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Considerations regarding the roles of advanced technologies are crucial in energy-economic modeling, as these
technologies, while usually not yet commercially viable, could substitute for fossil energywhen favorable policies
are in place. To improve the representation of the penetration of advanced technologies in energy-economic
models, we present a formulation that is parameterized based on observations, while capturing elements of
rent and real adjustment cost increases if high demand due to a large policy shock suddenly appears. The formu-
lation is applied to a global computable general equilibriummodel to explore the role of low-carbon alternatives
in the electric power sector.While other modeling approaches often adopt specific constraints on expansion, our
approach is based on the assumption and observation that these constraints are not absolute, and how fast ad-
vanced technologies will expand is endogenous to economic incentives. The policy simulations, while not
intended to represent realistic price paths, are designed to illustrate the response of our technology diffusion ap-
proach under sudden increased demand for advanced technologies.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Keywords:
Technology diffusion
Adjustment costs
Computable general equilibrium model
Energy
Climate policy
1. Introduction

It has long been recognized that study of energy futures as they re-
late to greenhouse gas emissions requires a consideration of advanced
technologies that could substitute for fossil energy. Absent substitutes,
standard production functions where all inputs are necessary would
make it impossible to eliminate carbon emissions from the economy,
which is essentially required to stabilize CO2 concentrations. Simulating
the transition to low-carbon substitutes turns out to be challenging, as
these low-carbon alternatives have not been widely adopted and so ev-
idence for how quickly they can be adopted at large scale must come
mostly from small samples or analogous technologies. At the same
time, the speed of being able to transform the energy system to reduce
GHG emissions is an important determinant of climate mitigation costs.

In this study, we aim to improve the representation of technology
diffusion in integrated assessment models and ground the parameteri-
zation in empirical foundations. We develop an approach to model the
penetration process of a low-carbon substitute within a global energy-
economic computable general equilibrium (CGE) model. Our approach,
embeddedwithin the CGE framework, allows simulation ofmultiple dy-
namics related to new technology diffusion, including sunk investments
in existing technology, monopoly rents associated with the new tech-
nology, adjustment costs related to expanding the new technology,
short- and long-run pricing of output of the new technology, and the
.V. This is an open access article und
rate of diffusion of the new technology and how it is influenced by eco-
nomic factors. We provide a brief background of relevant literature in
Section 2, followed in Section 3 by a discussion of the theoretical back-
ground for a variety of factors that can affect technology diffusion.
Section 4 describes our approach for representing technology diffusion,
the estimation of parameters, and how it is embedded within a CGE
framework. Section 5 demonstrates the new approach, focusing on the
diffusion of low-carbon electricity generation technologies, and ex-
plores several sensitivities, including the impact of different parameter-
izations, costs of technologies, knowledge depreciation rates, and
elasticities of substitution. In Section 6, we offer some conclusions.

2. Background

To represent a low-carbon substitute, Nordhaus (1979) introduced
the concept of a backstop technology, available at a fixed marginal
cost that was a perfect substitute for fossil energy. While improvement
in the use of fossil energy could reduce emissions at least per unit of
GDP, ultimately the backstop could be adopted as the cost of fossil
fuels rose due to depletion, or if environmental taxes or limits were
placed on fuel use. Edmonds and Reilly (1985) expanded on this idea
by elaborating different energy services (e.g. transportation, industry,
residential), different fuels and electricity, and various alternatives
(solar, biofuels, nuclear, wind, etc.) that differentially competed to sup-
ply these energy services, and where each “backstop” might itself face
resource limits or resource gradations that could lead to increased cost
with expansion. More recently, effort has been made to elaborate the
er the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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role of advanced technologies within energy-economic modeling
frameworks. This marries together standard economic modeling
(based on expenditure data that allows disparate goods to be added to-
gether) with an economic representation of technology options that do
not yet exist at significant levels in the economy (based on engineering
cost and efficiency data).

A key challenge in modeling an advanced technology is to capture
the penetration dynamics. Models have taken different approaches.
For instance, Iyer et al. (2015) controls the diffusion of low-carbon tech-
nologies by imposing fixed annual growth rates of deployment. Keppo
and Strubegger (2010) incorporates a series of dynamic constraints
that link outputs to previous levels, and these constraints can set
upper bounds for activities to expand and lower bounds for them to de-
cline. Leimbach et al. (2010) considers decreasing costs for the deploy-
ment of advanced technologies, while imposing additional costs for the
nuclear capacity exceeding a certain level. McFarland et al. (2004) and
Paltsev et al. (2005) both implement a quasi-fixed factor with an expo-
nential growth to control for the growth of an advanced technology.
Wilson et al. (2013) argues that the logistic function is a good candidate
for modeling the expansion of an advanced technology, and estimates
the historical scaling of example technologies and industries to provide
a “reality check” on scenario projections of low-carbon technologies.

Each of the above approaches is designed to produce a gradual expan-
sion path that is more or less in line with past experience. However, in
general, they are not derived directly from theoretical frameworks nor
do they represent multiple underlying processes that combine to give
rise to a characteristic technology diffusion pattern. A common element
of all of these approaches is to slow new technology diffusion to reflect
“observed” diffusion patterns often described as an “S-shape” with a
slow start-up, then rapid spread, and then saturation of the relevantmar-
ket. However, fixed limits on expansion or a simple logistics curve func-
tion of time does not incorporate key economic elements. Of particular
importance, if demand for the new technology is very strong, then bottle-
necks in expandingmay be overcome, but at increasing cost. On the other
hand, if the technology is onlymarginally economic, the existence of sunk
costs in the existing technologymay allow it to price at less than long-run
marginal cost and slow new technology entry.

We aim to address this issue by deriving a formulation of technology
expansion based on theoretical foundations, and using empirical evi-
dence from the expansion of several technologies in the past to param-
eterize the setting.

3. Theoretical considerations for the dynamics of adoption

Modeling of technology for climate change has drawn on basic ob-
servations from the more general literature on technology adoption.
One is that technologies tend to be adopted over some period of time,
often characterized by an S-shaped relationship between market share
and time where initial adoption is slow, then speeds up, and finally
slows as the market nears saturation. Among the earliest papers to
study this process was that of Griliches (1957) who studied the adop-
tion of hybrid corn,which competed against the traditional non-hybrid-
ized seed. Another key observation was that costs of a new technology
often appear to fall after initial introduction (e.g. Wright, 1936). Arrow
(1962) offered the idea that this was a process of “learning-by-doing.”

A variety of possible explanations for gradual adoption and falling
costs have been offered that have led to different adoption model for-
mulations (e.g. Geroski, 2000). The S-shaped penetration of hybrid
corn seemed best explained by there being a few early adopters willing
to try new things, then as word of their success spread, many others
adopted. But penetration slowed again as adoption reached high levels,
with some farmers outside the mainstream. This model of adoption is
similar to that of the spread of an epidemic, and so some technology
adoption models have borrowed from that literature.

With other goods, especially consumer goods, the applicability of the
new technology may vary by consumer or application. Electric vehicles
may be good for short trips but less suitable for consumers who would
at times like to drive long distances, and so the cost advantage for some
consumers would need to be larger than for others, or further advance
in the technologymaybeneeded to expand themarket. This has led to es-
timation of technology diffusion using a probit model, where the likeli-
hood of adoption depends on characteristics of the potential adopter.
The exact nature of the penetration of the new technologywould depend
on the distribution of differences among consumers, and on how changes
in conditions make the technology more attractive to more consumers.

Another strong theme in economics is that there are adjustment
costs associated with a sudden increase in demand (e.g. Lucas, 1967;
Gould, 1968) even in conventional sectors, and this would certainly
play an important role in a new technology sector where conditions
suddenly change to create demand for a technology where before
therewas little or none. Rapid demand for new technology, creating ad-
justment costs that are gradually overcome, could cause high prices and
slow diffusion early, and then falling prices and faster diffusion later.
The vintaging of capital and the existence of sunk capital costs in the
old technology would also suggest that, faced with competition from a
new technology, the old technology would continue to operate as long
as variable costs were met, at least until the sunk costs depreciated.
The decay of sunk investments would tend to retain a gradually de-
creasing share of the market in the old technology.

Finally, with new technology we might expect firms with intellec-
tual property rights (IPR) to monopoly price. With conventional down-
ward sloping demand, the potential market for the new technology
would be initially limited (absent perfect discrimination among con-
sumers) until patents or intellectual property rights expire. Those
lower down the demand curve, for whom the new technology was
only worth a bit more than the old technology, would be unwilling to
pay themonopoly price and continue to use the old technology.Monop-
oly pricing alone could explain falling prices and a gradually expanding
market share. This is essentially the same logic as that behind the probit
model, as the downward sloping demand curve exists because of differ-
ences among consumers in their willingness to pay for the new technol-
ogy. The main difference is that it offers a very specific reason for why
the price is initially high and then falls.

In summary, there are many processes at work that would cause or
contribute to the gradual spread of a new technology and explain a higher
initial cost (or price) of the new technology. Ideally, all of these processes
would be separately identified and modeled. However, a general chal-
lenge is understanding and separating causes, even for historical technol-
ogies that have been successful. The simplest idea, that of a learning curve,
relies on cost and cumulative output. Cost itself can be hard tomeasure. It
is far easier to observe the selling price, which may include monopoly
rents, inducements aimed at expanding the market to gain economies
of scale, and/or various government subsidies thatmay reduce the private
cost. Also, learning curves alone donot necessarily explain gradualmarket
penetration or cost reduction (Nemet, 2006). Onewouldneed to combine
a learning curve with diverse potential consumers, some of whom are
willing to pay a high price initially. Or one would need an additional as-
sumption that learning takes time, as well as cumulative experience, oth-
erwise forward-looking firms would have an incentive to generate
cumulative experience instantly to bring the cost down, cross-subsidizing
early sales with the expectation of later profits.

Our goal is to unify and capture some of these key processeswithin a
CGE model with a representation of technology diffusion that is
grounded in theory, economics and observation. The technology op-
tions we represent first and foremost are alternative technologies in
the electricity sector. Here the output for baseload technologies is indis-
tinguishable—electricity is electricity, and so adoption theories based on
differences among consumers are less compelling. The issue of adjust-
ment costs, scaling up the capability to meet demand for new plants,
is more compelling for these technologies, and well-established as an
economic principle, and so we focus on a method that incorporates ad-
justment costs.
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4. An approach for representing adoption in a CGE framework

We seek a relatively simple formulation of technology diffusion that
can be parameterized based on observations, while capturing elements
of rent and real cost increases if high demand suddenly appears (e.g.
due to a big policy shock) as well as the role of sunk capital costs. We
also look to make the process consistent with a general equilibrium
framework, and apply our formulation to the MIT Economic Projection
and Policy Analysis (EPPA) model, which will be briefly discussed in
Section 4.3.

4.1. Overview of approach for technology diffusion

Our modeling of technology diffusion presumes there is a pre-
existing technology-specific resource available in limited supply that
is required (a necessary input in the production function) to produce
the new technology, and expands based on the amount of previous in-
vestment in the resource. There is a unique resource for each technol-
ogy. This technology-specific factor (TSF), as with all factors of
production, is owned by the representative household. It is a latent re-
source until there is demand for output from the new technology. Actual
investment in a physical plant and the training of engineers capable of
building and operating the technology only occurs once economic de-
mand (i.e. willingness to pay above the cost of production) appears. De-
mand for output from the technology such that price is above the full
cost of production generates a scarcity rent on the TSF—or sometimes
referred to as “quasi-rents” because it is associated with a short-term
scarcity. In a general equilibrium setting, this assures that all conditions
of equilibrium are met—price is equal to marginal cost inclusive of the
rent and total factor payments including the rent equal income for the
representative household.

The nature of the production function is an important consideration.
First, consider a fixed-share production function (Leontief) between the
TSF and other inputs. In that case, the amount of the TSF would pre-
scribe exactly the level of output in any period, by the amount of the fac-
tor and the factor share required to produce the good. Greater demand
would simply result in a higher rent on the TSF. The cost to the economy
of the constraint would be less consumption of the good than would be
desired if the price were equal to the marginal cost of production, less
the scarcity rent. In this case, there are no adjustment costs.

Now consider a production function where we allow substitution of
capital, labor and other inputs for the TSF. This substitution allows ex-
pansion of production beyond what would otherwise be prescribed by
the available TSF, but at an added real cost, using more of other inputs.
This is the adjustment cost component of our formulation. Intuitively,
trying to speed up production leads to waste, requires hiring workers
with less training, etc. Hence, in this formulation, sudden demand for
the advanced technology will cause its price to rise, partly due to rents
on the TSF and partly due to higher real costs. In general, rents to the
TSF can include specificmonopoly rents associatedwith a license or pat-
ent, but can also include bidding up wages of technical specialists
needed to produce the technology, or due to the existence of bottle-
necks to expansion such as difficulty in siting plants or overcoming reg-
ulatory hurdles. Since the rent goes to the representative consumer, as
does all factor returns, there is no reason to separately identify rents as-
sociated with monopoly pricing from those created by skilled labor
shortages or other expansion costs.

Over time, we allow the technology-specific factor to expand as a
function of the previous period's investment level, with the idea that
as capacity expands to produce more of the technology, the constraints
on expansion ease. This lowers the price by reducing the scarcity rent
and also reduces the incentive to substitute other inputs for the TSF—
so both the real cost of production and the rent will tend to fall. The ex-
pectation is that expansion of the TSFwill be such that once the technol-
ogy is well known, workers are trained, patents expire, and capacity to
expand production is well-matched to the growth in demand and
depreciation of existing capacity, then no one can command monopoly
rents and the production cost and price approaches its long run cost.

This is not the classic learning-by-doing story, but in many ways it
operates in a similar fashion. In learning-by-doing, the technology has
an initial cost and the cost falls with cumulative experience. There is
no process that creates monopoly or scarcity rents. In our formulation,
the dependence of growth of the TSF on previous investment levels cre-
ates a similar dependence of the cost (and price) on previous capacity,
butwe are also incorporating rents and real adjustment costs. In our for-
mulation, the expanding work force is learning, and hence the higher
initial and then falling costs is a learning phenomenon in our formula-
tion, though somewhat different than in the classic learning-by-doing
story.

In principle, we could introduce a further learning-by-doing func-
tion where the long-run cost of production also fell as a function of pre-
vious or cumulative production. However, as discussed above it would
appear difficult in practice to separate even costs from rents, and then
further identify cost reductions due to learning from early cost add-
ons associated with adjustment costs.

Another element of our approach is that we depreciate the TSF each
period. With growth in demand for the good, there will be additions to
the amount of TSF in excess of depreciation. By depreciating the TSF, we
allow for a situation where demand for the technology potentially dis-
appears for some time and then reappears. Nuclear power is an example
of a technology that expanded rapidly, but then demand collapsed and
much of the capacity to build plants depreciated away. Without depre-
ciation of the TSF, production from the technology could restart at a very
high level in later periods. With depreciation, production capability
must be built back up. To continue to allow restart of the technology
in later periods, we set the amount of the TSF in any period equal to
the greater of the depreciated level plus new additions in that period
or the initial endowment. Our base assumption is that the TSF depreci-
ates at 5% per year, the same rate we assume for capital depreciation.
Grubler andNemet (2012) provide a literature review of knowledge de-
preciation rates. The TSF would not be generally considered “basic”
knowledge as we assume the underlying technology is mature. The
Grubler and Nemet review includes research and development, more
of a basic knowledge, but they also include knowledge gained from
learning by doing and the depreciation of human capital via loss of
trained staff as in, for example, the nuclear industry. This latter compo-
nent is exactly the type of depreciation we are attempting to capture.
They find a wide range of knowledge depreciation rates, and in
Section 5.6 we conduct a sensitivity analysis over the range.

We combine this new approach of a technology-specific factor, pa-
rameterized based on empirical data, with our established approach to
vintaging capital. Vintage capital is technology/sector specific, available
in a fixed supply in a given period, determined by investment in previ-
ous periods (Chen et al., 2017; Paltsev et al., 2005; Babiker et al., 2001).
As a result of its fixed supply in any period, the rental price/return on
capital in the period is determined endogenously dependingon demand
for output from that vintage. Consider imposition of an unexpected car-
bon price and a variety of vintages of fossil power plants in the electric-
ity sector, where power plant efficiency and performance has generally
been improving over time. The carbon price creates demand for low-
carbon technology and/or lower-carbon vintages at the expense of
high-carbon technology/vintages. The rental price of different vintages
will reflect this demand. The rental price for the older, dirtier vintages
of coal power plants may fall to zero, in which case the vintage may
go unused or only partly used. This follows observations that often the
oldest, dirtiest power plants have low capacity factors. It is less expen-
sive and easier to meet environmental requirements with newer,
more efficient fossil power plant vintages or completely new technolo-
gies (e.g. wind, solar, advanced nuclear), but the older plants are kept on
line for periods of peak demand or outages to the newer capacity, and so
they run at low capacity. In this sense, depreciation is endogenous be-
cause the old vintage becomes increasingly obsolete given new relative
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prices that include pollution charges, and may not be used at all even
though they formally remain available. The gradual depreciation of old
capacitywill by itself tend to result in gradual penetration of a new tech-
nology, unless the emissions constraint is very stringent. With a high
carbon price it is possible that several or all vintages could be essentially
retired immediately. However, with multiple vintages having different
efficiencies subject to gradual depreciation, it would take an extreme
policy to create a sudden switch. The “premature” retirement results
in an economic cost through a combination of more investment re-
quired in the new technology and less output from the sector.

4.2. Implementation within a CES-based general equilibrium structure

The CES production function is well-known and widely used in eco-
nomics. To briefly review, the general expression for a two-input CES
production function with inputs of capital (K) and labor (L), is:

XKL ¼ θKγ þ 1−θð ÞLγ� �1
γ ð1Þ

where XKL is an output of a K-L service, θ is the share of capital, (1− θ) is
the share of labor, and γ determines σ, the elasticity of substitution
among inputs, where σ=1/(1− γ). An equivalent formulation is to re-
placeγwithσ/(σ− 1). This expression can be generalized tomore than
two inputs with a share parameter for each input, that together sum to
1.0, however the structure requires an identical σ across all input pairs.
This restriction can be relaxed by creating input bundles, presaged by
the definitions in Eq. (1). To produce a good from this capital and
labor service we likely need at least some other input, such as energy
(E). We create another CES production function that uses XKL and E to
produce output of good Y

Y ¼ θE Eð ÞγE þ 1−θEð Þ XKLð ÞγE
� �1=γE ð2Þ

While the same structure, here we are free to choose values for γE

different from γ in Eq. (1). Special cases of the CES function are when
γ= 1, γ=0, and γ= −∞. When γ= 1 then the output is the simple
sum of the two inputs, implying that they are perfect substitutes for
each other—one can get proportionally more output if you increase ei-
ther input by itself. The case of γ = − ∞ collapses to a case where the
elasticity is zero:

Y ¼ min θEE; 1−θEð ÞXKLf g ð3Þ
Electricity O
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Fig. 1. Example of the technology-specific resource in product
often referred to as a Leontief production function. In this case,
expanding one input without expanding the others gets no increase in
output unless there is an excess of the other input in the first place.
With γ=0 we get the Cobb-Douglas production function:

Y ¼ EθE X1−θE ð4Þ

where the elasticity of substitution between inputs is 1.

4.2.1. Technology-specific factor
Of importance to the discussion above, we can formulate a technol-

ogy-specific factor, TSFS, T, defined for each technology (S) over time (T),
as an input into a CES production function. We can then specify the
share of TSF, θTSF, S, required to produce a unit of output from technology
S, and endow the economy with an initial amount of the technology-
specific resource, inishTSFS, R, defined for technology S and region R. If
the production function is the special Leontief case of the CES as in
(3), then the first year production level will be determined. If, for exam-
ple, the θTSF=0.01 (here suppressing the technology subscript) andwe
endow the economy with $1 of TSF, and denote this endowment by
inishTSF, then, if there is demand for output from the technology, we
will be limited to at most $100 of output (other inputs are used econ-
omy-wide and can be bid away from other sectors and so are essentially
not limited). A non-zero elasticity allowsmore rapid expansion depend-
ing on the endogenous rental price on inishTSF. Fig. 1 illustrates the tech-
nology-specific resource as it enters the production nest structure of an
advanced electricity generation technology in EPPA, using a carbon cap-
ture and storage (CCS) technology as an example. For all advance gener-
ation technologies, the TSF enters at the top-level nest of the production
function.

TSF accumulates and depreciates, with a lower limit of the initial en-
dowment:

TSFtþ1 ¼ max TSFt 1−δTSFð Þ þ INVTSFt½ �; inishTSFf g ð5Þ

where INVTSF is investment in TSF and δ is the depreciation rate. This
follows a standard capital accumulation model, with the exception
that there is a minimum level, otherwise TSF could fall to zero and pro-
duction would never restart. As long as there is TSF in the economy, it
provides a source of expertise for creating more capacity.

We do not have directmeasures of TSF or INVTSF, but it is easy to ob-
serve the level of output of a technology as it expands in the market.
Output can be considered an approximate scalar for the TSF input. If
utput
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Table 1
Regression information for different technology analogues.

Regression information

Start year End year % in start % in end β1 Intercepth Standard error

Nuclear USa 1970 1987 1.40% 17.70% 1.064⁎ 21686⁎ 0.042
Nuclear US 1970 1991 1.40% 19.90% 1.077⁎ 19987⁎ 0.029
Nuclear US 1970 1978 1.40% 12.50% 1.148⁎ 18,911 0.074
Nuclear US 1970 1975 1.40% 9.00% 1.496⁎ 2257 0.071
Nuclear Franceb 1966 1982 1.45% 38.68% 1.249⁎ 1942 0.097
Nuclear France 1966 1996 1.45% 69.72% 1.230⁎ 3042 0.037
Nuclear France 1966 1986 1.45% 77.06% 1.083⁎ 7945⁎ 0.018
Nuclear France 1966 1971 1.45% 5.99% 1.484⁎ −37 0.233
Solar Germanyc 2009 2014 1.18% 6.10% 1.087⁎ 4662 0.089
Solar Germany 2009 2015 1.18% 6.35% 1.026⁎ 5368⁎ 0.073
Wind USd 2008 2013 1.34% 4.12% 1.105⁎ 17508⁎ 0.031
Wind US 2008 2016 1.34% 5.54% 1.058⁎ 20491⁎ 0.052
Wind Chinae 2010 2013 1.12% 2.73% 1.406⁎ 7422 0.110
Wind China 2010 2016 1.12% 4.03% 1.161⁎ 1855 0.088
Shale gas USf,g 1999 2011 1.40% 30.09% 1.666⁎ −176 0.046
Shale gas US 1999 2012 1.40% 36.81% 1.388⁎ 93 0.067
Shale gas US 1999 2004 1.40% 3.11% 1.301⁎ −34 0.101

Data from: a EIA (2014a); b IEA (2014); c,d,e EIA (2019); f EIA (2014b).
⁎ Statistically significant with a p-value b 0.05.
g Note that after EIA AEO 2014 (with last data year of 2012), shale gas reporting began to include gas from tight oil plays.
h Note that the intercept falls out of the TSF equations and is therefore not relevant for our modeling.
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the production function is Leontief, then it is an exact scalar. We can
then estimate a relationship for output based on output in the previous
period, and accounting for depreciation. We estimate this relationship
as linear1

OUTtþ1 ¼ β1OUTt−OUTt δ0ð Þ ð6Þ

where OUT is technology output, and δ0 is the depreciation rate of the
capacity to produce OUT. We then recognize that the added production
capacity in t is

INVOUTt ¼ OUTt−OUTt−1 1−δ0ð Þ ð7Þ

where INVOUT is investment in the capability to produce OUT, and was
needed tomeet the difference between output in two periods, account-
ing for the depreciated capacity to produce OUT. Then by defining a
value for θTSF in our production process,

INVTSFtþ1 ¼ θTSF INVOUTtþ1 ð8Þ

Then, by combining Eqs. (6), (7) and (8), we arrive at the necessary
equation for INVTSF, which is needed in Eq. (5).We nowhave a relation-
ship between output in previous periods, our TSF input share and esti-
mated βs that produces the new investment in TSF and the new stock
of TSF.

4.2.2. Estimating parameters for technology-specific factor
The challenge of estimating Eq. (6) is that the new technologies we

wish to model have not yet entered the market. A reasonable solution
is to identify analogue technologies, of similar nature, that have pene-
trated in the past. We apply our approach to technologies in the electric
sector that are fairly capital intensive and so, for example, the diffusion
of hybrid corn would seem inappropriate for our purposes. Further, our
interest in adjustment costs of expanding suggestswe need an analogue
technology constrained by supply, not by demand, so as to give insight
into the upper bounds of the rate of expansion.

We consider several candidate energy technologies that have ex-
panded rapidly within large jurisdictions. We focus on what were con-
sidered, for at least some period of time, a sample of energy
technology success stories: nuclear power in the U.S. and France,
1 We originally estimated this relationship as quadratic, but found the quadratic term to
be extremely small and statistically insignificant, so have dropped that term.
modern wind turbines in the U.S. and China, shale gas in the U.S. and
solar PVs in Germany. We use output data, mainly from the U.S. Energy
Information Administration (EIA) and the International Energy Agency
(IEA), for each to estimate Eq. (6). We do not imagine our approach is
necessarily applicable to very early stages of deployment that are better
characterized as the last D (development) in RD&D where early stage
learningmay play a dominant role. Rather, our goal is to focus on expan-
sion of commercially-ready technologies to relatively large scale when
demand conditions suddenly favor them, as would be the case if a sig-
nificant carbon tax was fairly suddenly imposed. As a result, we use
data on expansion only after the technology achieved 1.0–1.5% of the
relevant market as the starting point for each regression. End points
for the regression were chosen based on when expansion appeared to
slow down, with sensitivity to the end point explored, or based on the
last year of data available. For all regressions, β1 is statistically signifi-
cant (p-value b 0.05). Information about the regressions is given in
Table 1, with the main regressions in bold, followed by alternate time
windows. The TSF parameter value (β1) for themain regressions ranges
from 1.064 to 1.666, with the values for alternate time windows falling
within that range (with the exception of the longer time window for
solar in Germany, which is lower than the range).

We use the expansion of nuclear power in the U.S. for our base pa-
rameterization (see Fig. 2). While it was expanding, nuclear was gener-
ally seen as the next generation technology, poised to take over most of
the base load generation. We use data on the annual output (in million
kilowatt hours) of nuclear electricity in the U.S. (EIA, 2014a) to estimate
Data Regression

Fig. 2. Predicted and actual output of nuclear generation in the U.S.



481J.F. Morris et al. / Energy Economics 80 (2019) 476–490
our equations. We focus on the period from 1969 to 1987, with the es-
timation series starting in 1970 (because the independent variable is
lagged one period) because that is the period of most rapid expansion.
Nuclear generation began to really take off in 1970 (when it was 1.4%
of the electricity mix) and grew rapidly until about 1987 when genera-
tion began to level off due to safety concerns and siting issues. The esti-
mated parameter with standard errors in parentheses is: β1 = 1.064
(0.042) with a p-value of 2.61E−14 and an R2 of 0.975.

A challenge of this work relates to the market share of the technol-
ogy analogues. The solar and wind technologies, while considered suc-
cess stories and world market leaders in their commercialization, have
generally not achieved market penetration beyond a few percentage
points. The limited penetration, along with short time periods, means
that even while parameter estimates are statistically significant, we
may be extrapolating outside the data range.

The nuclear power examples give us the longest data series, but nu-
clear power is not without its issues as an analogue. In France, it ex-
panded to a very large share of the market (over 75%), and so toward
the endof the period expansionwas governedmore by demandgrowth.
In the U.S., concerns about safety added to the cost of construction, so
even though it had only achieved about 20% of the market, the demand
for nuclear expansion largely evaporated. The period over which nu-
clear expanded rapidly provides a useful analogue, but it is not clear to
us how to precisely identify just that period where supply consider-
ations were limiting. As noted above, we have focused on the initial pe-
riod of rapid growth, starting from when the technology was 1–1.5% of
the totalmarket and endingwhen growth began to slow down. The end
point for the regression is therefore somewhat arbitrary, and sowe have
tested the sensitivity of parameter estimates to truncating the data at
different points.

Shale gas in the U.S. also provides an example of penetration to a
fairly high level (nearing 40% of the gas market). In fact, the rapid ex-
pansion began to drive down the gas price in the U.S., which appeared
to undermine the demand for more expansion in later years of the
shale gas boom. It could also be argued that this was not a fundamen-
tally new technology subject to bottlenecks—the process used known
drilling technology that could be redeployed from conventional oil
and gas fields. Nevertheless, there were issues of expanding rapidly
into new geographic areas where the supporting infrastructure was
not fully in place.

While in principle estimating the potential adjustment costs and
limits to expansion should not depend onwhether the source of sudden
demand for the technology was due to market forces or to public poli-
cies, different forces were at work among these technology examples.
Incentives for PVs in Germany were very strong for several years.
Shale gas in the U.S. was mainly a market driven phenomenon. Wind
expansion in the U.S. and China has depended on various government
incentives that have not always been consistent. Federal tax incentives
for wind in the U.S. have had sunset clauses, leading to an off-again,
on-again investment pattern. Nuclear expansion in France was a direct
decision of the government. In the U.S., nuclear was a market-driven
phenomenon partly shaped by regulatory policies, and ultimately
derailed by regulation and siting issues. Ideally, we would see a consis-
tent demand for continued expansion in our examples, but both public
policy and market forces can be fickle.

4.2.3. Final steps of parameterizing technology-specific factor
For implementation in EPPA, we impose a value for θTSF = .01 and

choose inishTSF in each region, r, to be consistent with the data used
to estimate Eq. (6):

inishTSFS;R ¼ θTSF TOUTr;t0∙ISh
� � ð9Þ

where TOUT is total regional electricity output in the base year of the
model and ISh is the share of the example technology at that start of
the regression period (e.g. 1–1.5%). Using nuclear in the U.S. for Eq.
(6), ISh = 1.4% as the nuclear share of total U.S. electricity generation
in 1970 was 1.4%. The value of θ is set arbitrarily small, but, once set,
consistency with the estimation of our other equations demands that
inishTSF be determined by Eq. (10). Eq. (10) further implies that the ini-
tial capacity to produce the technology scales with the size of the elec-
tricity sector in the regional economy.

Given the other parameter values, the elasticity between TSF and
other inputs, σTFF, must be set so that, when forced with a carbon
price high enough to create demand for the new technology, the new
technology expands at a rate similar to the historical expansion of the
technology analogue used to estimate the TSF parameters. We tested
different values for σTFF (we show results of a sensitivity analysis in
Section 5.7) under the different TSF parameterizations based on the dif-
ferent technology examples.We find that for each of our TSF parameter-
izations, an elasticity of 0.3 results in an initial rate of expansion of the
advanced technology similar to the historical 5- and 10-year expansion
rates of our technology examples. For example, based on the data, nu-
clear generation in the U.S. increased 11.5 times between 1970 and
1980. Using an elasticity of 0.3, under a $200 carbon price, advanced nu-
clear increases 13.4 times in the ten years from2020 to 2030. An elastic-
ity of 0.2 results in a 7.6 times increase in those ten years.

4.2.4. Capital vintaging
Vintaging of capital has been a standard feature in EPPA (see e.g.

Paltsev et al., 2005). Briefly reviewing this structure, we distinguish be-
tween malleable and non-malleable (rigid) capital. The malleable por-
tion of the capital stock in each sector is described by the nested CES
production functions as shown in Fig. 1, and the non-malleable portion
by Leontief production functions. Input share parameters for the
Leontief production functions for each vintage of capital are the actual
input shares for the period when the capital was put in place, reflecting
the substitution possibilities as described by the CES production func-
tions and the relative prices in that period. This formulation means
that EPPA exhibits a short-run and a long-run response to changes in
relative input prices, as no substitution exists with rigid capital, and
only over time does the rigid capital depreciate to be replaced with
technology that reflects new relative input prices.

Letting Km represent themalleable portion of capital and Kr the rigid
portion, the procedure can be described as follows. Newcapital installed
at the beginning of each period is malleable. At the end of the period a
fraction, φ, becomes rigid. The fraction (1− φ) that remains malleable
can essentially be retrofitted to adjust to new input prices, can take ad-
vantage of intervening improvements in energy efficiency or can be
reallocated to other sectors. Malleable capital in period t + 1 is:

Km
tþ1 ¼ It þ 1−φð Þ 1−δð ÞKm

t ð10Þ

The model preserves v vintages of rigid capital, v=1,…, 4 for each
sector/technology. In period t + 1, the first vintage of non-malleable
capital is the portion φ of the malleable stock at time t in sector i that
survives depreciation, but remains in the sector inwhich itwas installed
with its factor proportions frozen in place:

Kr
i;tþ1;v ¼ φ 1−δð ÞKm

i;t for v ¼ 1 ð11Þ

For each sector/technology, the quantity of capital in each of the re-
maining vintages (2–4) is simply the amount of each vintage that re-
mains after depreciation:

Kr
i;tþ1;vþ1 ¼ 1−δð ÞKr

i;t;v for v ¼ 2;3;4 ð12Þ

Our starting point is to have a 25-year lifetime of capital for all sec-
tors and technologies. The model's time step is five years, so when cap-
ital is first built, it is new malleable capital for 5 years, then vintaged
capital for 20 years, going through 4 vintages, for a life of 25 years.
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4.3. Implementation within the Economic Projection and Policy Analysis
(EPPA) model

We incorporate the technology structure above within the EPPA
model. The EPPA model is a multi-region, multi-sector general equilib-
rium model of the world economy and its relationship to the environ-
ment, with a focus on energy, agriculture, land use, and pollution
policies. Toward that end, it provides detail on sectors that contribute
to environmental change and that are affected by it including house-
holds, energy, agriculture, transportation, and energy-intensive indus-
try. As a full multi-sector model, it includes explicit treatment of inter-
industry interactions. The core Social Accounting Matrices (SAMs) that
include the basic Input-Output (I-O) data for each region are from the
Global Trade Analysis Project (GTAP) with a benchmark year of 2004
(Narayanan and Walmsley, 2008). These data also provide base year
trade flows. The current application of EPPA in this study is based on a
version of EPPA documented in Chen et al. (2017). The regions, sectors,
and primary factors represented in themodel are provided in Appendix
A in the supplementary material.

5. Example results

The main advanced technologies of interest are low-carbon electric-
ity generation alternatives. In general, these do not enter the market
without further policy incentives. The behavior of our technology pene-
tration formulation is best illustrated by a sudden increase in demand
for the technology. The lack of demand for the technology in a reference
case with no policy incentives conveniently allows us to create demand
for the technology by introducing a carbon price sufficient to overcome
the higher cost of the backstop. While climate policy is often conceived
of as gradually ramping upwith a slowly rising CO2 price, the real test of
our formulation is a sudden significant demand. We are also interested
in the behavior when the demand for the new technology is relatively
constant. Thus, our experimental design is to impose a CO2 price in
the U.S. beginning in 2020, and hold the price steady at that level
through 2100. We include CO2 prices per ton of $0, $100, $125, $150,
$200, and $300. Our base TSF setting uses the TSF parameterization
based on nuclear expansion in the U.S.

5.1. Advanced nuclear results

To focus clearly on the technology penetration phenomenon by it-
self, we examine one technology at a time, beginning with results
when only the advanced nuclear backstop technology available. We
show results of these simulations in six panels in Fig. 3: (a) generation
from advanced nuclear through 2035; (b) generation through 2100;
(c) the total stock of TSF; (d) the rental price of the TSF; (e) the electric-
ity price and (f) the stock of vintage capital in conventional electricity
that is unused.

As expected, the higher the CO2 price, the faster the penetration of
the advanced technology. We focus on the results through 2035
(Panel a) to emphasize the important differences in the early years.
For the CO2 prices of $200 and above, expansion begins to slow by
2030. For the carbon price of $100, generation peaks in 2030 and de-
clines slightly by 2035. The long-term behavior of the technology is ex-
hibited in Panel b. For carbon taxes of $125 and greater, the generation
level from advanced nuclear all converge by 2045 to an essentially
steady state growth path dictated by the underlying growth in demand
for electricity. With higher CO2 prices there is slightly less nuclear gen-
eration due to the fact that the higher carbon price has a bigger negative
effect on overall economic output and income in the economy. Thus,
electricity demand is reduced slightly due to lower income in house-
holds and lower output of the economy.

The $100 tax offersmore interesting behavior in themodel. Here ad-
vanced nuclear begins to penetrate and then goes away only to come
back in later years.We traced themain cause of this result to improving
conversion efficiency over time in the conventional power sector, which
lowers the cost of this generation (sensitivity results demonstrating this
are included in Appendix B in the supplementarymaterial). The penalty
needed to bring in a backstop like nuclear depends directly on the cost
of backstop relative to the conventional technology. The $100 carbon
price is initially enough to bring in advanced nuclear, but as conven-
tional fossil becomes more efficient, the $100 carbon price is no longer
sufficient to give the edge to advanced nuclear. Continuing increases
in fossil fuel prices, driven by demand and depletion, eventually lead
to advanced nuclear becoming economic again. The implication here is
that with the $100 CO2 price, advanced nuclear has just a slight advan-
tage over the conventional fossil sector and so small changes can erase
the advantage.

Panels c and d show the behavior of the stock of TSF and its rental
price. In the short run, TSF is scarce relative to demand for it, and so
the price rises. Once the level of generation reaches the turnpike growth
rate, TSF grows at the same rate, and its rental price falls to near zero.
With the rental price near zero, there is no incentive to substitute
other inputs for TSF, and also little or no impact on electricity prices.
The implication is that the cost of electricity generation has reached its
long run marginal cost. We see this behavior reflected in the electricity
price (Panel e). Except for the $100 CO2 price scenario, electricity prices
overshoot the long-run cost of the policy—the higher the carbon price,
the bigger the overshoot. Given the equilibrium conditions of the solu-
tion, this pricemust equal the cost of producing electricity from all tech-
nologies that are producing non-zero levels of output in the period. If
under low carbon prices, there is still some expansion of fossil genera-
tion, then this price is equal to the full cost of that generation plus the
carbon price charge, less any downward impact on input markets to
conventional generation. Themain price impacts are on coal generation.
It also must equal the cost of producing electricity from advanced nu-
clear, if it is produced.Without the adjustment cost formulation, nuclear
would be less expensive than conventional generation, but, in our for-
mulation, the TSF rent and substitution of other inputs raise the mar-
ginal cost to be necessarily equal to the marginal cost of other
generation options that remain active.

The long run price of electricity is identical across the carbon price
scenarios because advanced nuclear has no direct emissions of CO2.
Given the I-O structure of the model, other inputs used to build nuclear
will have GHG emissions, to the extent there remain emissions, and
hence there is some pass through of different costs. However, that effect
is negligible. The $100 price scenario diverges slightly from the others
over the middle of the century because advanced nuclear is not in the
mix.

Finally, in Panel f we see that in the short term, there is significant
idle conventional generation capacity when the carbon price is above
$150. Because the TSF price is above zero, even with the $100 carbon
price, the tax policy is imposing some windfall losses on conventional
generation—the rental price on this capital has fallen, but remains
above zero which means the plants are still operating, but not recover-
ing the full cost of building them again, at least with the technology that
existed when they were originally built. The $100 price is very close to
leading to a switch in generation from conventional fossil to nuclear,
and so relatively small changes in other variables lead to nuclear enter-
ing, exiting, and re-entering.

5.2. Other technology analogues

To isolate the effect of TSF parameterization, we again focus on sce-
narios with a single backstop (advanced nuclear) available and a carbon
price of $200 or $125/ton CO2.We use each of the TSF parameterizations
found in bold in Table 1. Fig. 4 shows the resulting backstop output, with
the left panels (Panels a and c) showing the short-term results to 2035
and the right panels (Panels b and d) showing the long-term results to
2100. The different TSF parameterizations have almost no impact on
the long-run penetration of the backstop. However, they do cause
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Fig. 3. Impact of carbon price on advanced nuclear: (a) advanced nuclear generation to 2035, (b) generation to 2100, (c) total stock of TSF, (d) TSF rental price, (e) electricity price, and (f)
unused vintage fossil capital.
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some differences in the initial penetration. The differences are minor
under the $200 carbon price. They are more noticeable, though still rel-
atively small, under the $125 carbon price. This suggests that, given the
range of TSF parameter values we estimated, the TSF parameter value is
most important under circumstances when the advanced technology is
only slightly more competitive than other technologies. When the ad-
vanced technology has a clear economic advantage, the TSF parameter
value is less important (provided it is in the range of the examples we
found).

As described in previous sections, there are challenges to estimating
the TSF parameter value, and so there is some uncertainty in the esti-
mates. However, given consistent demand for a technology, it appears
that the exact parameter value, within a given range, only makes a
small difference in the initial expansion (depending on the economic
circumstances), and virtually no difference on the long-run expansion.
The difference could be important under tight near-term targets.

Also of note is that three of the technology analogues—nuclear in the
U.S., wind in the U.S. and solar in Germany—yield very similar TSF pa-
rameter values and nearly identical results. For the remainder of this
paper we use the TSF parameterization based on nuclear in the U.S.
5.3. Wind results

We turn next to a case where the only backstop technology is wind,
as shown in Fig. 5 with the following three panels included: (a) wind
generation, (b) the TSF price, and (c) the electricity price. The EPPA
model addresses the intermittency of wind by requiring natural gas
backup generation, that operates at low capacity levels (7%), to capture
the fact that it is not possible to shift loads fully to meet the daily and
monthly pattern of wind power production (Morris et al., 2010). Wind
with gas backup as defined in themodel is amore expensive technology
than advanced nuclear because retaining the capital cost of gas backup
that is rarely actually used adds substantially to the cost. Other options
such as storage (pumped hydro, compressed air, batteries) are possible,
but in general are more expensive still. As a result, it takes a higher
carbon price ($200) to achieve significant penetration of this technol-
ogy. An interesting feature that shows up under a $200 tax is that
after the initial expansion of wind with gas backup, there is a decline
in generation from 2045 to 2060, followed by further expansion
(Panel a), similar to the entry, exit, and re-entry of advanced nuclear
under a $100 tax.
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Fig. 4. Impact of TSF parameterization based on different technology analogues: (a) $200 carbon price, advanced nuclear generation to 2035, (b) $200 carbon price, advanced nuclear
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We traced this behavior in both cases to an assumption of an under-
lying trend of exogenous efficiency improvements for fossil generation.
By chance, under a flat $200 carbon price, during the period of 2045–
2060 the gain in fossil efficiency, combinedwith changes in fuel and fac-
tor prices, cause fossil generation costs to fall enough to again compete
effectively with wind with gas backup. As a result, fossil generation re-
covers during that period while wind declines. After 2060 wind with
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Fig. 5. Impact of carbon price on wind with gas backup: (a) g
gas backup once again becomes the more cost effective technology
and expands rapidly, while fossil declines and phases out of the gener-
ation mix, due to rising costs of fossil fuels with depletion. We demon-
strated this as the source of the behavior by eliminating the
autonomous energy efficiency improvement (AEEI) in conventional fos-
sil generation (blue dashed line in the figure). In this case the dip in
wind generation disappears.
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Panel b of Fig. 5 shows the TSF price for wind with gas backup. The
pattern is the same as for advanced nuclear, but the price does not rise
as high becausewindwith gas backup ismore expansive than advanced
nuclear, the demand for it is not as high and it does not expand as
quickly. The electricity price is shown in Panel c. The taxes below $200
are not sufficient to bring in the technology, and so the higher electricity
price reflects the higher cost of the carbon tax on generation. The $200
and $300 taxes show the same pattern as advanced nuclear: after the
initial increase, the price converges to approximately the same level
once the TSF is no longer a constraint. The higher carbon price will
have some effect on the prices of all inputs in the wind generation pro-
duction function to the extent fossil energy is used in their production.
The gas backup will also contribute to small differences: the gas back-
up operates at very low capacity factor, and thus the price effect is min-
imal. Although not shown in the figure, wind also shows the same pat-
tern of behavior as advanced nuclear for the stock of TSF and the
amount of unused vintage fossil capital.

5.4. Results with all technologies competing

We also ran scenarios where all advanced technologies are available
and compete among each other, again with a fixed carbon price. Fig. 6
shows the resulting electricity mix under two cases of the $200 carbon
price, eachwith a different cost for advanced nuclear. A key assumption
is the cost of backstop technologies compared with the conventional
technology for which they are perfect substitutes. Cost assumptions
for electricity sector technologies are provided inAppendix C in the sup-
plementarymaterial. The default cost assumptions for advanced nuclear
and gas CCS lead to them being 1.47 and 1.42 times the cost of conven-
tional coal generation at base year prices, respectively. Panel a shows
the electricity mix that results using the base cost assumption. Once
the carbon price is introduced, a mix of advanced technologies is seen.
But ultimately, advanced nuclear takes over the market, becoming the
dominant source of generation. With several alternatives that can ex-
pand independently, fossil generation leaves the market more quickly
than when only a single backstop was available.

Panel b of Fig. 6 shows the electricity mix that results when the cost
of advanced nuclear is increased to 1.55 that of conventional coal. The
higher cost of nuclear leads to a larger market for gas CCS. Toward the
end of the period, gas CCS declines. The rising natural gas price reaches
a level toward the end of the century that favors nuclear.

Comparing Panel a and b illustrates that themodel can be quite sen-
sitive to small changes in a technology cost. This reflects the fact that
these generation technologies are modeled as perfect substitutes. If
the cost change flips the relative cost among competing technologies,
the new lower-cost technology will tend to dominate. On other hand
large changes in costs that do not flip the relative cost may little or no
effect. With adjustment costs, multiple technologies can compete
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Fig. 6. Electricitymix under $200 taxwhen all advanced technologies are available: (a) advanced
times the cost of conventional coal.
initially because expansion of the least expensive is slowed, but as ca-
pacity to expand it increases, it will dominate others. In the example
here, the small increase in the cost of nuclear makes gas with CCS the
least expensive option, at least until the gas prices rise.

5.5. The impact of technology costs

We further investigate the impact of technology costs by looking at
the case of a $200 taxwhen advanced nuclear is the only backstop tech-
nology available. We test scenarios in which the initial cost of advanced
nuclear is 1.47 (the base setting), 1.1 and 2.0 times the cost of conven-
tional coal generation. As Panel a of Fig. 7 shows, the initial cost affects
both the timing of penetration and the ultimate level of penetration. A
relative cost of 2.0 compared to conventional coal is too expensive for
significant penetration, and we see the technology initially expands,
then contracts, and then expands again at the end of the period (i.e.
the higher cost results in behavior for a $200 taxmuch like the behavior
with the base cost and $100 tax in Fig. 3). This pattern is largely a func-
tion of the flat tax, coupled with the assumption of efficiency improve-
ment for conventional generation and the endogenous, and generally
rising, price of coal. As one would expect, the cheaper the technology,
the greater the demand for it, resulting in a higher TSF price (Panel b).
The technology cost also determines the ultimate level of the electricity
price, with lower costs resulting in lower electricity prices (Panel c).

5.6. Impact of TSF depreciation

As discussed in Section 4, another important feature in our represen-
tation of technology penetration is depreciation of the TSF. This means
that if investment is not continually made in the TSF for a technology,
the ability to build that technology will gradually depreciate away. A
major motivation for this approach was to recognize that if demand
for the technology disappeared for a lengthy period of time, then the
capacity to expand would erode away and would need to be rebuilt.
To explore the impact of this TSF depreciation on the results, we devel-
oped a scenario in which a $200 carbon tax begins in 2020 and lasts
until 2040, after which there is no tax until 2080 when the $200 tax
resumes for the rest of the period to 2100. We run this scenario both
with and without depreciation of TSF, using a TSF depreciation rate of
5% per year. In both cases, we assume that advanced nuclear is the
only technology available. Fig. 8 shows the results of both cases,
compared to the case of a constant $200 tax with TSF depreciation
(the default case).

Panel a shows that for the middle years when the tax stops after
2040, the cases with and without TSF depreciation behave the same—
advanced nuclear generation drops, falling to zero by 2060. The blue
line is (nearly) completely covered by the green line through 2060,
and from 2060 to 2080 there is no production in either case. When
(b) windgas
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Fig. 7. Impact of technology cost under $200 tax when only advanced nuclear is available: (a) generation, (b) TSF price, and (c) electricity price.
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the tax resumes in 2080, the two cases are very different. Without TSF
depreciation, generation is immediately able to resume at high levels.
However, with TSF depreciation, when the tax returns, advanced nu-
clear generation must start at low levels until the TSF stock can be
built back up once again. That is because the capability to build ad-
vanced nuclear (stock of TSF) depreciated and fell to near zero because
the technology was not being built for a significant period of time (see
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Fig. 8. Impact of TSF depreciation, case of $200 tax coming in, out and back in when only a
Panel b). Without TSF depreciation, the stock of TSF (i.e. the capability
to build the technology) does not disappear but remains where it last
left off, despite not building the technology for many years. These pat-
terns also impact the electricity price (Panel c). When the tax resumes
in 2080, if there is no TSF depreciation the electricity price jumps back
up to the level it would have been had the tax remained constant. How-
ever, with TSF depreciation, the electricity price jumps to amuch higher
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level when the tax returns, because the capacity to build advanced nu-
clear needs to be built back up.

As pointed out by Grubler and Nemet (2012), knowledge deprecia-
tion rates estimated in the literature vary widely. They find rates of 10
to 40% per year for energy and related industries. One might expect
this wide range to have significant effects on the initial deployment
and the ability of the technology to rebound after a gap in deployment.
To appropriately consider the sensitivity of results to the range of depre-
ciation rates, note that our estimated Eq. (6) includes knowledge depre-
ciation. Thus, we re-estimated Eq. (6) for the range Grubler and Nemet
find. As expected, the higher the depreciation rate, the higher the esti-
mated β1 parameter. We simulated results for deprecation rates of
10% and 40% per year where there is a break in support for advanced
technologies: a $200 carbon tax in place for 20 years (2020–2040), re-
moved for 5, 10 or 20 years, and then reinstated. We run these tests
with advanced nuclear as the only advanced technology available. As
shown in Fig. 9 for the casewith a 20-year break, there is virtually no ef-
fect on output for the period of initial growth of the new technology or
the period of output decline once the carbon price is removed. There is a
small effect on output growth once the carbon price is reinstated. Be-
cause the lower depreciation rate does not allow the stock of TSF to de-
preciate to as low of a level, it allows for a quicker rebound. For different
lengths in break of support, including no break, and for other deprecia-
tion rates, the results are consistent with what we have shown in Fig. 9.
Notably, the expansion path is virtually identical for depreciation rates
when there is no break in policy as well as in the period prior to the re-
bound in all cases. The difference in the rebound is small in the 20-year
policy break, but is even less evident for shorter breaks. Overall, the
higher β1 parameter and the higher depreciation rate largely offset
each other.
5.7. Impact of TSF elasticity

An important sensitivity is the TSF elasticity (σTSF) – the elasticity of
substitution between TSF and other factors of production (e.g. capital
and labor). This determines how binding the constraint on the amount
of TSF is in any period, and the adjustment costs of expanding faster.We
explore this sensitivity using the scenario of a $200 tax when advanced
nuclear is the only backstop available. Panel a of Fig. 10 shows how this
elasticity strongly affects the speed of expansion. The higher the elastic-
ity, the greater the ability to overcome the limits of the TSF stock by
using capital and labor instead to expand more rapidly. All elasticities
ultimately achieve the same amount of output (Panel a), following a
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Fig. 9. Impact of TSF depreciation rate, case of $200 tax coming in, out for 20 years and b
general S-shaped curve. In all results presented previously, a σTSF of
0.3 was used as the default elasticity value.

The TSF elasticity also impacts the TSF price (Panel b). Initially coun-
ter-intuitive, the higher the elasticity, the greater the TSF price in the
short run. Here we recognize that for σTSF b 1, the inputs are comple-
mentary in production, while if σTSF N 1 they are substitutes. As comple-
ments,when thequantity of one input increases then thequantity of the
other input also increases. So the scarcity of TSF leads to substitution to-
ward other inputs and an expansion of production. The expansion of
production creates greater demand for both TSF and other inputs, and
hence a tendency to increase price in a partial equilibrium setting.
Since the elasticities of substitution tested here are all considerably
less than one, the complementary nature of the production relationship
means that expansion of output of the advanced technology allowed by
the substitution elasticity is so large that it actually increases demand
for TSF, and with TSF fixed in the short run, the price rises. With output
larger in the first period, we then see that the investment in TSF follows
closely, as modeled in the next period, and eventually the investment
settles to levels consistent with the stationary growth. But, as shown
in Panel c, the speed with which investment approaches the stationary
growth level is slower the lower the elasticity.

Finally, it takes longer for the electricity price to fall to its long run
level, the lower the elasticity of substitution (Panel d). In EPPA, prices
are at the marginal cost. The electricity price is hence the marginal
cost of production. As long as there is a significant scarcity of TSF, its
price is endogenously determined so that the marginal cost is equal to
the highest cost electricity technology, and that is the cost of electricity
production from fossil fuel, inclusive of the carbon price related to coal
use. That price is identical, regardless of the substitution elasticity. How-
ever, once the scarcity of TSF is no longer binding, the marginal cost of
electricity is the long run cost of production from the advanced technol-
ogy. With different elasticities, the electricity price follows the same
long-run path, but drops down to the long-run cost of the advanced
technology at a later date, the lower the elasticity.

We noted earlier that monopoly pricing can explain slow penetra-
tion of new technologies. A long-standing derivation of the optimalmo-
nopoly price is to set productionwhere the elasticity of demand is equal
to 1. Expanding production beyond that level will begin reducing mo-
nopoly rents. Since the quantity of TSF is fixed in a period, the price is
a direct indicator of the scarcity rent. If the expansion of output is actu-
ally being set to maximize the rent, then Panel b of Fig. 10 indicates that
an owner of the patent on this new technology would increase monop-
oly rent by allowing faster expansion, at least through the range of elas-
ticities we explored.
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Fig. 10. Impact of TSF elasticity, case of $200 tax when only advanced nuclear is available: (a) generation, (b) TSF Price, (c) investment in TSF, and (d) electricity price.
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Here is it is useful to understand that the cross-price elasticity, σ, is
closely related to the own-price elasticity demand, ϵx, for TSF. The for-
mula for the relationship is given by:

ϵx ¼ −σ−α 1−σð Þp
1−σ

x
ð13Þ

where α is the CES production function share of x (the TSF input) into
production and p is the price of TSF, relative to the price of other inputs.
As a point approximation, the price and quantity can be normalized to 1,
eliminating the ratio. And if α is small as it is in our formulation, then ϵx,
is approximately equal to −σ. However, in our case even though α is
very small (0.01), we are getting to prices of TSF that are very high
(1000), and hence the ratio of p1−σ/x means that using –σ to approxi-
mate ϵxwill become less and less accurate. That ratiowill become larger,
and we will be subtracting a bigger quantity from a negative number.
Hence, as the p gets higher with higher elasticities of substitution, ϵx,
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Fig. 11. Impact of the TSF elasticity on
will be ever greater than σ. Thus we expect ϵx to equal 1, the optimal
monopoly expansion rate in the first period, when σ is something b1.

To further investigate, we extended our simulations to include elastic-
ities of substitution well beyond 1.0, and to narrow in on the value of σ
that maximizes the rent in the first period, as presented in Fig. 11. We
see, as expected, that the rent on TSF reaches a maximum and then de-
clines. This occurs between an elasticity of substitution of 0.60 and 0.61
in 2020, somewhat below 1.0, as we expected. We also plot the price
for future years, and the peak occurs at ever-lower levels of elasticity as
time goes by. Again, given the structure of the model, this behavior is ex-
pected. Future rents are eroded because the amount of TSF increases the
more expansion there was in earlier periods. Our assumption is that the
limiting factor is not necessarily the monopoly pricing considerations,
but rather barriers that slowexpansion and availability of the technical re-
sources required to expand capacity. Those barriers and limits will create
scarcity rents that may accrue to various resources that are limited, i.e.
knowledgeable technical people as well as owners of licenses, patents,
or suppliers of components that are in limited supply.
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6. Conclusions

It has been widely recognized that significant mitigation of
greenhouse gas emissions will require advanced technologies. Tech-
nology penetration is a phenomenon that has been widely studied.
General observations are that often the price of a new technology
will drop over time, and that technology penetration takes time. In
general, wewould expect this to raise the cost of mitigation as higher
initial prices and slower penetration will mean added cost directly
because of the higher initial cost of the technology and longer reli-
ance on the old technology. There are a variety of underlying theo-
retical explanations that can explain at least some part of these
observations: the old technology will hang around because of sunk
costs, there may be monopoly pricing of the new technology, the
technical resources to expand capacity may be limited causing scar-
city rents and/or adjustment costs, there may be learning, and there
may be obstacles and barriers to expansion.

Most likely, all of these factors can play some role, under some cir-
cumstances. However, it can be very difficult to empirically separate
these different factors. We can usually directly observe price, but it
can be hard to determine the extent of rents that may exist in that
price. The eventual erosion of rents can lead to a drop in price over
time. Short run adjustment costs that eventually are overcome can
also lead to high priceswith sudden demand for the technology. Barriers
to expansion, such as siting or regulatory issues also can constrain ex-
pansion. In all of these, the result will be a combination of increased
real cost in an attempt to overcome the barriers along with rents due
to high demand that cannot be met in the short run.

Our modeling approach has vintage capital in it, and so the role of
sunk costs in preserving a technology already existed. We also had a
kind of fixed factor for technologies in earlier versions of the model.
The goal of this paper was to further develop that approach, link it to
theoretical underpinnings, provide a sounder empirical foundation
for the parameterization of the components of the structure, and to
fully explore the behavior of the revised structure to assure that it
was operating as expected, and consistent with observations about
how technology penetrates in practice. We use the structure of a
technology-specific factor of production, available in initially limited
supply that grows as a function of howmuch actual production of the
technology there was in the previous period. We made a stronger
link to the actual investment level in expanding the technology be-
cause the argument for capacity expansion is one of how much abil-
ity to expand capacity exists rather than how much actual
production there was in the previous period. We carefully identified
that several parameters needed to be jointly determined so that pen-
etration behaved as it did for the technology analogue, which we
used to estimate the relationship between capacity to expand in
time t and previous expansion rates.

We explored several technology analogues, including nuclear in
the U.S. and France, wind in the U.S. and China, solar in Germany
and shale gas in the U.S. We found that within the range of TSF pa-
rameter values from these examples, model results are quite similar
when the advanced technology has a clear competitive edge. When
there is closer competition with other technologies, the TSF parame-
ter value can lead to differences in the initial penetration of the ad-
vanced technology. The estimated TSF parameter values, and
resulting model behavior, are very similar for nuclear in the U.S.,
wind in the U.S. and solar in Germany. We use nuclear in the U.S.
for our base TSF parameterizations.

We also added depreciation of the technology-specific factor to
create the behavior where if the technology were not used for
some decades, it would face a new set of adjustment costs to scale
up again. We explored a range of TSF depreciation rates and found
that, because depreciation is included in our regression estimation,
higher depreciation rates are mostly offset by higher TSF expansion
parameter values (e.g. β1), with different depreciation rates having
only a small difference in how quickly a technology can rebound
after being inactive. We often examine policy measures where a
carbon price remains indefinitely or starts low and grows. Under
those circumstances, a technology appearing, disappearing, and
reappearing is unlikely. Nevertheless, having a structure that is ro-
bust to extreme and odd scenarios is useful.

We believe the new structure behaves well. Under our base TSF pa-
rameterization, when forced with a carbon price high enough to create
demand for the new technology, we have expansion rates very similar
to what we saw for our technology analogues. Thus, the modeled ex-
pansion is realistic, as we have seen these rates in the past. We find
that many people have difficulty believing expansion can be rapid, but
oftenwe believe the reason is that the technology onwhich they are fo-
cusing is really not economic now, and so it is difficult to imagine a re-
ality where it suddenly becomes economic. Under current conditions,
it is hard to imagine the U.S. building over 75 nuclear power plants in
15 years, but that is what happened between 1970 and 1985. In a
model, it is easy to create a condition where a technology like nuclear
is suddenly economic, and then explore the expansion rate. In our for-
mulation, CO2 prices of $125 per ton or above, are enough to create a
strong incentive to replace the existing fossil fuel fleet with nuclear
power, assuming that is the only non-carbon option. We would likely
agree with most analysts in that we do not think we will see that level
of expansion in the next 15 years. Themain reason is that we do not ex-
pect a carbon price anywhere near the level that would make advanced
nuclear highly competitive.

There are also other low-carbon alternatives that might carve out
some of the market. We tested some of these other technologies, by
themselves, and when all those we represent are available. As with
other studies we have done, which one of these technologies wins in
the long run depends on which one has the lowest long-run cost. The
particular reference formulation we have has a particular winner—ad-
vanced nuclear—but slight changes in its cost, or in the cost of its near
competitors, can easily change that result.

The formulation for new technology penetration creates adjust-
ments costs, quasi-rents, has prices falling over time, and gradual pene-
tration of the new technology. Sunk capital costs in the old technology
can slowpenetration, but if the economic advantage of thenew technol-
ogy is great enough, then our approach endogenously retires the oldest
and most inefficient vintages first, and if the advantage is great enough,
all of the old capital. Thismakes capital depreciation in ourmodel essen-
tially endogenous. Of course, it is more costly to build new capacity and
prematurely retire old capital, but if the incentive is great enough then
the existence of old vintages is not an absolute constraint on how fast
we can transform the energy system. We see in many European coun-
tries with strong renewable generation incentives that other capacity
is idled or operating far below full capacity, and similarly in the U.S.,
the tightening of pollution standards and cheap natural gas has led to
retirement of or low capacity factors for old coal plants. Other modeling
approaches often dial in very specific constraints on expansion, or have
existing capacity as a hard constraint on the rate of transformation of a
sector. Our approach is based on the assumption, and observation, that
these rates and constraints are not absolute but depend on economic in-
centives.We believe our approach is consistentwith a large bodyof eco-
nomic theory and reasoning, and leads to a set of results that is
consistent with observation.
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