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requirements for the degree of
Doctor of Philosophy in Engineering Systems

Abstract

China’s rapid economic growth in the twenty-first century has driven, and been driven
by, concomitant motorization and growth of passenger and freight mobility, leading
to greater energy demand and environmental impacts. In this dissertation I develop
methods to characterize the evolution of passenger transport demand in a rapidly-
developing country, in order to support projection and policy assessment.

In Essay #1, I study the role that vehicle tailpipe and fuel quality standards
(“emissions standards”) can play vis-à-vis economy-wide carbon pricing in reducing
emissions of pollutants that lead to poor air quality. I extend a global, computable
general equilibrium (CGE) model resolving 30 Chinese provinces by separating freight
and passenger transport subsectors, road and non-road modes, and household-owned
vehicles; and then linking energy demand in these subsectors to a province-level inven-
tory of primary pollutant emissions and future policy targets. While climate policy
yields an air quality co-benefit by inducing shifts away from dirtier fuels, this effect is
weak within the transport sector. Current emissions standards can drastically reduce
transportation emissions, but their overall impact is limited by transport’s share in
total emissions, which varies across provinces. I conclude that the two categories of
measures examined are complementary, and the effectiveness of emissions standards
relies on enforcement in removing older, higher-polluting vehicles from the roads.

In Essay #2, I characterize Chinese households’ demand for transport by esti-
mating the recently-developed, Exact affine Stone index (EASI) demand system on
publicly-available data from non-governmental, social surveys. Flexible, EASI de-
mands are particularly useful in China’s rapidly-changing economy and transport
system, because they capture ways that income elasticities of demand, and household
transport budgets, vary with incomes; with population and road network densities;
and with the supply of alternative transport modes. I find transport demand to be
highly elastic (εx = 1.46) at low incomes, and that income-elasticity of demand de-
clines but remains greater than unity as incomes rise, so that the share of transport
in households’ spending rises monotonically from 1.6 % to 7.5 %; a wider, yet lower
range than in some previous estimates. While no strong effects of city-level factors are
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identified, these and other non-income effects account for a larger portion of budget
share changes than rising incomes.

Finally, in Essay #3, I evaluate the predictive performance of the EASI demand
system, by testing the sensitivity of model fit to the data available for estimation,
in comparison with the less flexible, but widely used, Almost Ideal demand system
(AIDS). In rapidly-evolving countries such as China, survey data without nationwide
coverage can be used to characterize transport systems, but the omission of cities
and provinces could bias results. To examine this possibility, I estimate demand sys-
tems on data subsets and test their predictions against observations for the withheld
fraction. I find that simple EASI specifications slightly outperform AIDS under cross-
validation; these offer a ready replacement in standalone and CGE applications. How-
ever, a trade-off exists between accuracy and the inclusion of policy-relevant covariates
when data omit areas with high values of these variables. Also, while province-level
fixed-effects control for unobserved heterogeneity across units that may bias parame-
ter estimates, they increase prediction error in out-of-sample applications—revealing
that the influence of local conditions on household transport expenditure varies sig-
nificantly across China’s provinces. The results motivate targeted transport data
collection that better spans variation on city types and attributes; and the validation
technique aids transport modelers in designing and validating demand specifications
for projection and assessment.

Thesis Supervisor: Valerie J. Karplus
Title: Class of 1943 Assistant Professor of Global Economics and

Management

Jinhua Zhao
Title: Edward H. & Joyce Linde Associate Professor

of Urban Planning and Transportation

John M. Reilly
Title: Co-Director, MIT Joint Program on the Science and Policy of Global

Change
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Chapter 1

Introduction

The rapid evolution of China’s transport system in recent decades has brought greater

mobility to more than a billion people. This growth, however, has not been painless.

The energy, environmental, and urban impacts of rising transport activity have chal-

lenged policymakers to devise responses and manage growth. In turn, researchers

have sought to understand the course of growth, its drivers, and options for shaping

it; these tasks are complicated by the scope, scale, and speed of change.

To contribute to that effort, this thesis develops improved methods to estimate

and project measures of transport system growth—in particular, household demand,

energy use, and environmental impacts—and to assess policies aimed at addressing

the impacts of growth. In particular, I work at multiple scales to examine how

‘micro’ differences across households, regions, and sectors relate to macroscale or

aggregate measures of demand and its consequences. This chapter motivates the

work by briefly introducing (Section 1.1) the impacts, or external costs—from global

to local scales—of passenger transport motorization. Section 1.2 describes model-

based assessment of these systems, and gives some illustrative examples of models

that have been used to study aspects of transport demand growth. Focusing on

China in particular, Section 1.3 highlights aspects of its recent history and policy

situation, explaining the need for improved methods. With this context established,
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Section 1.4 outlines the three essays that make up the dissertation.

1.1 Motorization and its impacts

In the United States, the twentieth century opened with the invention of the auto-

mobile, and closed with almost universal ownership (800 veh./103pers.) of light-duty

vehicles (LDVs)—cars, light trucks, and sport-utility vehicles (SUVs) (Oak Ridge

National Laboratory 2016). The time between saw radical transformations in the

technological, economic, institutional, cultural, and physical context in which house-

holds made their decisions to purchase and use private vehicles. These decisions, in

turn, entailed changes across society in order to design, produce, fuel, regulate, and

normalize private autos, and provide places in which to use them.

As of the early twenty-first century, the LDV markets in wealthy countries are said

to have saturated : even as incomes rise, auto ownership per capita remains flat; and

new vehicles are mainly sold to replace scrapped ones. On the other hand, in low- and

middle-income countries, saturation has not occurred. Only a small portion of the

population own vehicles, and rising incomes continually bring additional households

to the level where auto ownership is not merely desired, but affordable. Where a

large portion of the population is near this threshold and economic growth is rapid,

motorization has the potential to proceed quickly. This was especially the case in

China in the years following the financial crisis of 2007–2008, when vehicle-focused

stimulus policies contributed to rates of year-on-year growth in auto sales that peaked

at 35 percent. The history of other transport modes has prompted similar comparison.

For instance, commercial passenger aviation developed in North America, Europe and

the Soviet Union in the 1950s, and traffic grew rapidly with income (Schäfer et al.

2009); Chinese air travel demand only began to grow rapidly in the late 1990’s as

deregulation coincided with income growth (J. Wang et al. 2016).
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Any country or region’s demands for travel by these and other modes are emergent

attributes of a complex, large, interconnected, open, and socio-technical (CLIOS) pas-

senger transport system (Mostashari and J. M. Sussman 2009; J. Sussman et al. 2005).

The passenger transport system is interconnected with broader economic-, energy-,

and natural (environmental) systems. Viewed at the level of particular countries, it

is open because technologies, forms of regulation and other elements move and cat

across national borders; and because any individual having the desire and means can

enter and make use of the system. It is complex and socio-technical because it impli-

cates not only market transactions and physical vehicles, but people with preferences

and culture, institutions of government, firms with certain business practices, and the

physical (especially urban) spaces in which travel takes place. This engineering sys-

tems perspective makes clear that the process of household motorization, and more

broadly transport system growth, will differ from time to time and place to place.1

1.1.1 Impacts of motorization and policy responses

The impacts of transportation demand range from the very local to the global. A short

overview of two areas related to the work in this thesis will illustrate the complexity

of impact channels and policy responses. Note that the impacts often fit the rubric of

an externality : a cost imposed on some other party, not faced or paid by the person

whose transport activity creates that cost.

Energy use and emissions. Vehicles burning gasoline or diesel fuel emit both

greenhouse gases such as carbon dioxide (CO2), and other chemicals that are precur-

sors of air pollutants such as particulate matter (PM, e.g. PM2.5 and PM10) (PM2.5

1Changes do not always appear first in higher income countries: for instance, “dockless” or “free-
floating” bike sharing technology, in which individuals use a smartphone app to locate, unlock and
pay for trips on a fleet of shared bicycles, was pioneered in China in 2014, underwent rapid expansion
in 2017, and is only beginning to spread to the United States and Europe, where older, docked
technology had already been widespread (Fishman 2016; Parkes et al. 2013).
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and PM10) and ozone (O3). The former contribute to global climate change, while

the latter affect the health of individuals breathing polluted air, both nearby and in

places to which pollutants are carried by the atmosphere.

Policy responses to these impacts occur at every level. For instance, countries are

parties to the United Nations Framework Convention on Climate Change (UN FCCC)

and submitted nationally-determined contributionss (NDCs) towards the 2015 Paris

Agreement, describing actions that they would take towards the goal of avoiding the

worst impacts of climate change. For many, these actions included policies such as

fuel economy standards to reduce the fuel burned by road vehicles; the supply or

promotion of low-energy, low-emissions modes like mass transit and active transport;

and electrification of vehicles. These responses change but do not entirely eliminate

the impacts targeted: for instance, vehicles powered by electricity currently mostly

rely on coal- or gas-fired generators, so while they are clean at point of use, they

still contribute indirectly to global and local pollution. The economic costs of re-

sponses also affect their adoption and impact. Fuel flexibility—the option to swap

carbon-intensive for low-carbon energy sources—has raised the prospect of deep de-

carbonization of electric power generation and industry, yet transport sector climate

policy action has lagged, in part because fuel-switching for vehicles was expected to

be expensive (Creutzig et al. 2015; Gota et al. 2016; Knittel 2012; Pauw et al. 2018).

The impact of air pollution was not initially linked to early motorization and

transport; in the United States, recognition of the problem did not occur until the

1950s (Haagen-Smit 1952). Responses included the first tailpipe standards on pollu-

tant emissions (1966) and formation of an Air Resources Board (1967) in the state

of California; these institutional factors mean that transport environmental policy

continues to be set at both national and sub-national levels. Separately, concern

over dependence on imported energy and the costs of securing supply led to the pas-

sage of national Corporate Average Fuel Economy (CAFE) standards in 1975. These
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standards have been progressively tightened. Other cities, countries and sub-national

jurisdictions have also responded with to air quality problems associated with vehicle

emissions and other sources with a complex set of interacting policies (L. T. Molina

and M. J. Molina 2002).

Urban impacts. Drivers’ vehicles occupy space on roads; when the design capacity

of a road is exceeded, a time cost is imposed on other road users as their travel is

slowed. The unpriced externality leads to inefficient allocation of road space—in

short, traffic congestion. Along with the impacts of local vehicle emissions, vehicles

create noise; may injure pedestrians or cyclists; and must be parked when not in use

(Gärling and Steg 2007).2

These impacts prompt a very wide variety of responses from local governments.

To highlight this variety with only a few selected examples, transit-oriented land-use

planning aim to reduce the need for vehicle trips by siting or encouraging residences,

workplaces, and amenities where they can be connected on foot, bicycle, or by public

transit. Numerous forms of direct pricing are in use: of parking spots; and of road use

via automated toll systems with dynamic rates. In contrast, desirable transport ac-

tivity, such as the use of public transport or bicycle share systems, may be subsidized

with discounts or free travel for some or all riders. Cities invest in the construction

of mass transit—subways, regional rail, trams, and bus rapid transit (BRT)—and

in expansion of bus fleets; but also in the building and widening of roads and other

infrastructure for LDVs. Police and other officials are hired to enforce laws and

regulations.

2Research in parking policy highlights that vehicle parking is a land use that is efficient only
when its cost is directly comparable to alternate uses, e.g. housing, or commerce.
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1.2 Model-based assessment of transport system

evolution and policy

In order for governments to inform decisions about such policies, and for firms and

other actors to engage with policy processes, they rely in part on model-based knowl-

edge about transport activity growth and its response to context.3 We can think

of a model as encoding a functional relationship, f(·), between certain groups of

quantities:

(Y, Z) = f(A(t,X), X)

These include a vector, A, of measures of transport activity varying with time, t:

for instance, the vehicle-distance travelled (VDT) in certain types of vehicles; the

number of trips by other modes; amounts of money spent on certain types of travel;

quantities of freight goods moved, etc. Policymakers target a set of outcomes, Y , such

as levels of traffic congestion on certain roads, or total GHG emissions from vehicles;

and stakeholders may be concerned with a second vector, Z, of additional effects of

transport activity. The policies mentioned above all have design parameters, X, that

influence activity directly and/or mediate its impacts. For instance, the parameters

for vehicle fuel economy standards include the amounts of fuel allowable per unit

distance driven; the types and sizes of vehicles to which these amounts apply; dates at

which the standards will tighten; and the size of penalties to encourage compliance.

For road pricing or tolling, parameters include the prices; their basis (trip or unit

distance); their variation over time; and the roads to be covered. Stakeholders seek

to know:

— Without a certain policy or decision, what would be the counter-factual activity,

A, or impacts, Y , be?

— Given a new or revised policy, X, what will be the resulting demand, A, and

3by context, I denote the other transport and non-transport systems to which a particular trans-
port system is (in the CLIOS sense) open and/or interconnected ; and the socio-technical, or institu-
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impacts, Y ?

— What side-effects will there be on other impacts of secondary interest, Z?

The outcomes of interest and policy levers differ across stakeholders. For instance:

— Auto manufacturers and their suppliers size investments in facilities, workforces,

and their supply chain in order to be profitable in a future vehicle market of

uncertain size and composition across segments (small cars, SUVs, etc.).

— An international development bank investing in an intermodal transport facil-

ity—e.g. an airport with rail and road access and parking—will be concerned

that it is sited, sized, designed, and operated appropriately to meet future de-

mand.

— Countries considering collective progress on achieving the mitigation goals of the

Paris Agreement seek to understand how much one another’s transport GHG

emissions might grow in the future, and the level of mitigation effort represented

by transport-sector actions in each country’s NDCs. They use this information

to pressure one another to take more action, or to choose their own level of

effort.

1.2.1 Models of transport systems and transport concepts

As researchers study transport systems using models, they focus on measures or indi-

cators of the background concepts (transport system attributes) of interest (Adcock

and Collier 2001). For instance, demand can be measured by numbers of trips; by

passenger-distance travelled (PDT) or VDT, or by expenditure on travel. Measures

are chosen to be salient to particular research and policy questions, and with atten-

tion to the data available for modeling. The choice of measures in turn affects the

type of knowledge produced. Because resources are limited, these choices also affect

both the scope and scale of models built and used. Some examples (Table 1.1 on

tional framework that governs it.
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Table 1.1: Units of analysis, scope and levels of resolution in models including transport and transport energy.

Scope @ Resolution
Space Time Data source(s) Examples

Global total Century @ 1–10 years
Summed
national
statistics

DICE (Nordhaus and Boyer 2000)

Global @
country or country group

Decades @
1–5 years

Aggregated
from national
statistical
bodies, via
IGOs or
input-output
databases

EPPA (Chen et al. 2015), GCAM,
MESSAGE (McCollum et al. 2017),
IEA MoMo

Global or national @
state/sub-national unit

Decades @
1–5 years

National
statistical
bodies

C-REM (D. Zhang, Rausch, et al.
2013), USREP (Rausch et al. 2011)

Subset of all cities in one or more
countries

<10 years @ 6–12
months

City-level
statistics or
databases
thereof;
directly, via
national
statistical
bodies or
NGOs

ITF-OECD urban mobility model,
S. Wang and J. Zhao (2018)

One or a few cities @ households or
individuals (sampled)

1–7 days @ 10–60
minutes

Travel surveys,
passive data

Agent-based (Waraich et al. 2015);
demand econometrics; machine
learning
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page 22) will illustrate the diversity of models applied to transport systems.

Agent-based models. Researchers of transport activity in cities use individual

people as their units of analysis, and simulate agents’ location along particular road

segments to the minute or second. Such models are suitable for investigating how

changes in specific transport network links, such as widened roads or new public

transit stops, affect travel patterns; or how diurnal patterns of activity give rise to

congestion during rush hour periods. For such modelers, the costs of data collection,

processing, and computation also limit scope, both in the period of time (days and

weeks instead of years and decades) and space (single cities instead of entire countries)

that can be simulated (Waraich et al. 2015).

Integrated assessment models. At the far end of the scale, global integrated as-

sessment models (IAMs) are used to assess climate policy questions—including about

the effects of long-run economic growth and energy transitions on transport activity,

the resulting contribution of transport to climate change, and its role in mitigation

vis-à-vis other sectors. Consequently, the models are designed for broad scope: cov-

erage of the entire world; of the remainder of the economy besides transportation;

and a time period of decades, because the total emissions rate of greenhouse gases is

an essential measure when studying climate change, and its impact extends into the

future.4

Current models use countries or country-groups and sectors as their units of anal-

ysis, and annual- or multi-year time resolution. Data on total consumption of fossil

fuels is related quantities is collected and published by national governments, for reg-

ulatory purposes including securing supply and limiting consumption and emissions.

These national data can in turn be systematized in a consistent manner by inter-

national governmental organizations (IGOs) like the International Energy Agency

4Since the primary GHG, CO2, is a well-mixed and long-lived gas, a tonne of CO2 eventually
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(IEA), and linked to measures of GHG emissions. It is therefore low-cost to obtain

and use in models.5 Consequently, existing IAMs are limited in their ability to reflect

and capture heterogeneity at levels smaller than the modeled units, including eco-

nomic subsectors (such as individual transport modes, technologies or vehicles), and

human populations (such as specific cities, households, or individuals within model

regions). As transport systems grow and evolve, modelers carefully adjust parameters

and data at the country level to reflect changes that occur at finer resolution—for

instance, policy impacts, new travel options or types of vehicles, and changing con-

sumer preferences. These tuning and updating procedures allow large-scale models

to incorporate new information, and thus produce more reliable projections.

Consumer adoption and growth curves. Other modelers seek to find and apply

relationships at different levels of observation and analysis. Dargay et al. (2007)

give an example of the widely used approach of fitting logistic (Gompertz) curves

(Equation (1.1) on the next page) to data at the country-year level of resolution

(Figure 1-1 on the facing page). Drawn from the literature on consumer adoption of

new technologies such as refrigerators, cameras, and mobile phones (Bass 1969; Bonus

1973; Golder and Tellis 1998), these are a family of ‘S’-shaped functions encoding

the conceptual relationship, mentioned on page 16, between growing wealth or gross

domestic product (GDP), and motorization. Many stakeholders focus on and use

such functions because they directly encode and output the stock and sales of LDVs,

and thus help to inform decisions related to the manufacture, marketing, trade, and

regulation of vehicles. Huo and M. Wang (2012) and T. Wu et al. (2014) and others

contributes the same amount to climate change whether emitted in emitted in Argentina or Zambia.
Emissions rates differ in important ways by country, by province, by city, or by individual source,
but an accurate global total is indispensable for climate modeling.

5If a researcher sought to use firms, instead of countries, as units of measurement in an IAM,
they would find that individual firms measure energy use and emissions in idiosyncratic ways (if at
all). The resulting data would be costly to harmonize. It would be incomplete, missing portions of
the global total, so that the basic sum would need careful adjustment, entailing further effort. The
researcher would also find a smaller literature to rely on in making these adjustments, as the cost
would have dissuaded many others from making the attempt.
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Figure 1-1: Figure 8 from Dargay et al. (2007). The authors adjust the saturation
level of per capita ownership in China (upper right panel) below the U.S. level (upper
left panel) using national data on density and urbanization. For discussion of income
elasticities of demand (bottom panels), see Section 3.2.1 on page 85.

have applied these relationships to projecting motorization in China.

Vehicles / capita = γ exp (α exp (β ×GDP / capita)) (1.1)

As with IAMs, careful research that estimates and uses such relationships will include

adjustments for context. For instance, in Dargay et al. (2007), the parameter for

vehicle ownership per capita at saturation, γ, is picked to be the highest level observed

in the data—the United States. The authors set the effective γ in each country by

decreasing it using factors for population density and share of the population that

is urbanized, with country-specific data and one global coefficient for each variable.

Thus Figure 1-1 shows saturation in China at roughly 800 veh./103pers., instead of

the higher 850 veh./103pers. in the U.S.
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1.2.2 Challenges in transport system modeling

Along with the need to adjust for or extrapolate changes outside model scope (for

models such as agent-based models), or below model resolution (for IAMs or growth-

curve models), two further obstacles create problems in using models to project trans-

port demand and assess transport policies. First, different models and frameworks

often rely on alternate functional relationships and underlying logic. Lack of con-

sensus on which are most appropriate across contexts is an instance of structural

uncertainty, and results in divergent projections. For instance, Figure 1-2 on the

facing page from Yeh et al. (2016) shows that four global models that include trans-

portation and energy predict different motorization paths for China from a 2005 base

year. The authors link low projected vehicle ownership from one model (GCAM) to

a low projection of overall mobility (PDT per capita) as incomes rise; other models

use different structures that do not explicitly forecast PDT (MoMo, Roadmap) or a

similar structure with distinct parameterization and calibration (MESSAGE).

Second, it may be that the core modeling methods do not permit essential ad-

justments for a particular context. For instance, regarding logistic curves of GDP

and vehicle ownership per-capita, Hsieh et al. (2018) show that early-stage motoriza-

tion data at the national level in China do not contain much information about the

eventual saturation level of ownership (Figure 1-3 on the next page), a key param-

eter in that relationship; and so precise projections are impossible without choosing

a Chinese saturation level based on assumed similarity to other countries. Adjust-

ments to relationships modeled at the country level may also founder when system

change occurs heterogeneously across units at finer resolutions. For instance, as the

availability of ride-hailing services and, eventually, autonomous vehicle technologies

spreads from city to city, the relationship of aggregate vehicle ownership to other

quantities will shift. A similar problem may arise if individual cities make plans, as

Paris did in 2017, to ban certain types of vehicles such as internal combustion engine
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Figure 1-2: Projections of China national GDP and vehicle ownership, both per
capita, from four global models (Yeh et al. 2016, re-plotted from supplemental data);
five-year increments with reference scenarios as filled marks. Black marks: data for
individual Chinese provinces as of 2010 (National Bureau of Statistics of China 2012,
black dots).

Figure 1-3: Figure 4b from Hsieh et al. (2018). Grey lines: 400 samples from a
Markov Chain Monte Carlo simulator of the Gompertz parameter distribution, with
historical data as priors. This quantification of uncertainty gives a distribution of
equally likely fits to historical data, showing that the saturation level of per capita
ownership is not narrowly constrained by available data.
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vehicles (ICEVs). Without explicit methods to incorporate such changes, which affect

individual sub-units differently, model-based assessments risk producing inaccurate

conclusions.

1.3 Transport system growth and policies in

China

China’s size, diversity, and rapid transport system evolution pose exactly these chal-

lenges to model-based assessment. Sperling and Gordon (2008), M. Wang et al.

(2006), and Z. Zhao et al. (2013) (among many others) and Figure 1-2 reflect the

startlingly high growth rates in vehicle sales attained circa 2010, after which China

became the world’s largest single vehicle market. Growth in other modes has been

as rapid. The relationship with income growth is complex: the central government

has built or funded over 2.5× 104 km of high speed rail lines in the last 15 years, an

even longer set of expressways, as well as airports and other infrastructure (Hou and

S.-M. Li 2011; J. Wang et al. 2016). Beyond supplying transport options, the large

scale of investment was a factor in the very GDP growth that raised incomes to the

point that some households were able to motorize.

At the same time, China’s policy environment is distinct in its configuration due to

its form of government, and highly heterogeneous. Motorization in China was minimal

until recent decades, and thus regulation of emissions from LDVs is a relatively recent

phenomenon; responses to the energy, climate change, and local air pollution impacts

of LDVs did not emerge until these problems became severe and unavoidable (Ho and

Nielsen 2007; Nielsen and Ho 2013). Yet in recent years, China’s nationwide standards

on fuel economy, tailpipe emissions, and fuel quality have been tightened rapidly, and

are converging with the most stringent examples from other countries (Z. Yang and

6In some areas, such as the use of portable emission-monitoring system (PEMS) to validate
laboratory test data against the real-world performance of vehicles, China’s standards may soon
move ahead of those in other jurisdictions.
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Bandivadekar 2017).6 On the other hand, China’s current per capita auto ownership

is only at the level of the USA circa the 1930s (Oak Ridge National Laboratory

2016; M. Wang et al. 2006); a time when vehicle regulation was minimal and did not

impact ownership growth. In addition to these standards, Chinese governments at the

central, provincial and municipal level have implemented policies targeting ‘electric-

first‘ motorization;7; constraints on the overall number of vehicles; and restrictions

on vehicle use (both discussed below).

The governments of China’s cities each face individual patterns of transport system

evolution, and have priorities distinct from the central and provincial governments.

Addressing local externalities may be more important, to cities, than national or re-

gional priorities such as, e.g., the support of a strong, export-capable auto manufac-

turing industry. As well as avoiding the negative impacts of motorization mentioned,

cities seek to create places that attract residents and businesses, leading each to adopt

a unique combination of transport policy instruments including those listed in Sec-

tion 1.1.1. Knowledge about policy options and best practices is transmitted between

cities through a complex network of officials and experts (J. Zhao and Z. Wang 2014).

One example of a city-level policy response that has seen widespread adoption in

China, yet not elsewhere, is the vehicle license plate (VLP) quota, whereby a city

limits the number of license plates provided monthly to prospective vehicle owners.

The available plates are allocated by lottery, auction, or some hybrid of these methods.

First adopted in China by Shanghai in 1994, following the example of Singapore,

since 2010 the policies have spread to affect more than 100 million urban residents

in seven cities, with at least eight more considering such restrictions (Table 1.2 on

the following page). Municipal governments in China are not elected and so, despite

opposition from would-be vehicle owners, these policies are maintained and strongly

enforced, forming a constraint on households’ transport decisions. Some households

7in which new buyers are encouraged to purchase an electric vehicle (EV) of some sort, instead
of ICEV that is later replaced or supplemented with an EV.
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Table 1.2: Summary of policy details across Chinese cities implementing (panel B)
or floated as considering (panel C) ownership restrictions. Population in millions for
metropolitan or urban area.

City
Dates

Type Pop.
Hinted Announced Begun

— A —
Singapore — — 1990-05-01 Auction

— B —
Shanghai — — 1994-01-01 Auction 24.3
(Feng and Q. Li 2013) 100–120k/year.
Beijing 2010-12-13 2010-12-23 2010-12-26 Lottery 21.5
(J. Yang et al. 2014) Initially 240k/year; 150k/year from 2014; 6m total cap by 2017.

88% private.
Guiyang, GZ — — 2011-07-11 Lottery 4.3
(China Daily 2014; Mu 2011) 24k/year + unlimited suburban.
Guangzhou, GD — — 2012-07-01 Mixed 13.1
(H. Zeng 2012) 120k/year. 40% auction, 60% lottery (of which 10% NEV).
Tianjin 2013-08 2013-12-15 2013-12-16 Mixed 15.2
(Y. Cheng 2013; Qing 2013) 100k/year. 40% auction, 60% lottery (of which 10% NEV). 88%

private, 12% commercial, 0% government.
Hangzhou, ZJ 2013-07 2014-03-25 2014-03-26 Mixed 8.8
(Xinhua News Agency 2014a) 80k/year. 20% auction, 80% lottery.
Shenzhen, GD 2013-07 2014-12-29 2014-12-29 Mixed 10.6
(Xinhua News Agency 2014b) 100k/year (20k NEVs). 50% auction, 50% lottery.
Shijiazhuang, HE 2013-07 2013-06 2015-??-?? — 12.8
(F. Li 2014) 2.1m total @ 2015-12-31; 2.5m total @ 2017-12-31 ˜ 200k/year.

≤ 2 cars/household.
— C —

Chongqing (F. Li 2014) 2013-07 — — — 17.8
Qingdao, SD “ “ — — — 8.7
Chengdu, SC “ “ — — — 14.0
Wuhan, HB “ “ — — — 10.2
Changchun, JL (Xue 2015) 2015-04 — — — 7.6
Harbin, HE “ “ — — — 6.7
Baoding, HE “ “ — — — 2.2
Lanzhou, GS “ “ — — — 3.6

30



that reach a level of income at which they might wish to purchase and use a vehicle

are prevented or delayed by such quotas. This is one example of a response that

alters the connection between economic growth and vehicle purchase decisions in a

way that varies from city to city—thereby challenging both the use of observed data

to describe that relationship, and of models to project future purchases.

Overall, the rapid changes in China’s transport systems have prompted a variety

of efforts—model-based and otherwise—to describe the drivers of past growth, project

its future course, and help support policy responses. In each of the essays that follow,

I survey relevant parts of this literature.

1.4 Outline of the dissertation

Researchers can choose to model China’s transport demand, energy use and envi-

ronmental impacts using relationships gleaned and data collected at different levels

of resolution. The foregoing considerations raise the central question: what insights

and analytical capacity are gained, and at what cost in difficulty, by moving from

national aggregates to greater detail? Conversely, in order to study the impacts of

important contextual aspects—policy instruments, or geographical heterogeneity in

transport systems—what level of resolution is necessary in models and data?

This thesis contributes methodological responses to this broad challenge, organized

into three essays in two areas of work. First, in Chapter 2, I develop methods for

increasing geographical and sectoral detail in aggregate computable general equilib-

rium (CGE) models of China’s economy, to both increase realism by carrying forward

variations at these levels of resolution, and to bring units of analysis to levels which

better match the targeting of existing policy.

Second, in Chapters 3 and 4 together, I develop a novel application of recent

econometric methods, in order to derive empirical facts about demand from social
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science survey data. I show how these data—collected without any particular focus

on transport—can be used within flexible demand systems to capture how the trans-

port share in Chinese households’ expenditure varies across the income spectrum,

and in relation to measures of transport system and urban context at the city level.

Finally, I cross-validate the new demand systems across geographical subsets of data,

and against more widely-used formulations, to understand how what advantage they

confer, where they are sensitive to partial coverage in the data used for estimation.

Throughout the work, I maintain a perspective of transport in the context of

broader economic activity. In Chapter 2, the CGE framework incorporates the en-

tire global economy, intermediate demand and output of other economic sectors. In

Chapters 3 and 4, though I focus on household consumption and specifically the cat-

egory of transport expenditures, the systems of demand simultaneously account for

other uses to which households may put their money, letting these constrain transport

budgets.

Emerging from these innovations, I provide findings, in the first part, on the

course of future transport demand growth absent policy, and analyse the interaction of

climate and transport-sector policy instruments. The second part, gives new evidence

of the transport spending behaviour of Chinese households, and its relationship to

factors such as population density and the supply of transit infrastructure, in the

period 1995–2007. I also make contributions to modeling practice, by describing

how these new demand systems may be applied in projection, simulation, and policy

analysis; and to future data collection efforts, by identifying dimensions of variation

that should be spanned in order to capture the range of household behaviour.

Figures and tables are included inline where possible. Supplemental figures and

tables are placed in chapter appendices or, where very long, in Appendix A. Each

chapter contains its own references; the bibliography on page 202 serves for both

this chapter and the conclusory Chapter 5. Towards the goal of reproducibility,
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Appendix B details the software, data and other materials necessary to recreate or

build on the research.
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Chapter 2

The impact of coordinated policies
on air pollution emissions from
road transportation in China

Abstract

Improving air quality across mainland China is an urgent policy chal-
lenge. While much of the problem is linked to China’s broader reliance
on coal and other fossil fuels across the energy system, road transporta-
tion is an important and growing source of air pollution. Here I develop
analytical capabilities for studying province-level impacts on total air
pollution of implementing vehicle emissions standards, and for com-
parison to broader, economy-wide climate policy, inside a computable
general equilibrium (CGE) model.

I find that full and immediate implementation of existing vehicle
emissions standards at China 3/III level or tighter will significantly re-
duce the contribution of transportation to degraded air quality by 2030.
I further show that transportation emissions standards function as an
important complement to an economy-wide price on CO2, which deliv-
ers significant co-benefits for air pollution reduction that are concen-
trated primarily in non-transportation sectors. Going forward, vehicle
emissions standards and an economy-wide carbon price form a highly
effective, coordinated policy package that supports China’s air qual-
ity and climate change mitigation goals. The methods developed also
support atmospheric modeling and integrated assessment of transport
policies.
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2.1 Introduction

Air quality is exacting a rising toll on human health and quality of life in China. A

broad variety of policy measures have been announced, and some enacted—these in-

clude increasing monitoring and reporting to understand the scope and spatial/tempo-

ral nature of the problem; setting technology standards; assessing fines and pollution

charges; and directly influencing the economic activities which produce pollutants as

a byproduct.

Transportation is the target of an important subset of these policies. Fossil fu-

els (gasoline and diesel) burned in road vehicles (cars, trucks, buses, taxis, etc.)

result in direct emissions of pollutants, including those listed in Table 2.1 on the

next page. These direct emissions mix with emissions from other large combustion

sources—especially electric power plants and industrial facilities—and affect ambient

concentrations of pollutants such as fine particulate matter (PM2.5) and ozone (O3),

which in turn impact human health.

Transportation sector policies—summarized in Section 2.2.2—include standards

regulating the allowable tailpipe emissions of specific pollutants from new private

passenger vehicles (light-duty vehicles (LDVs)), and heavy-duty vehicles (HDVs) in-

cluding light-, medium- and heavy trucks for freight transport, and buses for passenger

transport. These standards may be set to promote installation of specific technol-

ogy, such as diesel particulate filters (DPF), for compliance. Impurities in gasoline

and diesel fuel are also regulated, to ensure that these emissions control technologys

(ECTs) can function. Collectively, the combination of road vehicle tailpipe and fuel

quality standards are referred to as ‘emissions standards’ (ES).

At the same time, China’s broader climate and energy policy agenda has impor-

tant implications for air quality. The U.S.-China Joint Announcement on Climate

Change in November 2014, and China’s subsequent pledged contribution to global

climate mitigation efforts targets a reversal of rising CO2 emissions at latest by 2030.
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Table 2.1: Primary pollutant species in this analysis, and other species included in
the Regional Emissions in ASia (REAS) database, version 2.1 (Kurokawa et al. 2013),
used as the basis for emissions projections in this study. ‘VOCs’ are volatile organic
compounds.

Name
Chemical
formula

This analysis:
Black carbon BC
Carbon monoxide CO
Nitrogen oxides NOX

Organic carbon OC
Sulfur dioxide SO2

Also in REAS 2.1:
Methane CH4

Carbon dioxide CO2

Nitrous oxide N2O
Ammonia NH3

Non-methane VOCs NMV
Particulate matter ≤10µm PM10

Particulate matter ≤2.5 µm PM2.5

Achieving this goal will require economy-wide policies, such as a CO2 price, which is

currently being piloted in some regions and is expected nationwide within the next

five years. Climate policy and vehicle emissions policies will both act on the en-

ergy and transportation system, with important implications for future air pollution

emissions and air quality outcomes.

To better understand how these policies will act together to affect future air

pollution in China, I augment an energy-economic computable general equilibrium

(CGE) model to support simulation of the combination of road transportation emis-

sions standards and an economy-wide CO2 price. Section 2.2 surveys past research

and existing policies, and describes scenarios combining both types of these policies at

varying levels of stringency. Section 2.3 explains how road freight, road passenger, and

household vehicle transport are disaggregated in the CGE model using province-level

data; in Section 2.4, modeled energy use is linked to a provincially-resolved inventory
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of historical emissions, as well as standards planned for future road vehicles.

In Section 2.5, I find that ES are projected to be highly effective in reducing the

total quantity of emissions from road vehicles, despite rapid growth in transportation

activity to 2030—especially when these policies are deployed and, importantly, en-

forced in an accelerated manner nationwide. This deployment will be important as

the demand for passenger and freight vehicle travels grows, and associated emissions

increase from a small share of the total today to a much more substantial share. I

further find that an emissions standard is complementary to economy-wide climate

policy that reduces CO2 in sectors where the marginal costs of its abatement are

lower, and delivers substantial co-benefits in the form of air pollution reduction.

Since the least cost opportunities to reduce CO2 are mainly concentrated outside

of the transportation sector, an emissions standard that directly targets pollution in

the transportation sector delivers a significant additional contribution to air pollution

reductions. Thus a CO2 price plus vehicle emissions standards function as effective

and complementary coordinated strategies for addressing air pollution and climate

change in China.

Finally, Section 2.6 discusses how the methods described here can support inte-

grated assessment of the health and economic impacts of policies on the air pollutant

emissions of transportation; presents policy recommendations; and describes how the

work can be extended.

2.2 Modeling transport emissions and policy

2.2.1 Literature

Integrated assessment of policy co-benefits. The phenomenon of air pollution

co-benefits of climate and energy policy has been long recognized and studied, in-

cluding in Europe (Harmelen et al. 2002; Nam, N. E. Selin, et al. 2010; Rive 2010)
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and more recently in China (Aunan et al. 2004; K. He, Lei, et al. 2010; Nam, Waugh,

et al. 2013). In particular, Nam, Waugh, et al. (2014) applied economy-wide, general-

equilibrium models to compare the potential co-benefits in the U.S. and in China, in

light of contrasting energy systems, and the stringency of existing control measures.

Air pollution from the transport sector. For assessment of pollution and health

impacts within the transport sector, S. Yang and L.-Y. He (2016) modeled individual

Chinese provinces as independent economies, using regression models and “pollution

elasticities” to estimate health effects under future fuel price scenarios. L.-Y. He and

Qiu (2016) took a similar approach for the country in aggregate, but studied instead

the effect of mode shifts. X. Wu et al. (2016) used provincial-level modeling to assess

emissions control policies 1998–2013, concluding that continued growth from heavy-

duty (especially diesel) vehicles and enforcement of type approvals were areas of key

concern. On the side of fuel quality, Yue et al. (2015) sampled fuels at about 60 sites

in 2010–2011, discovering significant variation and exceedances, and suggested policy

adjustments to promote compliance.

Guo et al. (2016) compared the projected effects of four transport-sector policies

applied to the Beijing-Tianjin-Hebei (or Jing-Jin-Ji, JJJ) region, including acceler-

ating the adoption of ES; and S. Zhang et al. (2016) similarly designed strategies

for cities in the Yangtze River Delta. Lang et al. (2012) studied JJJ retroactively

for the period 1999–2010, noting that increases in freight traffic were related to in-

creases in transport NOx and PM10 emissions even as other species decreased. H.

Wang, Fu, et al. (2010) developed 1995–2005 inventories of vehicle emissions for the

large cities of Beijing, Shanghai and Guangzhou. Lu et al. (2017) focused on school

trips in particular, noting their contribution to congestion and pollution, and Deng

(2006) measured the monetary costs of vehicle-related pollution in Beijing by two

econometric methods.
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Emissions from vehicles and uncertainty in inventories. Emissions from road

vehicles have been studied by a variety of methods. Following in-use vehicles on

actual roads with specialized instruments, Huang et al. (2016) measure the emissions

from bi-fuel vehicles, while Zheng et al. (2015) present an instrument and drive-cycle

methods focused on black carbon (BC).

For inventories of total, rather than specifically transport, emissions, studies such

as Hu et al. (2015), use such direct measurements and bottom-up accounting to

drive emissions inputs to atmospheric simulation models, aiming to reproduce changes

in observed secondary air pollutant (i.e., PM2.5 and O3) concentrations. S. Cheng

et al. (2013) developed a hybrid approach incorporating ground monitoring data,

focusing on Beijing only. Miyazaki and Eskes (2013) used satellite measurements

and assimilation techniques to constrain the estimates of Kurokawa et al. (2013) (the

REAS inventory used in the present study).

R. Wu et al. (2016) developed a bottom-up inventory for VOCs only at the

province level, including the contribution of road vehicles. Hong et al. (2016) fo-

cus on the contribution of uncertainty in energy statistics to bottom-up methods,

finding high ratios of maximum discrepancies to mean values—for instance, the total

2012 inventory of SO2 emissions may vary up to 30%, and NOx by 16.4%, due to

energy use uncertainty alone.

Finally, Xia et al. (2016) combined satellite data with bottom-up estimates to

assess the effects of industrial- and power-sector policies during the 11th (2006–2010)

and 12th Five-Year Plan (2011–2015) periods, noting the growing contribution over

this period of NOx from transportation.

In terms of assessing past and future changes in transport activity—due to both

growth, and policy—prior studies have focused on different geographies or aggrega-

tions, transport modes, policies, and modeling methods, yet have generally said little

about the relationship with policies not focused on the transport sector. Conversely,
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examination of the co-benefits of climate policy has tended to focus on economy-wide

impacts, or comparison with specific measures in the power- and industrial sectors,

rather than the transport sector. The present work bridges this gap by providing

methods for assessing both the climate policy co-benefit of air pollution reduction,

and road transport emissions reductions due to ES, in a consistent, economy-wide

framework.

In doing so, I note that researchers continue to work to resolve the uncertainties

in the history and current state of vehicle tailpipe emissions. These are relevant to

our method for deriving transport-subsector-specific emissions factors from a database

(Kurokawa et al. 2013) that also covers the non-transport sectors where climate policy

co-benefits also arise; a matter taken up further in Section 2.4.1.

2.2.2 Existing policies and policy scenarios

To investigate transport-sector emissions standards, the magnitude and distribution

of their impact can be compared with the magnitude and distribution of impacts

from current and more stringent climate policies, and also with the effects of both

implemented in concert.

Established emissions standards. In 2000, the Ministry of Environmental Pro-

tection issued GB 18352.1–2001, its first national standard on emissions from new

road vehicles. Referred to as China 1 (for light-duty vehicles) and China I (for trucks

and other heavy-duty vehicles), these specified quantities similar to the European

Union’s Euro 2/II (Directive 91/441/EEC and 91/542/EEC), or Euro 1/I, issued 8

years earlier.

China’s national standards mandate the levels given in Table 2.2 on the following

page for emissions from LDVs and HDVs, and in Table 2.3 on the next page for the

presence of sulfur in fuels. Future national standards are specified, with final
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Table 2.2: Recent Chinese tailpipe emissions standards, and selected European Union standards for comparison (ICCT 2014, and
linked documents). Note 1: two quantities are given, for gasoline and diesel passenger cars respectively. Note 2: two quantites
are given, for the European Static Cycle + European Load Response test; and the European Transient Cycle respectively,
versions of which are specified by the Chinese standards.

Species CO HC HC+NOx NOx PM NMHC

Light-duty passenger vehicles (g/km)
China 3 2.3 0.64n.1 0.20 — — 0.56 0.15 0.50 — 0.05 —
China 4 1.0 0.50 0.10 — — 0.30 0.08 0.25 — 0.025 —
China 5 1.0 0.50 0.10 — — 0.23 0.06 0.18 0.0045 —
Euro 5 0.50 — 0.23 0.18 0.0045 —
Euro 6 0.50 — 0.17 0.08 0.0045 —

Heavy duty vehicles (g/kW·h)
China III 2.1 5.45n.2 0.66 — — 5.0 0.10 0.16 — 0.78
China IV 1.5 4.0 0.46 — — 3.5 0.02 0.03 — 0.55
China V 1.5 4.0 0.46 — — 2.0 0.02 0.03 — 0.55
Euro V 1.5 — 0.46 — 2.0 0.02 — 0.55
Euro VI 1.5 4.0 0.13 — 0.4 0.01 — 0.16

Table 2.3: Sulfur content, in parts per million, in established and future China fuel quality standards (ICCT 2014). Note 1:
China I gasoline was required to be unleaded, but no maximum sulfur content was specified.

Level I II III IV V

Gasoline —n.1 500 150 50 10
Diesel 2000 500 350 50 10
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implementation dates. Some provinces have sought approval to proceed with earlier

implementation of these standards. This permission is partly predicated on the ability

of fuel providers to supply cleaner fuels that will not degrade the emissions control

technologies implied by the standards.

Finally, a variety of local, ad-hoc policies also aim to reduce emissions from road

vehicles. These include prohibiting driving by some or all vehicles on certain days,

accelerated retirement of older vehicles, limiting the number of vehicles owned, and

promoting the adoption of New Energy Vehicles (alternative fuel vehicles, such as

battery-electrics). The current analysis does not treat these policies, in effect assum-

ing that their effect is constant as reflected in the transport activity and energy- and

emissions intensities in the base year data.

Climate & energy policy. Climate and energy policies in the broader economy are

another class of measures which can reduce emissions of the pollutants that contribute

to poor air quality. Similar to transport-sector policy, these change the amount or

type of energy used, or the amount of pollution emitted per unit energy. Section 2.4.3

describes in more detail how these changes contribute to reductions in total emissions.

Policy scenarios in this study. My analysis employs five model configurations,

labeled A–E, as shown in Figure 2-1 on the following page.

The policies implemented in these scenarios are as follows.

A. No Policy. Pollutant emissions from all sectors, including transportation, remain

the same per unit of fossil energy consumed, as they were in 2007 (the base year

for the analysis). As energy demand grows in projections, associated pollutant

emissions grow at the same rates. I also adopt the mild, autonomous reductions

in energy-basis emissions factors in non-transport sectors developed by M. Li,

1Firms have a direct incentive to improve the efficiency of their production processes, thereby
reducing costs. These improvements can have the side effect of improving energy efficiency or
reducing pollution.
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Figure 2-1: Policy scenarios in this study, with the stringency of road transport
emissions standards and the initial (2015) CO2 price level in RMB per ton.

N. Selin, et al. (2014), representing the impact of learning-by-doing1 and capital

turnover2 (see Section 2.4.1).

I also consider a sensitivity scenario, termed A′, with no transportation ES

implemented, and the small CO2 price of Scenario B.

B. Established Policies. All new road vehicles and fuels meet the China 3/III stan-

dards, so that the entire fleet converges towards this standard over time as older,

dirtier vehicles are retired. In regions which have already committed to intro-

ducing vehicles cleaner than China 3/III in the near future, the lower emissions

levels are used instead. In addition, a small, gradually-rising, economy-wide

CO2 price promotes energy intensity improvement and fuel switching to reduce

CO2 emissions. This instrument is used to model the combined effect of China’s

prior and established national and regional energy- and carbon-intensity targets

and other direct policy measures affecting the broader economy. As a result of

the energy system changes induced by the CO2 price, there is a co-benefit of

2Industrial equipment has a finite lifetime and must be periodically replaced. New, replacement
equipment is often more efficient, requiring less energy or producing less emissions for the same
production.
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pollutant emissions reductions in these sectors (mainly as a result of displacing

coal).

C. Stringent ES. More stringent tailpipe emissions and fuel quality standards are

introduced, reaching China 6/VI nationwide starting from 2015. The CO2 price

is the same as in Scenario B.

D. Climate policy. A CO2 price that is larger and rises more quickly, causing more

rapid change in emissions across the entire economy. Road transport ES are

the same as in Scenario B.

E. ES and climate policy. The combination of the stringent ES from Scenario C,

and the higher CO2 price from Scenario D.

Comparing Scenarios A and B illustrates how much established policies (in place

prior to the introduction of the new nationwide China 4/IV standard) are expected

to reduce pollutant emissions, compared to a future where transportation energy

use has the same air pollutant emissions intensity as today. Comparing Scenario A′

to B further isolates the effect of ES, as both scenarios have the same CO2 price.

Comparing Scenarios B and C similarly illustrates the impact of accelerating road

transport policies under the same CO2 price. Comparing Scenario B with Scenarios

C, D and E illustrates the relative size and distribution of benefits from road transport

policies compared to climate policy, and also the combined effect of the two.

2.3 Representing transport subsectors in the

China Regional Energy Model

In order to represent policies that target road transport in particular, I extend

the China Regional Energy Model (C-REM), a multi-sector, multi-region, recursive-

dynamic CGE model of the global economy, with provincial detail in China. The

model has 30 regions within China and four international regions (see Table 2.4 in

45



Appendix 2.A on page 75); the economy is represented in 14 sectors (see Table 2.5

on page 75). The C-REM projects output from each sector of each province, as well

as trade and final demand (consumption), in value units, every 5 years to 2030.

Section 2.3.1 describes a disaggregation of the original model’s monolithic trans-

port sector into five subsectors; Section 2.3.2 discusses the data collected and used to

calibrate the resulting structure.

2.3.1 Methodology

The transport sector disaggregation has two parts. Commercial transport denotes the

activity of the original C-REM TRN sector. The portion of this sector’s output con-

sumed as an intermediate input in other production is assumed to be freight transport,

while the portion directly consumed by households is commercial passenger transport.

As shown in Figure 2-2 on page 48 (top panel), each of these portions is disaggre-

gated into road and non-road sectors, with the latter comprising rail, marine, air and

(for freight only) pipeline transport. Household transport denotes the consumption,

by households, of commercial passenger transport (i.e. output from the former TRN

sector), as well as from other sectors entering a household vehicle transport (HVT)

sector with particular structure. In the CGE model’s supplemental physical account-

ing, the activity levels for the two freight transport sectors—freight road (FR) and

“other” i.e. non-road freight (FO)—are in t km/year, and the activity levels for the

two commercial passenger sectors (passenger road (PR) and non-road passenger (PO))

and the HVT sectors are in pers. km/year.

The household transport structure (Figure 2-2 on page 48, bottom) is adapted

from one used in the Economic Projection and Policy Analysis (EPPA) model, devel-

oped and detailed by Karplus et al. (2013) for the representation of light duty vehicle

technology detail in CGE, and previously applied to China by Kishimoto, Paltsev,

et al. (2012). For the present work, transport disaggregation is applied to Chinese
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provinces only, leaving an aggregated TRN sector in the international regions, and

alternative powertrains are not represented, since they formed a small fraction of the

household vehicle stock in 2007 (Gong et al. 2012).

2.3.2 Data for subsector disaggregation

Reliable transport data are important if models are to provide credible transport

policy analyses, and statistics on China’s economy, energy use and transport system

present certain challenges. Guan et al. (2012) recorded a “gigaton gap” in reported

CO2 emissions—equivalent to Japan’s national total—between a sum of provincial

totals and the national figure given by the National Bureau of Statistics of China

(NBSC). Provincial statistical bodies and the NBSC apply corrections for real or

perceived misreporting or perform other undocumented adjustments to correct various

errors (Holz 2004). These challenges were encountered during development of the C-

REM. The strategy for assembling the model’s social accounting matrix (SAM) and

associated supplementary accounts (particularly of energy), described fully by D.

Zhang, Karplus, et al. (2013) and D. Zhang, Rausch, et al. (2013), involved matching

sums of provincial output totals to national totals or international data on trade flows,

while preserving sectoral share information, which is consistent within provincial data

sets.

In disaggregating the transport sector for this research, I produced a provincial

data set by collating publicly-available information from NBSC yearbooks (China

Communications & Transportation Association 2008, 2009, and earlier and subse-

quent editions from 1999 to 2012 inclusive), and examined it to identify necessary

adjustments. While transport statistics reported by the NBSC do not show the kind

of ‘gap’ identified by Guan et al.—i.e., national totals are consistent with the sum of

corresponding provincial quantities—other statistical anomalies are found. In partic-

ular, year 2008 statistics show significant decreases relative to 2007 in marine freight

47



(TRN)

Intermediate
demand

Freight
transport (F)

Road
FR

Non-road
FO

Household
consumption

Commercial
passenger
transport

Road
PR

Non-road
PO

σF = 1.0
σP = 0.2

TRN output

Shares of intermediate & factor inputs to TRN

Household
consumption

Other
consumption

Passenger
transport (PT)

Commercial
passenger (CPT)

Household vehicle
transport (HVT)

New HVT

Fuel

OIL

Powertrain
capital
MAN

Vehicle
capital
MAN

Services

SER

Vintage HVT

OIL MAN MAN SER

σHT1 = 0.5

σHT2 = 0.2

Figure 2-2: Disaggregate transportation representation in the C-REM. Top: a mono-
lithic transportation services sector is broken into freight transport—supplying in-
termediate demand by other economic sectors—and passenger transport—supplying
the demand of households for commercial travel. Bottom: households’ consumption
contains passenger transport, which consists of commercial passenger transport or
own-supplied, household private vehicle transport. The latter is produced by house-
holds themselves, using fuel and vehicles; vehicle purchases consist of inputs from the
manufacturing and service sectors.
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Figure 2-3: Stacked official (dotted) and adjusted (solid lines) data from the NBSC
on freight activity for all of China (left) and an example province, Fujian (FJ, right).
The official data, showing an apparent increase of more than 100% in national road
freight t km (dotted green to solid red line) from 2007—2008, are evidence of an
unpublished statistical correction.

transport activity (Figure 2-3).

There are alternate explanations for this abrupt change. One possibility is that the

data accurately reflect a reduction in China’s exports, due to falling global demand

at the beginning of the 2008–2010 global recession. However, this theory fails to

explain the corresponding increase in road freight activity, such that the growth in

overall totals remained steady from 2007 through 2009 (Figure 2-3, solid lines). The

growth rates of individual modes have also paralleled the national total in subsequent

years. Instead, I interpret the change as a statistical adjustment—for a former over-

reporting of marine traffic, under-reporting of highway traffic, or both—that was

implemented suddenly in 2008, without notice or adjustment of previous data. In

order to be consistent with the new reporting, I adjust the 2007 data by sharing

out the total freight activity in the same proportion as in 2008, province by province

(Figure 2-3, dotted lines). The resulting 2007 mode shares of freight activity are shown
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Figure 2-4: Adjusted mode shares of freight traffic, Chinese provinces, 2007. See
Table 2.4 on page 75 for province names and locations. Note large variation in the
share of road transport (FR) across provinces; and large share of the rail/marine split
in non-road transport (FO).

in Figure 2-4, and reflect considerable province-to-province variation. For instance,

shipping dominates in provinces with international (Shanghai, SH or Guangdong,

GD) or domestic ports (Chongqing, CQ), while in other provinces the share of FR

varies between 10% (Beijing, BJ) and 56% (Yunnan, YN) of the total.

While supplemental transport energy and physical activity accounts for country-

level CGE regions can be based on non-governmental organization (NGO)- or privately-

maintained international databases such as Passport GMID, IEA World Energy Bal-

ances and the International Road Federation’s World Road Statistics (Euromonitor

International 2011; International Energy Agency 2010; International Road Federation
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2010), the China Energy Statistical Yearbook’s provincial energy balance tables re-

port total transport energy consumption by fuel; without any disaggregation by mode.

I estimate the energy intensity of the four commercial transport sectors FO, FR, PO

and PR by combining the adjusted activity levels from NBS with bottom-up energy

intensity figures for each mode from the extensive literature on Chinese transport (see

Kishimoto, X. Zhang, et al. 2013, Appendix A).

In order to divide the TRN output and input among the four sectors while main-

taining a balanced SAM, TRN sector intermediate and factor demands are apportioned

to the new sectors FO, FR, PO and PR, in proportion to their outputs. Energy demands

(e.g. of COL, CRU, ELE, GAS, GDT, and OIL) are then rebalanced between FO and FR

(likewise PO and PR) such that the relative energy intensities of the modes match our

estimate from statistics and literature and the input of OIL to FR (likewise PR) reflects

the 91–100% share (according to mode) of petroleum in Chinese road transport in

2007 (Ou et al. 2010).

2.4 Linking energy use to the REAS emissions

inventory

2.4.1 Energy-basis emissions factors for transport
subsectors

To represent the effects of the emissions policies discussed in Section 2.2.2, the physical

accounts of the model were expanded to include primary pollutant species from the

Regional Emissions in ASia (REAS) database, version 2.1 (Kurokawa et al. 2013):

black carbon (BC), carbon monoxide (CO), nitrogen oxides (NOX), organic carbon

(OC), and sulfur dioxide (SO2). Primary pollution is modeled as a byproduct of

either combustion of fuels to produce energy, or of industrial or technical processes.

I associate emissions of each species with individual sectors, provinces, and energy
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sources. This connection is made by calibrating energy-basis emissions factors (EFs),

in mass of pollutant emitted per unit fuel energy consumed, using the base-year (2007)

energy data contained in the C-REM SAM:

Emissions factorp,f,i,r =
Emissions of pf,i,r

Consumption of fi,r
for every



Pollutant p

Fossil fuel f

End-use sector i

Province r

(2.1)

In the model projection, the product of an emissions factor and the C-REM projected

demand for energy gives the quantity of emissions for each p, f, i, r.

The base-year (2007) data in the REAS v2.1 emissions inventory and the C-REM

SAM imply EFs in the following way. For each province and species, I aggregate

emissions from the REAS combustion and non-combustion sectors to C-REM sectors

and REAS fuels to C-REM fuels. I divide these emissions totals by the corresponding

energy flow from the C-REM supplemental accounts. The resulting 2007 EFs thus

exactly reproduce the 2007 REAS v2.1 emissions totals when used with the C-REM

base energy data.

For the C-REM road transport subsectors—FR, PR, and HVT—I determine subsector-

specific EFs, and apply these to the C-REM projection of road transport fuel energy

consumption. In the future, I make use of the detailed, bottom-up, fleet model of

Akerlind (2013). This model tracks total Chinese vehicles in detailed categories by

year of manufacture, representing the scrappage (conversely: survival) rate of older

vehicles; improving fuel economy; and annual driving distance differences between

newer and older vehicles. The fleet model also accounts for fuel demand using these

highly disaggregate categories; newer vehicles’ driving activity is associated with a
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greater fuel economy.

In C-REM periods beyond the base year, I use the engineering model to determine

the portion of fuel energy demand attributable to vehicles which are ‘new’ since the

prior C-REM period. For instance, for the C-REM forecast year 2010, this is the

sum of fuel energy demand, in 2010, by vehicles sold in 2010, 2009, or 2008. The

remainder of fuel energy demand in 2010 is associated with vehicles sold in 2007

or earlier. Using the engineering model in this way increases the time resolution in

description of the vehicle fleet to individual years, allowing a more precise division

of road transport energy use between specific numbers of new, standards-compliant

vehicles, and older, higher-polluting vehicles. However, the internal C-REM vintaging

logic, which expresses this split in economic value terms, is not constrained to be

consistent with the engineering model outputs. The size of any mismatch is not

measured or addressed in the current work.

Fuel demand from new vehicles is associated with EFs in Figure 2-5 on the next

page (bold, horizontal lines). The remaining fuel demand, associated with pre-existing

vehicles, retains the EF of the previous period—in 2010, this is the 2007 REAS/C-

REM implied EF, or in 2015 or later, the energy-weighted average across new and

used vehicles in the previous period. Thus, policy which reduces emissions in new

vehicles relative to Scenario A also reduces the emissions associated with the fuel

demand of vintage (used) vehicles in subsequent C-REM periods.

In Scenario B, new vehicles meet the China 3 (passenger road and household

vehicle transport) or China III (freight road) standard from 2008 onwards. In Sce-

narios C and E, new vehicles meet China 3/III from 2007–2010, China 4/IV (etc.)

from 2011–2015, and China 6/VI from 2016 onwards, excepting Beijing, which meets

China 5/V in 2013 and China 6/VI in 2016.

China’s emissions standards, like the Euro standards on which they are based,3

3e.g., Directives 91/441/EEC and 91/542/EEC, for Euro I/1 respectively.
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Scenario C.
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specify distance-basis, rather than energy-basis, EFs for new vehicles. To determine

energy-basis EFs for the calculation just described, I use the on-road measurements

of K. He, Yao, et al. (2010). For future Chinese standards (China 5/V and 6/VI),

I assume the on-road emissions levels will be in the same proportion to China 4/IV

as the regulated levels are to the China 4/IV regulated levels. For PR and HVT, I use

the figures for light-duty gasoline (passenger) vehicles, and to represent the average

FR vehicle, I use the figures for medium-duty diesel trucks.

Figure 2-5 on page 54 also shows the energy-weighted average EF across the entire

fleet, for NOX from refined oil combustion in the HVT fleet. Table A.1 in Appendix A

gives a complete list across provinces for 2010, 2015 and 2020. In Scenario A, the

implied 2007 EF is used unchanged throughout the projection.

Because there is a base-year implied EF for each species and province, the rel-

ative improvement in EF due to the introduction of lower-emission vehicles differs

province-to-province, and species-to-species. Absent any differences in policy across

provinces, EFs would eventually converge to the same level in all provinces, as to-

day’s heterogeneous provincial vehicle stocks are scrapped and replaced by vehicles

with identical emissions characteristics; in the current projections, this occurs near

the very end of the C-REM forecast period—see Figure 2-6.
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Figure 2-6: Projected fraction of private vehicle stock complying with various ES,
Scenario C/D.
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2.4.2 Emissions of non-transport sectors

Energy-basis emissions factors for all sources are applied to the non-transportation

sectors to obtain a complete picture of economy-wide emissions, as described by

M. Li, N. Selin, et al. (2014). Model base year (2007) EFs are calibrated, as in

transportation, to reflect the total energy demand in the C-REM SAM and quantities

in the REAS database. EFs undergo an exogenous, exponential decline, calibrated

to reflect observations in 2010 and 2013, using the method of Webster et al. (2008).

The exogenous decline in these EFs represents the continuing effect of non-market

policies and actions by firms which—for instance—will retire older equipment and

replace it with new equipment which produce less emissions in operation (capital

turnover); or implement efficiency improvements in production processes that also

reduce pollution intensity (learning-by-doing). These trends are assumed to be inde-

pendent of any CO2 price applied to fossil fuel use in these non-transport sectors; the

CO2 price reduces emissions not by altering EFs, but by incentivizing low-emissions-

intensity activities.

2.4.3 Policy impacts: modeled mechanisms and effects

The foregoing additions result in a model framework that can capture policy-related

changes at the provincial and subsectoral level.

Economy-wide climate & energy policy. Climate policy in a CGE model such

as C-REM signals sectors and households via changes in energy prices in proportion to

CO2 content, prompting these actors to respond with energy intensity improvements

and input substitution to reduce CO2 emissions. This economic response can include

reductions in energy demand and switching to low carbon fuels, which may also reduce

pollution in addition to CO2.

Climate policy also has indirect impacts on the road transport sectors in two
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ways. First, freight transport demand arises in the economy because other economic

sectors need to move their raw materials or finished goods to and from markets.

Because a climate policy may cause each sector to increase or decrease production,

their freight transport demands will also change, affecting the overall level of freight

transport energy consumption and pollution. Second, households use their income

to purchase passenger transportation services, private vehicles, and fuel. In a CGE

framework, changes in household income mean more (due to economic growth), or

less (due to stringent policy) income is available for these purchases. This, in turn,

affects passenger transport demand, energy use, and pollution.

Road transport emissions standards. I model policy measures specifically aimed

at reducing EFs more rapidly than they would decrease in the absence of regula-

tion—in particular, road transport fuel quality standards and tailpipe emissions stan-

dards. The implied base-year EFs displayed in Table A.1 vary widely—by an order

of magnitude for BC, CO and NOX from household vehicles—reflecting province-to-

province variation in the emissions attributed to road vehicles (in the REAS inven-

tory), and the amount of energy used in household and commercial road transporta-

tion (as reflected in the official energy data underlying C-REM).

As a result, the relative improvement in EF due to the introduction of lower-

emission vehicles in policy scenarios will differ province-to-province, and species-to-

species. For instance, the 2010 EFs for black carbon (BC) are 11.5 and 25.9 g/MJ

from road freight (FR) and household vehicle transport (HVT) in Anhui (AH) province,

but 12.9 and 103 g/MJ in Gansu (GS) province. This suggests that implementing

the same emissions standards will—absent differences in activity growth and mode

share—produce a larger percentage decrease in HVT emissions in Gansu than in Anhui.

On the other hand, because the EFs for road freight are the same, emissions standards

will have a similar relative effect in these two provinces. The effect on total road
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transport emissions in these two provinces will in turn depend on the shares of these

two modes, alongside passenger road, in total road transport energy use.

2.5 Results

I present findings in three sections: first, the impacts of emissions standards at differ-

ent levels (Section 2.5.1); second, the way in which these impacts vary across provinces

(Section 2.5.2), and third, the comparative impacts of economy-wide climate policy

and emissions standards (Section 2.5.3).

2.5.1 Large reductions from road transport emissions
standards

Despite average annual growth of 7.5% in transportation energy demand (4.5–9.9%

across provinces) between 2010 and 2030, established polices reduce total national

road transport pollution emissions to between 2% (OC) and 0.04% (CO) of their

2007 levels (Scenario B vs. Scenario A) (Figure 2-7 on the facing page). Further

reductions occur in Scenarios C and E, as shown in Figure 2-8 on page 60.

If fully implemented, established policies will do most of the work; the continued

sale of China 3/III vehicles alone will significantly reduce emissions in 2030, compared

to the mix of vehicles currently in use. Although future standards (China 6/VI) reduce

EFs by further orders of magnitude (cf. Figure 2-5 on page 54), these translate to a

smaller absolute reduction in road transport emissions, because they act on a small

base. These are, however, not trivial: in other countries, where large industrial

sources of air pollutants have already been thoroughly regulated, these same absolute

reductions in emissions from road sources would represent significant opportunities

to reduce the health effects of poor air quality.
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Figure 2-7: Bars and left ordinate: energy demand for three road transport sectors:
commercial passenger (PR), household vehicles (HVT) and freight (FR). Lines and right
ordinate: total emissions for five species in Scenario A (open marks) and Scenario B
(filled marks). Top: China (CN) total; bottom: four selected provinces with distinct
mixes of household vehicle, commercial passenger, and freight road transport—Beijing
(BJ), Shanghai (SH), Sichuan (SC) and Shanxi (SX).
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Figure 2-8: Changes in road transport emissions of five species: increase from
2007–2030 in Scenario A (no policy); and reductions in 2030 from Scenario A–B
(introducing China 3/III and a mild CO2 price), B–C (increasing ES stringency to
China 6/VI), and C–E (increasing CO2 price). The 2007 level is also shown, for ref-
erence. Annotations give the total emissions in each scenario and percent change in
each year/scenario compared to the bar above.
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2.5.2 Emissions standards impacts differ across provincial
transport systems

Across China, road freight transportation is a larger consumer of energy (3.06 EJ in

2007) compared to the combination of private and commercial passenger transport

(1.63 EJ in 2007)—and it is also a larger contributor of pollution: 0.6–6.9% of the

national total in species besides CO, versus 0.03–6.8% for other road modes. Con-

sequently, most pollution reductions due to ES occur in road freight transport—see

Figure 2-11 in Appendix 2.A on page 75.

Figures 2-7 and 2-11 also illustrate that the extent of emissions reductions differs

between provinces where passenger road travel activity is relatively large, and those

where passenger road activity is small in comparison to freight. For instance, passen-

ger road transport accounts for three quarters of road transport black carbon (BC)

in Beijing, but only 36% in Chongqing.

2.5.3 Emissions standards are complementary to
economy-wide climate and energy policy

Figure 2-9 on the following page illustrates that stringent road transport ES cause very

modest additional reductions in total emissions of pollutants, even though they are

very effective in reducing emissions within road transport sectors. For instance, China

6/VI emissions standards reduce road transport OC emissions by about 80% versus

China 3/III, while more stringent climate policy reduces the same emissions by only

2–22% across provinces. This contrast is due to the small share of transport in overall

emissions. In comparison, the mild CO2 price of Scenario B causes 9.6–48% reductions

in total emissions of pollution, versus no policy (Scenario A); similarly, tightening the

CO2 price only (Scenario D) results in 8.9–27% reduction versus established policy

(Scenario B). Indeed, the co-benefits of climate policy for air pollution reduction

are substantial, even for a relatively modest CO2 price. As discussed above, co-
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Figure 2-9: Fraction of transport CO and NOX in total emissions in each province,
versus the change in total CO and NOX emissions due to moving from established
to stringent ES. The reduction is generally smaller than 0.15%, in part because less
than 24% or 15% of these species, respectively, is attributed to transport; and less to
road transport.
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benefits largely come from non-transport sectors, so emissions standards for road

transportation are highly complementary in reducing pollution emissions.

Previous research emphasizes that the marginal cost of CO2 emissions abatement

in transportation tends to be higher than in other sectors, such as electricity and

industry (Kishimoto, D. Zhang, et al. 2015). This means that responses to CO2

pricing—efficiency improvements and fuel-switching—are smaller in transport, and

the sectoral pollution co-benefit of CO2 policy is also small. Indeed, reductions in

air pollutant emissions due to CO2 pricing in my scenarios mostly occur outside

the transport sector: although increasing the CO2 price (Scenario B�D) results in

8.9–27% additional reductions in total emissions, road transport emissions decrease

by only 2.0–7.1% across species.

In contrast, the within-sector reductions due ES are measured in orders of mag-

nitude, when comparing established policies (China 3/III) to a counterfactual future

where the road vehicle fleet retained its 2007 emissions characteristics. Additional

reductions due to tightening ES are similarly large as a percentage of remaining road

transport emissions, yet small in absolute terms when compared to the co-benefit of

economy-wide CO2 pricing.

Consequently, transport-sector ES are an important complement to economy-wide

climate policy, since they can achieve deep reductions via technology and cleaner fuel,

which together greatly reduce EFs. To achieve the same transport-sector reductions

purely through co-benefits of climate policy would require CO2 prices much higher

than the those modeled.
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Figure 2-10: Regional Emissions, Air Quality, Consumption & Health (REACH)
framework.

2.6 Discussion

2.6.1 Supporting atmospheric modeling and benefits
quantification

M. Li, D. Zhang, et al. (2018) describe a Regional Emissions, Air Quality, Climate

and Health (REACH) integrated assessment framework (Figure 2-10) for quantifying

the human health impacts of Chinese air quality policies, and present results for

varying CO2 price scenarios. From the current research, the new, province-, sector-,

and species-specific projections of road transport emissions can be used to support

similar analysis. Quantified reductions or avoided primary pollution (steps 1 and 2,

as in this work) forms input to atmospheric simulation (step 3), affecting chemistry

and dynamics, leading to changes in the concentration of secondary pollutants which

reflect the spatial movement of species. In step 4, reductions in population-weighted

exposure to PM2.5 and O3 are translated to reductions in adverse human health effects,

using future population densities and China-specific exposure-response relationships,

in order to determine the change, due to policy, in the economic burden of pollution.

4n.b. this ‘transport’ is a term of art in atmospheric chemistry, referring to the vertical and
lateral movement of pollutants with the air that contains them. This is distinct from ‘transport’ qua
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One example of such use is Kishimoto, Karplus, et al. (2017), in which the regional

chemical transport4 model WRF-Chem version 3.5 was used to quantify the pollu-

tant concentrations changes associated with the emissions changes identified here.5

Figures 2-13 and 2-14 in Appendix 2.A illustrate the spatial effects of the emissions

changes resulting from moving to China 3/III (Scenario B) from no China 3/III (Sce-

nario A′). Figure 2-13 shows that reduction of BC, OC, CO, and NOX emissions in

2020 mainly occurs in the North China Plain, Pearl River Delta, Yangtze River Delta,

and Sichuan Basin. These emissions reductions would reduce the concentrations of

PM2.5 (8 µg/m3 to 20 µg/m3), NOX (more than 20 µg/m3), SO2 (3 µg/m3 to 5µg/m3)

in Eastern China, and O3 (12µg/m3 to 16 µg/m3) in Southern China (Figure 2-14 on

page 79). However, due to changes in the chemical dynamics of O3 formation, the

reductions would result in a slight increase in O3 in the North China Plain. Kishi-

moto, Karplus, et al. (2017, Figure 9 on p.16) also show that no significant changes

in air pollutant concentrations are observed when moving from China 3/III (Scenario

B) to China 6/VI (Scenario C), in either 2020 or 2030, because road transport is a

relatively small emissions source compared to other sources such as domestic energy

uses and industry.

2.6.2 Policy implications and recommendations

Taken together, the results clearly illustrate the emissions reduction benefits of com-

pletely implementing emissions standards at the China 3/III level or higher. To

quantify the consequences for secondary pollutant concentrations and the burden of

human health impacts on the economy would require further work to exercise the com-

plete REACH framework; but my results indicate the scale of the benefit available

due to the two policy levers considered.

‘transportation’, used throughout the chapter.
5Full methodological detail and additional data sources are described at Kishimoto, Karplus, et

al. 2017, p.8.
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While moving to China 6/VI standards is clearly desirable, if tightening official

stringency comes at the expense of sustained implementation effort that brings real-

world fleets in line with policy targets, policymakers are better advised to focus on full

enforcement of the existing standards. The results show that the marginal benefits

of accelerating the policy timeline are modest. On the other hand, a small number of

non-compliant vehicles, running on non-compliant fuels, could more than offset the

modest benefits of moving a large number of sales to a more stringent standard; and

indeed the work of X. Wu et al. (2016) and Yue et al. (2015) and others indicates

ongoing issues with on-the-ground enforcement of existing standards.

Lessons from the longer history of air pollution policy Europe and elsewhere that

suggest significant benefits from accelerated road vehicle standard implementation do

not yet apply in China (Fenger 2009). Changes that result from incremental stan-

dard tightening are large relative to total emissions in today’s European context,

but remain small relative to total emissions in the Chinese context because of the

still-large emissions from electric power and industrial emissions sources. As noted

in Section 2.5.1 and Figure 2-7 on page 59, I project that energy demand for road

transport will continue to grow through 2030, both in absolute terms and as a share

of total energy demand, as increases in demand for transport more than offset im-

provements in energy efficiency (i.e., fuel economy). Consequently, road transport’s

share of total CO2 emissions will also grow. In contrast, the large reduction in air

pollutant emissions factors from implementing established (China 3/III) emissions

standards means that the share of road transport in total air pollutant emissions will

decrease markedly; and reductions from tightening ES can only further narrow this

already-small share.

Therefore, I underscore that climate policies now being discussed and piloted,

specifically a price on carbon such as the one I model, can serve as an important and

effective complement to the full implementation of emissions standards in the road
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transportation sector. The work suggests two main policy recommendations.

First, policymakers can strengthen mechanisms for enforcing the newly-enacted

China 4/IV emissions standards. Authorities at the highest levels should clearly

direct the Standardization Administration of China and Ministry of Environmental

Protection to strengthen and standardize the monitoring and enforcement system for

fuel quality and vehicle tailpipe emissions. If the timing for increased stringency of

standards—i.e., to China 6/VI levels—is defined well in advance, regulators, manu-

facturers and others in the system can adjust and prepare.

Second, continue to diligently work toward establishing a national CO2 price with

broad sectoral coverage. Although it seems likely that transportation will not be

included in a national CO2 emissions trading system, reductions in fossil energy use

in other parts of the economy will deliver significant and meaningful co-benefits that

will contribute to improved human health in the near to medium term.

2.6.3 Limitations: costs and implementation of tailpipe
controls

A key difference between the carbon and ES policies implemented in these scenarios

is that the cost of carbon emissions abatement is captured in the general equilibrium

framework of C-REM. In contrast, the ES policies are implemented through exoge-

nous calculation of road transportation EFs. Implementing tighter ES would require

vehicle manufacturers to install more advanced ECT on passenger vehicles and road

freight vehicles sold in China. Fuel economy improvements would also reduce the

amount of energy used per kilometer, and thus contribute to reducing the amount of

emissions per unit of fuel consumed.6 Both of these compliance options impose costs

on manufacturers and consumers if the resulting vehicles are more expensive than

those that would be sold without the standard. Shao and Wagner (2015) estimate of

6On the other hand, ECT themselves have a small but measurable energy cost, reducing the fuel
economy of vehicles, and again increasing the cost of compliance.
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the costs of emissions control technologies for different levels of Euro standards, with

some adjustment for the Chinese fleet, and note that the absolute costs for private,

light-duty vehicles are nominal.

This study assumes that these increases in purchase price due to more advanced

ECT, when considered as an increment on the cost of transport per passenger-

kilometer or ton-kilometer, are not large enough to affect vehicle purchases or ve-

hicle use intensity. More importantly, all scenarios assume that ES are fully imple-

mented—that is, 100% of new vehicles comply with the active standard as of the sale

date. In order to realize the air pollution emissions reductions identified here, ES

implementation and compliance are critical; if a fraction of new road vehicles (either

passenger or freight) are non-compliant, their much higher EFs will increase the fleet

average so long as they remain in use. Figure 2-6 on page 55 shows that ∼ 40% of

vehicles in 2020 have China 4/IV, 3/III, or pre-2007 EFs; as a consequence fleet-wide

emissions that year under Scenarios B, C, or E (Figure 2-12 on page 77) are much

higher than in 2030 (cf. Figure 2-8 on page 60), even though the 2020 fleets and total

transport energy use are larger.

Future research could relax these assumptions to study, for instance, how the

additional costs and efficiency penalties of road vehicle ECT and cleaner fuels affect

activity growth and thus the benefits of ES. If reports are available of the degree

of non-compliance with established standards, that information could be used to

anticipate the erosion of the overall ES benefit of ES due to non-compliance—and

thus the benefit of additional effort in enforcement.

2.6.4 Conclusions

Initial Chinese ES were based on previously established European Union regulations.

Ever since, China’s ES have been converging towards parity with the world’s most

stringent (ICCT 2014). Because transportation is one of several major polluting sec-
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tors, and because of the varied geographic distribution of transportation activity—and

of air pollution and its health impacts—it is important to understand the contribution

of transport-sector policies to improving air quality in China on a detailed, regional

basis. It is also important to understand how coordination of multiple policies can

lead to improved air quality in China, and whether this coordination is different from

that required in other contexts.

To this end, I herein developed key components of an integrated assessment frame-

work that projects the economic activities—including energy use in non-transport and

transport sectors—giving rise to air pollution. Within this framework, I implemented

two types of policies affecting emissions: road transport emissions standards, and

economy-wide CO2 pricing that gives a pollution co-benefit. Examining scenarios of

no policy, established policies, and more stringent policies, I characterized the relative

scale of their impacts on pollutant emissions within road transportation, and across

the economy. My results indicate that increased CO2 pricing, and full enforcement

of more stringent road transport emissions standards, play complementary roles in

reducing total emissions.
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2.A Additional tables and figures

Table 2.4: C-REM regions/Chinese provinces. Hong Kong (HK), Macau (MC) and
Xizhang (Tibet, XZ) are not included in the C-REM; aggregate international regions
not shown (D. Zhang, Rausch, et al. 2013).

XJ
NM

HL

JL

LN

(XZ)

QH GS
NX

SN

SX
HE

BJ
TJ

SD

HA

SC
CQ

HB
AH

JS

YN

GZ
HN JX

ZJ

SH

GX GD

FJ

(MC)
(HC)

HI

Code Name Code Name

AH 安徽 Anhui JS 江苏 Jiangsu
BJ 北京 Beijing JX 江西 Jiangxi
CQ 重庆 Chongqing LN 辽宁 Liaoning
FJ 福建 Fujian NM 内蒙古 Inner Mongolia
GD 广东 Guangdong NX 宁夏 Ningxia
GS 甘肃 Gansu QH 青海 Qinghai
GX 广西 Guangxi SC 四川 Sichuan
GZ 贵州 Guizhou SD 山东 Shandong
HA 河南 Henan SH 上海 Shanghai
HB 湖北 Hubei SN 陕西 Shaanxi
HE 河北 Hebei SX 山西 Shanxi
HI 海南 Hainan TJ 天津 Tianjin
HL 黑龙江 Heilongjiang XJ 新疆 Xinjiang
HN 湖南 Hunan YN 云南 Yunnan
JL 吉林 Jilin ZJ 浙江 Zhejiang

Table 2.5: List of C-REM sectors, omitting the transportation subsectors shown in
Figure 2-2 on page 48 (D. Zhang, Rausch, et al. 2013).

Code Sector Code Sector

AGR Agriculture MAN Other manufacturing industries
COL Coal mining & processing OIL Petroleum refining, coking and fuels
CON Construction OMN Metal, minerals, other mining
CRU Crude petroleum products SER Services
EIS Energy-intensive industries TRN Transportation & post
ELE Electricity & heat WTR Water
GAS Natural gas products c, g, i Final demands
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Figure 2-11: Contribution of each road transport mode to the total reduction of road
transport emissions in 2030 due to stringent ES (Scenario B�C), by province.
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Figure 2-12: Changes in road transport emissions of five species: increase from
2007–2020 in Scenario A (no policy); and reductions in 2020 from Scenario A–B
(introducing China 3/III and a mild CO2 price), B–C (increasing ES stringency to
China 6/VI), and C–E (increasing CO2 price). The 2007 level is also shown, for ref-
erence. Annotations give the total emissions in each scenario and percent change in
each year/scenario compared to the bar above.
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Figure 2-13: Spatial emissions differences of BC+OC, CO, NOX, and SO2 in 2020
between China 3/III (Scenario B) and no China 3/III (Scenario A′).
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Figure 2-14: Concentration differences of PM2.5, O3, NOX and SO2 in 2020 between
China 3/III (Scenario B) and no China 3/III (Scenario A′).

79



THIS PAGE INTENTIONALLY LEFT BLANK

80



Chapter 3

Estimating transport demand by
Chinese households and its
relationship to urban
characteristics

Abstract

In this essay, I provide new evidence about Chinese households’ de-
mand for transport. I estimate the recently-developed, flexible, Exact
affine Stone index (EASI) demand system on urban household data
from a survey with national coverage in three waves over the period
1995–2007. These data are augmented with indicators of urban form,
local economic conditions, and transport system characteristics, captur-
ing associations between these and households’ budgets—particularly,
the expenditure category of transportation and communication.

I find that transport expenditures are highly elastic with respect to
total expenditure at the lowest incomes (ε̂trnx = 1.47) and that this elas-
ticity declines gradually with income but remains above 1. Transport
spending rises monotonically from 1.6 % of budget at low incomes to
7.5 % at the highest. Income variation explains about one quarter of
budget share variation across selected cities; the remainder except for
error is associated with observable city-level measures and unobserved
province- and year-specific attributes. Among the former, denser high-
way networks are linked to lower transport expenditure; while popula-
tion density, city wealth, bus ridership, and taxi fleet size are associated
with changes in overall household budgeting.

The findings provide a new perspective to complement demand
elasticity literature that has focused on gasoline and vehicle-distance
travelled (VDT), while the methods provide new means of connect-
ing attributes of the built environment to welfare-consistent models of
household expenditure.
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3.1 Introduction

Rapid economic growth in the past three decades has increased incomes in China

and transformed its cities. Households and individuals have responded by changing

the way they travel, shifting from exclusively non-motorized transport, to taxis and

public transit, privately-owned light-duty vehicles (LDVs), and long-distance rail and

air. Along with demand, the external costs of transport have grown—including the

health costs of air pollution and road injury; climate change effects of greenhouse gas

emissions from fuel burning; and time lost due to congestion. Governments from the

national to municipal level have responded to these issues with a diversity of policy

measures, as discussed in Chapter 1. The design of these transport policies relies

on knowledge about the relationship between transport demand, related economic

drivers, and attributes of regions, cities, and transport systems that affect travel

choices. This knowledge is used to anticipate counterfactual (no-policy) growth in

transport activity, and to project or assess the impacts of policy. Several traditions

of research have focused on different aspects of transport demand: household-level

choice models based on transport-specific surveys and local data; regression models of

national-level fuel demand elasticity based on aggregate statistics (both surveyed in

detail in Section 3.2); and aggregate trajectories conditioned on local or international

data (discussed previously, in Section 1.3).

In this chapter, I employ new methods and unconventional data to characterize

Chinese households’ transport behaviour by an important, yet less-often studied, mea-

sure: the share of expenditure devoted to transportation goods and services, alongside

other categories of consumption within the overall household budget. Using urban

household data from a large, social science survey with national coverage and three

waves in 1995, 2002, and 2007, I estimate the recently-developed, Exact affine Stone

index (EASI) demand system, a specification that allows the transport budget share

to vary flexibly across the range of incomes. Estimation of EASI models yields Engel
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(budget share) curves, and estimates of the income elasticity of transport expenditure

that also vary with income. As well—responding to prior research on relationships

between travel and the built environment—I augment the household-level data with

indicators of urban form, regional economies, and transport system characteristics,

capturing the associations between these variables and households’ budget shares,

within and across categories of expenditure.

The chapter begins with a review (Section 3.2) of the literatures on estimation of

household budget shares, demand elasticities, and the relationship between travel and

the built environment. Section 3.3 focuses on systems of demand and applications

to Chinese transport, and describes the gaps I address by adopting the flexible EASI

form. In Section 3.4, I describe the three primary data sources used to produce

a pooled data set of 18 624 observations of Chinese households. Section 3.5 gives

the EASI model specifications used to investigate these data for effects suggested by

the literature; as well as methods for model estimation and significance testing. In

the remainder of the current chapter, I detail the findings from EASI models, their

relationship to existing knowledge, and their implications in the Chinese context:

Section 3.6 presents the relationship of transport demand with income through Engel

curves and elasticities of expenditure and budget share; and associations with local

conditions, through inspection of parameter estimates and a comparison of subsets

of the data. In particular, I find that flexibility indeed allows demand systems to

reflect transport budget shares that vary as higher order functions of income (or

total expenditure); and that variation in income explains only a portion of overall

changes in transport expenditure across China’s provinces. Section 3.7 comments on

implications and limitations of these findings, and concludes.

Separately, in the following Chapter 4, I evaluate the predictive power of the

EASI demand system by exercising it against the simpler, commonly-used Almost

Ideal demand system (AIDS) and testing sensitivity to the geographical coverage of
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data used for estimation. Measures of model fit are used to explore when and how

modelers and practitioners could apply EASI in applications including projection

and calibration of energy modeling frameworks; with other data; and also to suggest

directions for future data collection.

3.2 Literature: characterizing demand in China

and in cities

Chapter 11 gave a general introduction to models used to study transportation in

China, with comment on levels of resolution; units and measures of analysis, and

a critique of the use of aggregate functional relationships. Here, I survey two spe-

cific areas of transport research relevant to the quantities of focus in the current

chapter, before turning in Section 3.3 to the details of demand systems: first, in

Section 3.2.1, research that has sought to directly estimate elasticities of transport

demands—for instance, gasoline or vehicle-distance travelled (VDT)—with respect to

income or other quantities. This literature provides the few elasticity figures available

for China, against which I compare results. Second, Section 3.2.2 covers research that

has discussed the relationship between attributes of cities (the “built environment”)

and travel choices of individuals and households. Although not measured in terms

of expenditure, these help form expectations (in Section 3.5.1) about the city-level

observables included in the current work.

As discussed in Chapter 1, the CLIOS view of transport systems emphasizes that

attributes of the system emerge from complex causal relationships. For the demand

systems developed in this chapter, this suggests that measures of city-level charac-

teristics may be endogenous with transport (or other) demands. In surveying the

literature, I note throughout where and how prior research has flagged and/or re-

sponded to endogeneity in certain independent variables.

1in particular, Section 1.3 on page 28.
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3.2.1 Elasticities of transport demands

The energy economics literature contains a plethora of estimates of the income elas-

ticity of transport demands at the country level. Transport fuel (and specifically

gasoline) demand has been the most commonly-studied concept, followed by mea-

sures of transport activity such as VDT—both usually expressed per capita. Some

recent values are summarized in Table 3.1 on the following page.

China-specific estimates of income elasticity of gasoline demand have a broad

range in the short run, from 0.160 to 1.77; longer-run estimates are closer to unity

at 0.810 to 1.05. Dahl (2012), Goodwin et al. (2004), Labandeira et al. (2017),

and Oum et al. (1992) provide surveys and meta-analyses, while P. J. Burke and

Nishitateno (2013) perform analysis across a large numbers of countries, and Havranek

and Kokes (2015) adjust Dahl’s values for what they argue is a non-publication bias

against low estimates.2 Arzaghi and Squalli (2015) focus on fuel-subsidizing countries,

including China, in a model with variables for weather, land area per capita, and

percent urbanization. They argue that price controls in such countries ease concerns

about the simultaneity of gasoline demand and price variables,3 but do not address

endogeneity or identification concerns for their other variables. P. J. Burke and

Nishitateno address the endogeneity of price and quantity by instrumenting their

models using, inter alia, fuel economy standards, vehicle import tariffs, and Kyoto

Protocol membership. They note small changes in price elasticities, but no change in

income elasticities of demand, of their IV models in comparison to base models.

For China in particular, C.-Y. C. Lin and J. Zeng (2013) produce linear regression

estimates from province-level data, and find no significant estimate of the income

elasticity of annual VDT per vehicle. They note that “it is quite difficult to determine

2Researchers finding insignificant or low-magnitude estimates of the elasticity are less likely to
publish, resulting in a literature that contains only high and/or significant estimates.

3in turn, also critiquing Dahl, and P. J. Burke and Nishitateno for pooling subsidizing and non-
subsidizing countries together.
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Table 3.1: Literature estimates of elasticities of various measures of transport demand with respect to various variables. Dis-
cussed in Section 3.2.1 on page 85 (with respect to income), Section 3.3.2 on page 94 (AIDS methods), and Section 3.2.2 on the
facing page (others).

Source Elasticity of: with respect to: Value Units & scope Methods

General, meta-analyses, or not including China

Goodwin et al. (2004)
Total fuel consumption Income 0.390sr N = 175 meta-analysis; Various regression &

‘’ ‘’ 1.08lr > 130 OECD, 0 China econometric; dynamic
‘’ ‘’ 0.490 ‘’; cross-section or

time-series
Cervero and Murakami
(2010)

VDT [km/(veh. year)] Pop. density −0.381 US; 370 cities; 2003
cross-section

Structural equation
model (SEM)‘’ Road density 0.415

‘’ Hh. incomea 0.209
Dahl (2012) Gasoline demand per capita Income 0.230 to 2.06 124 countries Lagged and non-lagged

regression
Havranek and Kokes
(2015)

Gasoline demand per capita Income 0.100sr 124 countries Dahl (2012) adjusted for
non-publication bias‘’ ‘’ 0.230lr

China-specific, or including China

McRae (1994) Gasoline demand per capita Income 0.220 to 1.77sr 11 Asian countries,
national 1973–1987

Linear regression

C.-Y. C. Lin and J. Zeng
(2013)

Gasoline demand per capita Income 1.01 to 1.05 China provincial totals
� national estimate

Lagged linear regression

VDT [km/(veh. year)] ‘’ ∼ns

Cheung and Thomson
(2004)

Gasoline demand per capita Income 1.64sr China, national/annual
1980–1999

Regression w/
cointegration

‘’ ‘’ 0.970lr

Arzaghi and Squalli
(2015)

Gasoline demand per capita Income 0.160sr National, fuel-subsidizing
countries incl. China

Lagged linear regression
‘’ ‘’ 0.810lr

H. Wang, P. Zhou, et al.
(2012)

Transport Expenditure 1.85 Provincial urban
averages, 1994—2009

AIDS; national avg.
‘’ ‘’ 1.20 to 4.20 ‘’; provinces

Sun and Ouyang (2016) Transport fuels Expenditure 1.23 1032 households
(CRECS), 2013

AIDS

a Median or average quantity across population.
sr Short-run.
lr Long-run.
ns Not estimated with significance.
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appropriate instrumental variables for gasoline price,” and elect to use diesel prices

and international crude oil prices. Cheung and Thomson (2004), employing cointe-

gration, note that “the dearth of data [for China] greatly constrained [their] choice of

model.” A recent study by Parker (2018), presenting non-parametric fuel demand esti-

mates for non-OECD countries including China, uses variables for population density

and urbanization. Parker explains that endogeneity in prices cannot be controlled for,

because data for plausible instruments is not available. However—like Arzaghi and

Squalli and the other studies mentioned—he does not discuss or treat endogeneity in

these other variables.

3.2.2 Travel and the built environment

The urban studies literature on travel and the built environment contains extensive

analysis of a large number of concepts and measures argued to be determinants of

travel behaviour, itself measured in a fine-grained way. Ewing and Cervero (2010)

provide one broad review and meta-analysis of this literature, focusing on more than

50 studies in the United States. Some of these studies report elasticity estimates;

examples are included in Table 3.1. They describe the common categorization of

local condition measures according a list of ‘D’s: density (of people or employment),

diversity (i.e., mixed land use), design (e.g. of road networks), destination accessi-

bility, and distance to transit. Each of these concepts has been operationalized and

measured in multiple ways. For instance, destination accessibility can be measured as

the number of jobs available within one mile of a respondents’ home, or the distance

to a downtown core; density can be measured using population, jobs, business, retail

jobs, or other quantities.

A robust finding of this work has been that population density reduces measures

(such as number of trips, trip share, distance traveled) of travel demand by motorized

modes including LDV, while increasing non-motorized travel (walking and bicycling).
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Gim (2012) meta-analyzes 35 studies and finds that the magnitude of the travel be-

haviour effect of density varies between studies of the United States and Europe,

suggesting that such effects might also differ in other regions, such as China. Re-

searchers often connect measured effects to policy recommendations: for instance,

by linking density effects to energy use and emissions, Dulal et al. (2011) at the

World Bank (WB) recommend increasing density as a means to mitigate transport

greenhouse gas (GHG) emissions.

Many of the studies covered by such meta-analyses use household survey data.

However, unlike the present chapter, the data are often from targeted, transport-

specific surveys, either broad (covering multiple cities, regions, and/or transport

modes) or more often narrow in focus—for instance, focusing only on one type of

trip, such as non-work walking trips, or variation in a specific measure of destination

accessibility. Dependent demand measures are often discrete, such as mode choice

for a particular trip, or number of trips; so the resulting data are analysed using ap-

propriate methods such as discrete choice models derived from random utility theory

(Train 2009). Economic measures are commonly employed as independent variables

(e.g. the costs of travel by certain modes), but expenditure is uncommon as a depen-

dent variable. Most studies match measures of the built environment to individual

observations based on respondent location, rather than relying on self-reported, or

‘subjective’ values furnished by respondents (Ewing and Cervero 2010).

Together with van de Coevering and Schwanen (2006), Ewing and Cervero cri-

tique one subset of the literature (e.g. Karathodorou et al. 2010; McIntosh et al.

2014; Newman and Kenworthy 1989) that uses aggregate dependent demand mea-

sures from databases of city-level data, since using these to draw conclusions about

individual travellers in the same or other contexts constitutes an ecological fallacy.

They recommend the use of either household data or adjustments for the “space-time

context of cities” (van de Coevering and Schwanen 2006). However, across these and
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other studies, independent variables for local conditions are used at a broad range of

resolutions from the neighbourhood to national level even when the dependent travel

behaviors are measured for individuals or households.

Because causal relationships between concepts affect the validity of policy rec-

ommendations, this literature contains robust discussion of measures for treating

endogeneity within the methods used, and for the demand and condition concepts

examined. Cao et al. (2009) give a survey focused on responses to a single type of

endogeneity: residential self-selection, which is the concept that households’ choice of

location is correlated with their travel choices. They identify at least nine method-

ological approaches used to control for this particular issue. In their discussion of

instrumental variables responses (Cao et al. 2009, pp.367–377), they note that almost

all attempts suffer from the difficulty of collecting suitable instruments; in most cases

the instruments are weak4 and thus errors in both directions are possible: significant

effects may be erroneously found or estimated where none exist, or not detected where

they do.

Another common methodological response noted by Cao et al. is the use of struc-

tural equation models (SEMs), in which a network of (possibly bi-directional) causal

relationships is hypothesized, and estimation measures the strength of these links.5

Cervero and Murakami (2010), for instance, use SEM to find a strong, negative elas-

ticity of private-vehicle VDT per vehicle-year with respect to population density, and

a positive elasticity with respect to road network density. However, they do not

discuss, test or reject causation in the opposite direction.

Among the wide number of examples, P. Zhao et al. (2010, 2011) are an instance

of recent work focused on China. The authors estimate discrete choice models of the

4Either only weakly correlated with the endogenous quantities they are instrumenting for, or not
totally exogenous with the error term in model equations.

5Kline (2012, p.113) notes that SEMs were originally developed to be applied where some knowl-
edge of causal direction exists a priori ; these links are hypothesized to create a path diagram, and
SEM can only disconfirm misidentified links. McIntosh et al. (2014), above, also use SEM.
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commuting choice for individuals in households on the city fringe of Beijing, using

both housing and location variables, and finding that compact urban form could

reduce commute distances. They do not comment on or address potential endogeneity

of their variables.

3.3 Demand system models

My objective in the present chapter is to estimate transport demand within a demand

system that also captures other household consumption—one with rigorous, micro-

economic foundations, which is flexible enough to capture the wide variation across

households, provinces and time periods in a rapidly-evolving economy like China’s.

A related objective is to use household-level data that cover (or sample) the entire

country, unlike the city- or district-specific models common in the literature. This

section briefly introduces demand system concepts and the notion of flexibility (Sec-

tion 3.3.1), touches on applications in China (Section 3.3.2), and describes the EASI

demand system adopted here (Section 3.3.3).

This approach addresses limitations in the literatures identified above. Unlike

previous transport demand elasticity estimates presented for China, the use of house-

hold data across a broad range of incomes and conditions increases statistical power

and supports estimation of a flexible form in which data fully determine budget share

parameters and elasticities. While the literature on travel and the built environment

often measures nuanced concepts, data can be limited to particular cities and tailored

survey questions; in contrast, my approach covers households sampled across the en-

tire country and the variation in their local conditions, using common measures of

expenditure that may be linked to aggregate economic models used for projection and

policy analysis. Finally, unlike the stylized facts from aggregate functional relation-

ships described in Section 1.3, demand systems impose overall income constraints,
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reflect individual households’ observed, utility-maximizing choices in both transport

and non-transport consumption, and do not rely on relationships derived from other

countries.

3.3.1 Demand system concepts and flexibility

A demand system represents quantities demanded of two or more goods by an eco-

nomic agent. In the context of partial equilibrium analysis, or computable general

equilibrium (CGE) models,6 such systems are derived from a production function

such as the constant elasticity of substitution (CES) function, Equation (3.1).7

X = F

(
n∑
j=1

ajx
r
j

) 1
r

(3.1)

where

X = aggregate consumption

aj = share of good j

xj = quantity of good j

s =
1

1− r = elasticity of substitution

By choosing X so as to maximize utility for a given total expenditure, y, the demand

for each good, xj, can then be expressed as a function xj ∼ f(y, pk∀k) of y and the

prices of each good, pk. These demand functions together form the demand system.

Restricted cases of the CES include the Cobb-Douglas function in which s = 1, and

the Leontief function in which s = 0. The CES can be said to be more flexible than

these, since the elasticity of substitution, s, may take on other values estimated from

6such as the Economic Projection and Policy Analysis (EPPA) (Chen et al. 2015) or China
Regional Energy Model (C-REM) (Chapter 2).

7When applied to aggregate intermediate sectors, rather than final demand, firms choose a level
of ‘production’ in order to maximize profit given market prices. When applied to final (consumer)
demand, the thing ‘produced’ is utility.
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data; however, the same value applies between any pair of goods or inputs when

n > 2. ‘Nested’ or hierarchical CES structures were developed to permit a distinct s

within each nest.

Another dimension of flexibility, and the one of interest here, is in income elasticity.

Cobb-Douglas, Leontief, CES, and nested CES demands are homothetic, or homoge-

nous of degree 1: when y is increased by some multiplicative factor, the demands for

each good xj increase by the same factor and remain in their original proportions.

This represents the situation that the consumer does not alter her budget allocation

in response to changes in income—only relative prices—and so the income elasticity

of demand for each good is fixed to 1. Other functional forms were, in turn, devel-

oped to relax this restriction: for instance, the Stone-Geary demand functions have

the form Equation (3.2).

xj = γj +
βi
pi

(
y −

n∑
k=1

γkpk

)
(3.2)

The parameters γj allow expression of a ‘minimum’ level of consumption of good j;

by adjusting this parameter, the income elasticity of good j can be controlled at low

incomes, though in the limit as y grows large the income elasticities tend to 1. More

recently, researchers have developed demand systems including the AIDS (Deaton and

Muellbauer 1980), “An implicit direct additive demand system” (AIDADS) (Rimmer

and Powell 1996) and EASI (Lewbel and Pendakur 2009)—the last described in more

detail below—that add additional flexibility.

Why might such flexibility be desirable? Figure 3-1 on the next page illustrates

the situation through a variety of hypothetical Engel curves. In demand systems with

constant income elasticity (red and blue in the diagram), an increase in household

income brings a fixed response in terms of household budget share in a category of

expenditure: none in the homothetic case (red), or a fixed increase or decrease (blue).
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Income, x

Budget share, w

x1 x
′
1 x2 x

′
2 x3 x

′
3

w 6∼ f(x) (εx = 0, homothetic)

w ∼ f(x1) (εx = ∂w
∂x

constant)

w ∼ f(x, x2)

w ∼ f(xR, R ∈ 1 . . . 3) R ∈ 1 . . . 5

budget increases

no change

budget decreases

Figure 3-1: Functional forms for expenditure shares. Forms with higher-order func-
tions of x capture distinct responses of households at different levels of income (x1,
x2, x3) to incremental shifts in income (x1 → x′1, etc.) without imposing shape
restrictions.

Quadratic forms (green) allow the response to vary, but with shape constraints: an

elasticity > 1 (increasing budget share) at low incomes must be accompanied by a

lower elasticity (descreasing budget share) at high incomes, or vice versa. Flexible

forms (orange and purple), on the other hand, can allow data to more fully determine

where elasticities change magnitude and/or sign; possibly multiple times across the

range of incomes. Where data are plentiful, entirely non-parametric Engel curves can

be described;8 these forms, however, lack desirable qualities of rationality, and are

more often used to explore parameterizations for later research (as in Parker 2018).

In the Chinese context of rapid growth, flexibility is a desirable feature because

the available goods, their prices, incomes, and local conditions of households mak-

ing budget decisions might well be expected to lead to very different consumption

behaviour within samples spanning cities and years. Flexibility is also advantageous

when dealing with aggregate categories, such as total transport expenditure in the

data examined in this chapter: households in certain parts of the income distribution

may respond to incremental changes of income by adjusting their spending on, for

8for instance, (Røed Larsen 2006) uses the voluminous data of the U.S. Consumer Expenditure
Survey to draw non-parametric curves for subcategories of transport expenditure and individual
demographic groups.
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instance, long-distance airfare, while others might adjust private driving, or public

transit use. As these goods and services have particular prices and households derive

utility from them in distinct ways, total transport expenditure share will be affected

differently by shifts at these different income levels.

3.3.2 Flexible demand systems: applications in China

Some of the newer, flexible demand systems have been applied in China. Research

applying the AIDS to household data in China first focused on food, (e.g. Fan et al.

1995; Jiang and Davis 2007); these studies omit discussion of transport expenditure.

More recently, Dai et al. (2012) estimate AIDS parameters using national aggregate

data by income class, and project to consumption, energy use and GHG emissions

in 2050, but do not report income elasticities; or incorporate variables to shift in-

comes. H. Wang, P. Zhou, et al. (2012) applied the linear approximation to the

AIDS (LA-AIDS) using aggregate, province-level data in six categories of expendi-

ture from 1994–2009, finding an income elasticity of transport expenditure of 1.85.

Sun and Ouyang (2016) applied the LA-AIDS to consumption of three categories of

energy goods using a household survey (China Residential Energy Consumption Sur-

vey (CRECS), N = 1023), finding an income elasticity of fuel expenditure of 1.23.9

Caron et al. (2017) use a larger set of the CRECS data (N = 4600) to study energy

goods consumption with a two-stage model that separately estimates the extensive

and intensive margins of consumption; one of their categories is transport fuels, and

they note that “our estimates imply relatively low income elasticities, except for gaso-

line and diesel.” Finally, Z. Yang, Jia, et al. (2017) estimate an AIDS using aggregate,

province-level gasoline and diesel demand, in which the subcategories are demand by

particular types of vehicles, (from Huo, K. He, et al. 2011); thus they report, for

instance, that diesel use by medium-duty trucks has an elasticity of 0.6 with respect

9these values are also included in Table 3.1.
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to total expenditure in a province. Across these studies, measures of food and house-

hold energy demand have been the focus, with relatively little attention paid to total

demand for transport or mobility, except per transport fuels. The present chapter

contributes additional insights to stand alongside these, using new methods and data.

3.3.3 Exact affine Stone index (EASI) demands

I adopt the EASI demand system described by Lewbel and Pendakur (2009) and

Pendakur (2009). This formulation is based on implicit Marshallian demands, and

preserves rationality while allowing for unobserved preference heterogeneity and high

rank (flexibility) in Engel curves. That is, the share of budget in each category

may vary as a polynomial of utility, u, up to degree R, where R ≤ J , the number

of categories of expenditure. These features are useful for two reasons. First, a

rational, or welfare-consistent set of demand functions can be used to estimate the

welfare impact of constraints on consumption or changes in prices; this means that

the models estimated here could be applied to analyze the aggregate cost of policies

affecting transport expenditure. Second, while not entirely non-parametric, the high

rank of the Engel curves permits variation in budget shares and income elasticities of

demand for transport across the range of observed in incomes—allowing the data to

inform as to the actual shape of these curves.

Let wj be the budget shares for J consumption categories. The EASI budget

shares (Equation (3.3)) are estimated using observations for individual households, i,
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as in Equation (3.4).

∂ lnC(p, u, z, ε)

∂pj
= wj(p, u, z) = mj(u, z) +

∑
k∈J

βjp,k(z) ln pk + εj

mj(u, z) =
R∑
r=0

βju,ru
r +

∑
t∈T

βjz,tzt (3.3)

wji =
R∑
r=0

βju,ru
r
i +

∑
t∈T

βjz,tzt,i +
∑
k∈J

βjp,k ln pki + eji (3.4)

The Hicksian10 budget-share functionsmj depend on a vector of prices, p, for the same

categories; on polynomials up to order R of utility, u; and on a vector of demographic

variables, z, indexed by t. For ease of exposition I let the constant term be ur|r=0 = 1

instead of a unit column in z, and use labels instead of numerical indices for j ∈ J and

t ∈ T , with |J | and |T | being the sizes of these sets. The demands are implicit in u;

Pendakur (2009) describes several methods to estimate the parameters βjp,k ∀ k, βju,r ∀ r

and βjz,t ∀ t, including the generalized method of moments, and iterated three-stage

least squares regression (3SLS) with instrumental variables. In all approaches, an

implicit estimate, y, of utility, u, is computed from total expenditure and a Stone

price index (hence the name of the demand system). Using these estimators, the

shares and parameters for one category’s budget share are additively determined by

the others; so I use the set J ′ = J \ {other}.

3.4 Data

Data for estimating the demand system are assembled from three sources. Each is

described in turn: the variables wj and total expenditure x from a national social

science survey (Section 3.4.1); measures of city-level conditions z (Section 3.4.2) from

a third-party database that collates official statistics; and prices p (Section 3.4.3)

10i.e., minimizing cost, C(·), for given utility, u.
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using directly from the national statistical agency.

3.4.1 Household expenditure: the China Household Income
Project

The China Household Income Project (CHIP) surveyed three populations of of house-

holds and individuals—rural, urban and rural-urban migrants—in five waves between

1988 and 2013 (S. Li et al. 2008; Luo et al. 2013). The survey used stratified sampling

in repeated cross sections; the same provinces, prefectures and households were not

re-visited in successive waves, so the observations do not constitute panel data. A

slightly different survey instrument was administered to each of the target popula-

tions. For instance, the migrant survey sought to measure social connections formed

in cities to which migrants had moved; the rural survey included sections to measure

the impact of agricultural improvement policies.

The urban questionnaire for the 1995, 2002, and 2007 waves included questions on

total household expenditure, spending in a varying number of subcategories, income,

and some measures of assets. I adopt these as a primary data source, aggregating to

the eight categories shown in Table 3.2 on the following page—including “transporta-

tion and communications”—and construct budget shares by taking the ratio with the

total across categories.11 I also construct, from the CHIP individual observations, a

set of household-level descriptive variables listed in Table 3.3 on page 99. These de-

scribe either characteristics of the household—its size, measured in number of adults

and children—or of the household head—including age, gender, marital status, and

level of education.

Figure 3-2 on the following page gives the regional coverage of the CHIP urban

data at the provincial level. Both wealthier eastern provinces and poorer central

provinces were included, though the far western provinces (Xinjiang, Qinghai and

11For some observations, households’ reported total expenditure is lower than the sum of reported
expenditure in surveyed categories. In such cases, I discard the total, and use the sum instead.
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Table 3.2: Expenditure categories

Category, j Name

clo Clothing
dur Durables
ed Education & recreation
food Food
hou Dwellings
med Medical care
other Other consumption
trn Transportation & communication

GS

CQ

BJ

AH

GD

SX

HB
SC

YN

HE

LN

JS

SH

ZJ

400 600 800 1000 1200 1400 1600 1800 2000
N (observations)

CHIP coverage, all years

Figure 3-2: Number of observations by province in the entire CHIP data set, combined
1995, 2002, and 2007 waves.
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Table 3.3: Household-level variables from CHIP data.

Description, CHIP response fields & condition
Variable 1995 2002 2007

adulta,b Number of adult household members.∑N
i

{
1 A5i > 16

0 o.w.

∑N
i

{
1 P106i > 16

0 o.w.

∑N
i

{
1 2007− a05 1i > 16

0 o.w.

child Number of child household members.
N − adult

age years Age of household head, in years.
A50 P1060 a05 10

age Household head is 40 y/o or older.
age > 39

educ Household head has completed more than middle school.
A110 < 3 c P1120 > 4 d b020 > 5 e

gender Household head is female.
A40 = 1 P1050 = ‘female’ a040 = ‘female’

single Household head is unmarried.
A70 ∈ {2, 3, 4, 5} P1090 ∈ {1, 3, 4, 5} a070 ∈ {1, 4, 5}

year 1995f Observation from the CHIP 1995 wave.
1 0 0

year 2007 Observation from the CHIP 2007 wave.
0 0 1

a Subscripts denote individual-level observations within a household, with 0 indicating the head of
household. N is the number of individual-level observations in a given household.

b Response a05 1 in CHIP 2007 gives birth year, rather than age.
c “middle level professional, technical or vocational school”. Codes for this response are in descending,

rather than ascending order.
d “Senior middle school (including professional middle school)”.
e “senior middle school”.
f We use these in place of the variable year = {0 if CHIP 1995, 1 if CHIP 2002, 2 if CHIP 2007} used

by L. Li et al. (2015), which inappropriately implies linearity and equivalence of the 7- and 5-year
periods between survey waves.
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Table 3.4: CHIP sample counts, and rate in observations per million population by
province and year.

Observations, total . . . per 106 pop.
Code 1995 2002 2007 2000 2000 2010 Name

110000 492 484 39 34 北京市 Beijing
140000 649 640 21 19 山西省 Shanxi
210000 699 697 17 16 辽宁省 Liaoning
310000 499 24 上海市 Shanghai
320000 799 729 599 11 9 7 江苏省 Jiangsu
330000 586 11 浙江省 Zhejiang
340000 499 493 549 8 8 8 安徽省 Anhui
410000 599 680 641 6 7 6 河南省 Henan
420000 725 673 358 12 11 6 湖北省 Hubei
440000 540 544 685 7 6 7 广东省 Guangdong
500000 279 383 9 13 重庆市 Chongqing
510000 845 585 596 7 7 7 四川省 Sichuan
530000 647 636 16 14 云南省 Yunnan
620000 399 395 16 15 甘肃省 Gansu

Xizang (Tibet)) are omitted.12 Total expenditure, x or exp (and thus log (exp)), in-

creased across each wave, for both the entire data set and within individual provinces,

as shown in Figure 3-3 on the facing page. The survey sampled different provinces

and counties in each wave so that, for instance, observations are available from Bei-

jing in the 1995 and 2002 waves, but not in 2007; or from Chongqing in the 2002

and 2007 waves, but not in 1995. Income distributions from provinces that appear in

multiple waves overlap; e.g. there are observations of Guangdong households in 2002

that are wealthier than the poorest households sampled from the same province in

2007. Thus, there is no coverage gap in incomes, despite rapid economic growth in

this period and the interval of up to seven years between CHIP waves. Table 3.4 gives

the sampling rate in number of observations per million inhabitants at the provincial

level for each year, varying between 7 and 39, with Beijing, Shanxi, and Shanghai

most densely sampled.

Figure 3-4 on page 104 gives the distribution, across quantiles of income, for

12Appendix A on page 209 contains similar maps for each of the three CHIP waves used.
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Figure 3-3: Distribution (solid line) and mean (dashed line) of total expenditure
(top); and log (exp) (middle) for the entire data set; and of log (exp) for households
in Beijing, Chongqing, and Guangdong (bottom row, left to right).
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statistics on budget share of transport and communications, wtrn. Due to the large

number of data points, moving statistics across 5 percent of the data are presented in

this and subsequent plots. Several properties of the data are notable for estimation

and interpretation of the results. First, since budget shares are fixed in the range [0,

1], the median (solid gray line) is closer to the first quartile than the third; and the

mean (black) is higher than the median expenditure by 1 to 1.50 percentage points

of expenditure. Mean budget share is drawn up by a number of high-side outliers;

the treatment of these is addressed below.

Second, examining means from single CHIP waves reveals that reported transport

budget shares are systematically lower in 1995 (red) than in 2002 (green) or 2007

(blue); however, 2007 shares are also lower than 2002 shares, at comparable levels

of total expenditure. With reference to Figure 3-5 on page 105, which shows the

share of observations in each wave across the overall distribution of the pooled data,

the conditional mean expenditure in Figure 3-4 is seen to be closer to the 2002 and

2007 means at the highest expenditures, as there are comparatively few 1995 CHIP

responses at this level. These differences have multiple potential sources. One is

measurement: the CHIP survey instrument asked for a different set of subcategories

in each year; and the way in which it was administered (for instance, any instruc-

tions given to respondents on what types of expenditure to include in the aggregate

categories) may have led respondents to err differently in the different waves. An-

other is country-wide variation in conditions affecting transport consumption. For

instance, in 1995, intercity rail service was generally at low speeds, and service was

only gradually improved by policy campaigns during the 1995–2007 period (Hou and

S.-M. Li 2011). Fixed, subsidized prices for transport fuels have also been adjusted

periodically (B. Lin and Ouyang 2014). While the EASI demand models developed

in this chapter allow inclusion of some measures that may reflect such changes, the

budget share differences still suggest there may be influential, unobservable factors
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affecting differences in reported budget share, motivating the use of year fixed effects,

as described in Section 3.5.2.

Returning to outliers in budget share, Table 3.5 on page 105 gives the fraction

of these in each decile of total expenditure, by several methods. According to the

standard boxplot metric, between 8 and 14 percent of observations in each decile

are high-side outliers. Row (c) reports a notional threshold in absolute transport

expenditure (rather than budget share): a household that purchased a vehicle in the

year in which they were surveyed by CHIP may have (mis)reported by including this

large lump sum as part of their average annual expenditure; however, gaps of this

size are only visible in the highest decile.13 In the lowest three deciles, a significant

portion of households report no transport expenditure (row (d)); this may reflect all

but exclusive use of non-motorized transport (foot and bicycle), which was widespread

in 1995 and so cannot be identified as an error in data collection.

Because demand system estimates might be affected by erroneous data points not

merely for wtrn, but for all wj, I remove the most extreme high-side outliers in all

expenditure categories by computing a quantile cutoff, q, according to Equation (3.5),

and discarding observations where any budget share wj is above the q-th quantile of

shares in that category, using kq = 0.05.

min
q

abs

(
kq −

∣∣i ∈ 1 . . . N, j ∈ J : Q(wjj) > q
∣∣

N

)
(3.5)

Q(wji ) ∈ (0, 1] = quantile of household i’s budget share in category j

This has the effect of removing 5% of the data: as reported in row (a) of Table 3.5,

from 2.90 to 6.30 percent in the lowest nine deciles, and 13.2 percent in the highest

decile. This step is performed after augmenting the household-level observation with

13To illustrate the magnitudes in row (c), in a high income bracket in which 40 percent of house-
holds owned a vehicle that they replaced every 10 years, a randomly selected household might report
such an expenditure with probability 0.04.
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Figure 3-4: Moving average of wtrn for quantiles of exp, in black for all years, and in
color for observations from the CHIP 1995, 2002, and 2007 waves. Median and first
and third quartiles for all years in grey.

information from CEIC, below, and dropping observations for which the city-level

variables are unavailable.

3.4.2 Urban and transport system characteristics: CEIC
Data

In order to link the CHIP households’ transport and other expenditures to the lit-

erature on travel and the built environment discussed in Section 3.2.2, I construct

measures of urban and transport system characteristics from primary data of the

National Bureau of Statistics of China (NBSC) and its provincial counterparts, as

published in the annual China Statistical Yearbook, China Transportation & Com-

munications Yearbook, and the analogous yearbooks of by each province’s statistical

bureaux. These data are publicly available, but not in a single, digital database, so I
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Figure 3-5: Fraction of observations by CHIP year across the range of expenditure
in the pooled and cleaned data set. Roughly 35 percent of households in the lowest
decile are from the 1995 CHIP wave; more than 75 percent of households in the
highest decile are from the 2007 CHIP wave.

Table 3.5: Percentage of observations that are outliers in transport expenditure, by
several metrics. (a) as described on page 103 for removing the 5% most extreme values
across all categories; (b) standard boxplot metric of values greater than the median
plus 3/2 the interquartile range; (c) absolute transport expenditure more than 10,000
RMB over the median (see Footnote 13 on page 103); (d) no transport expenditure
reported.

Deciles of exp 1 2 3 4 5 6 7 8 9 10

(a) Censor 5% of obs., any j 5.8 4.0 2.9 3.0 3.3 3.2 4.0 4.5 6.3 13.2
(b) wtrn > Q2 + 3

2
(Q3 −Q1) 13.6 9.8 8.6 9.8 9.9 8.1 8.6 9.6 8.7 10.0

(c) trn > Q2 + 104 RMB 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.5 9.2
(d) No expenditure reported 28.0 16.8 10.7 7.1 4.6 3.3 2.0 1.2 0.9 0.8
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use (CEIC Data 2016), a source that provides a compilation of the various yearbooks.

Variable selection was guided by two factors: relevance, and coverage. Among the

many series available, I selected those most closely related to the measures identified

by the literature as relevant to relationships between travel behaviour and the built

environment, or to estimation of demand elasticities. The coverage of some of vari-

ables was limited to provincial totals or averages, or else did not extend far enough

back in time to cover the 1995 CHIP wave. For instance, the total stock of commer-

cial passenger vehicles (which might be used to compute a per capita measure) was

only available for 32 province-level divisions. Such variables were omitted in favour

of others that were available for provinces plus nearly 300 prefecture-level divisions

including prefecture-level cities and districts in large cities, or for more than 2000

county-level divisions.

Table 3.6 on page 108 lists these variables, and gives the number of time-series

available for each. The resulting set includes measures of the built environment in

population density (density) and road network density (hwy_density);14 of the local

economy in gross domestic product (GDP) per capita (gdp_cap) and average wages

(wage_avg); and the stocks of three kinds of transport vehicles (stock_*_cap). In

Section 3.5.2, where I give model specifications, I discuss what the literature suggests

about the relationship of the available variables to wtrn. Some other attributes of the

built environment discussed by the literature are not matched by measures available

in the underlying official statistics thus the “China Premium Database” published

by CEIC Data (CEIC) source: for instance, diversity of land use, and destination

accessibility. These may be available from other public or private sources, or could

be assembled manually, but I leave this for future research.

I assign these values to household-level CHIP observations by matching on the

GB/T 2260 codes for administrative divisions, at the 6-digit county level where pos-

14Using the length of roads classified as expressways or Class I through VI highways, under the
Chinese system (R. Zhou et al. 2016).
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Figure 3-6: Distributions of urban variables: for all prefecture- or county-level di-
visions in China (solid lines) and for CHIP respondent households as matched by
location (dashed lines).
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Table 3.6: City-level variables. See also Figure 3-6 on page 107. ‘—’ in the Source column indicates a derived variable

None Description Unit Source No. of series

Primary data variables

wage_avg Average Wage 103 RMB/pers. NBS 1699
pop Population 103 pers. NBS 2382
hwy Highway: Length of Highway 103 m NBS, MoT 358
p_hwy Highway: Passenger Traffic 106 pers. NBS, MoT 314
stock_bus No of Public Transit Vehicle: Bus and Trolley Bus 103 veh. NBS 287
stock_rent No of Rental Vehicle 103 veh. NBS 287
gdp_cap GDP: per Capita 103 RMB/pers. NBS 2235
area Land Area of Administrative Zone 106 m2 NBS 359
gdp GDP 106 RMB NBS 2279
p_rail Railway: Passenger Traffic 106 pers. NBS 250
stock_priv No of Motor Vehicle: Private Owned 103 veh. NBS, MoT 325

Variables derived from primary data

density Population density 103 pers./km2 — 359
gdp_cap_derived GDP per capita, derived 103 RMB/pers. — 2279
gdp_density GDP density RMB/m2 — 330
hwy_density Highway network density 1/km — 358
p_hwy_cap Passenger commercial road ridership per capita 103 — 314
p_rail_cap Passenger rail ridership per capita 103 — 250
stock_bus_cap Stock of buses & trolley bus vehicles per capita 10−3 veh./pers. — 287
stock_priv_cap Stock of private vehicles per capita 10−3 veh./pers. — 325
stock_rent_cap Stock of rental vehicles per capita 10−3 veh./pers. — 287
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Table 3.7: Price data series

Category, j Code NBSC description

food A090202 Consumer Price Indices (preceding year=100), Food
clo A09020G [. . . ] Clothing
trn A090213 [. . . ] Transportation and Communication
hou A09021N [. . . ] Residence
ed A09021D [. . . ] Entertainment and Education
dur A09020M [. . . ] Durable Consumer Goods.
med A09020R [. . . ] Health Care and Personal Articles
other A090201 Consumer Price Index (preceding year=100)

sible, or at the 4-digit prefecture or 2-digit province level where more specific data is

unavailable. Figure 3-6 on page 107 gives distributions of city-level measures across

individual household observations in the resulting data set for the each of the three

CHIP waves (dashed lines), in comparison to the distribution across the entire coun-

try (solid lines). Figure 3-15 (in Appendix 3.B, page 107) compares province-level

means of these variables across the provinces covered (solid blue marks), and not

covered (open black marks), also by year. Variation across and within years for these

variables is sufficient for the parameter estimation that is the focus of the current

chapter. Chapter 4 explores the implication mismatches between conditions in the

provinces and cities used for model estimation, and those targeted for prediction and

simulation.

3.4.3 Prices: the National Bureau of Statistics of China

Finally, I collect provincial- and city-level price indices in the same eight consumption

categories as surveyed by CHIP, from the consumer price surveys of the National

Bureau of Statistics of China (2008). Appendix B to the thesis describes the software

15Holz (2004, 2013), discussing the difficulty of compiling economic statistics in a transition econ-
omy, mentions that the sheer volume of prices to be collected mean that these data are a harder tar-
get for manipulation than data on output; consequently they are exempt from the suspicion some-
times cast on China’s official GDP data, for which in any case Holz finds little confirmation using
statistical tests.
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used to retrieve these. The specific indices used for the consumption categories,

including the codes assigned to the series by NBSC, are given in Table 3.7 on page 109.

These top-level indices are assembled from sub-category indices; themselves based

on frequent price surveys for specific goods at the third level of categorization.15

Annual data by region and at the national level are published online. For demand

system estimation, I transform prices by taking the cumulative product of the year-

on-year indices, normalizing at the middle CHIP wave (2002), and taking the natural

logarithm.

In addition to the eight top-level categories, I retain additional price series at

the third level within the trn category, particularly p_trn_fuel, an index for the

cost of road transportation fuels (diesel and gasoline). This variable is matched to

household-level observations in the same manner as the CEIC variables described

above.

The resulting, pooled data consist of 18 624 total observations covering cities in 14

provinces over three time periods, wherein each household’s budget shares are aug-

mented with same-year price information, household-level demographics, and mea-

sures of cities and local transport systems. I also add year- (refer back to Table 3.3

on page 99) and province-level indicators.

3.5 Models and methods

3.5.1 Explaining variation in transport expenditure

With the assembled data and demand systems just described, I estimate a variety of

model specifications described below in Section 3.5.2, and apply statistical tests as

described in Sections 3.5.3 and 3.5.4. Since the objective is to exploit the flexibility

EASI to derive empirical facts from the CHIP data that describe the relationship

of transport expenditure to incomes and local conditions, I first examine what ex-
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pectations the literature suggests for the shape of transport Engel curves, and the

relationship between wtrn and the urban variables listed in Table 3.6.

The parameter estimates for EASI models associate household-to-household vari-

ation in the dependent budget shares, wj, with five kinds of independent variables in

Equation (3.4):

1. the various powers of implicit utility, yR (itself estimated implicitly from total

expenditure, x, and prices),

2. household-level demographics from the CHIP (in z),

3. city-level conditions from the CEIC source (in z),

4. province- and year-level fixed effects (in z),

5. prices from NBSC(p).

. . . with the remaining variation as an unexplained residual. From the perspective of

the transport expenditure and demand elasticity literature, the results #1 give the

shape of Engel curves and income-varying elasticities, as controlled for #2–5; while

from the perspective of travel behavior, #3 give the association of local conditions

with higher or lower spending, as controlled for the remainder. I discuss these in

sequence below. A third matter of interest (addressed by the results in Section 3.6.3)

is what portion of the budget share variation across households is explained by #1

vis-à-vis other sources: in other words, how strong is the influence of income versus

observed and unobserved local, provincial, and year-specific conditions in households’

budgeting for transport and generally?

Marchetti (1994) famously proposed “anthropological invariants in travel behaviour,”

in part based on fieldwork by Zahavi and Talvitie (1980) finding a travel money bud-

get of 13 % across certain countries, 11 % in cities for vehicle owners, and 3 % to 4 %

for non-car owners (Figure 3-7a on page 113). While the latter noted likely associa-

tions with income and car ownership, and possible association with urban structure,

the former claimed that “personal travel is more under the control of basic instincts
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than economic drives”—which would imply in the current work that the variables

describing urban structure will have no effect.

Though the demand elasticity literature, as summarized in Table 3.1, finds long-

run values near 1 for gasoline in particular, the raw values in wtrn already indicate a

rising share that is below 3 % for the poorest households and near 8 % for the wealthi-

est, implying a value greater than 1. In contrast, Dargay et al. (2007) and others show

that the income elasticity of vehicle ownership per capita rises and falls as a country

passes the peak of its vehicle fleet growth, peaking well above 2 (Figure 3-7b on the

next page). Ownership is related to vehicle purchase and fuel expenditures, though

these are only a part of all transport expenditure, and only for some households;

and as discussed on page 103, increases in ownership may be muted when measured

by reported total transport expenditure, due to concurrent changes in spending on

other transport goods and services when a vehicle is acquired, and the way in which

the purchase is financed. However, given that China was approaching peak growth

rates in vehicle sales by 2007, the year of the last CHIP wave in the data, an income

elasticity greater than one is expected over at least part of the income range.

Regarding the urban variables, households in denser and larger cities may have

access to more extensive public transit systems that lower the cost of travel, and thus

budget shares. On the other hand, these may be wealthier households who spend

less on basic needs such as food and clothing, and have a larger share of their income

available for leisure travel on mode expensive modes. Thus the sign of coefficients

on variables including density and gdp_cap could be positive, or negative. On the

other hand, higher average wages may reflect a strong labor market in the city and

thus, imperfectly, the accessibility of employment destinations. If high-pay jobs are

available to households that are able to travel to them, higher wage_avg could be

associated with increased transport expenditure or budget share.

As reported, Cervero and Murakami (2010) found a positive elasticity of VDT
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Nationwide vs. Total Household Expenditures, %
US 1963–1975 13.2 ±0.38
Canada 1963–1974 13.1 ±0.43
UK 1972 11.7 ±0.38
West Germany 1971–1974 11.3 ±0.54

Urban vs. Household Income, %

With Cars Carless
Washington, DC 1968 11.0 4.20
Twin Cities 1970 10.1 3.40
Nuremberg Region 1975 11.8 3.50

(a) Figure 14 from Marchetti (1994). Original caption: “Rates of travel expenditure in
various countries. Expenditure on travel appears to add up to quite a stable mean value of
about 13% of personal disposable income. This budge [sic] is allocated between transport
modes in a way that realizes maximum mean speed (i.e., territory). People who do not
have a car use public services, which are usually underpriced, and in the available hour for
travel appear unable to spend the whole budget.”
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(b) Figure 4 from Dargay et al. (2007), with unit elasticity noted. Original caption: “His-
torical Ratios of Vehicle Ownership Growth to Income Growth, by Levels of per-capita
Income: 1960-2002”

Figure 3-7: Two examples from literature of regularities in transport demand.
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per vehicle with respect to road network density. In the present models, the density

of highway networks hwy_density could be correlated with either higher transport

budget share, through the channel of a high road mode share, and consequently higher

costs compared to public or non-motorized modes. Beyond the aggregate transport

price index, higher fuel prices (p_trn_fuel) have been consistently related to a lower

quantity of transport fuel purchased, in China (e.g. by C.-Y. C. Lin and J. Zeng

2013) and elsewhere. This knowledge does not lead to a straightforward expectation

of the effect on total transport expenditure or budget share, wtrn: households reducing

quantity of gasoline purchased in response to price increases may still keep expenditure

on gasoline constant; or they may shift consumption to other transport, or non-

transport, goods and services.

Finally, variables more directly indicating mode share or which are aggregate

measures of transport demand raise greater concerns about endogeneity, which may

obscure the sign and magnitude of their associated parameters. Households in regions

where the aggregate indicators suggest motorized road travel is heavier (higher p_

hwy_cap, stock_*_cap) may spend more of their income to avail themselves of these

modes and the associated mobility. On the other hand, the demand for taxi rides, for

instance, certainly factors in the decision of drivers and firms to add additional for-

hire vehicles (stock_rent_cap) and/or increase prices in order to maximize profits.

In such cases, we might desire (analogous to P. J. Burke and Nishitateno (2013) and

C.-Y. C. Lin and J. Zeng (2013), as discussed in Section 3.2.1) to instrument using a

variable for some policy parameter that is correlated closely with the stock of for-hire

vehicles, yet plausibly only loosely related to household-level budgets: for instance,

the number of taxi medallions available in a particular city, or cost of a license, or any

fixed fare. However, just as the CEIC source yields variables that do not precisely

align with the literature on travel and the build environment, it also lacks data for

these hypothetical instruments; and alternate data sources that systematize these
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policy variables across all the regions covered by the CHIP survey are not available.

Consequently, any parameter estimates for these variables can only be interpreted

with caution; I instead focus on where they are associated with changes in either

transport budget share or overall budgets, by way of motivating future research.

3.5.2 Model specifications and estimation

I estimate EASI demand systems using the R software of Hoareau et al. (2012), with

improvements and optimizations; data processing and model parameter and fit anal-

ysis are performed by new code. For details of the implementation, see Appendix B

on page 229. Table 3.8 on the next page illustrates the variables included in the main

models explored in this analysis; Table 3.16 on page 153 describes some additional

models used for sensitivity testing. Source code for model specifications is given in

Section A.2.1 on page 223. I use the following shorthand in model names to describe

the regressors included:

“yR” Model contains R powers of implicit utility, y.

“+hh” Household level regressors for age, educ, gender, and single.

“+city” City-level regressors including density, gdp_cap, hwy_density, p_hwy_

cap, p_trn_fuel, stock_bus_cap, stock_priv_cap, stock_rent_cap, and wage_

avg.

“-only-var” Only var as a city-level regressor.

“-many-dem” A larger set of city-level regressors; see Table 3.16.

Because, for instance, gdp cap ≈ gdp/pop and density is derived as pop/area, a

regressor derived as gdp density = gdp/area re-uses quantities already included in

the regression and will absorb some of the effect attributed to the former two regres-

sors. The variables in the “+city” set are selected to avoid such overlaps and partial

multicollinearity. Unless otherwise noted, all models include both province- and year

fixed effects. The former absorb unobserved, time-invariant, province-specific at-
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Table 3.8: Specifications for main models. � indicates inclusion of a variable (columns)
in a model. Other columns: number of observations, N ; powers of y included in the
estimation, R.
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y1 17689 1
y1+city 13357 1 � � � � � � � � �

y1+hh 17689 1 � � � �

y1+hh+city 13357 1 � � � � � � � � � � � � �

y3 17689 3
y3+city 13357 3 � � � � � � � � �

y3+hh 17689 3 � � � �

y3+hh+city 13357 3 � � � � � � � � � � � � �

y5 17689 5
y5+city 13357 5 � � � � � � � � �

y5+hh 17689 5 � � � �

y5+hh+city 13357 5 � � � � � � � � � � � � �

y6 17689 6
y6+city 13357 6 � � � � � � � � �

y6+hh 17689 6 � � � �

y6+hh+city 13357 6 � � � � � � � � � � � � �
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tributes that affect wj; the latter, year-specific attributes that affect all provinces

simultaneously.

Before presenting the results of model estimation, the following two subsections

give some additional methods necessary for interpretation.

3.5.3 Parametric correction for clustered regressors

Unlike previous applications of EASI (Hoareau et al. 2012; L. Li et al. 2015; Pendakur

2009), our method of adding city-level data to household-level observations introduces

regressors that are clustered at the level of the prefecture in which households are

located. Consequently, standard errors for β̂jz,t—though not β̂jp,k, β̂
j
u,r, or t such as

age that are household-specific—will be overstated. I therefore apply a parametric

correction as described by Moulton (1986) (see also Angrist and Lavy 1999; Cameron

and Miller 2015).

ejig = νjg + ηjig (3.6)

ρj =
σ2
νj

σ2
ηj

+ σ2
νj

(3.7)

V
(
β̂jz,t

)
Vc

(
β̂jz,t

) = 1 +

[
V (ng)

n̄
+ (n̄− 1)

]
ρz,tρ

j (3.8)

Grouping households at the prefecture level, regression residuals ejig for budget

share in category j of observation i in group g are modeled as group- and individual-

level components Equation (3.6) and their variances used to compute the intra-

class correlation coefficient, ρj Equation (3.7). The ratio Equation (3.8) of the true

(V (β̂jz,t)) and uncorrected (Vc(β̂
j
z,t)) parameter variance is computed using ρ; the vari-

ance (V (ng)) and mean n̄ of the group sizes; and the intra-class correlation coefficient

of the regressors, ρz,t. In these models ρz,t = 1, since each household in the same

prefecture receives the an identical value for the city-level regressors. To reiterate,
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the square root of this factor is applied to the standard errors of the parameter esti-

mates for city-level variables, but not to the household-level variables or the powers

of implicit utility, which are not clustered.

3.5.4 Tests for association with budget changes

The estimated demand system includes values and standard errors (some corrected as

above) of β̂jz,t for all expenditure categories, j. Parameters for (notionally) transport-

related variables such as density also appear in the equation for, e.g., wfood (β̂food
z,density).

It sometimes obtains that these parameters are estimated with significance according

to a t-test, yet the corresponding parameter in the equation for wtrn (β̂trn
z,density) is

not. In this example—noting that food is the largest category of expenditure—the

estimation result suggests that the variable in question does bear a relationship to

households’ consumption decisions; however, the effects is detectable only in certain

categor(ies) of consumption, while indistinct in others, such as trn. However, since∑
j w

j = 1, a variable that induces households to spend more (less) on, for instance,

food also leaves them with less (more) for trn and other goods.

To formalize this observation, Section 3.6 includes tests of hypotheses such as

Equation (3.9), which states that the variable t has no association with any budget

share.

H0 : βjz,t = 0 ∀ j (3.9)

F =
(SSER − SSE)(N − k)

SSE · q ∼ F(q,N−k) (3.10)

To perform these tests, the regressor of interest (e.g. t = density) is deleted and the

resulting, restricted model is estimated. The F -statistic, Equation (3.10), is computed

using the sum of squared errors from the restricted (SSER) and the base (SSE)

16for instance, model y5+hh+city has R = 5 powers of implicit utility, four household- and nine
city-level variables in z (|T | = 13) and J = 8 categories of expenditure, so k = 7(5 + 13 + 8) = 182.
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models, along with the number of observations (N); the number of parameters in the

base model (k = |J ′|(R+ |T |+ |J |))16 and the number of restrictions (q = 7 in these

tests). Rejecting H0 allows us to say that the variable t is associated with—though

not necessarily the cause of—changes in budget overall, even though the parameters

β̂jz,t may be mixed in individual significance. These tests are also applied to the highest

power of y in a given model; for instance, model y2+hh+city is model y3+hh+city

with y3 restricted; a significant value of F between these models will indicate that

some or all of the Engel curves are at least cubic in implicit utilities.

3.6 Results and discussion

Estimation of the described models yields empirical information about household con-

sumption that I discuss below in three categories, in each case contrasting results with

the literature: first (Section 3.6.1) the fitted Engel (budget share) curves, showing that

households’ expenditure on transport rises from roughly 1.60 % to 7.50 % of budget

across the range of incomes; second (Section 3.6.2), the elasticity of demand with re-

spect to income, indicating that transport expenditure is strongly elastic (εtrnx = 1.47)

at the lowest incomes and, while this elasticity declines, it remains significantly above

1 even at the highest incomes in the CHIP sample.

Finally, Section 3.6.3 on page 129 examines the relationships between city-level

characteristics and transport expenditure through a comparison of two subsets of

observations from different provinces and years, showing that the difference in these

groups’ mean wtrn is only partly explained by rising incomes, with city-level at-

tributes, unobservables, and prices responsible for the remainder. The section con-

cludes with an examination of the associations suggested by the underlying parameter

estimates.
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3.6.1 Engel curves for transport expenditure

I begin with the Engel curves for Chinese households’ transport demand, which show

a budget share for transport that is lower than suggested by the literature, but rises

strongly across the range of incomes. Figure 3-8 on page 122 and Figure 3-9 on

page 124 present the curves for, respectively, transport, and all categories, in the

model y3+hh.17 As with the raw CHIP data, moving statistics are shown including

the first and third quartile, and the mean. By construction, estimated budget share

for transportation and communications closely fits the conditional mean in the data,

rising from 1.60 % at the lowest incomes, through 3 % at the second decile and 6 %

at the eighth decile, to 7.50 % at the highest incomes. In contrast, Dai et al. (2012),

applying the AIDS on national, aggregate data, estimate a transport budget share

of 5 % in 1995 and 12.6 % in 2005 for urban households, and project a share of 26 %

in 2050. While the shares in the EASI model are smaller, the increase in share of

budget across the range of data used for estimation is much larger: a factor of 4.7,

compared to 2.5 in Dai et al. (2012). Data from individual households, instead of

aggregates at the mean of several large income categories, allows the models here to

show a more complete picture of transport budget share variation from the lowest

to highest incomes. Using the CRECS data, Caron et al. (2017) separate refined oil

(gasoline and diesel) from other transport goods and services, showing respectively

2.10 and 2.60, and total 4.70 %18 in 2007, nationwide across both urban and rural

households. Using a flexible demand formulation to calibrate a CGE model, they

project 2.90, 6.10 and a total of 9.00 % nationwide by 2030.

While the idea from Marchetti (cf. Figure 3-7a on page 113) of a fixed travel money

budget (TMB) does not hold in my estimates, the 1968–1975 U.S. and European

17Because this presentation only shows variation across levels of log (exp), the Engel curves for
transport and other goods appear the same in other models, such as model y5+hh+city (Figure 3-
14, in Appendix 3.B on page 154) that add city-level measures and additional powers of y.

18the summation here, not in the cited work, assumes that refined oil is solely used as a transport
fuel.
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figures from Zahavi and Talvitie (1980) for carless, urban households, at 3.40 % to

4.20 % of budget, fall within the range estimated here, while the figures of 10.1 %

to 11.8 % for households with cars are beyond even the wealthiest households in the

CHIP sample. Also outside of China, the results can be contrasted with the roughly

contemporaneous, non-parametric results of Røed Larsen (2006) from U.S. households

in 2000, with a mean budget share of 20.7 %, and decreasing budget shares across the

range of incomes except for new vehicle purchases (families with ≥ 2 children) and

air travel (single individuals in certain age ranges).

Turning to non-transport goods, Figure 3-9 shows only the conditional mean, for

all j, illustrating how the parameter estimates reflect the differing shapes of the Engel

curves: decreasing (e.g. food) or increasing (ed) in income; concave (other), con-

vex (hou), or both in places (dur). A more detailed examination of the parameter

estimates underlying the Engel curves reveals that the flexible demand system cap-

tures higher-order variation in transport budget shares across households. Table 3.9

on page 123 shows the full set of parameters for model y3+hh+city.19 Categories of

expenditure, j, are in columns, with parameters for other implied by the remainder

and omitted. Parameter estimates with standard errors are in rows, with β̂ju,r (powers

of implicit utility, including the intercept, y0 ∼ r = 0) followed by β̂jz,t (household and

urban variables) and then β̂jp,k (prices). Estimates are scaled to percentage points of

budget share; for instance, the constant term for trn of 7.06 (standard error 2.45)

indicates that wtrn is 7.06 % at zero income and zero values of the other variables;

the estimate is significant at the 1% level.

Parameters estimated as significantly different from zero in one budget share equa-

tion are not necessarily so in others; this is examined in more detail in Section 3.6.4,

but note in particular that the parameter for the third power of implicit utility, β̂ju,3, is

significantly different from zero in all budget shares except durable goods (dur). For

19Similar tables are shown in Appendix 3.A for model y5-many-dem (Table 3.13), model y3+hh
(Table 3.12), and model y5+hh+city (Table 3.14).
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Figure 3-8: Fitted trn budget share (blue) for model y3+hh: moving average (heavy
lines) and first and third quartiles (thin lines), versus same quantities in raw data
(grey, as in Figure 3-4 on page 104).
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Table 3.9: Estimated Engel curve parameters for model y3+hh+city. * = estimate
significant at the 10% level, ** = 5%, *** = 1%.

food clo trn hou ed dur med

Powers of (implicit) utility

β̂ju,0
−16.738** −8.979*** 7.061*** −0.655 8.499* 12.921*** 63.820***

(7.564) (3.337) (2.446) (3.178) (4.540) (2.888) (3.645)

β̂ju,1
33.043*** −2.543** −4.230*** 14.599*** −10.374*** −3.638*** −22.163***
(3.049) (1.201) (0.926) (1.316) (1.902) (1.138) (1.451)

β̂ju,2
−4.198*** 0.474** 0.650*** −2.482*** 1.469*** 0.381** 2.649***
(0.476) (0.188) (0.145) (0.206) (0.297) (0.178) (0.227)

β̂ju,3
0.139*** −0.019** −0.025*** 0.116*** −0.052*** −0.005 −0.102***

(0.022) (0.009) (0.007) (0.010) (0.014) (0.008) (0.011)

Household-level variables

β̂jz,age
1.815*** −1.903*** −0.427*** −0.532*** −0.467*** 0.006 1.083***

(0.269) (0.106) (0.082) (0.116) (0.168) (0.100) (0.128)

β̂jz,educ
−4.623*** 0.393*** 0.392*** 0.061 −0.334** −0.035 −0.435***
(0.252) (0.099) (0.077) (0.109) (0.158) (0.094) (0.120)

β̂jz,gender
−1.193*** 0.544*** 0.030 −0.224** 0.401** −0.062 −0.370***
(0.251) (0.099) (0.076) (0.109) (0.157) (0.094) (0.120)

β̂jz,single
0.662 −0.321* 0.270* 0.488** −0.302 0.441** 0.843***

(0.471) (0.185) (0.143) (0.203) (0.294) (0.176) (0.224)

City-level variables

β̂jz,density
2.798*** 0.804** 0.164 −0.521 −0.076 0.068 0.162

(0.965) (0.324) (0.235) (0.395) (0.431) (0.255) (0.307)

β̂jz,gdp cap
−0.123* −0.034 −0.010 0.039 0.021 −0.025 −0.015
(0.065) (0.022) (0.016) (0.028) (0.031) (0.017) (0.021)

β̂jz,hwy density
1.802 −0.945 −1.263* −2.317** −0.694 0.317 0.035

(2.807) (0.981) (0.699) (1.120) (1.200) (0.730) (0.888)

β̂jz,p hwy cap
153.717** 17.419 6.389 −2.561 −30.701 11.495 −0.431
(64.227) (21.931) (15.508) (26.700) (28.951) (16.567) (20.729)

β̂jz,p trn fuel
15.206 −24.207 −1.213 14.794 −11.287 9.318 6.852

(30.968) (15.534) (9.237) (12.149) (11.511) (8.761) (11.167)

β̂jz,stock bus cap
−0.681 −2.583** 0.119 2.634* −2.616* −0.082 0.055
(3.241) (1.099) (0.800) (1.384) (1.496) (0.872) (1.042)

β̂jz,stock priv cap
−0.071 0.023 0.008 0.005 0.003 −0.005 0.029*
(0.053) (0.019) (0.013) (0.022) (0.024) (0.014) (0.017)

β̂jz,stock rent cap
1.858 0.784* 0.310 −0.280 1.004* −0.132 0.152

(1.265) (0.423) (0.307) (0.536) (0.588) (0.335) (0.405)

β̂jz,wage avg
−0.270 0.650*** 0.121 −0.384* 0.596** −0.197 −0.086
(0.581) (0.247) (0.161) (0.232) (0.246) (0.159) (0.192)

Own- and cross-price elasticities

β̂jp,food
71.211*** 17.810*** 28.643*** 19.908*** 27.514*** −6.056 50.905***

(13.873) (5.096) (4.326) (3.591) (4.033) (4.275) (6.204)

β̂jp,clo
17.810*** −7.440* 5.855*** 7.278*** −4.380** 9.547*** 6.955**
(5.096) (3.930) (2.230) (1.714) (1.965) (2.288) (2.779)

β̂jp,trn
28.643*** 5.855*** 11.863*** 3.382** 2.744* −5.246*** 11.466***
(4.326) (2.230) (2.538) (1.342) (1.461) (1.901) (2.215)

β̂jp,hou
19.908*** 7.278*** 3.382** −1.281 10.716*** −0.380 5.421***
(3.591) (1.714) (1.342) (1.615) (1.423) (1.492) (1.949)

β̂jp,ed
27.514*** −4.380** 2.744* 10.716*** −1.774 −4.799*** 9.115***
(4.033) (1.965) (1.461) (1.423) (2.635) (1.648) (1.923)

β̂jp,dur
−6.056 9.547*** −5.246*** −0.380 −4.799*** −1.713 −14.194***
(4.275) (2.288) (1.901) (1.492) (1.648) (2.660) (2.139)

β̂jp,med
50.905*** 6.955** 11.466*** 5.421*** 9.115*** −14.194*** 13.102***
(6.204) (2.779) (2.215) (1.949) (1.923) (2.139) (3.697)
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Figure 3-9: Fitted budget shares, model y3+hh.
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Table 3.10: Comparison of several models. Significance indicators for t-tests are for parameters in the budget share equation
for trn; indicators for F -tests are across all budget shares, per Section 3.5.4.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Model name y3 y3+hh y3+hh+city y3+hh+city y3+hh+city y3+hh+city y4+hh+city y5+hh+city y6+hh+city y6+city

Observations, N 17689 17689 13357 13357 13357 13357 13357 13357 13357 13357
Household vars – 4 4 4 4 4 4 4 4 –
Year fixed effects – – – � – � � � � –
Province fixed effects – – – – � � � � � –

Powers of (implicit) utility (t, or t / F , tests)

R 3 3 3 3 3 3 4 5 6 6
0 *** *** *** *** ***
1 *** *** *** *** *** ***
2 *** *** *** *** *** *** **
3 ** ** *** *** *** ***/*** **
4 – – – – – – ***/***
5 – – – – – – – /
6 – – – – – – – – / /

City-level variables (t / F tests)

Number, including FEs – – 9 11 22 24 24 24 24 9
density /*** * /*** /*** /*** /*** /*** /*** /***
gdp_cap /*** /*** /*** / ** / ** / ** / ** /***
hwy_density /*** * / / * / * / * / * / /***
p_hwy_cap /*** /*** /*** /*** /*** /*** /*** /***
p_trn_fuel ***/*** /*** ***/*** / / / / ***/***
stock_bus_cap /*** /*** / / / / / /***
stock_priv_cap / ** /*** / / / / / /***
stock_rent_cap /*** /*** / / * / * / * / * / **
wage_avg ***/*** ***/*** ***/*** / / / / ***/***
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are dropped (column (10)), significance does not return for any powers of y.

3.6.2 Income elasticities of budget share and expenditure

I find that, as households’ income increases, their response is uniformly to increase

not only their absolute (RMB) expenditure on transport, but the share of budget

for this category. While demand is strongly elastic, the range of elasticities across

the range of incomes is not as large as previous research, based on aggregate data,

has suggested. Figure 3-10 on page 130 shows the elasticities of transport budget

share, wtrn (top) and of trn expenditure (bottom) in the model y5+hh+city, giving

the median (black) and first and third quartiles (thin grey lines).20 Transport and

communication expenditures are elastic with respect to income throughout the range

of incomes in the CHIP survey. This elasticity is highest at the 7th percentile of

income, at 1.47; reaches 1.30 for median income, and then falls to 1.06, just above

unity, at the highest incomes. In contrast, the transport budget share elasticity

reaches a maximum of 0.0142 at the 22nd percentile of income, is 0.0138 at median

income, and 0.004 68 at the highest incomes. The high share elasticity, remaining

roughly constant up to the eighth decile, shows that households across this range

respond to rising income with the same increase in the fraction of their spending that

is devoted to transport.

Returning to Table 3.1, the estimates of H. Wang, P. Zhou, et al. (2012) offer

the closest analogue to the quantities modeled here. In order to investigate rebound

effects of energy efficiency improvements, they used the linear approximation to the

AIDS with aggregate, provincial data to find a nation-wide average transportation ex-

penditure elasticity of 1.85. Their per-province estimates span a large range, from 1.2

20In demand system models where the dependent variables are budget shares wj , income elastic-
ities of demand may be expressed in one of two ways: either the elasticity of a budget share (e.g.
wtrn) or elasticity of total expenditure in a category (e.g. trn), with respect to income (Hoareau et
al. 2012). Lewbel and Pendakur (2009) refer to these as ‘semi-elasticities’ and ‘elasticities‘ respec-
tively; here, I use the terms ‘share-’ and ‘expenditure elasticity’. Across a population with homoth-
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(Guizhou) to 4.2 (Yunnan), and do not clearly correspond to the provincial average

incomes. For instance, their estimates for the wealthy, direct-controlled municipalities

of Beijing, Shanghai, and Tianjin are 2.4, 3.0, and 1.7, respectively—all values far

above the range of the EASI estimates. The differences point to two advantages of

the present approach. First, estimates on provincial aggregate data can include only

statistics, and not individual values, for local condition and household demographic

variables (and in the application of H. Wang, P. Zhou, et al. do not incorporate

any such controls). As such, they may associate a larger share of changes in trans-

port expenditure with rising incomes. This effect is readily reproduced: an EASI

model (y5) that deletes household-level demographics, city-level measures, and both

province and year fixed effects gives a higher peak elasticity estimate of 1.85. Second,

aggregate data obscure the distributions of income and expenditure in the total and

within the transport category. Shifts in the shape of this distribution (cf. Figure 3-3

on page 101) could lead to changes in expenditure for households in the tails, while

central measures, such as the mean, of income or wealth change only slightly. Es-

timates based on disaggregate data instead reflect the observed behaviour of these

households individually.

The other China-specific elasticity estimates from Table 3.1 are not directly com-

parable to the current results, as they measure different dependent quantities, such

as gasoline demand. Sun and Ouyang (2016) give an elasticity of expenditure on

transport fuels of 1.23 based on the CRECS; this is not inconsistent with the present

results, as fuels are but one good among other goods and services in the transport

basket. Supposing this value held across the range of incomes, then it would imply a

higher expenditure elasticity for non-gasoline transport goods and services where the

EASI ε̂jx,i is lower than this value, and vice versa. While C.-Y. C. Lin and J. Zeng

etic preferences (cf. Figure 3-1 on page 93), the expenditure elasticity is constant at unity: category
expenditure grows in direct proportion with total income. It is equivalent to say that the share elas-
ticity is constant at zero: the share of budget in the category does not change with income.
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(2013) find no significant elasticity of a demand measure (VDT per vehicle per year)

with respect to income, the results here show that demand measured as expenditure

is significantly elastic.

Finally, for households in the 2000 U.S. Consumer Expenditure Survey, Røed

Larsen (2006), gives an elasticity of 0.74 for overall transport expenditure, and also

finds inelastic behavior for “necessary goods of transportation,” such as local public

transportation (including mass transit), and vehicle insurance and maintenance. On

the other hand, he finds income-elastic (ε > 1) demand for purchases and leases of

new vehicles, as well as expenditures on leisure travel, including intercity trips by

air and rail. While the CHIP survey did not record these components, low-income

households in China are less likely to own vehicles, take leisure trips, and air trans-

port, and more likely to be reliant on public transport for mobility; yet I find the

demand of these lower-income households to be more elastic. Even if this differ-

ence is attributable to the gap between 2000 U.S. income distribution and that of the

CHIP respondents—Røed Larsen uses a lower bound of 2× 104 USD for Engel curves,

which is above the 90th percentile of CHIP incomes—it highlights the importance of

country-specific demand estimates.

There are two further points to be made about the EASI elasticity findings. The

conditional distribution of the expenditure elasticity, ε̂jx,i, in Figure 3-10 on page 130

has a high third quartile. This occurs because share (or ‘semi’) elasticities (denoted

by the superscript, w) are obtained by partial differentiation of the EASI demand

equations with respect to income as in (Lewbel and Pendakur 2009, at p.835) or

(Pendakur 2009, Eq. (23)): 21

ε̂w,jx,i =
∂wj(p, u, z)

∂u

∣∣∣∣
i

=
R∑
r=1

β̂jy,ry
r−1
i (3.11)

21Note that the current work does not explore interactions of prices with the demographics, or
income with prices, and thus the corresponding terms from the cited equations are omitted.
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To obtain the expenditure elasticity, the share elasticity is divided by the budget

share wji and added to 1. As the budget shares are very low in certain categories for

some households, the low denominator leads to a high value, and so the interquartile

range of the expenditure elasticity can be large: 1.26 to 2.78 at its peak, and 1.20

to 1.57 at median income. In contrast, the interquartile range of ε̂w,jx,i only reflects

differences in y due to variation in price levels across households with similar total

expenditure, x, and so is smaller: 0.0142 to 0.0142 at peak share elasticity, and 0.0137

to 0.0139 at median income.

Lastly, highly elastic demand for transport is in contrast to other categories of

consumption, shown in Figure 3-11 on page 131 as both share and quantity elastic-

ities. As suggested by its declining Engel curve, the expenditure elasticity of food

is below unity across the range of incomes (equivalently, its share elasticity is every-

where negative); on the other hand, hou expenditure is inelastic at lower incomes

but becomes elastic at the seventh decile, reaching an elasticity of 1.45 at the highest

incomes. While expenditure elasticities reflect the simple fact that households in-

crease absolute expenditure in all categories as incomes rise, the share elasticities in

Figure 3-11 reflect how households will alter their division of budget in response to an

incremental rise in income. For the category of transport—as well as clo, dur, and

ed—I find that this response is uniformly to increase the share of budget, while the

budget shares for other categories of consumption fall over part or all of the income

range.

3.6.3 Variation in transport budget shares

Changes in income, via the flexible income elasticity of expenditure, only partly of

the difference in the transport budget share across households. The demand systems

estimated here also allow the budget shares to be influenced by measures of local

conditions, which are associated with budget share shifts of similar magnitudes to
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Figure 3-10: Share (top) and expenditure (bottom) elasticity of trn expenditure with
respect to income, model y5+hh+city
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Figure 3-12: Shifts in budget share. Far left and right: distribution of the transport
budget share for CHIP observations from cities in Jiangsu (JS) province, 1995; and
Shanghai (SH), 2007, respectively, with medians in blue. Middle bars: hypothetical
budget shares for the JS households as each successive variable is rescaled and shifted
from its observed distribution to the SH 2007 distribution, with changes in the median
in black relative to the adjacent bar to the left.

that caused by income. For selected households, for instance, only about 27 % of

the difference in transport budget shares can be tied to increased income, with the

remainder attributable to prices, local conditions, household-level demographics, and

unobserved province- and year-specific attributes. Though comprehensive forecasts

are beyond the scope of the current work, in order to illustrate the relative magni-

tude of the income and other effects, Figure 3-12 presents a comparison between two

subsets of observations, using parameters from model y6+hh+city. I select, for the

purpose of illustration, the relatively low-income households (median total expen-

diture: 9500 RMB) from Jiangsu (JS) province in the 1995 CHIP wave, and much

higher-income households from Shanghai (SH) in the 2007 wave (median total expen-
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diture: 39 000 RMB). Then, for successive variables zt (first log_exp, then density,

etc.), I shift these independent quantities, as in Equation (3.12), from the actual, ob-

served values for the Jiangsu households, to new values z′t that match the distribution

of the same variable across the Shanghai households.

z′t,i = z̄t,SH2007 − σz,t,SH2007 ×
zt,i − z̄t,JS1995
σz,t,JS1995

(3.12)

where

zt,i = original value of zt associated with obs. i

z′t,i = shifted value

z̄t,JS1995, z̄t,SH2007 = means across subsets of obs.

σz,t,JS1995, σz,t,SH2007 = standard deviations

These values are used with estimated parameters to predict the budget shares shown,

re-adding original prediction residuals. The predicted shares provide a convenient

illustration of the incremental effect of differences in context between the two sets of

observations.

The two sets of observations selected have a difference in median wtrn of 6.48

percentage points of total expenditure. The change in expenditure between these

conditions is associated with 1.75 points, or 27 %, of this gap. Shanghai’s mea-

sures of density are higher: population density is shifted from a mean of 0.530 to

3.25× 103 pers./km2, associated with an increase in median wtrn of 0.62 percentage

points. Highway network density shifts from 0.250 to 1.76 km/km2; this, in contrast,

is associated with a decrease in transport budget share by 1.92 points—larger in

magnitude than the change caused by income.

Measures of local vehicle stocks per capita are all greater for the 2007 Shanghai

households than for the 1995 Jiangsu households, and each of these shifts is accom-

panied by an increase in the transport budget shares: 0.10 percentage points with
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larger bus fleets (9.80× 10−2 � 0.820 veh./103pers.); 0.24 points with a larger stock

of private vehicles (0.950 � 29.7 veh./103pers.), and 0.82 points with a greater num-

ber of for-hire vehicles such as taxis (0.0300 � 2.36 veh./103pers.). Both the local

level of GDP per capita (3.90 � 62× 103 RMB/pers.) and average wages (4.60× 103

� 45× 103 RMB/(pers. year)) shift by more than an order of magnitude between the

local conditions in Jiangsu 1995 and in Shanghai 2007, reflecting the rapid economic

growth taking place in this period. The former is associated with an decrease of 0.59

percentage points in the transport budget share, while the latter is associated with a

large increase of 5.13 points.

Changes in relative prices for transport and other goods faced by the two groups

cause a 4.58 point decrease in the Shanghai households’ transport budget share com-

pared to the Jiangsu households. Other unobserved, time-invariant, province-specific

factors captured by the provincial fixed effects are associated with an 0.88 point

increase; while unexplained, nation-wide, year-specific factors captured by the year

fixed effects are associated with 4.87 points of increase. While regional passenger

road traffic per capita in 2007 Shanghai is lower than in 1995 Jiangsu, and fuel prices

higher, neither of these variables are associated with transport budget share changes.

Differences in household-level demographics explain the remaining difference between

the medians in the rightmost two bars of Figure 3-12.

As noted, changes in income only explain roughly one quarter of the change in

transport budget share between the two sets of households selected for this compari-

son, meaning that other factors are responsible for the remainder. This result high-

lights the importance of contextual factors in the transport system in mediating the

consumption behavior of households. However—as discussed in Section 3.5.1—these

remaining relationships are identified at best as associations rather than causal ef-

fects, and must be interpreted with care. For instance, the parameter for the stock

of private vehicles (stock_priv_cap), is likely to be biased because this stock is
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created and replenished by the same transport expenditures that are the dependent

variable in the demand equation, and so the regressor may be endogenous; a similar

concern applies to p_hwy_cap. Separately, the large change associated of wage_avg

may proxy for another, unobserved, city-specific attribute with which it is closely

correlated. While the inclusion of province-level fixed effects captures unobserved

attributes that differ across provinces, the CHIP sampled multiple cities within each

province surveyed (cf. Table A.2), so estimation may assign budget share differences

due to unobserved differences across prefectures to wage_avg or other included re-

gressors. This possibility is further supported by the lack (discussed further below)

of significance in the estimates for these parameters.

3.6.4 Parameter estimates for local conditions

I therefore offer only brief comment on the parameter estimates for certain city-

level variables, in order to illustrate differences across alternate specifications of the

EASI demand system, and to demonstrate that these measures of local conditions are

clearly tied to household budgeting overall—though their effects on wtrn in particular

are not estimated with significance. Figure 3-13 on the following page shows both t-

and F -test results for the variables density and gdp_cap in the equation for wtrn,

across a variety of model specifications, along with confidence intervals at the 1%,

5% and 10% levels, and corrected for clustering where appropriate.22 For a single

model, Table 3.11 on page 137 gives the same information, plus the t-significance of

the parameters for the variables in the other categories of consumption, j. Finally

the reader is referred again to Table 3.10 on page 125, bottom panel, which shows

differences in t- and F -significance in models that omit either province or year fixed

effects.

For population density, as with other variables, coefficients are estimated with

22Similar figures are given in Appendix 3.B and Appendix A for other variables.
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Figure 3-13: Estimates for coefficients on density, and gdp_cap in wtrn, in multiple
models. Whiskers give 1, 5, and 10% confidence intervals for individual parameter val-
ues using clustered standard errors. Colors indicate results of F -tests (Equation (3.10)
on page 118) for association of variables with changes in budget allocation.
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Table 3.11: Tests of significance for parameter influence on budget shares jointly (per
Equation (3.9)) and individually (right columns), in model y5+hh+city. * = estimate
significant at the 10% level, ** = 5%, *** = 1%.

F food clo trn hou ed dur med

density 4.78*** *** **
gdp_cap 2.10** *
hwy_density 1.56 * **
p_hwy_cap 3.61*** **
p_trn_fuel 0.293
stock_bus_cap 1.12 ** * *
stock_priv_cap 1.54 *
stock_rent_cap 1.78* * *
wage_avg 1.38 *** * **
y5 0.821 *** * ** *** ***

significance in budget share equations for some categories, but not others. Per Ta-

ble 3.11, in the model y5+hh+city, the estimate of βfood
z,density is significant at the 1%

level, and the estimate of βclo
z,density at the 5% level, while βjz,density is not estimated

with significance for other j. Figure 3-13 shows that, so long as both province and

year fixed effects are included, no model has a βtrn
z,density estimate that is significant

at even the 10% level; however (column (4) of Table 3.10) if province fixed effects are

omitted, the estimate is weakly significant at the 10% level.

The results of F tests described in Section 3.5.4 show that local population density

is associated with changes in overall household budget allocation, as shown by the

bar colors in Figure 3-13. Like the estimates of βjz,density for other consumption

categories, j, βtrn
z,density has consistent sign and magnitude in models where the F test

shows significance at the 1% level. In contrast, when this variable is the only city-level

regressor (y5-only-density) or one of two (y5-density+gdp_cap), the coefficient

estimate is lower and remains insignificant, and the F test of any influence on budget

shares fails. In a model that deliberately introduces the somewhat collinear regressor

gdp_density (y5-many-dem), the estimate for βtrn
z,density is yet more negative.

Similar observations apply to the coefficients GDP per capita in CHIP households’
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locations, although the sign of βtrn
z,gdp cap is negative. Restricted models (y5-only-

density and y5-density+gdp_cap) and models with extra, collinear regressors (y5-

many-dem) again produce biased estimates. When household-level demographics are

omitted, the magnitude of βtrn
z,gdp cap decreases while its F -statistic increases, since

educ (and perhaps also age, gender and/or single) is correlated with gdp_cap.

In general, the interpretation of causal effects on transport behaviour awaits fu-

ture work that is able to identify these effects clearly, for instance by investing in

the collection of data suitable for instruments as discussed on page 114. Note, how-

ever, that the budget share systematization of demand, and the use of disaggregate

household data, yield knowledge in a novel form that enriches the literature on the

built environment. For instance (see again Table 3.1) Cervero and Murakami (2010)

measured elasticities of a different dependent concept (VDT per vehicle per year), for

different, aggregate units of analysis (US urbanized or statistical areas), and found

that greater population density was associated with less vehicle travel, while greater

road network density was associated with more VDT. In the EASI models, signs of

βtrn
z,density and βtrn

z,hwy density are the opposite: positive and negative respectively. Yet

this does not necessarily represent a contradiction; only the additional association

that households spend a larger share of their budget on transport when they located

in denser cities or districts, and a smaller share when road networks are denser. Per

Gim (2012), the effects of population density in China may be different than what

Cervero and Murakami find in the U.S. Or, higher VDT and associated costs may

lead to a more than compensating decrease in consumption of other transport goods

and services.
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3.7 Discussion

Before concluding, I add some general observations about how the demand measure

here relates to previously studied concepts (Section 3.7.1), and note some limitations

on the analysis (Section 3.7.2).

3.7.1 Transport expenditure and its components

The models estimated in this chapter yield budget share curves and income elasticities

for a category officially termed “transportation and communications.” This category

encompasses a basket of different goods and services with particular characteristics:

some of the goods are durable, others not; some are complementary to others; and

certain components may be substitutes and others complements. Using the U.S.

Consumer Expenditure Survey, Choo et al. (2010) found that ‘transport’ and ‘com-

munications’ are neither strict substitutes nor compliments, and that the relationship

may be non-symmetric. The composition of the category varies with level of income

and other factors: for instance, very poor households, or those not located near a

city with an international airport, are unlikely to have international air trips as a

component of their total transport expenditure. In the communications subcategory,

while smartphones were not available during the years of the CHIP waves used here,

cellular phone adoption and use grew dramatically.

Existing knowledge about households’ transport expenditure (as reviewed in Sec-

tion 3.2) centers on certain of these components—including fuel and vehicle purchases,

and discrete choices of mode or numbers of trips. In order to relate mode- to budget

shares, the costs of travel by different modes are required for conversion; to relate

total transport expenditure to fuel and/or vehicle purchases, households’ substitu-

tion behaviour across these goods is relevant. Work in data-rich contexts like the

United States (e.g. Røed Larsen 2006) reveals that a household’s income elasticity of
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demand for ‘necessary’ and ‘luxury’ transport goods can be quite different. Further,

much of China’s population in the time period studied, and likely a good share of

the low-income households CHIP sample, used non-motorized transport for mobility;

and walking and bicycling do not incur reportable variable costs.

To better understand what the present estimates imply about consumption of

particular transport goods and services would require additional work to unpack the

composition of Chinese households’ transport expenditure, its relationship to non-

monetary measures of mobility such as distance traveled by mode, and how these

vary across incomes and the other measures of local conditions here.

3.7.2 Limitations

This work offers a foundation for further investigations of household-level demand

for transport, linked to local conditions of the built environment, in flexible demand

systems that, because they preserve rationality, can be readily linked to economy-

wide models. Several of these possible are related to alternate or additional sources

of data, or developing such links; those I describe in more detail in Chapter 5. Here,

it is important to note two chief limitations in the present models.

Spatial variation in prices. The NBSC price indices provide changes relative

to the previous year in the same region, but carry no information about spatial

differences across regions. Biggeri et al. (2016), in providing an estimate of spatial

price indexs (SPIs) for 2014, note that the most recent estimate in the literature was

for 2002. They estimate general spatial price indices; that is, differences in purchasing

power parities for a basket of representative goods or total consumption, rather than

in the prices of distinct categories of goods. In contrast, C. Li and Gibson (2014) focus

on one particular category of goods, namely housing, which is not easily traded across

regions. No published source appears to cover spatial variation for all expenditure
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categories and years in the current data set, and at the same level of spatial resolution.

Under the present treatment, these differences are partly absorbed by province and

year fixed effects, but the addition of SPI information, if available, could improve the

quality of estimates.

Treatment for endogeneity. The literatures on travel and the built environment,

and on transport demand elasticities, have each identified and sought to address par-

ticular identification concerns: respectively, these are residential self-selection, and

the simultaneity of demand and prices in markets, especially for transport fuels. I

have demonstrated the EASI approach using readily-available, official statistics for

urban variables; however, this introduces new concerns, as some of the available vari-

ables—in particular, stock_priv_cap and p_hwy_cap—are clearly endogenous with

demand. Lacking viable instruments to control for these distinct forms of endogeneity,

the city-level variables in the models function mainly as controls, and identification

of causal effects of specific magnitude is precluded.

This limitation could be resolved by obtaining additional data from other sources,

or assembling fresh data sets, with two goals: first, to include other measures of the

built environment that are plausibly less endogenous with demand than the ones used

here; and second, to provide suitable instruments for the data already collected. Cao

et al. (2009) give some examples of the latter, although for transport-focused surveys

and in the U.S. context; for instance, the instruments include shares of racial groups

in population, a measure not likely to be available or useful as an instrument in the

Chinese context. For the first goal, new data could be sought which better matches the

conceptual quantities identified by the travel behaviour literature as having influence

on trip choice. In particular, data on measures of supply in the public transport

system, such as the track/route length, number of stations/stops, number of vehicles

and/or lines, or fraction of population living within a certain distance of bus or rail
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public transit are desirable, because they reflect government policy decisions only

partly predicated on current demand. These are likely to be less correlated with

transport expenditures than measures of more granular, market-determined stocks

such as the number of rental vehicles (stock_rent_cap), or measures of aggregate

demand such as highway passenger-distance travelled (PDT) (p_hwy_cap). Such data

would raise fewer concerns about endogeneity, and could be used to investigate the

influence of public transport supply on transport expenditures.

3.7.3 Conclusions

This chapter has detailed a new application of a recently-developed, flexible demand

system to data from publicly-available sources, in order to investigate the nature of

transport demand in China and its relationship to local conditions.

The empirical results are a transport share of expenditure rising from 1.6 % to

7.5 % across the range of incomes, reflecting demand that is strongly elastic with

respect to incomes among poorer households (εtrnx = 1.47) and a declining income

elasticity to εtrnx = 1.06 at the highest incomes. While implying strong continued

growth in the transport sector of China’s economy as economic development leads

to increased incomes and expenditure, these values are not as high as some prior

estimates based on aggregate data analysed with less flexible demand systems.

The flexible, EASI demand systems yield two further conclusions: first, they reveal

that third and fourth powers of implicit utility, y, a function of income, are significant

in household budget allocations generally, and for transport in particular. Lower-order

demand formulations therefore will not fully capture the detail of household responses

to rising income. Second, the demand systems allow introduction of variables for city-

level measures of transport system attributes, the built environment, and economic

conditions, although no significant estimates were obtained with the present data for

direct effects on transport spending. I find that these local conditions, along with
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prices and unobserved attributes of cities and specific years, are associated with the

majority of variation in household transport budget share across selected conditions;

only one quarter of the budget share difference between sets of selected households

in 1995 and 2007 is explained by differences in income or total expenditure.

The findings build on previous efforts to estimate budget shares and elasticities

of transport demand for Chinese households, shedding new light on how these de-

scriptors of consumption are related to urban characteristics, and demonstrating how

they can be estimated from disaggregate data from surveys not focused on travel or

transportation.

One key application of such Engel curves is the projection of transport demand

growth and energy consumption in Chinese cities—one that improves on the appli-

cation of out-of-country, 20th-century trends, and reflects observed variation across

and within cities. Models with city-level characteristics—combined with projections

of demographics, income and its distribution, inflation, and planned transport infras-

tructure investment—enable exploration of correlations between future urbanization,

economic growth, and aggregate household transport demand.

The demand systems I estimate could support policy analysis by allowing consis-

tent estimation of the welfare impacts of transportation demand management (TDM)

policies that either limit expenditure in particular categories, or affect the relative

prices of transport goods and services. For instance, using microdata in Beijing and

Shanghai, S. Li (2015) estimate welfare impacts of auction versus lottery distribution

of vehicle license plates. My estimates of household transport expenditure based on

country-wide data support similar analyses in other cities that may be considering

such policies.

A key question for such projection and policy analysis, however, is whether EASI

demands estimated on survey data like CHIP—with broad, national coverage, but

only stratified sampling of a fraction of provinces in each wave—are valid for applica-
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tion in other cities countrywide. How sensitive are parameter values, and predicted

budget shares, to the composition of the data used for calibration, and does the ability

of the flexible system to capture complex income-demand relationships confer any ad-

vantage over more widely-used formulations such as AIDS? The following Chapter 4

takes up these questions.
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3.A Tables

Table 3.12: Estimated Engel curve parameters for model y3+hh. * = estimate signif-
icant at the 10% level, ** = 5%, *** = 1%.

food clo trn hou ed dur med

Powers of (implicit) utility

β̂ju,0
−30.858*** 6.929*** 10.780*** −6.748*** 17.421*** 10.483*** 64.132***

(5.951) (2.414) (1.593) (2.248) (3.377) (2.273) (2.571)

β̂ju,1
44.031*** −2.697** −3.831*** 11.861*** −5.779*** −6.525*** −21.955***
(2.818) (1.143) (0.754) (1.064) (1.599) (1.077) (1.217)

β̂ju,2
−5.978*** 0.504*** 0.564*** −1.972*** 0.705*** 0.830*** 2.602***
(0.428) (0.174) (0.115) (0.162) (0.243) (0.164) (0.185)

β̂ju,3
0.220*** −0.021*** −0.021*** 0.091*** −0.017 −0.024*** −0.099***

(0.020) (0.008) (0.005) (0.007) (0.011) (0.008) (0.009)

Household-level variables

β̂jz,age
2.229*** −2.409*** −0.347*** −0.128 −0.223* −0.212** 0.856***

(0.230) (0.093) (0.061) (0.087) (0.130) (0.088) (0.099)

β̂jz,educ
−4.872*** 0.379*** 0.373*** 0.054 −0.075 −0.063 −0.551***
(0.226) (0.092) (0.060) (0.086) (0.129) (0.086) (0.098)

β̂jz,gender
−1.214*** 0.684*** 0.061 −0.118 0.401*** −0.198** −0.364***
(0.221) (0.090) (0.059) (0.084) (0.126) (0.085) (0.096)

β̂jz,single
0.907** −0.447** 0.244** 0.417** −0.562** 0.653*** 0.777***

(0.432) (0.175) (0.116) (0.163) (0.245) (0.165) (0.187)

Own- and cross-price elasticities

β̂jp,food
−5.421 −5.020** −2.430 −0.584 3.185 3.417 5.469***
(5.517) (2.007) (1.512) (1.627) (2.119) (2.122) (1.802)

β̂jp,clo
−5.020** 5.495*** 4.766*** 1.067 0.380 8.249*** 1.384
(2.007) (1.556) (0.863) (0.799) (1.032) (1.167) (0.955)

β̂jp,trn
−2.430 4.766*** 3.572*** 1.537** −1.878** 0.467 0.741
(1.512) (0.863) (1.028) (0.634) (0.756) (1.001) (0.689)

β̂jp,hou
−0.584 1.067 1.537** 1.666* 4.185*** −0.319 −0.039
(1.627) (0.799) (0.634) (0.867) (0.818) (0.948) (0.699)

β̂jp,ed
3.185 0.380 −1.878** 4.185*** 0.954 −1.171 2.891***

(2.119) (1.032) (0.756) (0.818) (1.556) (1.053) (0.934)

β̂jp,dur
3.417 8.249*** 0.467 −0.319 −1.171 −5.204*** −9.865***

(2.122) (1.167) (1.001) (0.948) (1.053) (1.863) (0.943)

β̂jp,med
5.469*** 1.384 0.741 −0.039 2.891*** −9.865*** 0.517

(1.802) (0.955) (0.689) (0.699) (0.934) (0.943) (1.109)
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Table 3.13: Estimated Engel curve parameters for model y5-many-dem. * = estimate
significant at the 10% level, ** = 5%, *** = 1%.

food clo trn hou ed dur med

Powers of (implicit) utility

β̂ju,0
17.897 −20.192*** −1.394 26.622*** −4.398 −23.742*** 79.289***

(18.176) (7.216) (5.785) (7.649) (11.012) (7.155) (8.720)

β̂ju,1
2.903 21.536** 10.300 −24.325** −2.604 47.643*** −31.756***

(23.254) (9.176) (7.089) (10.041) (14.537) (8.695) (11.118)

β̂ju,2
−3.664 −7.594** −3.840 10.386*** 4.297 −16.103*** 6.304
(8.565) (3.380) (2.611) (3.699) (5.355) (3.203) (4.095)

β̂ju,3
1.549 1.108** 0.546 −1.666*** −1.291 2.198*** −0.687

(1.357) (0.535) (0.414) (0.586) (0.848) (0.507) (0.649)

β̂ju,4
−0.192* −0.071* −0.032 0.112*** 0.137** −0.133*** 0.042
(0.099) (0.039) (0.030) (0.043) (0.062) (0.037) (0.047)

β̂ju,5
0.007*** 0.002 0.001 −0.003** −0.005*** 0.003*** −0.001

(0.003) (0.001) (0.001) (0.001) (0.002) (0.001) (0.001)

Household-level variables

β̂jz,age
1.746*** −1.894*** −0.430*** −0.480*** −0.473*** −0.000 1.098***

(0.268) (0.106) (0.082) (0.116) (0.168) (0.100) (0.128)

β̂jz,educ
−4.469*** 0.381*** 0.392*** 0.070 −0.425*** −0.072 −0.445***
(0.252) (0.099) (0.077) (0.109) (0.157) (0.094) (0.120)

β̂jz,gender
−1.124*** 0.571*** 0.039 −0.189* 0.347** −0.064 −0.373***
(0.251) (0.099) (0.076) (0.108) (0.157) (0.094) (0.120)

β̂jz,single
0.561 −0.290 0.272* 0.477** −0.261 0.496*** 0.853***

(0.469) (0.185) (0.143) (0.203) (0.293) (0.175) (0.224)

City-level variables

β̂jz,density
4.849** −0.526 −0.378 −3.462*** −0.718 0.693 −0.285

(2.421) (0.766) (0.613) (0.979) (1.137) (0.637) (0.797)

β̂jz,gdp cap
−0.105 −0.057*** −0.018 0.003 0.012 −0.016 −0.031
(0.069) (0.021) (0.018) (0.028) (0.032) (0.019) (0.023)

β̂jz,gdp density
−0.041 0.019 0.009 0.046*** 0.017 −0.012 0.007
(0.038) (0.012) (0.010) (0.015) (0.018) (0.010) (0.013)

β̂jz,hwy density
−0.772 −0.528 −0.607 −0.470 −0.068 −0.139 0.210
(3.400) (1.106) (0.856) (1.362) (1.578) (0.891) (1.122)

β̂jz,p hwy cap
171.288*** 22.178 7.103 3.590 −29.286 0.491 0.249
(65.698) (21.060) (16.568) (26.216) (30.503) (17.474) (21.759)

β̂jz,p trn fac
−32.511 −7.878 0.906 5.684 −15.400 −11.585 −23.179
(47.703) (10.738) (20.968) (13.200) (14.525) (22.592) (18.450)

β̂jz,p trn fuel
30.977 −13.134 −27.462 −4.278 −0.486 39.316* 9.886

(57.030) (16.919) (19.159) (17.997) (18.629) (20.436) (19.767)

β̂jz,p trn ic
73.036 28.878** −30.931** −6.797 19.097 32.229** 8.120

(45.964) (12.756) (13.230) (14.848) (16.587) (14.045) (14.542)

β̂jz,p trn maint
−29.935 −14.723* −4.642 −9.809 10.262 10.128 −16.595
(32.905) (8.390) (12.746) (10.004) (10.760) (13.639) (11.856)

β̂jz,p trn pt
−32.543 −21.554*** −2.976 −15.946* 12.474 0.055 0.477
(21.033) (6.780) (5.567) (8.423) (9.529) (5.919) (6.943)

β̂jz,stock bus cap
1.636 −2.422** −0.287 1.684 −3.165** 0.402 0.411

(3.399) (1.079) (0.847) (1.387) (1.582) (0.887) (1.115)

β̂jz,stock priv cap
−0.025 0.026 0.005 −0.005 −0.027 −0.008 0.024
(0.066) (0.021) (0.016) (0.027) (0.031) (0.017) (0.022)

β̂jz,stock rent cap
1.112 0.838** 0.406 0.238 1.411** −0.312 0.163

(1.361) (0.426) (0.344) (0.549) (0.640) (0.361) (0.449)

β̂jz,wage avg
−0.450 0.399 0.025 −0.377 0.698** −0.188 −0.489*
(0.853) (0.274) (0.273) (0.284) (0.314) (0.297) (0.291)
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Table 3.14: Estimated Engel curve parameters for model y5+hh+city. * = estimate
significant at the 10% level, ** = 5%, *** = 1%.

food clo trn hou ed dur med

Powers of (implicit) utility

β̂ju,0
16.567 −26.705*** −2.856 26.650*** −4.504 −24.394*** 69.651***

(17.341) (7.034) (5.359) (7.458) (10.742) (6.506) (8.295)

β̂ju,1
1.262 22.333** 9.132 −23.852** −0.648 48.114*** −31.017***

(23.261) (9.188) (7.083) (10.063) (14.523) (8.685) (11.099)

β̂ju,2
−3.251 −7.903** −3.381 10.296*** 3.589 −16.368*** 6.035
(8.581) (3.389) (2.613) (3.712) (5.358) (3.204) (4.095)

β̂ju,3
1.515 1.162** 0.471 −1.660*** −1.186 2.253*** −0.642

(1.360) (0.537) (0.414) (0.588) (0.849) (0.508) (0.649)

β̂ju,4
−0.191* −0.076* −0.027 0.112*** 0.130** −0.138*** 0.039
(0.099) (0.039) (0.030) (0.043) (0.062) (0.037) (0.047)

β̂ju,5
0.007*** 0.002* 0.001 −0.003** −0.005*** 0.003*** −0.001

(0.003) (0.001) (0.001) (0.001) (0.002) (0.001) (0.001)

Household-level variables

β̂jz,age
1.835*** −1.908*** −0.431*** −0.524*** −0.477*** −0.005 1.084***

(0.269) (0.106) (0.082) (0.116) (0.168) (0.100) (0.128)

β̂jz,educ
−4.502*** 0.385*** 0.382*** 0.076 −0.398** −0.061 −0.436***
(0.252) (0.100) (0.077) (0.109) (0.158) (0.094) (0.120)

β̂jz,gender
−1.155*** 0.539*** 0.026 −0.216** 0.381** −0.075 −0.370***
(0.251) (0.099) (0.076) (0.108) (0.157) (0.094) (0.120)

β̂jz,single
0.606 −0.300 0.283** 0.455** −0.278 0.486*** 0.837***

(0.470) (0.186) (0.143) (0.203) (0.293) (0.175) (0.224)

City-level variables

β̂jz,density
2.673*** 0.822** 0.176 −0.550 0.005 0.105 0.167

(0.968) (0.324) (0.235) (0.397) (0.433) (0.256) (0.307)

β̂jz,gdp cap
−0.121* −0.034 −0.010 0.038 0.020 −0.024 −0.015
(0.065) (0.022) (0.016) (0.028) (0.031) (0.017) (0.021)

β̂jz,hwy density
1.840 −0.972 −1.268* −2.293** −0.758 0.300 0.023

(2.812) (0.981) (0.699) (1.122) (1.205) (0.734) (0.888)

β̂jz,p hwy cap
153.960** 17.420 6.189 −2.103 −30.098 10.795 −0.173
(64.348) (21.938) (15.491) (26.746) (29.062) (16.638) (20.734)

β̂jz,p trn fuel
16.152 −24.658 −1.176 14.785 −12.216 9.167 6.829

(31.065) (15.544) (9.229) (12.172) (11.564) (8.808) (11.168)

β̂jz,stock bus cap
−0.303 −2.633** 0.087 2.712* −2.860* −0.180 0.041
(3.250) (1.100) (0.799) (1.388) (1.504) (0.876) (1.043)

β̂jz,stock priv cap
−0.073 0.024 0.009 0.004 0.005 −0.004 0.029*
(0.053) (0.019) (0.013) (0.022) (0.024) (0.014) (0.017)

β̂jz,stock rent cap
1.823 0.787* 0.310 −0.284 1.037* −0.132 0.158

(1.267) (0.423) (0.306) (0.537) (0.590) (0.337) (0.406)

β̂jz,wage avg
−0.305 0.667*** 0.126 −0.398* 0.617** −0.174 −0.090
(0.583) (0.247) (0.161) (0.233) (0.247) (0.160) (0.192)
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Table 3.15: Tests of significance for parameter influence on budget shares jointly (per
Equation (3.9) on page 118) and individually (right columns), in y5-many-dem. * =
estimate significant at the 10% level, ** = 5%, *** = 1%

F food clo trn hou ed dur med

density 3.52*** ** ***
gdp_cap 1.88* ***
gdp_density 2.23** ***
hwy_density 0.0918
p_hwy_cap 4.02*** ***
p_trn_fac 0.593
p_trn_fuel 0.842 *
p_trn_ic 2.52** ** ** **
p_trn_maint 1.03 *
p_trn_pt 1.88* *** *
stock_bus_cap 0.978 ** **
stock_priv_cap 0.323
stock_rent_cap 1.45 ** **
wage_avg 1.04 ** *
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Table 3.16: Specifications for -only models. � indicates inclusion of a variable (columns) in a model. Other columns: number
of observations, N ; powers of u included in the estimation, R.
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y5-many-dem 13357 5 � � � � � � � � � � � � � � � � � �

y5-only-density 17689 5 � � � � �

y5-only-gdp_cap 14301 5 � � � � �

y5-only-gdp_density 14301 5 � � � � �

y5-only-hwy_density 17689 5 � � � � �

y5-only-p_hwy_cap 17689 5 � � � � �

y5-only-p_trn_fac 17689 5 � � � � �

y5-only-p_trn_fuel 17689 5 � � � � �

y5-only-p_trn_ic 17689 5 � � � � �

y5-only-p_trn_maint 17689 5 � � � � �

y5-only-p_trn_pt 17689 5 � � � � �

y5-only-stock_bus_cap 14024 5 � � � � �

y5-only-stock_priv_cap 17689 5 � � � � �

y5-only-stock_rent_cap 13357 5 � � � � �

y5-only-wage_avg 17689 5 � � � � �
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3.B Figures
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Figure 3-14: Fitted budget shares, model y5+hh+city
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Figure 3-15: Descriptive statistics of provinces included in the CHIP sample.
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Figure 3-16: Estimates for coefficients on hwy_density, wage_avg, p_hwy_cap, and
p_trn_fuel in wtrn. Whiskers give 1, 5, and 10% confidence intervals for individual
parameter values using clustered standard errors. Colors indicate results of F -tests
(Equation (3.10) on page 118) for association of variables with changes in budget
allocation.
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Figure 3-17: Estimates for coefficients on stock_bus_cap, stock_priv_cap, stock_
rent_cap, and ptrn (the price index for the transportation category) in wtrn. See
caption of Figure 3-16.
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Chapter 4

Validating flexible demand systems
for Chinese household transport

Abstract

Empirical facts about transport demand and its relationship to eco-
nomic growth are used to anticipate future activity and impacts, and
to inform the design of transport policy. However, questions of ex-
ternal validity arise when translating these facts beyond the scope of
supporting data. In this essay, I compare the recently-developed, Exact
affine Stone index (EASI) demand system with the more widely used
Almost Ideal demand system (AIDS), to examine if, how, and where
its theoretical benefits translate to concrete advantages in projecting
the transport behaviour of out-of-sample Chinese households.

Employing cross-validation techniques, I estimate both AIDS and a
variety of EASI against fractions of a full data set, then test the per-
formance of these models against the remainder. I find that simpler
EASI specifications match or exceed the out-of-sample performance of
AIDS models. Exploiting flexibility is not, however, without pitfalls:
I show an accuracy trade-off when introducing policy-relevant covari-
ates to models—especially where measures of local context are high;
but also because relationships between these and travel behaviour may
vary across provinces and cities. As well, controlling for unobserved,
province-level confounders, while necessary for unbiased parameter es-
timates, yields models with increased error in out-of-sample prediction.

These results highlight the importance, in a diverse and rapidly
changing country such as China, of data that sample the broadest pos-
sible range of city types and contexts; while the methods allow modelers
to design and validate demand specifications for specific projection and
assessment tasks.
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4.1 Introduction

In transportation research, econometric methods and micro-scale data are used to in-

fer and measure relationships between various measures of demand, and factors that

influence it. Chapter 3 developed a new application of flexible demand systems to

publicly-available survey data, in order to obtain empirical facts about Chinese house-

holds’ transport behaviour. The Exact affine Stone index (EASI) equations used were

originally developed in order to certain theoretical improvements over previous, less

flexible forms (Lewbel and Pendakur 2009): namely allowing a more flexible relation-

ship to income, prices, and demographic variables, while remaining utility-consistent

in aggregation. Meanwhile, the China Household Income Project (CHIP) social sur-

vey data that formed the basis for estimation offered the advantage, compared to

some prior research (Sections 3.2.1 and 3.2.2), of combining household resolution

with nation-wide coverage.

Model-based assessment of projected future demand and the likely effect of policy

alternatives is an important input to transport policy design that seeks to address

externalities and impacts of demand (Section 1.2). In these processes, systems of de-

mand equations can be used directly, or as a component of larger models and frame-

works. Direct use occurs when the empirical facts from econometric inference—such

as income elasticities, or the influence of certain demand drivers—are used to draw

policy conclusions, or when simulated values of dependent variables are used to cal-

culate outcomes under projected, policy, or counterfactual conditions. In contrast,

within broader frameworks such as computable general equilibrium (CGE) and inte-

grated assessment models (IAMs), demand equations do not fully determine outputs,

but rather are linked, by economic or optimization logic, to representations of supply,

technology, trade, and other concepts. Yet in both of these uses, the same question

of portability arises: do the data reflect, and does the econometric method capture,

relationships that are valid in the context(s) where policy insight is sought?
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In this chapter, I compare the performance of alternative demand systems in terms

of external validity. Specification of valid models is necessary in both the direct and

framework uses in order to reliably project future demand and inform policy deci-

sions. I introduce and demonstrate a cross-validation approach to testing alternate

demand systems, specifications, and data coverage, in order to inform model design;

in doing so, I also identify threats to external validity due to cross-province variation

in travel behavior. I motivate by reviewing how demand systems are used as a com-

ponent of transport model frameworks including IAMs (Section 4.2.1), and revisiting

the mooted advantages of the EASI system over more widely-used formulations such

as the Almost Ideal demand system (AIDS) generally (Section 4.2.2), and in potential

CGE applications (Section 4.2.3). I then describe the geographical cross-validation

approach (Section 4.3) in which AIDS and EASI models are estimated on subsets of

household observations; used to predict demands for a withheld data segment; and

then evaluated for performance. The results (Section 4.4) show that simple EASI

formulations match, or exceed, the performance of AIDS (Section 4.4.1). EASI spec-

ifications with covariates describing local conditions and the built environment can

worsen predictions (Section 4.4.2); a pitfall with multiple possible sources, one of

which is a relationship between local context and travel behavior that varies across

cities. Finally, I note a trade-off between controlling for unobserved confounders in

order to obtain unbiased parameter estimates, and producing models that perform

well out-of-sample (Section 4.4.3); this strongly suggests province-level heterogeneity

in the way local conditions affect household spending. The chapter concludes with

discussion (Section 4.5) of the implications for modeling demand in broader frame-

works, and the characteristics of data that would improve portability.
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4.2 Literature review

4.2.1 Demand formulations in integrated assessment models

IAMs and economy-wide models are used to project transportation activity, energy

use and emissions globally, including for lower-income countries; and to compare the

demand for, and impacts of, these activities with those from other sectors. CGE

models calibrated on aggregate economic data are one type of model used for this

purpose (e.g., Paltsev et al. 2016). A common CGE representation of household,

or final demand is the constant elasticity of substitution (CES) production function,

which yields homothetic preferences, or unitary income elasticity. This implies that

the shares of different goods and services, in households’ budgets, remain the same

as economic growth causes incomes to rise; only variation in the relative prices in

consumption categories will induce households to make budget adjustments.1

Karplus et al. (2013) relaxed this assumption by introducing the Linear expen-

diture system (LES) (i.e., Stone-Geary preferences) into the Economic Projection

and Policy Analysis (EPPA) model, and used this formulation to study the adoption

of plug-in hybrid electric vehicles (PHEVs) and other advanced technologies in the

United States and other countries. The LES allows a parameter for a minimum,

or ‘subsistence,’ level of consumption in each category of expenditure; varying this

parameter allows representation of non-unitary income elasticity. Kishimoto (2012)

employed this feature to study a period of rapid motorization in China, and future

projections under reference and climate policy scenarios. Chen (2017) describes other

efforts to introduce alternate formulations such as AIDS, “An implicit direct additive

demand system” (AIDADS) and Constant difference of elasticities (CDE) demands

into CGE models, evaluating calibration strategies for the latter.

1For a longer explanation of production function concepts, refer to Section 3.3.1.
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4.2.2 Flexible demands: features and applications

In describing EASI demands, Lewbel and Pendakur (2009) listed their intended ad-

vantages, including (a) consistency under aggregation—such that demand systems

can be used for welfare calculations—as well as (b) high degree in utility, u, and (c)

the incorporation of demographics and controls through observation-level data, op-

tionally interacted with prices and/or utility. In Chapter 3, I took advantage of (b)

to estimate travel money budgets and estimate demand elasticities, showing that the

demand of Chinese households for transportation & communications has significant

third- and fourth-power terms; and of (c) to show that variables describing cities and

transport systems have significant relationships to household budgets generally, and

in some cases to the budget share of transportation, wtrn.

Beyond the domain of transport, EASI demand systems have been applied to

empirical study of inequality in the effects on households of energy prices in Germany

(Tovar Reaños and Wölfing 2018) and of food prices in Mexico (Wood et al. 2012).

However, earlier demand systems are still in common use in empirical research. For

instance, Fajgelbaum and Khandelwal (2016) use AIDS in a study of the distribution

of gains from trade across consumers within countries. And EASI demand systems

have not yet been connected to general equilibrium settings either at national or sub-

national resolution, whether for the study of transport or other sectors; cf. again Chen

(2017), and also Cogneau and Robilliard (2007), who list a small number of examples

of (non-EASI) microsimulation models linked to CGE frameworks. Moreover, no

study has explicitly compared the performance of EASI with the AIDS.

4.2.3 Potential use of flexible demands in CGE

Since welfare measures are commonly used in CGE policy assessment, the consistency

feature of EASI demands raises the prospect of their use in CGE models. This would
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offer several benefits, which I elaborate here:

Higher-order functions of income. The flexible relationship between budget

shares, wj, and income, x (via implicit utility, y), would allow more precise computa-

tion of the welfare effects of transport-, climate- and other policies. Kishimoto (2012)

found that climate policy sufficient to significantly impact the future course of motor-

ization in China required high carbon prices and correspondingly large welfare and

gross domestic product (GDP) impacts; but this result (and others) is grounded in the

LES setting, rather than a flexible representation of household preferences. Higher-

fidelity income- and price-elasticities from demand systems such as EASI would more

accurately represent households’ opportunities to substitute and change levels of con-

sumption in order to meet policy constraints.

Incorporating variation in local conditions across city types. When pro-

jecting demand, the incorporation of household or city-level measures could capture

effects raising or lowering demand that would otherwise be omitted. Exogenous pro-

jections (for instance, of population density and urbanization), stated policy targets

(for instance, for the expansion of transport infrastructure), or other values for these

variables could be incorporated explicitly in flexible demand formulations.

Work like that of S. Wang and J. Zhao (2018) suggests the value of incorporat-

ing city-level attributes in demand projection and policy analysis. Using time-series

clustering on aggregate historical data including both broader contextual factors and

transport-system characteristics, they identify four distinct groups of cities in China.

Variables including the stock of rental vehicles, buses, and private light-duty vehi-

cles (LDVs) per capita distinguished their “auto-oriented wealthy” cities from “low-

density, medium-wealth, moderate mobility cities”. Demand formulations that incor-

porate these variables would illuminate their effect on growing demand.
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Providing policy counterfactuals. In line with #2, model-based policy assess-

ment could be implemented through counterfactual values of exogenous variables.

This offers the possibility of modeling policy with greater fidelity, as an alternative

to converting non-price policy instruments to analogous price effects or quantity con-

straints that are compatible with currently-used demand formulations and model

structures.

4.2.4 Partial-coverage survey data

In demonstrating the use of EASI demands in Chapter 3, I relied on a survey, CHIP,

with a limited sample size. Since models used to project demand can be national

or global in scope and use country-groups, countries or sub-national regions as their

units of analysis, the question of portability or transferability arises: how well will

demands represent aggregate expenditure when estimated on data from subset of the

population? As complex engineering systems, the transport systems in various places

may lead to heterogeneous behaviour, across dimensions that surveys may fail to

span.

Like other low- and middle-income countries, China is still in the process of de-

veloping the institutions necessary to gather finer-resolution data on its economy and

its sectors. This capability quantified by measures such as the World Bank Statisti-

cal Capacity Indicators (Stagars 2016). Holz (2004, 2013) documents the difficulties

China has had in establishing a reliable system, including surveys of prices and indus-

trial output, to measure GDP in a manner resistant to manipulation. Data capacities

for sectors-specific measures, such as those in transport, lag capacities for more basic

indicators of the necessities of life and economic performance. Where nation-wide

surveys are conducted, data may be proprietary, or a difference in focus may mean

that transport or energy questions are not included. The detailed transport- and

energy surveys that do exist may have only local coverage in specific cities, and lack a
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longitudinal dimension, or information about their representativeness for other pop-

ulations.2

CHIP, for instance, is a repeated-cross-section survey with a stratified sample.

At the first stratum, the province level, between 9 and 12 units were selected in the

waves used here. Consequently, any variation in transport expenditure particular to

the remaining 19–21 provinces is not sampled. Other sources for China (e.g. the China

General Social Survey (CGSS)) or for similar emerging economies (e.g. the National

Sample Survey (India) (NSS) or General Household Survey (Nigeria) (GHS)) may

also lack complete and uniform coverage, due to resource and capability constraints

in data collection. One objective of the present work is to identify when inferences

from such data can be safely used in on other contexts.

4.3 Methods, models and data

I test AIDS and EASI models for three purposes: first, to determine whether the

benefits that motivated the development of EASI translate into improvements in pro-

jection accuracy in the context of transport; second, to study how this performance is

tied to the inclusion of household- and city-level regressors in model specification; and

third, to examine whether cross-province variation in transport system characteristics

affects predictive performance. After briefly reviewing the methods of Chapter 3, this

section covers the estimation of AIDS models (Section 4.3.1), the geographic cross-

validation procedure (Section 4.3.2), and finally the error metric used to evaluate

model performance under cross-validation (Section 4.3.3).

Chapter 3 described the data (Section 3.4) and methods (Sections 3.3.3 and 3.5.2)

used to estimate various EASI models specifications. To reiterate, the CHIP obser-

vations consist of a non-panel stratified sample, with three waves in 1992, 2002, and

2In contrast, wealthy countries can finance frequent, public, large-scale and sophisticated data-
collection efforts such as the U.S. National Household Travel Survey (NHTS).
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2007 that covered a shifting subset of provinces, and of cities and districts at the

lower strata within those provinces. Table 3.4 on page 100 gave the sample rates by

province and year, while Table A.2 on page 217 gives the full list of units sampled.

The data are augmented with official price series and measures of local conditions

constructed from data in the “China Premium Database” published by CEIC Data

(CEIC).

Chapter 3 found significant estimates for the transport budget share, wtrn, coef-

ficients on y3 and y4, but not y5 or higher powers. The analysis centers on a related

set of models with this level of flexibility:

y4 including only the powers of total expenditure yR, R ∈ 0 . . . 4. Versions with

R = 2 and R = 6 are included for sensitivity checks.

y4+hh including household-level regressors for age, educ, gender, and single. (see

Table 3.3 on page 99).

y4+city including nine covariates for city level conditions (see Table 3.6 on page 108).

y4+hh+city including both household- and city-level variables.

Each model is estimated with, or without, each of fixed effects by province (reference

level: Beijing (BJ)) or year (reference level: 2002), for a total of four variations.

4.3.1 AIDS model estimation

I estimate the AIDS of Deaton and Muellbauer (1980) on the same data. AIDS is

chosen because it is commonly used in CGE models (Dixon et al. 2013), as are related

demand systems such as AIDADS (Rimmer and Powell 1996) and CDE (Chen 2017).

I use the R software of Henningsen (2011) to perform the estimation.

A chief difference between AIDS and EASI is that the latter incorporates demo-

graphic controls as regressors in the budget share equations. (This was exploited in

Chapter 3 to explore the relationship between regressors describing characteristics of

urban and transport systems.) Consequently, estimation of AIDS does not require
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dropping observations with missing values for these variables where the CEIC source

does not supply them; so the AIDS model is estimated on the entire CHIP sample of

18 624 households.

4.3.2 K-fold and geographic cross-validation

Cross-validation is a method of evaluating and comparing learning systems or algo-

rithms by dividing the data into training and validation segments; the most common

form is K-fold cross-validation (Refaeilzadeh et al. 2009). The procedure is as follows;

Figure 4-1 on the next page shows it graphically:

1. Each observation, i, in the data set is randomly assigned to one of k segments

S1 . . . SK .

2. A model specification is estimated on the training segments {S1, . . . , SK−1}.

3. The resulting parameter estimates are used to predict budget shares ŵji for the

withheld, validation segment, SK .

4. Metrics of model fit and performance are computed; these are discussed below

in Section 4.3.3.

5. Steps 2 through 4 are repeated, withholding each Sk, k ∈ 1 . . . K once.

For instance, if K = 5, so that each segment is 20% of the data, and the model is

trained on 80% of the entire data set, and validated on the remaining 20%.

Cross-validation experiments are frequently used in transport research for method-

ological studies. For instance, Rengaraju and Arasan (1992) cross-validated a regres-

sion model of city-pair passenger air travel demand in India that was estimated on

aggregate data. Nijkamp et al. (2004) use segmentation in experiments designed to

test the relative performance of discrete choice and neural-network methods for mod-

eling interregional freight transport flows in Europe. And M. Zhang et al. (2009)

cross-validate partial least-squares regression models of demands for transportation

energy in China. More broadly, researchers have studied relationships between in-
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wj x, z,p

wj x, z,p

β × x, z,p = ŵj

wj
Withhold S1

S2 . . . SK Predict

Compare

Estimate

Figure 4-1: Schematic of cross-validation method. Training data from segments
S2 . . . SK , including both independent (p,u, z) and dependent (wj) variables, are used
to estimate model parameters β. Model parameters applied to independent variables
from the withheld segment, S1, to generate predicted ŵj, which are compared with
wj from the withheld segment. The process is repeated with S2 withheld, etc.

and out-of-sample projections and the transferability of different methods between

in-sample and out-of-sample contexts—for instance, Norwood et al. (2004) do this for

crop yield models. Wenger and Olden (2012), while focusing on ecological models of

population distributions, stress the importance of transferability testing when moving

from samples to projecting broader populations; this is similar to my purpose in the

present work.

The current chapter mainly employs a second type: geographic cross-validation.

While the procedure is intuitive, applications are less common than of K-fold cross-

validation, which can be applied to machine learning and other models trained on data

that may have no clear spatial or geographical aspect. Instances include Wenger and

Olden (2012), again; Pradhan (2010) uses cross-validation for remote-sensing models

of landslides risk, comparing how models estimated on data from one location perform

on another; and Farber and Páez (2007) use geographical subsetting to examine the

performance of K-fold and Monte Carlo cross-validation in metaparameter selection
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for the specific method of geographically-weighted regression. Here, one motivation

for geographical cross-validation is the stratified sampling method used by CHIP, in

which only some of China’s provinces are selected at the top stratum. In China—as

in other low- and middle-income countries where transport activity growth is most

rapid—resource constraints3 make it difficult to field nationwide surveys, and thus

research (including transport research) must sometimes grapple with partial-coverage

data.

I make use of the same feature of the CHIP survey that enabled matching of the

city-level regressors in Chapter 3 on page 81: the data contain the locations of indi-

vidual households. The procedure is as above, except that in Step 1 the assignment is

done so that observations in province p across CHIP waves are assigned non-randomly

to a segment Sp. Because the CHIP 1995, 2002, and 2007 waves collectively surveyed

respondents in 14 provinces, P = 14 groups are created. This has the effect of with-

holding entire provinces’ worth of households from the data used for fitting model

parameters. I label these segments with the GB/T 2260 alpha-2 code of the province;

and label the validation models produced and their performance metrics with the

name of the training segment that is withheld. For instance, “AH” (Anhui) refers to

a model estimated on observations from all provinces except Anhui; and performance

measures labelled “AH” refer to the predictions of (only) Anhui households’ budget

shares using this model.

As in Chapter 3, observations are pooled across years, and since each province was

covered in one, two or all three of the CHIP waves (cf. again Table 3.4 on page 100),

this implies that withholding each province’s observations withholds data from only

certain years. For instance, the Shanghai (“SH”) validation segment includes house-

holds surveyed in 2007 but not 1995 or 2002; whereas the Sichuan (“SC”) segment

includes households surveyed in all three waves.

3including cost, but also the lack of experienced or professionalized surveyors.

170



4.3.3 Metrics and dimensions of model evaluation

In order to compare performance of models, I compute the root mean squared error

(rmse) (Equation (4.3)) between the budget shares that the model predicts on the

training set, and the true budget shares from the withheld observations. Since the

rmse has the same units as the dependent variable wj, the interpretation of a rmse

of, for instance, 0.1 is that the sample standard deviation of model predictions in a

particular category from the observed values is one tenth of households’ total expen-

diture. For clarity, values are multiplied by a factor of 100 in the following tables and

figures, so that rmse can be read as percentage points of total expenditure.

eji = ŵji − wji Prediction error for obs. i in expenditure category j (4.1)∑
i∈Sk

(
eji
)2

|Sk|
Mean squared error for observations in Sk (4.2)√√√√∑i∈Sk

(
eji
)2

|Sk|
Root mean squared error for Sk (4.3)

Rather than give the aggregate rmse across all expenditure categories, j, I report and

discuss values separately for each category.

Using these metrics, I make comparisons along three dimensions. First, models

of different specifications are compared with one another. This method-to-method

comparison reveals how functional form (when comparing AIDS to EASI models)

or inclusion of certain regressors (when comparing EASI specifications) affects model

performance—in particular, whether some models’ base performance is more sensitive

than others to the withholding of certain observations. Next, a model estimated with-

out a validation segment Sk or Sp is compared to a model of the same specification

estimated on the entire data set (the “base model”). This segment-to-base compari-

son informs whether the performance of the base model depends on the inclusion of

observations from the withheld segment. Finally, models of the same specification esti-
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mated on different validation segments are compared with one another. This segment-

to-segment comparison—of interest only for geographic cross-validation—identifies

whether model results or performance are affected by province-to-province differences

in the way households’ preferences relate to city-level characteristics.

4.4 Cross-validation results and discussion

4.4.1 Comparing AIDS and EASI demands

The method-to-method comparison shows that certain EASI model specifications out-

perform the AIDS across provincial validation segments and budget share categories.

Before highlighting the result, a brief guide to interpretation of Figure 4-2 on the next

page. The top panel gives the rmse, for each provincial validation segment and budget

category, of a simple EASI specification with 6 powers of implicit utility and neither

household- nor city-level covariates, nor province or year fixed effects (models y6).

Prediction errors for the transport budget share are lower than those for other cate-

gories, at 3.6 to 5.4 percentage points of expenditure across segments; provinces are

sorted by this column. The prediction error of wtrn in the base model is 3.7 points.4

The provinces are sorted by this field; this means that when Chongqing households

are withheld from the data used for estimation, the resulting model will predict their

transport budget share with an error of 5.4 points of budget. Note that these are

large errors, given the Engel curve result in Chapter 3 that the mean budget share

varies from 1.6 % to 7.5 % across the range of incomes The highest prediction errors

are seen for food and other; with reference to Figure 3-14 on page 154, note that

the former two are also the categories with the largest budget share for households

above the first income quintile, and also exhibit the largest changes in budget share

4This is, equivalently, the root sum of squared residuals for the model estimated on all data, with
no segment withheld.
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Figure 4-2: Root mean squared error for geographical cross-validation of model y6
without fixed effects. Top: rmse comparing predicted expenditure shares versus ob-
servations, in each provincial segment, Sp (rows) and category, j (columns). Yellow
indicates higher rmse. Bottom: percent improvement in rmse of y6 relative to aids.
Blue color indicates that the EASI model performs better; red, worse. See Figure 4-1
on page 169. 173



from the lowest to highest income.

The bottom panel of Figure 4-2 gives the percent change in prediction error for

EASI model y4 over the AIDS. In almost all provincial segment/category combi-

nations, the flexible system produces small reductions in prediction error; however,

there are others where the errors increase. For instance, whou for Beijing households

is predicted with a 39 % larger error (or 1.7 points of budget) by the EASI model

when compared to the AIDS. The changes in transport budget share error are in the

narrow range of −11 % to +3.3 %, or −0.6 to +0.2 points of budget; a small but

non-negligible amount compared to the overall prediction error. Finally, prediction

errors for the category of other consumption are decreased significantly (up to 53 %)

by the flexible model in almost all validation segment.

This modeling implication of this result is that simply-specified EASI models, as

intended, can form a drop-in replacement for the AIDS. When estimated with ‘miss-

ing’ data from some provinces, AIDS models’ predictive performance on the withheld

set suffers, whereas the flexible system is not as strongly affected, as it capturing the

significant, higher powers of variation in the relationship between income and trans-

port budget share. Since the model y6 does not use household-level regressors from

CHIP responses (age, gender, education and marital status of the household head),

there is no need to collect or synthesize these values when the estimated model is

applied out-of-sample.

4.4.2 EASI model specifications and regressors

Flexible functional forms offer modelers a choice of many possible specifications, in

combination with available data. Testing the performance of these under cross-

validation, I show that these options present trade-offs between accuracy and the

inclusion of policy-relevant factors in demand system specifications, because of un-

derlying heterogeneity across Chinese cities in the way that such factors influence
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travel behaviour.

This is illustrated by a two-stage comparison, using a base model with 4 powers

of implicit utility and year fixed effects (y4); the root sum of squared residuals (rssr,

i.e. for all data) is 3.6 points of total expenditure. When four, household-level

demographic variables are added, forming model y4+hh, the overall rssr remains the

same. The model performs slightly better under cross-validation (Figure 4-3 on the

next page, top panel): the demand system exploits the demographic information to

produce negligible but consistent reductions in clo and food prediction errors, and

reductions with some exceptions in other categories.

However, when city-level indicators of local conditions are added, forming model

y4+hh+city, predictions for certain categories of expenditure become highly sensitive

to the data used for estimation (Figure 4-3 on the following page, bottom panel). For

instance, when Shanghai observations are withheld, then the resulting coefficients

predict those households’ clo expenditures with an rmse 330 % higher (or 14.9 points

of total expenditure larger) than the model lacking city variables. These sensitivities

are smaller for the consumption categories of dur, hou, med; for trn, aside from

Jiangsu at 18 %, predictions errors change by −4.3 % to +3.3 % (−0.2 to +0.1 points).

The difference between the performance impacts of adding the household- and

city-level variables is straightforward: the relationship between the household-level

regressors and demand is similar across China; so that when one province’s observa-

tions are omitted, the resulting parameter estimate for the budgeting effect of, e.g.,

the gender of the household head accurately describes the relationship in the omitted

province. The effects of the household-level factors included in these models—age,

educ, gender, and single—are similar across provinces. In contrast, the same does

not hold for population density, highway density, road vehicle stocks, and the other

local condition and transport system indicators included from the CEIC source. In-
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Figure 4-3: Percent difference in rmse for models y4+hh (top) and y4+hh+city (bot-
tom), both relative to y4, geographical cross-validation.

176



stead, omitting a province from the training data leads to a biased parameter estimate:

one that fits the mean effect across the included provinces, but poorly describes the

relationship for households in the omitted province. The result implies that the influ-

ence of these factors differs from city to city, within the locations sampled by CHIP;

in other words, the relationship between local conditions and households’ transport

expenditure is location-dependent. This also aligns with the failure, in the previous

chapter (Section 3.6.4), to find significant parameter estimates for the effects of city-

level variables such as density on wtrn, even as F -tests showed that the variables were

significantly related to overall budgeting. Another potential explanation is that the

CEIC data are less proximate to individual CHIP households than the demograph-

ics drawn directly from CHIP responses—they describe conditions in the households’

prefecture or county, rather than in their neighbourhood or block. However, as men-

tioned in Section 3.2.2, literature on the built environment has successfully measured

effects for aspects of urban condition measured at this level of resolution.

This finding counsels strong caution in developing uses of EASI of the prescriptive

type described in Section 4.2.3. A modeler who obtains data on, e.g., proximity of

households to transit, might choose to include it in a model specification in order to

test the demand effect of a hypothetical shift. But a significant parameter estimate

in such a model may mislead, unless a validation check, such as the one described

here, confirms the variable holds a consistent and not varying relationship to trans-

port expenditures across and beyond the regions supplying the data available for

estimation.

To go further, prediction errors for households in particular provinces are corre-

lated with the magnitude of the city-level variables attached to those observations.

Figure 4-4 on page 179, shows, for each city-level variable, the mean of its value

across households in each province, versus the prediction error on those households

when they are withheld from the training set. The AIDS model is compared to two
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EASI specifications: one with, and one without province-level fixed effects. We see

that, e.g., Shanghai (SH) households in the CHIP sample are located in districts

with a mean highway density (hwy_density) among the highest in all of China, and

much higher than the local highway density of other households in the survey data.

These households’ transport budget share are also predicted with the highest rmse

if they are left out of the training set. Conversely, households surveyed in Liaoning

(LN) and Gansu (GS) live, on average, in areas with low highway network density;

and the prediction errors for their transport expenditure are relatively small. The

Pearson’s correlation coefficient for this relationship is ρ = 0.39 when controlling for

province-level confounders, ρ = 0.61 when not—both lower than the analogous value

of ρ = 0.86 for the AIDS model, where the variable is not included explicitly in the

demand system.

So although the addition of city-level variables increases the sensitivity of pre-

diction performance to the training data, the explicit inclusion of these measures

of local condition in the EASI demand system absorbs some—again, only the mean

effect across provinces—of their correlation with households’ transport budgets. In

addition to the heterogeneity of the influence of these variables (as discussed), this

may suggest non-linearity of the relationships or interactions with other variables,

income, or prices, that could be explored in future research.

4.4.3 Controlling for unobserved, province-level
confounders

Finally, I highlight the occurrence in the EASI-CHIP models of a more general issue

of importance when choosing model specifications for projection. When the goal is

not projection but obtaining unbiased estimates of the influence of local conditions

on household transport expenditure, there are standard requirements. Exogeneity

is one, and so Chapter 3 discussed possible endogeneity of the available measures
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Figure 4-4: Correlation of rmse with city-level variables in AIDS and EASI models
y4+hh+city with (“fe_py”) and without (“fe_y”) province fixed effects. Top portion
of each panel gives the horizontal identifiers for markers at the same abscissa, and
also the correlation coefficient, ρ, for each model.
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Table 4.1: Fixed effect estimates for EASI models.

y4 y4 y4+hh+city y4+hh+city y2+hh+city y6+hh+city

Year F.E. – � – � � �

AH −0.82 −0.44 6.12 1.80 1.69 1.81
BJ 0.00 0.00 0.00 0.00 0.00 0.00
CQ −0.04 0.57 6.74 2.48 2.41 2.49
GD −0.48 0.03 3.38 1.67 1.63 1.66
GS −0.79 −0.88 4.80 1.05 0.97 1.06
HA −0.56 −0.20 6.51 2.17 2.05 2.18
HB −1.05 −0.79 5.85 1.53 1.41 1.53
JS −1.42 −1.22 4.07 1.01 0.95 1.01
LN −1.19 −0.51 4.37 0.96 0.87 0.96
SC −1.27 −0.80 5.28 1.32 1.24 1.33
SH 1.16 2.28 −0.23 2.73 2.83 2.69
SX −0.02 −0.92 5.55 1.24 1.11 1.26
YN −0.76 −0.86 5.46 1.92 1.82 1.92
ZJ −1.72 −0.13 1.82 0.89 0.89 0.88

and potential remedies (page 140). Another is control for omitted variable bias;

so province and year dummies were included to capture the influence of unobserved

attributes that differ from province to province but are time-invariant; and vice versa.

However, I find that this standard prescription (Bjerk 2009; Imai and Kim 2017)

for accurate estimates of effect sizes negatively affects out-of-sample predictive per-

formance. Just as adding city-level variables increases the sensitivity of predictions

to the data used for estimation, adding province-level fixed effects to a model without

them compounds the issue (Figure 4-5 on page 188); for nearly all consumption cat-

egories and validation segments, prediction errors grow, in some cases by over 100 %.

Table 4.1 gives the coefficient estimates for the fixed effects, for several models. As

noted, Beijing is chosen as a reference level. Other provinces have unobservable fac-

tors leading to shifts of 0.89 to 2.73 points of expenditure in households’ budgets

(column for y4+hh+city, with year F.E.). If the influence of unobserved factors is

of a similar magnitude in other provinces, then the model can be expected to err by

that amount; and unpredictably because the effect is, by construction, orthogonal to
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that of other variables.

There is no easy solution for modeling and projecting demand: without an un-

derstanding of which variables are unobserved, specifying a model without the effects

will result in parameters biased in an unknown way. On the other hand, models with

spatial fixed effects brings an error of a magnitude that, in the current data, is large

in comparison to the transport budget share.

4.5 Discussion

This work has applied cross-validation methods to further explore the demand sys-

tems developed in Chapter 3. In addition to several extensions, to be discussed in

Chapter 5, two categories of broader implications arise from the work: first, for model-

ing practice that incorporates economic systems of transport demand (Section 4.5.1),

and second, for the collection of data to support better, valid characterizations of

Chinese households’ travel behaviour (Section 4.5.2).

4.5.1 Designing flexible demand systems for projection and
assessment

In this analysis EASI demand systems, due to their ability to capture how consump-

tion within categories responds to income in non-linear ways, offer a modest benefit

over AIDS models of household demand. Higher-order functions of implicit utility

(related to households’ income), allows them to better capture how expenditure in

the categories studied here varies across diverse populations. Due to their relative

simplicity, I find that forms without demographic variables are suitable for use in

out-of-sample projection or incorporation in predictive, aggregate models.

As a general prescription, modelers may use the methods provided here within any

newly available data set, or with new demand formulations, to flag and identify prob-
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lematic variables or aspects of variation across their sample that point to unobserved

differences in the complex transport systems being modeled. For instance, if geo-

graphical cross-validation turns up high prediction error for a particular region, then

other, out-of-sample regions with transport systems that can be considered similar in

any sense may be watched for similar errors.

Choosing R. Chapter 3 identified third and fourth powers of implicit utility, y,

as being significant to transport budget shares of the CHIP households. Omitting

these powers from models biases coefficients, including those on the province-level

dummies added to absorb the effects of unobserved factors—shown in Table 4.1 by the

differences between the fixed effect for each province in model y4+hh+city compared

to the restricted y2+hh+city. Adding additional (fifth and sixth) powers of y does

not appear to change these parameters; the fixed effects for model y6+hh+city are

much the same as for y4+hh+city. However, the R = 6 model in Section 4.4.1 more

strongly outperforms the AIDS than one with R = 4.5

Household covariates. Because (per Section 4.4.2) the addition of household-

level covariates such as the age, level of education or marital status of the household

does significantly improve expenditure prediction errors, it appears feasible to em-

ploy EASI in settings where these are not available. For instance, in constructing

synthetic populations for unsurveyed provinces, it is sufficient to simulate households

income, x, from aggregate statistics and measures of inequality such as Gini indices.

It is not additionally necessary to model household-level attributes, which would re-

quire difficult-to-obtain information on how these are correlated with income and one

another. However, if this information is available, it may be used without raising

5Note that, unlike the model discussed in Section 3.6.1, the simply-specified EASI model in
Section 4.4.1 does not include household-demographics, city-level variables, or province- or year
fixed effects, and consequently has many fewer free parameters. This allows the y5 and y6 terms to
contribute to better predictive performance in the latter model, while in the former they begin to
exhaust the statistical power of the data.
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concerns about prediction error.

Measures of local conditions and the built environment. Regarding the use

of city-level covariates in out-of-sample predictions, the results raise caveats and warn-

ings. EASI models including the particular set of variables used here performed worse

in cross-validation than those without; worse also than AIDS models that did not in-

clude any local information. Moreover, the inclusion of provincial fixed effects, while

helpful for unbiased parameter estimation, worsens the issue.

Modelers might choose to make educated guesses, equating out-of-sample regions

with certain in-sample ones, assigning the same magnitude of influence from the

unobservables. They may also explore and test local condition variables individually,

and seek appropriate instruments to control for endogeneity. Another response, not

pursued here, is to test interactions of the variables with one another, with household-

level demographics, with income, and/or with prices—with the goal of identifying the

specific interactions that capture the underlying heterogeneity in the way households’

travel behaviour relates to their local context.

4.5.2 Implications for transport data collection

Questionnaire surveys such as CHIP, CGSS, or the China Residential Energy Con-

sumption Survey (CRECS), remain expensive to conduct. CHIP, due to its division of

the entire population into urban, rural, and rural-urban migrant households, missed

the opportunity to surveys households in the latter two populations about expendi-

ture by category. Use of other surveys that include both rural and urban households

would strengthen the validity of conclusions about the nature of demand. Also, in de-

signing a survey focused on the social conditions, family, and employment situations

of households, and basic demographics of their members, the researchers of CHIP

did not seek to ensure that the units of their stratified sampling process spanned the
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range of these transport- and planning-related variables, although Figure 4-4 suggests

that they nevertheless covered the spectrum of certain variables fairly well.

This work identified that systematic differences across geographies—specifically

provinces—places limits on the ability to draw empirical conclusions about the nature

of demand (Chapter 3) and to project it in other contexts (this chapter). These were

found at the provincial level, but may also or primarily manifest at other levels where

transport system conditions and contextual factors vary, such as that of individual

cities. At the province level, there were two types of differences, both of which can

be addressed with improved data:

Unobserved attributes. The CEIC data source provides an aggregation of official

statistics, which measure somewhat idiosyncratic concepts that do not well align with

the concepts and measures from the literature on travel and the built environment

(Section 3.2.2). Effort and resources could be applied to assembling or collecting data

that align with these concepts, in a systematic way, and for locations matching the

CHIP respondents. One potentially useful category of plentiful—if not conceptually

aligned—data is referred to as “big” data—for instance, dispatch data from large

logistics-matching platforms; satellite and remote-sensing data on vehicle positions

and travel destinations; and information from smartphone-based services, including

apps used to arrange shared mobility services. Exploration or selection of these

sources can yield data for investigation of mobility patterns (Simini et al. 2012).

These would, however, entail additional work in translation to the measures and

concepts in the literature.

Heterogeneity in relationships. The former tasks are not necessarily for sur-

vey researchers—merely guided by their choice of sampling frames. Improving those

frames, however, offers another way to provide improved data for demand character-

ization. Specifically, covering a small number of cities within each of a larger number
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of provinces would support investigation of how the influence of local conditions varies

from place to place. Per S. Wang and J. Zhao (2018), discussed above, one strategy

for household data collection would be to ensure that sampling frames spanned cities

of different types, as identified from objective (data-based) classifications or clustering

using aggregate information.

4.5.3 Conclusions

In developing implicit Marshallian demands and the exact affine Stone index demand

system, Lewbel and Pendakur provided a means of characterising demand with more

flexibility than earlier, still widely-used methods such as the AIDS. In Chapter 3, these

features were used with household survey data to draw knowledge about budget shares

and income elasticities from an household-level survey data set and public statistics.

As found here for the Chinese context, the new demand systems’ flexibility con-

fers both advantages and challenges in projection and assessment applications. The

higher-order functions of income allow simply-specified EASI demands to be more

robust to estimation on subsets of data, a valuable result in countries such as China

where data without uniform nation-wide coverage must be used to understand trans-

port demand. However, the flexibility to include a broad variety of covariates describ-

ing households and their local environment can lead to models that are fragile rather

than robust. This issue has multiple sources: endogenous regressors, unobserved city-

and province-level factors, and relationships between expenditure and context that

vary in strength from province to province. The cross-validation methods used to

reach these conclusions can also be used to test for such issues in other demand for-

mulations and other data, supporting the development of valid models for standalone

use and incorporation in modeling frameworks.

185



References

Bjerk, David (2009). “How Much Can We Trust Causal Interpretations of Fixed-
Effects Estimators in the Context of Criminality?” In: Journal of Quantitative
Criminology 25.4, pp. 391–417. issn: 1573-7799. doi: 10.1007/s10940-009-

9073-y (↪→ p. 180).
Chen, Y.-H. Henry (2017). “The Calibration and Performance of a Non-homothetic

CDE Demand System for CGE Models”. In: Journal of Global Economic Analysis
2.1, pp. 166–214. doi: 10.21642/JGEA.020103AF (↪→ pp. 162, 163, 167, 196).

Cogneau, Denis and Anne-Sophie Robilliard (2007). “Growth, Distribution and
Poverty in Madagascar. Learning from a Microsimulation Model in a General
Equilibrium Framework”. In: Microsimulation as a Tool for the Evaluation of
Public Policies. Methods and Applications. Ed. by Amedeo Spadaro. Bilbao, ES:
Fundación BBVA. chap. 3, pp. 73–111. isbn: 978-84-96515-17-8 (↪→ p. 163).

Deaton, Angus and John Muellbauer (1980). “An Almost Ideal Demand System”.
In: The American Economic Review 70.3, pp. 312–326. issn: 00028282. url:
http://www.jstor.org/stable/1805222 (↪→ pp. 92, 167).

Dixon, Peter B., Robert B. Koopman, and Maureen T. Rimmer (2013). “The
MONASH Style of Computable General Equilibrium Modeling: A Framework
for Practical Policy Analysis”. In: Handbook of Computable General Equilibrium
Modeling SET, Vols. 1A and 1B. ed. by Peter B. Dixon and Dale W. Jorgen-
son. Vol. 1. Handbook of Computable General Equilibrium Modeling. Elsevier.
Chap. 2, pp. 23–103. doi: 10.1016/B978-0-444-59568-3.00002-X (↪→ p. 167).

Fajgelbaum, Pablo D. and Amit K. Khandelwal (2016). “Measuring the Unequal
Gains from Trade”. In: The Quarterly Journal of Economics 131.3, pp. 1113–
1180. doi: 10.1093/qje/qjw013 (↪→ p. 163).
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Figure 4-5: Percent difference in rmse for model y4+hh+city, comparing a model
with province and year fixed effects to one without province fixed effects.
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Chapter 5

Conclusion

A systems view of transportation emphasizes differences in context that will lead

China’s transport system evolution to proceed along a course distinct from the his-

torical experience of wealthy, developed countries. Specifically, the combined influence

of economic growth, inequality, urban form, culture, technology options, and institu-

tions will lead to distinct patterns in transport activity growth, its environmental and

other impacts, and the responses that emerge to manage these impacts. To deepen our

understanding of these complex systems will require methods and analytical insights

that recognize that the past is not always prologue.

In order to improve understanding of this complex system, this thesis has provided

improved methods to characterize and project transport demand and its variation

across cities, provinces, and modes; and to analyze policies that target the environ-

mental impacts of growth. To conclude, I review the research in relationship to the

framing established in Chapter 1 (Section 5.1); highlight the contributions to research

literatures and modeling practice (Section 5.2); comment on the policy implications

of the findings (Section 5.3); and detail some concrete studies (Section 5.4) and a

broader agenda (Section 5.5) of research arising from this work.
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5.1 Summary of the research and key insights

In Chapter 2, I developed methods for modeling road transport energy use and pol-

lutant emissions in multiple sub-sectors and at the provincial level in China, within

an economy-wide computable general equilibrium (CGE) model, itself embedded in

an integrated assessment framework. This enabled comparison of the effects of emis-

sions standards policies (focused on technology in road vehicles that are sold, used,

and scrapped differently across provinces) and carbon pricing (which affects all CO2-

emitting energy use across sectors of the economy, including transport). I found that

the instruments are complementary: carbon pricing yielding a co-benefit of economy-

wide emissions reductions, but less in transport where CO2 mitigation costs are higher;

and emissions standards highly effective, but only for the transport share of emissions,

which remains smaller in many Chinese provinces than in other, international con-

texts.

In Chapter 3, I looked into the nature of transport demand at the household

level in China, by giving a new application of recently-developed, flexible, Exact

affine Stone index (EASI) demand systems, wherein the expenditure share for trans-

port is estimated alongside the shares for other categories of consumption. Using

household data from a survey with national coverage, I produced new estimates of

the Engel curve of transport expenditure and of the income elasticity of transport

demand. Crucially, I found that the flexible demand system was able to capture

a high-order empirical relationship between rising income (total expenditure) and

households’ transport demands; one that is not possible in older, linear forms. Also,

budget shares are significantly impacted by local economic conditions, the built en-

vironment, and the characteristics of transport systems, which can be incorporated

in detail using the new formulation. I demonstrated that, across certain groups of

households, differences in income, via the income elasticity of demand, explain only

a small part of the variation in transport budget shares, while the remainder is as-
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sociated with local conditions, both observed and unobserved; with prices; and with

year-specific unobserved factors.

Chapter 4 further examined the performance of flexible demand systems. By

training models with household observations withheld by provinces, then testing the

prediction performance of the models, I found that flexible demand systems can of-

fer consistent, though modest improvements in out-of-sample performance compared

to the widely-used Almost Ideal demand system (AIDS). Including local urban and

transport system characteristics in specifications, while offering an explicit represen-

tation of demand-relevant concepts, also makes the out-of-sample performance of

models strongly sensitive to coverage of the data used for estimation.

Chapter 1 introduced overarching questions of resolution and scope in modeling

of transport systems: what insights and analytical capacity are gained by moving

from national aggregates to greater detail; and what level of resolution is necessary

in order to study the impacts of important contextual aspects—policy instruments,

or geographical heterogeneity in transport systems?

The thesis provides insights toward both questions. First, by increasing detail

in the transport sector of a CGE framework with national resolution, Chapter 2

showed the province-to-province variation in the contribution of different transport

modes to emissions mitigation under overlapping policies (which also vary at the

provincial level). In Chapter 3, evidence from the household microdata pointed to a

lower, yet wider range for the share of transport in household budgets, and smaller

income elasticities, compared to prior work that has relied on province-level data for a

small number of income groups. Chapter 4 showed that new methods with increased

flexibility in this income-demand relationship led to reduced prediction errors when

used outside the contexts supplying the data for model estimation.

Across both parts, the primary added difficulty was in obtaining broad-coverage,

high-resolution data on the transport activity, impact, and city condition measures. In
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Chapter 2, this involved detecting and correcting for anomalies arising from statistical

agencies’ treatment of transport time series. In Chapters 3 and 4, the available

data were an imperfect match to the concepts identified by previous travel behavior

research, and the use of a social science survey limited analysis to a category of total

transport expenditure that did not resolve spending on vehicles, fuels, and other

specific modes.

On the second question, Chapter 2 provides projections of future air pollutant

emissions that reflect significant provincial variations. In integrated assessment of the

health and economic impacts of transport policies—that are, in the Chinese context,

also set by local governments—this approach improves on emissions rates projected

as nationwide averages. Chapter 3 showed that improved flexibility in demand system

models is required to capture actual complexity in the influence of income growth on

Chinese households’ budgeting decisions. Finally, Chapter 4 provided evidence that

influence of the built environment and other local factors on households’ transport

budgets differs in strength from place to place, necessitating models and data that

can describe this variation and carry it forward into projection.

5.2 Contributions to research and practice

CGE models such as Economic Projection and Policy Analysis (EPPA) model and

the China Regional Energy Model (C-REM) remain an important tool for assess-

ing transport policy in the context of broader economic activity and economy-wide

climate policy. Although developed for the China-provincial C-REM, the transport-

sector disaggregation, and associated calibration procedures, and linkage through

energy-basis emissions factors developed in Chapter 2 are portable to other CGE

models. The need to separate freight and passenger road transport, in particular, is

acute as new technologies such as mobility sharing and automated vehicles will have
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starkly different impacts on these subsectors.

By measuring a different dependent concept, Chapter 3 provides a thought-provoking

contrast to transport economics literature that has largely produced demand elasticity

estimates focused on gasoline or vehicle-distance travelled (VDT) and—especially in

China—operated at the national aggregate level. Households’ total transport expen-

diture varies with income in different ways, and with a greater elasticity, than these

other sub-quantities; the work motivates further attention to variation in the compo-

sition of transport budgets. While this basket of varied goods and services presents

challenges to analysis (as discussed in Section 3.7.1), it may also present an opportu-

nity. Research on trajectories of passenger-distance travelled (PDT) or vehicle own-

ership per capita, has drawn on data from specific historical and national transport

systems. Changes in context threaten these regularities: not only the rapid change in

a country such as China, but new technologies and business models. For instance, the

advent and spread of ride-hailing services are already noted to affect personal vehicle

ownership; in the longer term these, or technologies such as shared, autonomous ve-

hicles, may permanently separate China and other less-developed countries from the

historical, Western path of motorization. On the other hand, individuals facing these

new transport options—each with its supply and price characteristics—will continue

to need to divide a fixed money budget between travel and other needs and wants,

including housing, food, education, and medical care. This raises the possibility that

transport expenditure may be a measure with more stability than other measures tied

to historical transport mode options.

The chapter also provides a concrete example that, in countries such as China that

yet lack large-scale, sophisticated nationwide travel surveys, unconventional sources

such as other survey data (CHIP) can be exploited for insight into transport be-

haviour—even though they were not originally collected with any focus on trans-

portation.
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The EASI models revealed that income variation only explains a fraction of vari-

ation in transport spending. While the data available for the current work were

imperfect measures of local conditions, and significant parameter estimates were not

obtained, the models echoed the existence of links between these conditions and

households’ transport budgets, which are associated with a large portion of budget

share differences. This work begins to connect literatures on travel behavior—in

which nuanced concepts of the built environment are linked to discrete measures of

travel behavior—with aggregate modeling literature that has balanced economic or

other representations of transport demand with other categories of consumption that

together comprise all final demand.

Finally, Chapter 4 concluded with specific directions for collection of data on

transport system conditions and individuals’ transport activity (including expendi-

ture) that would support more precise estimates of the influence of local conditions.

For modelers seeking to adopt EASI as a replacement for AIDS in standalone and

framework applications, the chapter provided a prescription for designing specifica-

tions that exploit the promised flexibility of the newer demand system, and at the

same time a framework for validating those specifications against very real threats to

external validity.

5.3 Policy implications

Beyond the direct conclusions about the CO2 pricing and emissions standards policy

instruments compared in Chapter 2, Chapters 3 and 4 suggests some implications, if

not direct prescriptions, for transport policymaking in China and other countries.

Pendakur (2009) notes that “in typical consumer demand models, observables

like prices, expenditure and household demographics explain no more than half the

variation in budget shares.” In a similar way, it was shown in Section 3.6.3 that a large
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portion of the remainder of transport budget share variation can be associated with

observable city-level attributes, and much of the rest (up to two percentage points

of total expenditure, compared to a transport budget share that reaches a maximum

of 7.5 points) with unobserved province- and possibly city-level attributes for which

data might be collected.

This result reflects the diversity of transport system conditions across China’s

cities and provinces. It suggests that there is broad scope for city governments to affect

the course of transport activity growth and transport system evolution in the future,

by ensuring urban development guides households’ travel expenditure in desirable

ways. While specific impacts of travel demand are below the resolution of the data in

this paper, the result motivates closer attention to these links and related instruments

for mitigating the impacts of demand. At the same time, the high income elasticity

of demand cautions that gross domestic product (GDP) growth in the coming years

will bring an even greater rise in households’ transport spending that, unmanaged,

could worsen already severe issues of congestion, pollution, land use, and others.

The second implication is that these channels of influence may vary significantly

from city to Chinese city. Again, causal estimates are beyond the scope of this

work; but the results of Chapter 4 suggest that, for instance, households in a dense,

centrally-administered city such as Shanghai, and cities in a poorer province such as

Yunnan, change their travel behavior in distinct ways in response to greater popula-

tion density. This means that different types of cities may find distinct policy levers to

be most effective in addressing the consequences of growing transport demand. While

existing research (J. Zhao and Z. Wang 2014) finds that emulation/variation (as dis-

cussed for vehicle license plate (VLP) policies in Section 1.3) and central-government

directives both play roles in transferring policy ideas from city to city, both of these

approaches risk leading cities to adopt measures that, while successful elsewhere, may

do little to influence the transport behavior of local households.
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5.4 Direct extensions to the thesis

Considering the endpoints of the three chapters together, some direct ideas for re-

search emerge. I give two examples here to illustrate how such extensions could

further enrich the bodies of literature that motivated the current work.

Improving CGE policy realism with EASI demands. The investigation of

household-level demand in Chapter 3 was motivated, in part, by questions about the

realism of parameterizations of aggregate demand by representative agents in each

region (country or province) of CGE models, such as the C-REM employed in Chap-

ter 2, and the EPPA model used in earlier work such as Kishimoto (2012). The

EASI demand system was derived (Lewbel and Pendakur 2009) so as to be consis-

tent under aggregation, meaning that an EASI demand formulation could substitute

for a simpler representation of final demand in a general-equilibrium model without

compromising the consistency of the model’s economic logic. Since I found in Chap-

ter 3 that Chinese households’ transport demand is indeed a higher-order function

of income, the question arises of how this relationship affects the cost and impact of

climate or energy policies.

Existing frameworks for CGE modeling such as GAMS/MPSGE (Rutherford

1999) allow only constant elasticity of substitution (CES) as a built-in specifications;

non-homothetic formulations require manual implementation (Chen 2017; Karplus

et al. 2013), or the construction of new models (Caron et al. 2017). Either of these

approaches could be taken to implement the Chapter 3 models or similar specifica-

tions in a province-level, general equilibrium model of China. Scenario simulations in

both this and a less-flexible (homothetic) base model would then reveal how a more

realistic description of household demand alters policy impacts and their interaction

with income growth.
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Characterizing variation in the expenditure—built environment link. One

finding of Chapter 4 was that the exclusion of household observations from China

Household Income Project (CHIP) provinces worsened the out-of-sample predictive

performance of the resulting models. In Section 4.4.2 and Figure 4-4, this performance

degradation was shown to be correlated to the city-level regressors included in the

EASI models, across the CHIP provinces. A more detailed comparison of this type

would have immediate practical value to stakeholders seeking to collect survey data

or conduct targeted studies in order to better characterize China’s transport system.

In particular, the root mean squared error (rmse) metric (or others) could be

modeled by regression on observable attributes of provinces, cities, or households.

The resulting parameters, applied to observable data for non-CHIP regions, would

yield a first-order prediction of how poorly demand systems might predict transport

expenditure in those areas—in short, how ‘unusual the transport systems and indi-

vidual transport behavior in such regions. This would allow future research and data

collection to selectively undersample ‘unremarkable’ areas, while devoting resources

to exploring areas where transport may be related to local context in idiosyncratic

ways.

5.5 Future work

Within the transport sector, efforts to advance sustainability must contend with the

rapid growth and motorization of demand in the emerging economies of low- and

middle-income countries. M. Burke et al. (2016) describe current areas for advance in

climate change economics, including the prospects and impacts for mitigation options

in the developing world; distributional effects on lowest-income households whose

quality of life must be improved to make development sustainable; and policies beyond

the first-best instruments on which research has historically focused.
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This thesis developed methods for using existing data sources—especially house-

hold microdata from social surveys—to characterize the drivers of transport demand

in China, with the goal of informing models used in policy and planning decisions.

While the work has focused on China in particular, the calls of M. Burke et al. and

others motivate a focus on low- and middle-income countries where similar factors

challenge transport research: rapid economic growth, early-stage motorization, evolv-

ing transport systems, data quality limitations, and idiosyncratic policy instruments

and processes. Limitations of the individual essays were addressed in Sections 2.6.3,

3.7.2 and 4.5. Considering how some of these might be relaxed reveals three themes

of potential future research:

1. What do existing data and relationships suggest about patterns of mobility that

are likely to emerge in low- and middle-income countries as they evolve in the

21st century? How do projections compare across models, and what can be

gained from adopting more empirically-driven model settings?

2. To what extent could new technologies and new policy instruments, interact-

ing with heterogeneity in behaviours and preferences, influence the course of

transport motorization in these countries?

3. How do #1 and #2 contribute to uncertainty in projections of transport activity,

in particular in integrated assessment models that link transport activity to

trends in the broader economy?

To make progress on these questions requires the use of detailed and disaggre-

gate data that are not typically linked to large-scale integrated assessment models

(IAMs)—which often represent activity at the level of national or regional totals, and

are calibrated using aggregate data. In order to employ and connect these data, fu-

ture research can investigate methods, including from the econometrics of consumer

demand and policy analysis, that may not have been applied to energy or transport

research; or enhance traditional demand modeling methods to allow them to act on
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unconventional data and in new contexts. Chapters 3 and 4 are examples of such

research.

This detailed work can add conceptual richness and new insights to existing knowl-

edge about the economic growth–transport demand relationship (#1), and can yield

tools for analyzing and comparing scenarios of policy and technology adoption in

motorizing countries or their regions or cities (#2). The empirical foundation and

identified dynamics would then support efforts to improve IAM representation of the

same impacts (#3)—through changes to functional relationships, calibration meth-

ods, and/or data.

5.5.1 Household-level modeling of transport demand
systems

Several extensions to the thesis research can address themes #1 and #2. Besides

CHIP, other survey efforts such as the China Household Finance Survey (CHFS) (Gan

et al. 2014) and China General Social Survey (CGSS) (Bian and L. Li 2012) have in-

cluded questions about household expenditure in their questionnaires—respectively,

in 2011, and annually since 2003. The methods of Chapters 3 and 4 are applicable

to such data sets, to the extent they contain a sufficient number of subcategories

of expenditure to offer a basis for comparison.1 Comparison of models estimated

on different survey datasets, such as CHIP versus CGSS, will create richer knowl-

edge about the stability or variation of demand across time periods and geographies.

Beyond China existing, similar consumption data such as National Sample Survey

(India) (NSS) and General Household Survey (Nigeria) (GHS), supports research to

estimate analogous models and compare across a diversity of lower-income countries.

Within countries,

1Concerns about the social and political consequence of county-specific information have led
some non-government survey groups to restrict the location data used here to match urban variables
(see e.g. http://www.chinagss.org/index.php?r=index/artabout&aid=18), which may limit this
approach.
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Second, by breaking the transport component of household expenditure—here

treated as a single category—into several goods and services, demand system mod-

eling can allow investigation of shifts in household travel patterns across income dis-

tributions. Finally, with wide-coverage databases of policy instruments assembled

from primary source documents, demand system regressors can be expanded to in-

troduce explicit policy variables. This will allow direct identification of the effects of

road pricing, VLP restrictions, and other instruments seen in recent history; across a

broad set of urban contexts within and across countries.

5.5.2 Increasing transport realism in IAMs

There is great potential to improve the realism of models by carefully and systemati-

cally estimating relationships of interest and incorporating them into model structure

and/or parameterization. McCollum et al. (2017), inter alia, emphasize that realism

in consumer behaviour—ie., fidelity to sub-model scale empirical patterns—in IAMs

can alter the projected timing and path of energy and technology transitions. Past

work with CGE models—the C-REM with provincial detail, as in Chapter 2, and

the EPPA model (Kishimoto, Paltsev, et al. 2012)—emphasizes that the quantity

and prices of inputs to transport services are endogenous with other flows across the

entire economy. However, Yeh et al. (2016) and others describe the considerable vari-

ation in the functional relationships encoded in global models of transport, energy

and greenhouse gas (GHG) emissions. For instance, in the International Institute for

Applied Systems Analysis (IIASA) Model for Energy Supply Systems and their Gen-

eral Environmental impact (MESSAGE) framework a highly-aggregate CGE model

is used to project overall economic growth, which is then apportioned to specific

technologies within sectors by linear-programming optimization.

Theme #3 points at the importance of understanding how these methodological

variations affect models’ ability to capture aspects of consumer behaviour, hetero-
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geneity, and technology and policy responses. Focused, multi-model comparisons can

both yield insights for consumers of model-based knowledge and assessment—who

must respond to disagreement about projections and policy effects. Modellers work-

ing in different frameworks also require distinct methods to identify whether emergent,

system-level attributes in their simulations accord or conflict with empirical findings,

and tailored yet consistent methods for bringing projections in line with such findings.

5.5.3 Simulated populations and synthetic controls

Separate from their incorporation in integrated assessment models, econometric mod-

els including consumer demand systems such as EASI can support policy analysis

through the method of synthetic controls (Abadie et al. 2010). In this approach, a

counterfactual is simulated by combination of available data for untreated regions.

This method holds promise for analysis of novel transport policy instruments; namely

the VLP restrictions in some large Chinese cities.

In order to study these instruments, the work described in this thesis can be ex-

tended by adopting the CGSS data set the period up to 2015, such that households

treated with VLP restrictions enter the sample (see Table 1.2 on page 30). Con-

trasting these households against synthetic controls would produce new estimates of

the impact of VLP policies on household transport demand. As the policy has been

floated for consideration in other large cities in the developing world, this analysis

would speak to the question (within theme #2) of how the VLP policy instrument

can support transitions to sustainable transport.

Uncertainty in model-based projections of transport activity growth in lower-

income countries, and its response to policy, poses challenges for the assessment of

pathways to be followed to achieve both the Sustainable Development Goals and

countries’ nationally-determined contributionss (NDCs) towards the Paris Agreement
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under the United Nations Framework Convention on Climate Change (UN FCCC).

In this thesis, I developed empirical methods that can explit unconventional data

to derive local insights into the nature of transport demand in China’s cities; as

well as modeling techniques for enhancing spatial and transport sector resolution in

CGE models, connecting micro-scale decisions and sub-national policies to aggregate,

macro-scale impacts and outcomes. The work points the way to increased use of

novel data sources to better characterize transport system evolution in the countries

that will be responsible for the bulk of growth in activity and environmental impacts

throughout the 21st century, and to analyze policies that will address these impacts.
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Appendix A

Extended tables, listings &
supplemental figures

A.1 Chapter 2

Table A.1: 2010, 2015, and 2030 energy-basis emissions factors from refined oil (OIL)
combustion, by road transport subsector, province and species.

Freight road (FR) Household vehicle transport (HVT)
Province 2010 2015 2030 2010 2015 2030

BC [g/MJ]

AH 11.5 3.34 1.78× 10−2 25.9 7.43 5.83× 10−3

BJ 3.21 0.959 1.78× 10−2 7.13 2.05 5.80× 10−3

CQ 11.7 3.41 1.78× 10−2 23.2 6.65 5.83× 10−3

FJ 8.28 2.42 1.78× 10−2 15.4 4.43 5.83× 10−3

GD 6.75 1.98 1.78× 10−2 14.7 4.22 5.83× 10−3

GS 12.9 3.75 1.78× 10−2 103 29.5 5.89× 10−3

GX 6.70 1.96 1.78× 10−2 17.5 5.02 5.83× 10−3

GZ 12.6 3.66 1.78× 10−2 27.3 7.85 5.84× 10−3

HA 8.41 2.45 1.78× 10−2 211 60.7 5.97× 10−3

HB 7.56 2.21 1.78× 10−2 82.2 23.6 5.87× 10−3

HE 13.6 3.94 1.78× 10−2 99.2 28.5 5.89× 10−3

HI 11.5 3.34 1.78× 10−2 13.3 3.82 5.83× 10−3

HL 12.4 3.58 1.78× 10−2 8.52 2.45 5.82× 10−3

HN 7.94 2.32 1.78× 10−2 28.3 8.14 5.84× 10−3

JL 9.78 2.84 1.78× 10−2 19.1 5.50 5.83× 10−3

JS 10.8 3.15 1.78× 10−2 45.8 13.2 5.85× 10−3

JX 7.34 2.14 1.78× 10−2 22.4 6.44 5.83× 10−3
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Table A.1: (continued)

Freight road (FR) Household vehicle transport (HVT)
Province 2010 2015 2030 2010 2015 2030

LN 9.37 2.73 1.78× 10−2 24.1 6.93 5.83× 10−3

NM 7.49 2.19 1.78× 10−2 40.1 11.5 5.84× 10−3

NX 8.06 2.35 1.78× 10−2 91.7 26.3 5.88× 10−3

QH 14.9 4.32 1.78× 10−2 78.5 22.5 5.87× 10−3

SC 8.41 2.45 1.78× 10−2 48.7 14.0 5.85× 10−3

SD 3.76 1.12 1.78× 10−2 34.3 9.84 5.84× 10−3

SH 14.7 4.25 1.78× 10−2 5.70 1.64 5.82× 10−3

SN 7.07 2.07 1.78× 10−2 13.6 3.91 5.83× 10−3

SX 13.6 3.93 1.78× 10−2 92.8 26.6 5.88× 10−3

TJ 7.69 2.24 1.78× 10−2 15.2 4.36 5.83× 10−3

XJ 6.50 1.90 1.78× 10−2 26.3 7.54 5.83× 10−3

YN 11.0 3.18 1.78× 10−2 24.6 7.06 5.83× 10−3

ZJ 8.90 2.59 1.78× 10−2 13.8 3.95 5.83× 10−3
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Table A.1: (continued)

Freight road (FR) Household vehicle transport (HVT)
Province 2010 2015 2030 2010 2015 2030

CO [g/MJ]

AH 1130 325 2.12× 10−1 7120 2040 1.68× 10−1

BJ 522 150 2.11× 10−1 6550 1880 1.67× 10−1

CQ 1190 341 2.12× 10−1 7940 2280 1.68× 10−1

FJ 1000 287 2.12× 10−1 4350 1250 1.66× 10−1

GD 825 237 2.12× 10−1 3900 1120 1.65× 10−1

GS 1260 363 2.12× 10−1 23 600 6760 1.79× 10−1

GX 671 193 2.11× 10−1 3780 1080 1.65× 10−1

GZ 1330 381 2.12× 10−1 9670 2770 1.70× 10−1

HA 828 238 2.12× 10−1 43 400 12 500 1.94× 10−1

HB 765 220 2.12× 10−1 15 400 4420 1.74× 10−1

HE 1380 397 2.12× 10−1 28 100 8050 1.83× 10−1

HI 1220 351 2.12× 10−1 3220 923 1.65× 10−1

HL 1170 336 2.12× 10−1 3000 860 1.65× 10−1

HN 780 224 2.12× 10−1 7590 2180 1.68× 10−1

JL 974 280 2.12× 10−1 5250 1510 1.66× 10−1

JS 1050 303 2.12× 10−1 13 100 3760 1.72× 10−1

JX 710 204 2.12× 10−1 5450 1560 1.66× 10−1

LN 995 286 2.12× 10−1 7750 2220 1.68× 10−1

NM 671 193 2.11× 10−1 13 000 3730 1.72× 10−1

NX 823 236 2.12× 10−1 19 500 5600 1.77× 10−1

QH 1430 410 2.12× 10−1 17 100 4920 1.75× 10−1

SC 850 244 2.12× 10−1 23 100 6630 1.79× 10−1

SD 421 121 2.11× 10−1 10 200 2920 1.70× 10−1

SH 2330 669 2.13× 10−1 2890 828 1.65× 10−1

SN 676 194 2.11× 10−1 3960 1140 1.65× 10−1

SX 1320 380 2.12× 10−1 36 800 10 600 1.89× 10−1

TJ 909 261 2.12× 10−1 7200 2070 1.68× 10−1

XJ 655 188 2.11× 10−1 7660 2200 1.68× 10−1

YN 1140 327 2.12× 10−1 8410 2410 1.69× 10−1

ZJ 1110 318 2.12× 10−1 6070 1740 1.67× 10−1
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Table A.1: (continued)

Freight road (FR) Household vehicle transport (HVT)
Province 2010 2015 2030 2010 2015 2030

NOX [g/MJ]

AH 329 94.9 8.21× 10−2 502 144 7.77× 10−3

BJ 103 30.0 7.97× 10−2 339 97.4 7.60× 10−3

CQ 338 97.4 8.21× 10−2 533 153 7.79× 10−3

FJ 244 70.3 8.20× 10−2 238 68.2 7.58× 10−3

GD 204 58.9 8.20× 10−2 241 69.1 7.58× 10−3

GS 309 89.1 8.21× 10−2 1620 466 8.57× 10−3

GX 205 59.2 8.20× 10−2 201 57.6 7.56× 10−3

GZ 364 105 8.21× 10−2 673 193 7.89× 10−3

HA 234 67.7 8.20× 10−2 2760 792 9.38× 10−3

HB 214 61.9 8.20× 10−2 314 90.1 7.64× 10−3

HE 346 99.6 8.21× 10−2 1420 407 8.42× 10−3

HI 367 106 8.21× 10−2 209 59.9 7.56× 10−3

HL 280 80.8 8.21× 10−2 198 56.9 7.55× 10−3

HN 231 66.5 8.20× 10−2 482 138 7.76× 10−3

JL 230 66.4 8.20× 10−2 303 86.8 7.63× 10−3

JS 309 89.0 8.21× 10−2 627 180 7.86× 10−3

JX 216 62.5 8.20× 10−2 284 81.4 7.62× 10−3

LN 234 67.5 8.20× 10−2 537 154 7.80× 10−3

NM 175 50.6 8.20× 10−2 764 219 7.96× 10−3

NX 201 58.0 8.20× 10−2 1260 362 8.31× 10−3

QH 321 92.4 8.21× 10−2 1100 316 8.20× 10−3

SC 212 61.3 8.20× 10−2 1180 337 8.25× 10−3

SD 101 29.4 8.19× 10−2 474 136 7.75× 10−3

SH 733 211 8.24× 10−2 233 66.9 7.58× 10−3

SN 186 53.8 8.20× 10−2 237 68.1 7.58× 10−3

SX 347 99.9 8.21× 10−2 1860 534 8.74× 10−3

TJ 200 57.8 8.20× 10−2 414 119 7.71× 10−3

XJ 155 45.0 8.20× 10−2 489 140 7.76× 10−3

YN 321 92.5 8.21× 10−2 508 146 7.77× 10−3

ZJ 253 72.9 8.21× 10−2 390 112 7.69× 10−3
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Table A.1: (continued)

Freight road (FR) Household vehicle transport (HVT)
Province 2010 2015 2030 2010 2015 2030

OC [g/MJ]

AH 4.40 1.30 1.78× 10−2 18.0 5.18 5.83× 10−3

BJ 1.31 0.414 1.78× 10−2 3.68 1.06 5.80× 10−3

CQ 4.52 1.33 1.78× 10−2 14.6 4.20 5.83× 10−3

FJ 3.45 1.03 1.78× 10−2 12.7 3.65 5.82× 10−3

GD 2.86 0.861 1.78× 10−2 12.1 3.47 5.82× 10−3

GS 4.81 1.42 1.78× 10−2 43.2 12.4 5.85× 10−3

GX 2.62 0.790 1.78× 10−2 12.7 3.64 5.82× 10−3

GZ 4.91 1.45 1.78× 10−2 14.7 4.22 5.83× 10−3

HA 3.21 0.960 1.78× 10−2 103 29.6 5.89× 10−3

HB 2.92 0.877 1.78× 10−2 83.4 23.9 5.88× 10−3

HE 5.16 1.52 1.78× 10−2 56.2 16.1 5.86× 10−3

HI 4.66 1.38 1.78× 10−2 9.66 2.78 5.82× 10−3

HL 4.54 1.34 1.78× 10−2 3.93 1.13 5.82× 10−3

HN 3.05 0.914 1.78× 10−2 18.8 5.41 5.83× 10−3

JL 3.66 1.09 1.78× 10−2 9.50 2.73 5.82× 10−3

JS 4.13 1.22 1.78× 10−2 37.6 10.8 5.84× 10−3

JX 2.82 0.847 1.78× 10−2 18.3 5.25 5.83× 10−3

LN 3.60 1.07 1.78× 10−2 12.6 3.63 5.82× 10−3

NM 2.73 0.823 1.78× 10−2 15.4 4.42 5.83× 10−3

NX 3.06 0.917 1.78× 10−2 39.5 11.4 5.84× 10−3

QH 5.45 1.60 1.78× 10−2 30.7 8.82 5.84× 10−3

SC 3.18 0.952 1.78× 10−2 32.6 9.35 5.84× 10−3

SD 1.51 0.473 1.78× 10−2 27.7 7.95 5.84× 10−3

SH 5.81 1.71 1.78× 10−2 3.51 1.02 5.82× 10−3

SN 2.66 0.801 1.78× 10−2 7.94 2.29 5.82× 10−3

SX 5.08 1.50 1.78× 10−2 57.8 16.6 5.86× 10−3

TJ 3.10 0.927 1.78× 10−2 9.36 2.69 5.82× 10−3

XJ 2.46 0.743 1.78× 10−2 12.8 3.67 5.82× 10−3

YN 4.25 1.26 1.78× 10−2 13.4 3.84 5.83× 10−3

ZJ 3.73 1.11 1.78× 10−2 7.91 2.28 5.82× 10−3
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Table A.1: (continued)

Freight road (FR) Household vehicle transport (HVT)
Province 2010 2015 2030 2010 2015 2030

SO2 [g/MJ]

AH 18.5 5.30 7.82× 10−4 18.5 5.33 7.43× 10−3

BJ 12.3 3.54 7.78× 10−4 12.4 3.56 7.37× 10−3

CQ 33.5 9.62 7.93× 10−4 33.6 9.65 7.44× 10−3

FJ 20.1 5.76 7.83× 10−4 20.1 5.79 7.43× 10−3

GD 16.8 4.82 7.81× 10−4 16.9 4.85 7.43× 10−3

GS 26.4 7.57 7.88× 10−4 26.4 7.60 7.43× 10−3

GX 25.8 7.40 7.87× 10−4 25.8 7.43 7.43× 10−3

GZ 31.3 8.99 7.91× 10−4 31.4 9.02 7.44× 10−3

HA 19.8 5.68 7.83× 10−4 19.8 5.71 7.43× 10−3

HB 26.3 7.55 7.88× 10−4 26.4 7.58 7.43× 10−3

HE 10.2 2.93 7.76× 10−4 10.2 2.96 7.42× 10−3

HI 14.2 4.08 7.79× 10−4 14.3 4.11 7.42× 10−3

HL 10.9 3.11 7.77× 10−4 10.9 3.14 7.42× 10−3

HN 27.0 7.74 7.88× 10−4 27.0 7.77 7.43× 10−3

JL 10.7 3.06 7.77× 10−4 10.7 3.09 7.42× 10−3

JS 20.2 5.80 7.83× 10−4 20.3 5.83 7.43× 10−3

JX 23.0 6.61 7.85× 10−4 23.1 6.63 7.43× 10−3

LN 16.4 4.70 7.81× 10−4 16.4 4.73 7.43× 10−3

NM 11.0 3.15 7.77× 10−4 11.0 3.18 7.42× 10−3

NX 25.7 7.37 7.87× 10−4 25.7 7.40 7.43× 10−3

QH 24.5 7.04 7.87× 10−4 24.6 7.07 7.43× 10−3

SC 17.4 4.98 7.81× 10−4 17.4 5.01 7.43× 10−3

SD 12.4 3.57 7.78× 10−4 12.5 3.60 7.42× 10−3

SH 18.5 5.31 7.82× 10−4 18.6 5.34 7.43× 10−3

SN 21.8 6.26 7.85× 10−4 21.8 6.28 7.43× 10−3

SX 11.5 3.31 7.77× 10−4 11.6 3.34 7.42× 10−3

TJ 12.5 3.59 7.78× 10−4 12.5 3.62 7.42× 10−3

XJ 21.6 6.21 7.84× 10−4 21.7 6.24 7.43× 10−3

YN 27.8 7.98 7.89× 10−4 27.9 8.01 7.43× 10−3

ZJ 17.5 5.03 7.82× 10−4 17.6 5.05 7.43× 10−3
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A.2 Chapters 3 and 4
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Figure A-1: Number of observations by province in the China Household Income
Project (CHIP) 1995 cohort.
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Figure A-2: Number of observations by province in the CHIP 2002 cohort.

CQ

AH

GD

HB
SC

HE JS

SH

ZJ

200 300 400 500 600 700 800 900
N (observations)

CHIP 2007 coverage

Figure A-3: Number of observations by province in the CHIP 2007 cohort.
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Table A.2: Coverage of the CHIP survey data. Columns are: the 6-digit, county-
level GB/T 2260 code describing the respondents’ location; the number of household
respondents in the region by CHIP wave; and an English name for the region, derived
from the official database (see Appendix B.3). Where an English name is not available
the name of the “parent” (higher-level) region is given. Some region codes have been
reassigned over time.

Code 1995 2002 2007 Name

北京市 Beijing

110101 60 东城区 Dongcheng
110102 84 西城区 Xicheng
110103 53
110104 60
110105 78 朝阳区 Chaoyang
110106 35 丰台区 Fengtai
110107 34 石景山区 Shijingshan
110108 80 海淀区 Haidian
111100 492

山西省 Shanxi

140100 200 太原市 Taiyuan
140200 93 大同市 Datong
140225 50 浑源县 Hunyuan
140400 99 长治市 Changzhi
140800 100 运城市 Yuncheng
141100 200 吕梁市 Luliang
141200 100
141300 99
141400 100
142303 49
142325 49
143100 50
143200 50
143300 50

辽宁省 Liaoning

210100 250 沈阳市 Shenyang
210200 249 大连市 Dalian
210281 50 瓦房店市 Wafangdian
210700 98 锦州市 Jinzhou
211100 299 盘锦市 Panjin
211200 200 铁岭市 Tieling
211224 50 昌图县 Changtu
211500 100
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Code 1995 2002 2007 Name

213100 50
213200 50

上海市 Shanghai

310101 30 黄浦区 Huangpu
310103 14
310104 57 徐汇区 Xuhui
310105 38 长宁区 Changningqu
310106 24 静安区 Jing’an
310107 57 普陀区 Putuoqu
310108 29 闸北区 Zhabei
310109 45 虹口区 Hongkouqu
310110 59 杨浦区 Yangpuqu
310112 28 闵行区 Minhang
310113 43 宝山区 Baoshan
310115 75 浦东新区 Pudongxin

江苏省 Jiangsu

320100 149 南京市 Nanjing
320102 70 玄武区 Xuanwu
320103 80
320104 50 秦淮区 Qinhuai
320105 50 建邺区 Jianyequ
320106 90 鼓楼区 Gulouqu
320107 59
320200 99 无锡市 Wuxi
320202 42 崇安区 Chong’an
320203 67 南长区 Nanchang
320204 34 北塘区 Beitang
320211 57 滨湖区 Binhuqu
320282 48 宜兴市 Yixing
320300 97 徐州市 Xuzhou
320600 94 南通市 Nantong
320982 50
321000 93 扬州市 Yangzhou
321100 200 镇江市 Zhenjiang
321200 100 泰州市 Taizhou
321283 49 泰兴市 Taixingshi
321300 99 50 宿迁市 Suqian
321500 100
321900 100
323100 50
323200 50
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Code 1995 2002 2007 Name

323300 50
323700 50

浙江省 Zhejiang

330102 38 上城区 Shangcheng
330103 48 下城区 Xiacheng
330104 37 江干区 Jianggan
330105 41 拱墅区 Gongshu
330106 27 西湖区 Xihu
330108 4 滨江区 Binjiangqu
330109 50 萧山区 Xiaoshanqu
330110 41 余杭区 Yuhangqu
330182 100 建德市 Jiande
330203 54 海曙区 Haishu
330204 28 江东区 Jiangdong
330205 40 江北区 Jiangbei
330206 13 北仑区 Beilun
330211 39 镇海区 Zhenhai
330212 26 鄞州区 Yinzhouqu

安徽省 Anhui

340100 100 合肥市 Hefei
340102 91 瑶海区 Yaohaiqu
340103 125 庐阳区 Luyangqu
340104 84 蜀山区 Shushanqu
340111 50 包河区 Baohequ
340200 96 芜湖市 Wuhu
340300 99 蚌埠市 Bengbu
340302 72 龙子湖区 Longzihuqu
340303 75 蚌山区 Bangshanqu
340304 52 禹会区 Yuhuiqu
340400 100 淮南市 Huainan
341021 50 歙县 She
341100 100 滁州市 Chuzhou
341200 99 阜阳市 Fuyang
341400 100
341500 100 六安市 Lu’an
341600 48 亳州市 Bozhou
343200 50
343300 50

河南省 Henan

410100 196 郑州市 Zhengzhou
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Code 1995 2002 2007 Name

410102 70 中原区 Zhongyuan
410103 69 二七区 Erqi
410104 58 管城回族区 Guancheng Huizu
410105 90 金水区 Jinshui
410106 28 上街区 Shangjie
410108 29 惠济区 Huijiqu
410200 97 开封市 Kaifeng
410302 18 老城区 Laocheng
410303 56 西工区 Xigong
410304 21 河回族区 Chanhe Huizu
410305 67 涧西区 Jianxi
410306 14 吉利区 Jili
410307 21
410400 99 平顶山市 Pingdingshan
410502 36 文峰区 Wenfeng
410503 25 北关区 Beiguan
410505 23 殷都区 Yinduqu
410506 16 龙安区 Longanqu
410526 48 滑县 Hua
410700 100 新乡市 Xinxiang
410782 50 辉县市 Huixian
411025 45 襄城县 Xiangchengxian
411100 100 漯河市 Luohe
411300 100 南阳市 Nanyang
411400 100 商丘市 Shangqiu
411500 99 信阳市 Xinyang
411525 45 固始县 Gushixian
413100 50
413200 50
413300 50
413400 50

湖北省 Hubei

420100 244 武汉市 Wuhan
420102 48 江岸区 Jiang’an
420103 66 江汉区 Jianghan
420104 55 口区 Qiaokouqu
420105 37 汉阳区 Hanyang
420106 66 武昌区 Wuchang
420107 43 青山区 Qingshan
420111 43 洪山区 Hongshan
420500 91 宜昌市 Yichang
420600 98 襄阳市 Xiangyang
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Code 1995 2002 2007 Name

421000 96 荆州市 Jingzhou
421083 49 洪湖市 Honghu
421100 283 黄冈市 Huanggang
421125 46 浠水县 Xishuixian
421200 49 咸宁市 Xianning
421300 100 随州市 Suizhou
421400 99
422200 93
423100 50
423200 50
423300 50

广东省 Guangdong

440100 195 广州市 Guangzhou
440103 39 荔湾区 Liwan
440104 50 越秀区 Yuexiu
440105 50 海珠区 Haizhu
440106 50 天河区 Tianhe
440111 50 白云区 Baiyun
440112 50 黄埔区 Huangpu
440200 50 韶关市 Shaoguan
440303 40 罗湖区 Luohu
440304 50 福田区 Futian
440305 28 南山区 Nanshan
440306 29 宝安区 Bao’an
440307 29 龙岗区 Longgang
440308 20 盐田区 Yantianqu
440600 50 佛山市 Foshan
440681 49
440800 50 湛江市 Zhanjiang
441100 193
441200 48 50 肇庆市 Zhaoqing
441300 50 50 惠州市 Huizhou
441500 50 汕尾市 Shanwei
441700 50 阳江市 Yangjiang
441800 50 清远市 Qingyuan
441900 200 东莞市 Dongguan
443100 50
443300 49
445281 50 普宁市 Puningshi

重庆市 Chongqing

500100 196 市辖区 Shixiaqu
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Code 1995 2002 2007 Name

500101 83 万州区 Wanzhouqu
500103 65 渝中区 Yuzhongqu
500104 30 大渡口区 Dadukouqu
500105 62 江北区 Jiangbeiqu
500106 40 沙坪坝区 Shapingbaqu
500107 37 九龙坡区 Jiulongpoqu
500108 20 南岸区 Nananqu
500109 33 北碚区 Beibeiqu
500112 58 渝北区 Yubeiqu
500113 38 巴南区 Bananqu

四川省 Sichuan

510100 196 成都市 Chengdu
510104 58 锦江区 Jinjiang
510105 23 青羊区 Qingyang
510106 63 金牛区 Jinniu
510107 64 武侯区 Wuhou
510108 68 成华区 Chenghua
510109 22
510500 97 泸州市 Luzhou
510703 148 涪城区 Fucheng
510704 51 游仙区 Youxian
510800 99 广元市 Guangyuan
511000 49 内江市 Neijiang
511100 199 乐山市 Leshan
511102 99 市中区 Shizhong
511181 50 峨眉山市 Emeishan
511200 200
511300 97 94 南充市 Nanchong
511400 100 眉山市 Meishan
511600 100 广安市 Guang’an
511700 99 达州市 Dazhou
513500 50

云南省 Yunnan

530100 100 昆明市 Kunming
530200 98
530381 50 宣威市 Xuanweishi
530500 94 保山市 Baoshan
531100 100
531200 100
531300 100
531400 100
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Code 1995 2002 2007 Name

531500 98
532501 95 个旧市 Gejiu
532722 50
532901 99 大理市 Dali
533100 50 德宏傣族景颇族自治州 Dehong Daizu Jingpozu
533200 50
533221 50
533300 49 怒江傈僳族自治州 Nujiang

甘肃省 Gansu

620100 198 兰州市 Lanzhou
621100 200 定西市 Dingxi
621300 99
621500 100
622301 97
622701 100

A.2.1 Model specifications

# Model specifications

1:

name: ’y5-{city}’

power: 5

hh: [gender, age, educ, single]

city:

# One-at-a-time city-level variables

# Primary data

only-gdp_cap: [gdp_cap ]

only-wage_avg: [wage_avg ]

# Derived

only-density: [density ]

only-gdp_density: [gdp_density ]

only-hwy_density: [hwy_density ]

only-p_hwy_cap: [p_hwy_cap ]

only-stock_bus_cap: [stock_bus_cap ]

only-stock_priv_cap: [stock_priv_cap ]

only-stock_rent_cap: [stock_rent_cap ]

# Rural data only

# only-area_floor: [area_floor ]

# Only available at the provincial level

# only-p_rail_cap: [p_rail_cap ]
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# only-road_density: [road_density ]

# only-stock_comm_pass_cap: [stock_comm_pass_cap]

# only-stock_priv_pass_cap: [stock_priv_pass_cap]

# Prices

only-p_trn_fac: [p_trn_fac ]

only-p_trn_fuel: [p_trn_fuel ]

only-p_trn_ic: [p_trn_ic ]

only-p_trn_maint: [p_trn_maint ]

only-p_trn_pt: [p_trn_pt ]

# Sensitivity check

density+gdp_cap: [density, gdp_cap ]

# All at once

many-dem:

- gdp_cap # Primary

- wage_avg

- density # Derived

- gdp_density

- hwy_density

- p_hwy_cap

- stock_bus_cap

- stock_priv_cap

- stock_rent_cap

- p_trn_fac # Prices

- p_trn_fuel

- p_trn_ic

- p_trn_maint

- p_trn_pt

options: [province year fixed effects]

2: # Various sensitivity & feature checks

name: ’test{options}’

power: 5

hh: []

city:

- gdp_cap

- wage_avg

- density

- hwy_density

- p_hwy_cap

- stock_bus_cap

- stock_priv_cap

- stock_rent_cap

- p_trn_fuel

options:

’’: []

+nocensor:
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censor: False

# a dummy in years where Shanghai had the vehicle license plate policy

+vlp: [vlp dummy]

# fixed effects

+prov_fe: [province fixed effects]

+year_fe: [year fixed effects]

+provyear_fe: [province year fixed effects]

# use logarithms of city variables � elasticities

+logs: [log dem]

# Main models

3: &master # master group

name: ’y{power}{hh}{city}’

power:

1: 1

3: 3

5: 5

6: 6

hh:

’’: []

’+hh’: [gender, age, educ, single]

city:

’’: []

’+city’:

- gdp_cap

- wage_avg

- density

- hwy_density

- p_hwy_cap

- stock_bus_cap

- stock_priv_cap

- stock_rent_cap

- p_trn_fuel

# variants of master group with fixed effects

4:

<<: *master

name: ’y{power}{hh}{city}+fe_p’

options: [province fixed effects]

5:

<<: *master

name: ’y{power}{hh}{city}+fe_py’

options: [province year fixed effects]

6:
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<<: *master

name: ’y{power}{hh}{city}+fe_y’

options: [year fixed effects]

# for infill of groups {36

7:

<<: *master

name: ’y{power}{hh}{city}{options}’

power:

2: 2

4: 4

7: 7

options:

’’: []

’+fe_p’: [province fixed effects]

’+fe_py’: [province year fixed effects]

’+fe_y’: [year fixed effects]

# For paper 014

10:

<<: *master

name: ’y4{hh}{city}{options}’

power: 4

options:

’’: []

’+fe_p’: [province fixed effects]

’+fe_py’: [province year fixed effects]

’+fe_y’: [year fixed effects]

8: # the AIDS model. No demographic variables, so no options

name: ’aids’

type: aids

9: # simple models for comparing with AIDS

name: ’{power}’

power:

linear: 1

quadratic: 2
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Figure A-4: Parameter estimates for household variables on wtrn
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Appendix B

Materials for reproduction

To enable reproduction (Vandewalle et al. 2009) and extension of the work in this

thesis, software and materials for some of the foregoing is available, as described in

this appendix. Software is provided in two forms at https://paul.kishimoto.name/

publications:

1. Public version control repositories. These may undergo further development

in response to peer review of papers proceeding from the thesis or as part of

subsequent research.

2. Zenodo archives. These have Digital Object Indentifiers (DOIs), are citable,

and refer to specific versions of the code from #1.

B.1 Core models, analysis, and presentation

In Chapter 2, the C-REM model is property of the Tsinghua-MIT China Energy and

Climate Project (CECP)—a joint effort of the MIT Joint Program on the Science and

Policy of Global Change (JPSPGC) and the Tsinghua University Institute of Energy,

Environment, and Economy (3E). The model source is not public; but can be provided

on request, under certain restrictions on publication and re-use. Interested parties

should contact the JPSPGC:

Online https://globalchange.mit.edu/about-us/our-purpose/contact-us
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Telephone +1 617-253-7492

Post Joint Program on the Science and Policy of Global Change

Massachusetts Institute of Technology

77 Massachusetts Ave, E19-411

Cambridge, MA 02139-4307, USA

Analysis and plotting code for Chapter 2, as well as model estimation, validation,

and analysis code for Chapters 3 and 4 are provided at https://paul.kishimoto.

name/publications. https://github.com/khaeru/easi contains an improved ver-

sion of the exact affine Stone index (EASI) estimation code in R developed by Hoareau

et al. (2012).

B.2 Data and software for data preparation

This software is available at https://github.com/khaeru/data. Specifically, the

subpackages chip, ceic and cn nbs are used, each described below. These Python

packages retrieve raw data from raw or original data files, or the Internet; merge it; ap-

ply cleaning steps, transformations (of region or variable identifiers), and consistency

checks; and cache the resulting data structures. Each provides methods with names

like load chip() that allow extraction of the resulting data in formats convenient for

modeling and analysis.

B.2.1 China Household Income Project (CHIP)

The China Household Income Project (CHIP) data files are available from http://

www.ciidbnu.org/chip/index.asp?lang=EN free of charge. The researchers require

prospective users to complete a short application for access; in order to not circumvent

this, I have not republished the raw data. The data consist of .rar archives containing

Stata .dta files and accompanying documentation, organized by three dimensions,
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each with a string label. The software uses following names for these dimensions:

sample e.g. ’rural’, ’urban’ or ’migrant’.

unit of measurement/analysis: e.g. ’person’ or ’household’.

section of a questionnaire or survey: e.g. ’abc’ or ’income and assets’.

Some CHIP surveys contain multiple sections which apply to individual people,

but the units of observation are distinct: for instance, all household members; children

of the household head(s) who are not resident in the household; or parents of the

household head(s) who may or may not be resident in the household. These are

usually indexed by different variables and have different data associated with them,

so the code stores them separately.

The code is tested for CHIP waves between 1988 and 2013 inclusive. Since the

provided form of the data varies from wave to wave, we create metadata/control files

that describes the layout of the data, units of observations, and/or columns to be

transformed or used as indices. The file for the 2002 CHIP wave is reproduced below

on page 234.

B.2.2 CEIC Data

China’s official economic and transport statistics are collected by a system of insti-

tutions, then aggregated, collected, and finally published by several of these. At the

central level are the National Bureau of Statistics of China (NBSC) and the Ministry

of Transport. Each province has its own statistical bureau, transport ministry, and

offices of the national bodies. City governments also have transport departments.

Data collected by these institutions is reported annually in the national-level (gen-

eral) China Statistical Yearbook, and (sector-specific) China Transportation & Com-

munications Yearbook, and at other frequencies through the NBSC website. The

province-level institutions issue publications such as a “Jiangsu Statistical Year-

book”—analogous to the general, national-level yearbook—and sector-specific provin-
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cial yearbooks. These contain tables at resolutions below the province level, but their

contents are not published electronically alongside the digital form of the national

yearbooks.

This thesis uses the “China Premium Database” published by CEIC Data (CEIC),

a commercial source which has transcribed a large number of such yearbooks. While

this saves researchers the effort of collation, the data available from the CEIC ‘CDM-

Next’ platform is not immediately suitable for analysis of the type described in Chap-

ters 3 and 4. In particular, data series are tagged with string names such as the

following:

— No of Public Transit Vehicle: Bus and Trolley Bus: Henan: Hebi

— GDP: Shanxi: Changzhi: Zhangzi

— Highway: Freight Traffic: Commercial: Motor Vehicle

These names combine measured concepts (e.g. ‘GDP’), subcategories of measure-

ment (‘Commercial’ within ‘Freight Traffic’), and names of geographical units: in the

examples, respectively the prefecture-level city ‘Hebi’; the county-level city district

‘Zhangzhi’; and, implicitly, all of China. The names names, in particular, contain

errors, use idiosyncratic, non-official romanizations for names in China’s minority

languages and sometimes for Mandarin, and refer to regions that have been renamed

over the duration of the series they label.

The provided software in the data repository systematizes the CEIC CDMNext

exports more carefully. Among other transformations, it:

— groups indicators and sub-indicators,

— flexibly matches names to the official 6-digit GB/T 2260 codes for geographical

divisions, using the library described in Appendix B.3,

— converts series in heterogeneous units to common units, and

— replaces series codes such as ‘CTBBZV’ with intelligible names like ‘stock bus’.

The file reproduced on page 236 encodes the corrections made at some of these
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stages. The software, control file, and CEIC series exports in comma-separated value

(CSV) format can be used to reproduce data for the city-level measures constructed

by the software in Appendix B.1.

B.2.3 China National Bureau of Statistics

The NBSC website provides price indices for a general basket, for eight top-level

categories (the same used in Chapters 3 and 4), further subcategories, and for the

individual goods whose prices are directly surveyed in order to construct the indices.

These data are provided online through an interactive website that allows export

of small subsets. The provided software in the data repository retrieves entire series

in JSON format through the web application programming interface (API) that backs

the website. Raw data are cached, converted to Python data structures, and cached

again in this format.

B.3 Utilities and presentation

Two new utility packages were developed for this thesis. I also gratefully acknowledge

the efforts of the Python and Free Software community members who developed

and supported the pandas, xarray, rpy2, matplotlib, plotnine, and statsmodels

libraries.

GB/T 2260-2007: Codes for the divisions of the People’s
Republic of China

https://github.com/khaeru/gb2260

Officially “中华人民共和国行政区划代码,” the GB/T 2260 standard defines six-

digit numerical codes for the administrative divisions of China, at the county level and

above. For instance, the Haidian district of Beijing has the code 110108. The most
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recent version of the official standard, designated “GB/T 2260-2007,” was published

in 2008. However, codes are routinely revised, and the National Bureau of Statistics

(NBS) publishes an updated list online annually.

The gb2260 package produces and exposes an up-to-date list of the GB/T 2260

codes, with extra information including English names, Pinyin transcriptions, ad-

ministrative levels, etc. It conforms to the semantics of the widely used pycountry

package, an interface to the ISO 3166 family of standards.

Pandas tables in LATEX

https://github.com/khaeru/pandas_latex

This package produces LATEX tables from the popular pandas Python data struc-

tures. The analysis code in Appendix B.1 uses this library to generate most of the

data tables in this thesis.

B.4 Listings

B.4.1 Metadata for CHIP 2002 wave

files:

path: 2002

name: 21741-00(?P<sample>[01][0-9])-Data.dta

map:

_dim: sample

’01’: # Must be quoted or else are converted to 1 != ’01’

sample: urban

unit: person

section: Income, consumption and employment

’02’:

sample: urban

unit: household

section: Income, consumption and employment

’03’:
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sample: urban

unit: person

section: Annual income

’04’:

sample: urban

unit: household

section: Assets, expenditure, income and conditions

’05’:

sample: rural

unit: village

section: Administrative

’06’:

sample: rural

unit: r_person

section: Income, consumption and employment

’07’:

sample: rural

unit: r_household

section: Income, consumption, employment, social network, quality of life, village affairs

’08’:

sample: rural

unit: r_person

section: School-age children

’09’:

sample: migrant

unit: m_person

section: All

’10’:

sample: migrant

unit: m_household

section: All

column:

PCODE:

name: Household member code

type: int

CODE_P:

name: Household member code

type: int

unit:

household:

index: PCODE

person:

index: [CITY, PCODE, CODE_P]

unique: false

m_household:
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index: CODE

m_person:

index: [CODE, P102]

r_household:

index: [COUN, VILL, HOUS]

r_person:

index: [COUN, VILL, HOUS, P1_2]

village:

index: [COUN, VILL]

B.4.2 Metadata for CEIC Data

# Translations for CEIC data base city names which do not match official

# names. Mostly these different romanizations for names in minority languages.

rename regions:

Aba: Aba Zangzu Qiangzu # Sichuan (to disambiguate with its subdivision)

Aksu: Aksu diqu # Xinjiang (to disambiguate with its subdivision)

Altay: Altay diqu # Xinjiang (to disambiguate with its subdivision)

Aletai: Altay # Altay, Xinjiang

Atushi: Artux shi # Kizilsu Kirgiz, Xinjiang

Baxiu: Basu # Qamdu, Tibet

Biyang: Miyang # Zhumadian, Henan

Botou: Potou # Cangzhou, Hebei

Buerjin: Burqin # Altay, Xinjiang

Chancheng: Shancheng # Foshan, Guangdong

Chengduo: Chenduo # Yushu, Qinghai

Dacheng: Daicheng # Langfang, Hebei

Danling: Danleng # Meishan, Sichuan

Deqin: Deqen # Diqing, Yunnan

Donge: Donga # Liaocheng, Shandong

Dujun: Duyun # South Guizhou, Guizhou

Erdos: Ordos # Inner Mongolia

Fanshi: Fanzhi # Xinzhou, SX

Fuijian: Fujian

Fuxin Mongolian: Fuxin Mongolzu # Fuxin, Liaoning

Hami: Hami diqu # Xinjiang (to disambiguate with its subdivision)

Hetian City: Hetian shi # Hotan, Xinjiang

Honghe: Honghe Ha’nizu Yizu # Yunnan (to disambiguate with its subdivision)

Jizhou: Ji # Tianjin

Junlian: Yunlian # Yibin, Sichuan

Kashi: Kaxgar # Xinjiang

Kazuo: Kalaqin zuoyi # Chaoyang, Liaoning

Laoting: Leting # Tangshan, Hebei

Lhokha: Loka # Tibet

Lindian: Lindain # Daqing, Heilongjiang

Lingtao: Lintao # Dingxi, Gansu
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Linxia City: Linxia shi # Linxia, Gansu

Liuzhi: Luzhi # Liupanshui, Guizhou

Lueyang: Lveyang # Hanzhong, Shaanxi (error in gb2260)

Lvchun: Luchun # Honghe, Yunnan

Lvliang: Luliang # Shanxi

MolidawaDaur: Molidawadawoer # Hulunbeier, Inner Mongolia

Muling: Muleng # Mudanjiang, Heilongjiang

Nanmulin: Namling # Xigaze, Tibet

Narqu: Nagqu # Tibet

Ngri: Ngari # Tibet

Pizhou: Peizhou # Xuzhou, Jiangsu

Sahuangjiang: Shuangjiang # Lincang, Yunnan

Sui: Suixian # Shangqiu, Henan (to disambiguate w/ Suiyangqu, Shangqiu)

Suiling: Suileng # Suihua, Heilongjiang

Tacheng: Tacheng diqu # Xinjiang (to disambiguate with its subdivision)

Tanchang: Dangchang # Longnan, Gansu

Wuchuang: Wuchuan # Zunyi, Guizhou

Wulumuqi: Urumqi # 650121, in Urumqi, Xinjiang

Xian: Xi’an # Shaanxi (to disambiguate w/ Xianyang, Shaanxi)

Xilinggol: Xilingol # Inner Mongolia

Xun: Jun # Hebi, Henan

Zhalaite: Zalaite # Xingan, Inner Mongolia

Zhashui: Zuoshui # Shangluo, Shaanxi

Zhong: Zhongxian # Chongqing (to disambiguate with Zhongqingshi)

Zhongmu: Zhongmou # Zhengzhou, Henan

Zhongweishixiaqu: Zhongwei city area # Zhongwei, Ningxia (error in gb2260)

# The following appear in some series names, but not in the 2015 gb2260 database

missing regions:

"Tianjin:Baodi": 0

"Shanxi:Yangquan:Meng": 0

"Hebei:Shijiazhuang:Xinji": 139002 # was 130181, now not in Shijiazhuang

"Hebei:Baoding:Li": 130635 # ambiguous with 130606 Lianchiqu

"Inner Mongolia:Erdos:Etuoke": 150624 # ambiguous w/ 150623 Etuokeqianqi

"Liaoning:Jinzhou:Linhai": 210781 # ambiguous with 331082

"Anhui:Huainan:Shou": 0

"Anhui:Xuancheng:Jing": 341823 # ambiguous with 341825 Jingdexian

"Jiangxi:Shangrao:Yanshan": 0

"Shandong:Heze:Shan": 0

"Hubei:Shiyan:Yun": 420304 # Yunyangqu

"Hubei:Qianjiang": 429005 # doesn’t match at 2nd level

"Guangdong:Meizhou:Mei": 441402 # ambiguous with 610326

"Guangdong:Yunfu:Yunan": 0 # CEIC doesn’t distinguish 445302 Yunanqu and

# 445322 Yunanxian

"Hainan:Sanya:Baisha": 0

"Sichuan:Liangshan:Huidong": 513426 # Liangshan matches 370832 (bug)
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"Sichuan:Liangshan:Yuexi": 513434

"Guizhou:Southwest Guizhou:Jinsha": 520523 # under Bijie, not 522300

"Yunnan:Dehong:Luxi": 532527 # under Honghe, not 533100 Dehong

"Gansu:Longnan:Li": 621226 # can’t rename bc ’Li’ appears elsewhere

"Gansu:Linxia:Linxia County": 622921

"Xinjiang:Hotan:’Hetian County’": 653221

"Xinjiang:Ili Kazak:Yining": 0 # CEIC doesn’t distinguish 654002 Yiningshi

# and 654021 Yiningxian

dimensions:

airport:

- [Airport, Freight Throughput]

- [Airport, Passenger Throughput]

- [Airport, No of Flight Handled]

brand:

- [New Registration of Passenger Car, by Brand]

preprocess:

- predicate: "’Petroleum Product’ in row[’name’]"

transform: "row[’name’] = row[’name’][1:] + row[’name’][:1]"

rename variables: # Internal name: [CEIC name fragment]

area: [Land Area of Administrative Zone]

area_city: [Developed Area of City Construction]

area_floor: [Floor Area of Residential Building per Capita]

area_floor: [Floor Area of Residential Building per Capita, Rural]

area_road: [Area of Paved Road, City]

exp_cap: [Consumption Expenditure per Capita]

exp_cap_rural2: [Living Exp per Capita, Rural Household]

exp_cap_rural: [Consumption Expenditure per Capita, Rural]

f_air: [Airport, Freight Throughput]

f_all: [Transport, Freight Traffic]

f_hwy: [Highway, Freight Traffic]

f_hwy_comm: [Highway, Freight Traffic, Commercial]

f_hwy_comm_mv: [Highway, Freight Traffic, Commercial, Motor Vehicle]

f_hwy_comm_omv: [Highway, Freight Traffic, Commercial, Other Motor Vehicle]

f_hwy_comm_trac: [Highway, Freight Traffic, Commercial, Tractor]

f_rail: [Railway, Freight Traffic]

gdp: [GDP]

gdp_cap: [GDP, per Capita]

goods_rural_bike: [Consumer Goods per 100 Rural Household, Bicycle]

goods_rural_mc: [Consumer Goods per 100 Rural Household, Motor Cycle]

goods_urban_auto: [Consumer Goods per 100 Urban Household, Automobile]

hh: [No of Household]
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hwy: [Highway, Length of Highway]

hwy_all: [Highway, Length of Highway, Expressway & Class I to IV]

hwy_c1: [Highway, Length of Highway, Class I]

hwy_c2: [Highway, Length of Highway, Class II]

hwy_c3: [Highway, Length of Highway, Class III]

hwy_c4: [Highway, Length of Highway, Class IV]

hwy_expwy: [Highway, Length of Highway, Expressway]

inc_cap: [Disposable Income per Capita]

oil_cons: [Petroleum Product, Consumption]

oil_fcons: [Petroleum Product, Final Consumption]

oil_fcons_res: [Petroleum Product, Final Consumption, Residential]

oil_fcons_res_rural:

- Petroleum Product

- Final Consumption

- Residential

- Rural

oil_fcons_res_urban:

- Petroleum Product

- Final Consumption

- Residential

- Urban

oil_fcons_tran:

- Petroleum Product

- Final Consumption

- Transport, Storage, Postal & Telecommunication Service

p_air: [Airport, Passenger Throughput]

p_all: [Transport, Passenger Traffic]

p_hwy: [Highway, Passenger Traffic]

p_hwy_comm: [Highway, Passenger Traffic, Commercial]

p_hwy_comm_mv: [Highway, Passenger Traffic, Commercial, Motor Vehicle]

p_hwy_pt: [Highway, Passenger Traffic, Public Transport]

p_rail: [Railway, Passenger Traffic]

price_prop: [Property Price]

price_prop_res: [Property Price, Residential]

pkm_coastal: [Coastal, Passenger Turnover]

pkm_hwy: [Highway, Passenger Turnover]

pkm_hwy_comm: [Highway, Passenger Turnover, Commercial]

pkm_hwy_comm_mv: [Highway, Passenger Turnover, Commercial, Motor Vehicle]

pkm_ocean: [Ocean, Passenger Turnover]

pkm_river: [River, Passenger Turnover]

pkm_ww: [Waterway, Passenger Turnover]

pop: [Population]

pop_census: [Population, Census]

pop_non_ag: [Population, Non Agricultural]

stock_bus: [No of Public Transit Vehicle, Bus and Trolley Bus]

stock_comm: [No of Motor Vehicle, Commercial]

stock_comm_pass: [No of Motor Vehicle, Commercial, Passenger]
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stock_comm_truck: [No of Motor Vehicle, Commercial, Truck]

stock_comm_truck_gen: [No of Motor Vehicle, Commercial, Truck, General]

stock_comm_truck_spec:

- No of Motor Vehicle

- Commercial

- Truck

- Special Purpose

stock_mc: [No of Motorcycle]

stock_mc_priv: [No of Motorcycle, Private Owned]

stock_mc_priv_2w: [No of Motorcycle, Private Owned, Two Wheelers]

stock_other: [No of Motor Vehicle, Other Type]

stock_pass: [No of Motor Vehicle, Passenger]

stock_pass_large: [No of Motor Vehicle, Passenger, Large]

stock_priv: [No of Motor Vehicle, Private Owned]

stock_priv_pass: [No of Motor Vehicle, Private Owned, Passenger]

stock_priv_pass_large: [No of Motor Vehicle, Private Owned, Passenger, Large]

stock_priv_truck: [No of Motor Vehicle, Private Owned, Other Type]

stock_priv_truck: [No of Motor Vehicle, Private Owned, Truck]

stock_rent: [No of Rental Vehicle]

stock_trac: [No of Tractor]

stock_trac_priv: [No of Tractor, Private Owned]

stock_truck: [No of Motor Vehicle, Truck]

tkm_coast: [Coastal, Freight Turnover]

tkm_hwy_comm: [Highway, Freight Turnover, Commercial]

tkm_hwy_comm_mv: [Highway, Freight Turnover, Commercial, Motor Vehicle]

tkm_hwy_comm_omv: [Highway, Freight Turnover, Commercial, Other Motor Vehicle]

tkm_hwy_comm_trac: [Highway, Freight Turnover, Commercial, Tractor]

tkm_ocean: [Ocean, Freight Turnover]

tkm_ww: [Waterway, Freight Turnover]

wage_avg: [Average Wage]

wage_avg_duty: [Average Wage, On Duty]

wage_tl: [Total Wage]

wage_tl_duty: [Total Wage, On Duty]

units: |

percent = [percent]

person = [person]

RMB = [currency]

unit = [unit]

jan2004 = 100

cub_m_mn = 1e6 * m ** 3

ha_th = 1e3 * hectare

meter_th = 1e3 * metre

person_km_mn = 1e6 * person * km

person_mn = 1e6 * person
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person_th = 1e3 * person

sq_km = km ** 2

sq_m = m ** 2

sq_m_mn = 1e6 * m ** 2

rmb = RMB

rmb_mn = 1e6 * RMB

rmb_bn = 1e9 * RMB

time_mn = person_mn

ton_km_mn = 1e6 * tonne * km

ton_mn = 1e6 * tonne

ton_th = 1e3 * tonne

unit_th = 1e3 * unit
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