ X� þ ΔX0; b ¼ X� þ ΔX0 þ ΔV1;i; ¼ ;

f ¼ X� þ ΔX0 þ ΔV1;i þ ΔV2;j þ ΔV3;k þ ΔV4;l þ ΔV5;m

s:t: a; b; c; d; e; f 2 ST

The SDP temperature transition probabilities consist of adjacent time period
conditional probabilities, i.e. P(Tt= w | Tt−1= v). We use Monte Carlo simulation
to calculate them by sampling from the joint density in Eq. (6) as follows. First,
sample from Eq. (6) to generate M equally likely realizations of the joint density.
Each realization forms a set, Yi, of the form:

Yi : T0 ¼ y0i;T1 ¼ y1i;T2 ¼ y2i;T3 ¼ y3i;T4 ¼ y4i;T5 ¼ y5if g8i ¼ 1; ¼ ;M

Second, let R equal the number of sets Yi out of the total of M for which Tt= w
and Tt−1= v. Third, let Q equal the number of sets Yi out of the total of M for
which Tt−1= v. Then, the transition probabilities are:

P Tt ¼ wjTt�1 ¼ vð Þ ¼ P Tt ¼ w;Tt�1 ¼ vð Þ=P Tt�1 ¼ vð Þ ¼ R=Q

8w; v 2 ST
ð7Þ

Stochastic dynamic programming (SDP). Stochastic dynamic programming is an
optimization approach and control method that represents decision-making under
uncertainty using multiple stages or time periods. The result is optimal policies,
representing the best possible action as a function of the system state and time
period. In our non-stationary formulation, it can also be understood as a form of
closed-loop stochastic control, in which new information about the system feeds
back into updated estimates for system state transitions over time. This is analo-
gous to existing approaches in ecology, which have defined SDP transition prob-
abilities with probability density functions that include the current system state as
an input45,46.

Optimal policies are derived by recursively solving the Bellman equation:

Vt stð Þ ¼ argmina2AC st ; at ; tð Þ þ γ � Σs2SP stþ1jst ; at
� � � Vtþ1 stþ1

� � ð8Þ
Where t∈ {1… 5} is a 20-year time period ranging from 2001–2020 for t= 1 to

2081–2100 for t= 5. S is the state space, or set of possible state values, which
includes: mean temperature ST (which ranges from 25 to 33 °C at 0.05 °C
increments) and mean precipitation SP averaged over a 20-year period (which
ranges from 66 to 97 mmmonth−1 at 1 mmmonth−1 increments) and available
infrastructure SZ. SZ= {1,…,4} which correspond, respectively, to a small
infrastructure alternative, large infrastructure alternative, flexible unexpanded
alternative, and flexible expanded alternative. The alternatives include a set of dams
(planning scenarios A and B) or a set of desalination plants (planning scenario C).
st∈ S is the system state at time t comprised of Tt (temperature state at time t), Pt
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(precipitation state at time t), and Zt (infrastructure state at time t). Tt, Pt and
Zt are assumed independent. Therefore, the transition probabilities, P(st+1 | st, at) *
Vt+1(st+1), are estimated as three independent transition vectors: the transition
vector for Tt is described in Eqs. (4) and (5) and independent of at and Pt is
analogous to Tt. Zt transitions are deterministic based on the current capacity and
action to add capacity as described hereafter.

A is the action space, or set of possible actions. at∈A is an action at time t, The
action at describes whether a static or flexible dam is chosen, and whether
infrastructure capacity is expanded in later time periods. A= {0,…,4} which
correspond, respectively, to no change, adding a small static alternative, adding a
large static alternative, adding a flexible alternative, and expanding the flexible
alternative. The choices are constrained by time period and available infrastructure
such that at=1 ∈ {1,…,3} ∀ Zt; at ∈ {0,4} when Zt= 3 ∀ t= 2,…,5; at ∈ {0}∀ Zt=
{1,2,4}, t= 2,…,5.

V is the optimal policy or choice of action. γ is the discount rate. Costs C include
the capital costs of infrastructure and damages if the infrastructure fails to meet
reliability targets such that C= I (st, at)+D ∗ U(st, at), where I is the cost of the
infrastructure including capital costs (capex) and operating costs (opex).
Desalination opex in planning scenario A is a function of the water produced in
each time period. D is unit cost of damages incurred for unmet water demand, set at
15$m−3 in our base case based on estimates of water productivity in Kenya from
the World Bank47. U is the volume of unmet demand as a function of the climate
states, existing infrastructure, and any new infrastructure brought online in time t.
U= 0 in t= 1, reflecting that t= 1 is a planning and construction period and
performance is not measured until the beginning of the second 20-year time period.

Stochastic weather generation. Climate impacts on river runoff depend on
changes in month-to-month variability in precipitation and temperature in addi-
tion to changes in the mean. We model these two changes separately. To develop
monthly time-series of T and P, we follow the k-nearest neighbors (kNN) approach
as described in ref. 48 applied to GCM projections. This non-parametric statistical
approach allows us to impose the mean T and P from the SDP while also capturing
the standard deviation in monthly values and month-to-month autocorrelation
projected by the GCMs. This approach was chosen for its simplicity, ease of
implementation, and application in long-term water supply; future studies could
use other non-parametric approaches such as the local polynomial regression
method developed in ref. 49. For each 20-year time period, we employ the kNN
approach to generate 100 samples of 20-year long monthly time-series of T and P.
The resulting time series are then applied to the rainfall-runoff model presented
below.

Rainfall-runoff model. Next, the synthetic T and P time series are input to a
hydrological model to assess the impacts on runoff. We use CLIRUN II, the latest
in a family of hydrological models developed to assess the impact of climate
change on runoff 50–53. CLIRUN II is a two-layer, conceptual, lumped-watershed
rainfall-runoff model. It averages soil parameters over the watershed and models
runoff at one gauge station at the mouth of the basin. It can be run on a monthly or
daily time step. Using the kNN generated samples of T and P, CLIRUN II generates
a corresponding 100 samples of 20-year long monthly timeseries of runoff.

CLIRUN II is calibrated using 14 years of monthly streamflow data. Only one
streamflow gauge, RGS 3MA03, is available in the Mwache basin31. However, it is
directly upstream of the dam location, making it representative for this study. The
same monthly temperature and precipitation data from CRU used in the Bayesian
climate analysis is used to calibrate CLIRUN II for consistency. This temperature
and precipitation data is different than the local data used in the previous World
Bank study21, leading to different calibration results but similar performance
(historical MAR: 113 MCM year−1; World Bank MAR: 133 MCM year−1; our
MAR: 103 MCM year−1).

Our analysis using CLIRUN II and the reservoir sizing model confirms that the
80 MCM dam meets the reliability targets in the current and expected future
climate but does not meet reliability targets if the climate gets substantially warmer
and drier. The 120 MCM dam meets reliability targets across all projected future
climates.

Infrastructure costs and operations. Capex and opex estimates for the small and
large dams were developed using the cost tool from the previous World Bank
study21. For the flexible dam, the cost per m3 of additional capacity added is
assumed to be 50% greater than that of the original capacity. Capex and opex
estimates for the RO desalination plants were developed using the Cost Estimator
tool from DesalData54.

The infrastructure operation model includes fixed dam operations (and
desalination operations when necessary) that seek to meet the specified yield target
while accounting for dead storage, net evaporation, and environmental flows.
Unmet demand is measured for each of the 100 streamflow time series, and the
average 20-year unmet demand is used to characterize U in the SDP formulation in
Eq. (8). We acknowledge that assuming reservoir operations that are fixed in time
is a limitation given that adaptive reservoir operations would likely reduce the need
for additional capacity; future work could optimize the reservoir operations to each
climate state.

Data availability
Historical climate data (CRU TS3. 10) is available here: https://crudata.uea.ac.uk/cru/
data/hrg/. GCM projections are publicly available from the respective sources listed in
Supplementary Table 1. Streamflow data is available in Supplementary Data 1.

Code availability
Code is available from the corresponding author upon reasonable request.
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