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New Data for Representing Irrigated 
Agriculture in Economy-Wide Models 

 KIRBY LEDVINAA, NIVEN WINCHESTERB, KENNETH STRZEPEKC, AND JOHN M. 
REILLYD 

We develop a framework to represent the production value and expansion potential 
of irrigated land within economy-wide models, providing integrated assessment 
capabilities for energy-land-water interactions. The scope to expand irrigated land 
is quantified through irrigable land supply curves for 126 water regions globally 
based on water availability and the annual costs of irrigation infrastructure. 
Upgrades in irrigation infrastructure include (1) increasing water storage, (2) 
improving conveyance efficiency, and (3) improving irrigation efficiency. The value 
of production on irrigated and rainfed cropland is computed at both a 5 arcminute 
by 5 arcminute level and for the 140 regions and eight crop sectors in Version 9 of 
the Global Trade Analysis Project (GTAP) Data Base using estimates of production 
quantities and prices from the year 2000. This work facilitates the representation of 
endogenous investment in irrigation infrastructure and allows for a more rigorous 
exploration of the regional and global impacts of water availability on land use, 
energy production, and economic activity. 

JEL codes: Q11, Q15, Q25 
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1. Introduction 

An expanding world population and global economy is expected to increase 
food demand and place pressure on current food crop production (Reilly et al., 
2012; Wallace, 2000). Additionally, amidst a changing climate, new energy and 
climate policies may be proposed to support bioenergy production as an 
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alternative to conventional fossil-based methods, placing food and energy 
production in direct competition for land resources (Calvin et al., 2014; Gillingham 
et al., 2008; Johansson and Azar, 2007; Popp et al., 2014; Smyth et al., 2010; 
Timilsina et al., 2012; Winchester and Reilly, 2015; Wise et al., 2014). One way to 
accommodate a growing demand for both food and bioenergy is to intensify 
existing crop land by increasing crop yields through investments in irrigation 
technology (Beringer et al., 2011; Taheripour et al., 2016). However, to explore the 
potential impacts of intensification on food prices and bioenergy production, we 
need to understand the physical and cost constraints on irrigable land expansion. 
How much additional land can be irrigated, in which parts of the world, and at 
what cost? While we can use applied general equilibrium (AGE) modeling 
techniques to investigate these questions, we first need the ability to explicitly 
represent irrigated land and its expansion potential within economy-wide models, 
a capability that is the main focus of this paper. 

Early literature on separately representing irrigated and rainfed agriculture 
includes Taheripour et al. (2013a), Taheripour et al. (2013b), Liu et al. (2014), and 
Liu et al. (2016). However, the expansion potential of irrigated agricultural 
production has yet to be considered in the AGE literature. Thus, we advance 
current modeling practices by enabling the endogenous expansion of irrigated 
land through water region-specific irrigable land supply curves, which quantify 
the amount of irrigated land gained from investments in irrigation systems and 
water storage. The development of irrigable land supply curves to incorporate 
these responses within AGE models provides a mechanism for regions to expand 
production on irrigated land ― subject to water constraints, infrastructure costs, 
and the availability of previously rainfed land. This capability allows for more 
robust exploration of the effects of a carbon policy and water constraints on 
economic performance, biomass production, land use, and greenhouse gas 
emissions. 

We also extend earlier efforts to explicitly represent irrigated agriculture in the 
base year data of AGE models. Previously, Haqiqi et al. (2016) enhanced the Global 
Trade Analysis Project (GTAP) Power Data Base (Peters, 2016) ― an augmentation 
of Version 9 of the GTAP Data Base (Aguiar et al., 2016) that represents electricity 
generation in detail ― to separately represent rainfed and irrigated agricultural 
production and form the GTAP-Water Data Base.  To disaggregate crop 
production value into rainfed and irrigated components, they use rainfed and 
irrigated output shares. This approach employs the simplifying assumption that 
irrigated land’s share of total output quantity (in tonnes, t) is equal to its share of 
total output value (in U.S. dollars, USD) for each GTAP crop category. While this 
assumption seems reasonable for GTAP crop categories that consist of a single 
crop, it may not be valid for crop categories that include heterogeneous crops. 
Specifically, for heterogeneous crop categories, the production shares on irrigated 
and rainfed land may differ from output value shares if high-value crops are 
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grown on irrigated land and low-value crops on rainfed land, or vice versa.  Though 
Haqiqi et al. (2016) note this possible issue, they do not explore the specific crops 
and regions for which differences may arise. 

Thus, in addition to quantifying the expansion potential of irrigated 
agriculture, we also build on Haqiqi et al.’s (2016) work to represent base year 
irrigated agricultural production by using irrigated and rainfed value shares 
calculated with a global price dataset rather than output shares. While the output 
shares used by Haqiqi et al. (2016) are more attainable on a global scale, value 
shares bypass the implicit assumption that in each GTAP crop category the 
proportional cultivation of constituent crops on irrigated land is equal to that on 
rainfed land.  

Altogether, the purpose of this paper is to elucidate and advance the 
development of this irrigated land framework. Specifically, we (1) provide 
estimates of the scope to increase irrigated land at the water region level and (2) 
assist the representation of irrigated land in the GTAP Data Base by improving 
estimates of production values shares on rainfed and irrigated land. Both items are 
tools that the modeling community may find useful, and we make our complete 
work stream available as supplementary materials. Specific materials include data 
on (1) irrigable land supply functions for 126 water regions, (2) irrigated and 
rainfed land area by GTAP region and crop sector, (3) the directly calculated value 
of irrigated and rainfed production by GTAP region and crop sector, and (4) source 
code for all aggregation routines.1 The supplementary files allow aggregation of 
rainfed and irrigated land area, output volume, and production value from a finer 
level of spatial resolution to user-defined regions other than the GTAP regions. 
We also analyze the approach of Haqiqi et al. (2016) and flag regions and crop 
sectors where it may not be suitable to equate production shares with value shares. 

The remainder of this paper describes the irrigated land framework and tools 
used. Section 2 details the construction of irrigable land supply curves. Section 3 
discusses the valuation of irrigated and rainfed crop production. Section 4 
summarizes the code and other tools we make available. Section 5 concludes. 

2. Representation of Irrigable Land Supply Curves 

The development of irrigable land supply curves enables regions to adapt to 
changes in water resources and agriculture demand by investing in irrigation 
infrastructure and intensifying crop production. To account for variations in water 
resources across river basins, we use 282 river basins defined by the Integrated 
Global Assessment Model – Water Resource System (IGSM-WRS) framework 
(Strzepek et al., 2013). Because river basins are in part delineated by political 
                                                           
1 Haqiqi et al. (2016) also provide irrigated and rainfed crop areas by GTAP region and 
crop, as well as the GAMS code to generate irrigated and rainfed production values 
calculated from output shares. 
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borders, we define 126 water regions as aggregations of adjacent river basins that 
can cross country lines to better capture the transnational aspect of water resource 
systems. Figure 1 maps the river basins and their water region aggregations. 

 
Figure 1. River basins (outlined) and their water region aggregations (shaded). 

Notes: Shapefile is provided in the 1_SpatialData\SHP subfolder of the supplementary materials. 

Source: Regional definitions as used by Strzepek et al. (2013) 

2.1 Irrigation efficiency 

We use irrigation system efficiency (SEF) values from the International Food 
Policy Research Institute’s (IFPRI) International Model for Policy Analysis of 
Agricultural Commodities and Trade (IMPACT) model (Rosegrant et al., 2012) to 
characterize the current extent of irrigation in each of the 282 river basins. The SEFs 
of the 126 water regions are the average of constituent basin efficiencies, weighted 
by the area of irrigated land. Basin irrigation efficiencies in the base year 2000 are 
calculated as crop consumptive use divided by water delivered to irrigated land 
within the basin. Based on Food and Agricultural Organization (FAO) irrigation 
and drainage data (FAO, 2015b) and expert knowledge, we split the water region 
SEF values into two separate efficiency metrics for the base year: conveyance 
efficiency and field efficiency. The conveyance efficiency is determined by the 
amount of water lost to seepage and/or evaporation within a system of canals. 
Field efficiency ― referring to the portion of the water released on the fields that 
ultimately waters the crops ― depends on the type of irrigation system and 
increases with more targeted methods.  

To allow for irrigation upgrades, we consider improvements in conveyance 
efficiency through the addition of canal lining. As most major irrigation canals are 
currently unlined, we assume all water region systems are initially unlined with a 
75% conveyance efficiency (i.e. 75% of water released from dams reaches the field), 
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which increases to 95% with the addition of plastic or concrete lining. These 
approximations are assumed to apply to all water regions, following the approach 
in the IFPRI IMPACT model (Rosegrant et al., 2012). Each water region can also 
improve its field efficiency beyond its base year efficiency through four possible 
system upgrades at increasing annual costs: flood, furrow, low-efficiency 
sprinkler, and high-efficiency sprinkler. A representative irrigation technology 
currently in use is selected according to field efficiency in the base year, as 
summarized in Table 1. In each water region, additional investments in field 
irrigation systems can be used to improve field efficiency.2 Table 2 lists the 
efficiency values associated with each possible irrigation upgrade, as well as the 
new SEF incorporating the updated field efficiency. Because of the global scale of 
this work, we apply upgrade efficiencies to all river basins around the world. 
While these are indicative efficiency values (see FAO, 1989) combined with the 
authors’ professional experience, field studies have also observed similar ranges 
(e.g. Fipps, 2000). 

Table 1. Field efficiencies and corresponding irrigation 
technologies in base year 2000 

Field Efficiency Range Corresponding Technology 
Low High 

0 0.35 None 
0.35 0.55 Flood 
0.55 0.75 Furrow 
0.75 0.85 Low-efficiency sprinkler 
0.85 0.90 High-efficiency sprinkler 

Source: Author-selected values 

Table 2. Efficiency values from irrigation upgrades 

Upgraded Field 
Technology 

(1) 
Field Efficiency 

(2) 
Conveyance Efficiency 

SEF 
(1)*(2) 

Flood 0.45 0.95 0.43 
Furrow 0.65 0.95 0.62 

Low-efficiency sprinkler 0.80 0.95 0.76 
High-efficiency sprinkler 0.88 0.95 0.83 

Notes: Field efficiency for each upgrade is the midpoint of the ranges from Table 1. Conveyance 
efficiency of 0.95 assumes lined canals.  

Source: Author-selected values 

                                                           
2 For rice paddy in the water regions, we allow only a one-time efficiency increase of 10 
percentage points assuming good water management. There is growing literature on how 
to improve the water efficiency of paddy rice at the system level, but some technical issues 
remain difficult to model. 



Journal of Global Economic Analysis, Volume 3 (2018), No. 1, pp. 122-155. 
 

127 
 

To determine the quantity of irrigated land gained with each system upgrade, 
we compute an updated sector water requirement (SWR) of irrigation, i.e. the 
water withdrawal required to meet irrigation demands of the current crop mix in 
each water region. A water region’s SWR for irrigation is calculated as irrigated 
crop consumptive use across the water region divided by the region’s SEF ― this 
relationship highlights that because of transport inefficiencies, the amount of 
water allocated to irrigation exceeds the amount consumed by irrigated crops. 
Crop consumptive use is estimated for each water region using CliCrop (Fant et 
al., 2012) ― a biophysical crop model that considers temperature, precipitation, 
and potential evapotranspiration ― integrated with IGSM-WRS. We assume the 
crop mix remains constant over time — because of climatic similarity within the 
water regions, and considering that most irrigation is for cereals, there is a small 
range of per hectare water demand within each region. Altogether, we use the data 
on irrigation efficiency to calculate the water saved from an irrigation upgrade, 
and then, knowing the amount of water needed by the current crop mix, we 
determine how much additional land can be irrigated from the surplus water. 

Of the possible improvements to conveyance and field efficiency, the addition 
of canal lining allows for the greatest increase in irrigable land at the lowest cost 
per hectare and is therefore the first irrigation system upgrade for all water 
regions, followed by upgrades in field technology in order of increasing field 
efficiency. Some irrigation upgrades in some water regions, typically high-
efficiency sprinkler, are assumed to be infeasible because the resulting irrigated 
land expansion would exceed the quantity of available rainfed land. 

Some water regions require manual adjustments to the estimates of additional 
hectares (ha) that can be irrigated. Specifically, the IGSM-WRS model overstates 
the amount of water saved from the addition of canal lining in large rice-
producing water regions in China. This overestimation is a result of rice 
cultivation methods. Because rice paddies are grown in flooded fields, water that 
leaks out of unlined canals contributes to crop irrigation. Consequently, the 
addition of lining does not substantially improve irrigation efficiency, and the 
amount of additional irrigable land calculated from the IGSM-WRS output is 
overstated. We address this issue by setting the amount of additional land that can 
be irrigated due to the addition of canal lining equal to one-tenth of the estimated 
amount in eight water regions in China.3 

2.2 Increases in water storage 

Beyond improvements in irrigation efficiency, irrigable land in a water region 
can expand through investments in water storage. Each region’s water storage 
capacity is modeled through a storage-yield curve relating available water supply 

                                                           
3 These regions are SE_Asia_Coast, Chang_Jiang, Hail_He, Hual_He Langcang_Jiang, 
Songhua, Yili_He, and Zhu_Jiang water regions 
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to the quantity of storage. A region’s storage-yield curve extends from no storage, 
which creates no additional irrigated land, to the amount needed to accommodate 
the region’s mean annual runoff. Mean annual runoff is based on estimates of 
surface and subsurface runoff generated by the Community Land Model (CLM) 
(Bonan et al., 2002) within the IGSM framework (Sokolov et al., 2005). In modeling 
surface runoff, CLM considers the effect of soil infiltration limits, runoff from 
saturated surface conditions, frozen soil, and root density on soil hydraulic 
conductivity. Subsurface runoff is limited to the sustainable yield and is used by 
the Municipal, Industrial and Livestock sectors in that order of priority. Any 
surplus is added to the yield from the current reservoir storage, which is then 
available for irrigation. Additionally, for subsurface runoff CLM employs within 
each water region a representation of an unconfined aquifer, as opposed to the 
alternative artesian aquifer, which restricts water from entering through the top 
and bottom of the reservoir. The unconfined system is employed because it is less 
complex to model and because there is not yet academic consensus on the extent 
of each type of aquifer storage. Wiberg and Strzepek (2005) and Strzepek et al. 
(2013) further detail the storage capacity modeling and cost curve integration. 

We divide each water region’s storage-yield curve into ten possible upgrades 
of equal capacity but increasing marginal cost, with the assumption that lower cost 
upgrades are the first adopted. In each region, the storage-yield curve is combined 
with a storage-cost curve and an estimate of current storage to calculate the scope 
and cost of increasing annual water yields beyond the current storage level. 
Estimates of current storage in each region are sourced from the IMPACT model, 
which uses data from an online, global database of large dams managed by the 
International Commission on Large Dams (ICOLD). To determine the annual cost 
of additional storage, we source investment costs from FAO (2015b) and use 
IGSM-WRS, which takes water runoff data as an input, to determine both the 
marginal cost and the increase in yield volume from the capacity upgrade. We 
assume that additional storage upgrades are not adopted once capacity can fully 
accommodate the mean annual runoff. As with the irrigation system upgrades, we 
then consider the increase in water yield along with the current crop consumptive 
use and most updated irrigation efficiency values to estimate the quantity of 
irrigated land gained from the new storage upgrade. 

2.3 Constructing supply curves for additional irrigated land 

We arrange the five possible irrigation efficiency upgrades and ten possible 
storage upgrades into supply curves for additional irrigable land for each water 
region. The supply curves convey the number of additional hectares that could be 
irrigated and the annual cost per hectare of the infrastructure upgrades. Capital 
costs are annualized assuming a 50 year lifetime and a discount rate of 5%. Inputs 
of previously rainfed land are also required to expand irrigable land production. 
Increases in water available for irrigation ― even from improvements in irrigation 
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efficiency ― are used exclusively for the expansion of irrigated land. Therefore, the 
marginal product of both existing and newly irrigated land in each water region 
remains equal and constant as irrigated land expands within a water region. 

As an example, the irrigable land supply function for the Mississippi River 
(MIS) water region is illustrated in Figure 2 with corresponding data provided in 
Table 3. In this example, the additional irrigable land supply function includes 
seven incremental storage upgrades before maximum storage is reached, 
indicating that existing storage capacity is the sum of the first three incremental 
storage upgrades. As with all of the water regions, the addition of lining is the 
lowest cost efficiency upgrade, and because the next irrigation system upgrade is 
to a furrow system, it can be inferred that flood irrigation is used as the 
representative system for this water region. In total, investment in irrigation and 
storage infrastructure in the MIS water region could irrigate an additional 7.0 
million ha beyond the current 3.0 million ha of irrigated land. Because the supply 
curves assemble additions to irrigable land from low to high investment cost, the 
supply curves represent the marginal cost of additional irrigable land. 

 
 

 
Figure 2. Irrigable land supply curve for Mississippi River (MIS) water region. 

Source: Authors’ calculations. 
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Table 3. Additional irrigable land from upgrades in Mississippi River (MIS) water region 

Upgrade 1 2 3 4 5 6 7 8 9 10 

Type Stor. Stor. Stor. Stor. Stor. Lining Stor. Stor. Furrow Low-eff. 
sprinkler 

Yearly Cost 
(USD/ha) 1.62 5.30 5.30 5.30 6.46 25.36 46.73 82.67 130.85 198.75 

New Irrig. 
Land from 

Upgrade 
(1,000 ha) 

313 781 781 781 781 1,666 781 781 234 113 

Total New 
Irrig. Land 

(1,000 ha) 
313 1,095 1,876 2,658 3,439 5,106 5,887 6,669 6,902 7,015 

Notes: Water supply limitations preclude investment beyond the tenth upgrade 

Source: Authors’ calculations. 

 
Data on upgrade types, costs, and expansion possibilities for all water regions 

are provided as supplementary materials.4 As a summary of these global datasets, 
Figure 3 conveys the share of total potentially irrigable land that is currently 
irrigated in each water region while Figure 4 illustrates each region’s current 
marginal cost of irrigation infrastructure upgrades. Comparison of these two 
figures reveals that regions with greater irrigated land expansion potential, such 
as the Amazonian water regions, also generally face high technology costs and 
thus a deterrent to additional irrigation investment. However, some regions like 
the arid environments of North Africa and Southwest Asia have little irrigation 
expansion potential because of water resource limitations, though the annual costs 
are relatively low. 
  

                                                           
4 See WaterRegionSupply.xlsx in the 3_SupplyCurves subfolder. A key to upgrade types 
is included in the Readme file. 
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Figure 3. Irrigated agriculture’s current harvested area as a fraction of total potentially 

irrigable land. 

Notes: Data for the Rest of World water region (includes residual river basins in Alaska, Greenland, 
Iceland, Eastern Russia, Antarctica and North Korea) are not reported in the figure. 

Source: Authors’ calculations using Portmann et al. (2010) 

 

 
Figure 4. Current annual per-hectare cost of additional investments in irrigation 

infrastructure. 

Notes: Data for the Rest of World water region (includes residual river basins in Alaska, Greenland, 
Iceland, Eastern Russia, Antarctica and North Korea) are not reported in the figure. 

Source: Authors’ calculations. 

2.4 Including irrigable land supply curves in an economy-wide model 
Winchester et al. (2018) include supply curves for additional irrigable land in 

the Economic Projection and Policy Analysis (EPPA) model, an economy-wide 
model that represents 16 global regions (Chen et al., 2017). For modeling 
tractability, they define irrigation response units (IRUs) as groups of water regions 
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with similar crop yields within an EPPA region. They determine IRU membership 
using a k-means cluster analysis of water regions based on their rainfed and 
irrigated yields. Each EPPA region contains between one and four IRUs, yielding 
46 IRUs globally. The IRU assignments for all regions are summarized in Table 
A.1 in Appendix A. The Stata code for the cluster analysis and a collection of 
figures illustrating the results in each region are included in the supplementary 
materials. 5 As an example, Figure 5 depicts the cluster analysis results in the Latin 
America (LAM) region. 

 
Figure 5. Cluster analysis of water regions to form irrigation response units (IRUs) within 

the Latin America (LAM) EPPA region. 

Notes: IRUs are distinguished by color. 

Source: Authors’ calculations. 

The irrigable land supply curves of constituent water regions are aggregated to 
form IRU supply curves for additional irrigable land. To approximate step 
irrigable land supply curves as ‘smooth’ functions, a supply elasticity parameter 
of the form 𝑞𝑞 = 𝛽𝛽𝑝𝑝𝜆𝜆 is econometrically estimated to fit each IRU step function, with 

                                                           
5 See ClusterAnalysis.do in the 3_SupplyCurves subfolder. 
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quantity in thousands of ha as 𝑞𝑞 and price in USD per ha as 𝑝𝑝.6 An exponential 
form is adopted so that the supply elasticity 𝜆𝜆 will remain constant for an IRU at 
all quantities of irrigated land. Supply curves for additional irrigable land can be 
modeled using constant elasticity of substitution functions following the 
procedure outlined by Rutherford (2002). In the base year in EPPA, each IRU’s 
quantity of irrigated land is set proportional to its contribution to aggregate 
production value within the EPPA region, with total land endowment remaining 
fixed from 2005 to 2050, the timespan modeled. The method and data for 
quantifying the current scope of irrigated agricultural production is described in 
Section 3. 

Using the IRU-level irrigable land supply elasticities, Winchester et al. (2018) 
augment the EPPA model to allow additional irrigated land to be produced by 
combining rainfed land with capital representing investment in irrigation 
infrastructure. In their model, crop land can be expanded by converting land from 
other agricultural uses and also the conversion of non-managed land to 
agricultural uses. 

Calibrating the production functions for additional irrigable land requires, for 
each region, (1) annual rental costs per hectare of (previously) rainfed land, and 
(2) annual capital costs (representing payments to irrigation infrastructure) per 
additional hectare of irrigable land. Winchester et al. (2018) calculate land rental 
costs  in each region by dividing total rental payments to crop land by the number 
of hectares in crop production estimated by Portmann et al. (2010). For the first 
additional hectare of irrigated land in each IRU, annual rental payments to 
irrigation infrastructure (capital) equal the annualized cost of the first (least-cost) 
irrigation upgrade option. Irrigation infrastructure costs rise as more hectares are 
irrigated according to the ‘smooth’ supply curves fitted to the step-supply 
functions (see Figure 2 for an example). As such, the cost share of irrigation 
infrastructure varies across regions and, within each region, increases as more 
hectares are irrigated. 

Although Winchester et al. (2018) apply supply elasticities at the IRU level, 
irrigable land supply curves could be specified for each water region or for a user-
defined aggregation of water regions for use in other AGE models. The irrigable 
land supply curves could also be applied in AGE models that do not have a 
detailed land-use change module, but alternative assumptions about the 
availability of crop land would result in different estimates of irrigation (and 
agricultural) outcomes. 

 
 

                                                           
6 See SupplyCurves.gms for the script to aggregate and econometrically estimate IRU 
supply curves 
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3. Production on irrigated land and rainfed land 

As AGE models are calibrated using transaction values, a key requirement in 
separately representing irrigated and rainfed crop production is the division of 
aggregate crop production into separate production values for irrigated land and 
rainfed land. As noted above, Haqiqi et al. (2016) have incorporated an irrigated 
land framework into the GTAP-Power Data Base to form the GTAP-Water Data 
Base. They estimate irrigated and rainfed production value by first identifying the 
volume of production on irrigated and rainfed land and splitting the aggregate 
value of production in a GTAP crop sector according to each land type’s share of 
crop output. We extend the methodology used by Haqiqi et al. (2016) by applying 
crop and region specific prices to rainfed and irrigated crop production. To 
evaluate the substitutability of the two methods to estimate production value 
shares, we incorporate crop prices, and compare the resulting production values 
to estimates based on output shares. Within a region, production value shares 
generally equal the output shares for individual crop sectors (e.g. wheat) but can 
diverge for composite crop sectors (e.g. coarse grains), because of differences in 
individual crop prices and the mix of composite crops grown on the two land 
types. We make available rainfed and irrigated production values for 26 
disaggregated crops at the 5 arcminute by 5 arcminute (about 0.083 square 
degrees, or 10 square km at the equator) grid cell level and for 282 river basins, as 
well as for the 140 GTAP regions and eight crop sectors considered in the GTAP-
Water Data Base. 

3.1 Direct calculation of production value 

Following Haqiqi et al. (2016), we use spatial datasets on harvested areas and 
crop yields to calculate production volumes, which we combine with country-level 
data on crop prices to estimate crop production value on rainfed and irrigated 
land. We obtain harvested areas for rainfed and irrigated land from the Monthly 
Irrigated and Rainfed Crop Areas (MIRCA2000) dataset (Portmann et al., 2010). 
Areas are reported for the year 2000 and are available globally for 26 crops and 
two land types at a 5 arcminute by 5 arcminute spatial resolution.7 Figure 6 
provides a snapshot of the grid cell-level MIRCA2000 dataset for barley with 
relative amounts of irrigated and rainfed crop areas overlaid on a map of GTAP 9 
regions.  

 

                                                           
7 The full spatial dataset of harvested areas is included in the 1_SpatialData subfolder of 
the supplementary materials. 
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Figure 6. Percentage of harvested barley in each grid cell coming from irrigated 

production. White areas have no barley production. 

Source: Authors’ aggregation of Portmann et al. (2010). 

The high resolution of the MIRCA2000 dataset allows for flexibility in how the 
harvested areas are aggregated, whether regionally or globally. Because the GTAP 
databases are ubiquitous in economic modeling, for illustration purposes, we 
calculate harvested area for the 140 regions and 8 crop sectors represented in the 
GTAP 9 Data Base. Figure 7 summarizes the global harvested area of each GTAP 
crop by land type. Globally, seventy-six percent of cropland is rainfed, with paddy 
rice (pdr) the only crop primarily grown on irrigated land. 

Data on rainfed and irrigated crop yields are sourced from Siebert and Döll 
(2010) and are available at a 5 arcminute by 5 arcminute spatial resolution for 29 
crops.8 These 29 crops include the original 26 crops covered by the MIRCA2000 
dataset but with (1) three types of animal feed rather than a single fodder category, 
and (2) the addition of pasture land, which we exclude from our analysis. We take 
a simple average of ‘fodder from maize’, ‘fodder from barley’, and ‘fodder from 
wheat’ yields to approximate a single fodder yield at the grid cell level for each 
land type. Yields of 0 tonnes per hectare (t/ha) for a specific fodder crop are 
reclassified as missing data and excluded from the average for that particular grid 
cell. We calculate tonnes of production by land type and crop as the product of the 
harvested area and yield in each grid cell. 

                                                           
8 The full spatial dataset of yields is included in the 1_SpatialData subfolder of the 
supplementary materials. 
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Figure 7. Global rainfed and irrigated harvested area by GTAP crop. 

Source: Authors’ aggregation of Portmann et al. (2010). Crop mapping from Haqiqi et al. (2016). 

To determine the dollar value of rainfed and irrigated crop production, we 
apply crop prices obtained from an FAO dataset (FAO, 2015c) to the spatial 
production data. The FAO dataset consists of country-specific prices from the year 
2000 for 215 crops and does not differentiate between crops grown on different 
land types.9 In other words, crops grown on rainfed land and irrigated land within 
the same country are assumed to sell for the same price. 

We create a raster dataset of prices that can be applied to production output at 
the grid cell level by (1) consolidating the 215 FAO crops into the 26 MIRCA2000 
crop categories, (2) interpolating missing country-level price data, and then (3) 
pixelating the country-level data to create raster datasets.10 We complete the first 
adjustment by assigning each FAO crop to one of the 26 MIRCA2000 crop 
categories and using FAO production data (FAO, 2015a) to compute a production-
                                                           
9 Price data is provided in FAOprices.xlsx in the 1_SpatialData\Prices subfolder of the 
supplementary materials. 
10 See the 1_SpatialData\Prices subfolder in the supplementary materials for the spatial 
price dataset. Instructions to update and regenerate the dataset are provided in the 
Readme file of the supplementary materials. 
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weighted price within each crop category.11 The specific crop mapping employed 
is specified in Table B.1 in Appendix B. We use a listing generated by the Natural 
Resources Conservation Service (NRCS) of the U.S. Department of Agriculture 
(USDA) to identify FAO crops classified as ‘other annual’ or ‘other perennial’ 
(NRCS, 2014). 

We interpolate missing prices by separately handling (1) countries with no crop 
price data and (2) countries with some but not complete crop price data. The FAO 
provides no price information for 32 countries, so we substitute known prices from 
a geographically proximate country. Table B.2 in Appendix B lists the pairings of 
countries missing price data and those selected to provide proxy prices. Country 
pairing assignments are determined on a geographic basis (e.g. Dominican 
Republic and Haiti, and Sudan and South Sudan). Although alternative 
assignments are unlikely to have a large impact at the aggregate level,12 
production values for countries with missing price data should be used with 
caution. 

For cases where FAO (2015c) is missing prices for a subset of crops in a country, 
we estimate global prices of the missing 26 MIRCA2000 crops, with the 
understanding that several countries may have no production of the specific crop 
and will not affect aggregate value. We develop these missing country-level prices 
for each MIRCA2000 “target” crop (the crop missing price data) by using price 
ratios based on data from countries with known prices. Specifically, we use the 
ratio of the target crop’s price to the price of several candidate “guide” crops ― 
barley, citrus, maize, wheat, rice, potatoes, and groundnuts, or some combination 
of these crops ― in a country with known prices for both the target and guide 
crops. The specific crop combination selected is based on the ratios with the lowest 
variance across countries. 

For example, the FAO reports that Paraguay produced 82 thousand tonnes of 
sunflower seed in the year 2000, but FAO (2015c) does not report a producer price 
for this crop in 2000. To estimate the price of sunflower in Paraguay, for the 
countries with available price data, we compute a ratio of sunflower price to each 
guide crop’s price and calculate the mean and variance for each ratio across 
countries. Because of their low variances, the groundnut, rice, maize, and potato 
ratios are used to generate four country-level sunflower price estimates,13 which 
are averaged to produce a single price estimate. Table 4 presents the ratio statistics 
for each guide crop and the calculations leading to a final sunflower price estimate 
for Paraguay of $249.10/t, which can be compared to $257.92/t, the simple average 

                                                           
11 Production-weighted prices are calculated in Prices.gms in the 1_SpatialData\Prices 
subfolder of the supplementary materials. 
12 Countries with missing prices provide 3.6% of global crop output, according to FAO 
(2015a) data. 
13 For each country, an estimate is generated only if a price for the guide crop exists. 
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of known FAO sunflower prices across countries. An Excel workbook with this 
methodology and calculations for all crops and countries is included in the 
supplementary materials.14 

Table 4. Sunflower Price Estimation in Paraguay 

Guide Crop 
(1) Mean of 

Country 
Ratios 

(2) Variance 
of Country 

Ratios 

(3) Price (USD per 
t) in Paraguay 

Sunflower Price 
Estimate (USD per 

t) (1)×(3) 
Groundnuts 

/peanuts 0.485 0.036 487.60 236.68 

Rice 1.161 0.265 112.40 130.49 
Maize 1.705 0.310 137.70 234.83 

Potatoes 1.375 0.485 286.80 394.43 

Citrus 1.338 0.956 104.37 139.64 
Wheat 1.731 1.134 121.90 211.02 
Barley 1.988 1.226 No Data No Data 

Averaged estimate (outlined cells only)  249.10 
Source: Authors’ calculations using FAO (2015c) 

Finally, we generate a complete spatial dataset of prices for GTAP regions by 
(1) assigning each GTAP region an average price weighted by country area and 
then (2) pixelating the regional price data to form grid cell-level spatial data. We 
calculate production value at the grid cell level by multiplying output by crop 
prices.15 For illustration purposes, Figure 8 depicts our estimates of global 
production value by land type and crop when the estimates are aggregated to the 
eight GTAP crop sectors. Despite having approximately three times the harvested 
area as irrigated crops, rainfed crops generate only twice the value. 

                                                           
14 See CropPriceInterpolation.xlsx in the 1_SpatialData\Prices subfolder of the 
supplementary materials. 
15 See GenerateRasters.py in the 1_SpatialData subfolder of the supplementary materials 
for the code to create the price, output, and value spatial datasets. See Aggregate.py in 
2_ProductionValue for the code to aggregate the spatial data. 
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Figure 8. Global production value on rainfed and irrigated land by GTAP crop. 

Source: Authors’ calculation using Portmann et al. (2010), Siebert and Döll (2010), and FAO (2015a, 
2015c). Crop mapping from Haqiqi et al. (2016). 

Overall, our aim was to generate an initial version of a comprehensive 
production value dataset. The process we describe to determine production values 
at the five arcminute by five arcminute level maintains the spatially detailed 
harvested area and yield information provided by Portmann et al. (2010) and 
Siebert and Döll (2010). Additionally, the fine resolution provides flexibility for 
user-specified spatial aggregations of the data. Nevertheless, our method requires 
a high degree of price estimation in order to achieve global coverage, and we 
recognize the need for a more rigorous approach. For example, while we use a 
handful of crop prices from all countries to estimate missing data, future work 
could more thoroughly explore the correlation in prices of different subsets of 
crops and countries. Alternatively, where available, time series of crop prices 
could be used to estimate missing data for the year 2000 though we avoided this 
approach because of perceived fluctuations in FAO (2015c) price data. Looking 
forward, we welcome improvements to our first-step methodology, and the 
provided work stream and high resolution datasets should allow for updated local 
or county-level prices in future work. 
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3.2 Comparison of production methodologies 

Using the estimates detailed in Section 3.1., we compare production value 
shares calculated (1) by multiplying output volumes by prices and (2) by assuming 
that production value shares are equal to output volume shares, as in Haqiqi et al. 
(2016). The goal of this comparison is to gain insight into where and for which 
crops the simplifying assumption used by Haqiqi et al. (2016) may or may not be 
valid. As further described in Appendix C, while results for the aggregate 
irrigated crop value are comparable under the two methods, estimates vary 
greatly when assessed by crop sector. This is because value shares approximated 
by output shares may not capture differences between production quantities and 
values within composite GTAP crop sectors, i.e. GTAP sectors containing multiple 
MIRCA2000 crops ― oilseeds (osd), vegetables and fruit (v-f), coarse grains (gro), 
sugar crops (c-b), and other crops (ocr). However, three of the GTAP crop sectors 
― wheat (wht), paddy rice (pdr), and plant-based fiber (pfb) ― consist of a single 
MIRCA2000 crop ― wheat, rice, and cotton, respectively ― and therefore should 
have identical estimates from output shares and from direct calculation of 
production values (prices do not differentiate between rainfed and irrigated 
crops). More generally, for a given crop in a particular region, the production value 
share on irrigated land will equal the corresponding output value share if (1) the 
production share of each MIRCA2000 crop within a composite GTAP sector on 
irrigated land is equal to that on rainfed land, as noted by Haqiqi et al. (2016); 
or/and (2) the prices per tonne for each MIRCA2000 crop within a composite 
GTAP sector are equal.   

As illustrated in Figure 9, the vegetables and fruit sector (v-f) shows substantial 
regional variation in the value comparison. In the figure, the data point 
representing the United States, the largest irrigated v-f producer by both output 
and value, falls along the 45 degree line, indicating similar value estimates from 
the two calculation methods. In this region, the most produced v-f crops, citrus 
and potatoes, share a similar price ― $108/t for citrus and $112/t for potatoes ― 
while the third most produced crop, grapes/vines, has a higher price but 
contributes in similar proportions to USA irrigated and rainfed v-f production. In 
contrast, Thailand, which produces 90% of its v-f output on rainfed land, features 
a higher irrigated v-f value from direct calculation than from an output share 
estimation. This difference in value arises because rainfed cassava contributes to 
88% of the Thailand’s total v-f production but, with a price of $16/t, makes up just 
22% of total value. In contrast, irrigated citrus contributes only 10% of the total v-
f output in Thailand yet generates 66% of v-f value with its price of $419/t. Because 
highly cultivated rainfed crops generate less value than the irrigated crops, 
dividing total value into irrigated and rainfed parts based on output share may 
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not be a suitable method for the v-f sector in Thailand. Further analysis of other 
crop sectors is provided in Appendix C. 16 

 
Figure 9. Irrigated share of production value estimated from the output share (y-axis) 

versus direct calculation (x-axis) for the v-f GTAP sector. 

Notes: Points represent GTAP regions. The red line marks 45 degrees. 

Source: Authors’ calculation using Portmann et al. (2010), Siebert and Döll (2010), and FAO (2015a, 
2015c). Crop mapping from Haqiqi et al. (2016). 

To more formally evaluate the appropriateness of using output shares to 
approximate value shares, we calculate a relative error metric, kc,r, for each GTAP 
crop category, c, and region, r, given by 

 
𝑘𝑘𝑐𝑐,𝑟𝑟 =

𝑝𝑝𝑐𝑐,𝑟𝑟 − 𝑣𝑣𝑐𝑐,𝑟𝑟

0.5 ∗ (𝑝𝑝𝑐𝑐,𝑟𝑟 + 𝑣𝑣𝑐𝑐,𝑟𝑟)
 (1) 

where 𝑝𝑝𝑐𝑐,𝑟𝑟 and 𝑣𝑣𝑐𝑐,𝑟𝑟 are, respectively, the production value computed from output 
share and from direct calculation for crop c on irrigated land in region r. Relative 
error values for all GTAP crop-region combinations are provided in the 
                                                           
16 Supporting data with output value shares and production value shares for each GTAP 
crop-region combination are provided in ValueSummary.xlsx in 2_ProductionValue 
subfolder of the supplementary materials. 
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supplementary materials included with this paper.17 To focus on crop-region 
combinations where the assumption that the production share equals the value 
shares is most likely to be violated, Table 5 lists the region-crop combinations with 
the highest absolute relative errors. Across all region-crop combinations, relative 
error values range from -1.48 (v-f in Thailand) to 1.13 (v-f in France) and yield an 
average absolute relative error of 0.12. Of the region-crop combinations with a 
non-zero relative error, fifty-four percent have a positive relative error, suggesting 
that use of the production share simplification tends to overestimate the value of 
production on irrigated land. For crop-country combinations with high absolute 
relative errors, we encourage the use of the tools and data detailed in this paper to 
adjust the irrigated land-augmented version of the GTAP-Water Data Base 
provided by Haqiqi et al. (2016). 

Table 5. Largest 10 Irrigated Relative Errors 

Region Crop Value share Absolute relative error 

Thailand (THA) v-f 14.7% 1.48 
Mozambique (MOZ) v-f 28.7% 1.44 

Indonesia (IDN) v-f 7.4% 1.42 
Indonesia (IDN) osd 13.5% 1.33 
Thailand (THA) osd 3.0% 1.31 

Azerbaijan (AZE) osd 0.3% 1.24 
France (FRA) v-f 27.7% 1.13 

United Kingdom (GBR) ocr 69.0% 1.13 
Taiwan (TWN) ocr 71.0% 1.12 
Malaysia (MYS) v-f 0.6% 1.09 

Notes: Value share refers to the crop sector’s share of the region’s total crop value. 

Source: Authors’ calculations. 

4. Supplementary Materials 

We provide our datasets and code to allow other researchers to replicate and 
build upon the production value analysis and supply curve construction. We hope 
these resources will support future work to improve the representation of 
agricultural productivity in AGE models, whether at a national or global level. 
Table 6 summarizes the available supplementary materials. 

 
 
 

                                                           
17 See ValueSummary.xlsx in the 2_ProductionValue subfolder. Related calculations are in 
GTAPreporting.gms. 



Journal of Global Economic Analysis, Volume 3 (2018), No. 1, pp. 122-155. 
 

143 
 

Table 6. Important supplementary resources 
Folder Contents File Name 

1_SpatialData 

Spatial data for crop areas, yields, output prices, 
and production value 

 

Shapefiles for aggregation to water regions, 
countries, or GTAP regions 

 

Code (A) and datasets (including B) to calculate 
prices for MIRCA2000 crops 

A. Prices.gms 
B. Prices\CropPrice 
Interpolation.xlsx 

Code to regenerate price, output, and value 
spatial data 

GenerateRasters.py 

 
2_ProductionValue 

Code to aggregate area, output, and value 
spatial data to desired regions (A) and resulting 
summary files (B) 

A. Aggregate.py 
B. Compiledarea_GTAP.csv, etc. 

Code to create alternative value estimates by 
GTAP region and crop  

GTAPreporting.gms 

Summary file with production values and 
evaluation metrics by GTAP region and crop 

ValueSummary.xlsx 

Summary file with disaggregated crop prices 
and production shares by MIRCA2000 crop and 
GTAP region  

CropDisaggregation.xlsx 

3_SupplyCurves 

Data for water region supply step functions  WaterRegionSupply.xlsx 
Code to perform water region cluster analysis ClusterData.gms, 

ClusterAnalysis.do 
Scatterplots illustrating current cluster results Graphs\ 
Code to create IRU irrigable land supply curves SupplyCurves.gms 

Source: Authors’ compilation 

5. Conclusion 

The explicit representation of irrigated land within integrated assessment and 
economy-wide models can provide insights into how regions will balance growing 
demand for land amidst the changing availability of regional water resources, and 
is an important step for looking at energy-water-land interactions. To develop this 
irrigated land framework, modelers need to identify the current scope of irrigated 
land and define its potential for expansion. Previously, Haqiqi et al. (2016) formed 
the GTAP-Water Data Base to separate irrigated and rainfed land within an 
economy-wide model. However, to divide the production value for each crop into 
irrigated and rainfed components, they use estimates based on production 
volumes rather than a direct calculation of production values. While this approach 
is sufficient for some GTAP regions and crop sectors, irrigated production value 
shares based on output volumes differ from the directly calculated values in 
composite GTAP crop sectors within several regions because the mix of crops 
grown on each land type differs. Additionally, existing AGE analyses do not 
consider endogenous changes in irrigation infrastructure from changing water 
resources and food demand. 
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We address both of these short-comings. First, we provide supply curves to 
expand irrigated land at a disaggregated, water region level in addition to the 
aggregated IRU level for use in the EPPA model. While these supply curves 
include underlying assumptions on a constant climate, crop mix, and economic 
environment, this work paves the way for future study in representing irrigable 
land expansion under alternative assumptions. Second, we provide estimates of 
current irrigated and rainfed production value at a finer spatial resolution, as well 
as aggregated to the GTAP 9 regions and crop sectors. We also compute a relative 
error value for specific GTAP regions and crops to guide researchers and AGE 
modelers in adjusting production value estimates based on output shares. This 
work incorporates a global dataset of both documented and estimated crop prices 
that in future work deserves a more nuanced approach to its development. Finally, 
we make available the complete set of data and code needed to aggregate the 126 
water-region irrigable land supply curves, to directly quantify the current 
production value of irrigated land, and to evaluate differences in the validity of 
estimating production values based on output volumes. We hope this access will 
provide useful data and tools for the integrated assessment community and for 
those working on natural resource links in economy-wide models. 
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Appendix A 

Table A.1. Water regions within each EPPA region and Irrigation Response Unit (IRU)  

EPPA 
Region Description IRU-1 IRU-2 IRU-3 IRU-4 

AFR Africa 
CAF, EAC, 
HOA, NIG, 
VOT, ZAM 

NAC, NLE, 
NWA,SAC, SAH 

KAL, LCB, LIM, 
MAD, ORA, 
SAF, SEN, WAC 

CON 

ANZ Australia-New 
Zealand CAU EAU, MAU, 

WAU NZE PAO 

ASI Dynamic Asia BOR, INW, 
MEK, PHI, TMM SKP INE -- 

BRA Brazil NEB AMA, TOC SAN -- 

CAN Canada CAN CCA, GLA RWI -- 

CHN China LAJ, LMO, SEA  
HAI, HUL, 
HUN, SON, 
YHE 

CHJ, ZHJ -- 

EUR European 
Union ELB, SCA BRI, RHI  IEM, IRE, IWA, 

SEO ITA, LBO, RHO 

IND India 
BRR, GAN, 
GOD, KRI, LUN, 
MAT 

CAV, CHO, 
EGH, IEC, SAY -- -- 

JPN Japan JAP -- -- -- 

LAM Other Latin 
America CHC, ORI, RIC CAM, CAR, 

CUB, NSA 
NSA, PAR, PEC, 
SAL, TIE, URU -- 

MES Middle East EME, WAI ARA, TIG -- -- 

MEX Mexico UME, YUC MIM -- -- 

REA Rest of East 
Asia NKP, ROW BRT, IND, SRL -- -- 

ROE 
Rest of Europe 
and Central 
Asia 

AMD, DAN SYD BAL, BLA, DNI, 
LBA, ODE -- 

RUS Russia OB AMR, NER, 
VOG, YEN UMO, URA -- 

USA United States ARK, MIS, MOU  COB, GBA, SEU CAL, COL, USN OHI, RIG, WGM 

Source: Mapping defined by authors. 
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Appendix B 
Table B.1. Mapping of FAO crops to MIRCA2000 crops 

MIRCA2000 
Crop FAO Crop     

Barley Barley     
Cassava Cassava     
Citrus Fruit, citrus 

nes 
 

Grapefruit 
(inc. pomelos) 

Lemons and 
limes 

Oranges Tangerines, 
mandarins, 
clementines, 
satsumas 

Cocoa Cocoa, beans     
Coffee Coffee, green     
Cotton Cotton lint     
Date palm Dates     
Fodder Maize Rye Wheat   
Grapes/vine Grapes     
Groundnuts/
peanuts 

Groundnuts, 
with shell 

    

Maize Maize     
Millet Millet     
Oil palm Oil, palm 

fruit  
    

Others 
Annual 

Anise, 
badian, 
fennel, 
coriander 
Beans, green 
Buckwheat 
Cabbages and 
other 
brassicas 
Canary seed 
Carrots and 
turnips 
Cauliflowers 
and broccoli 
Cereals, nes 
Chillies and 
peppers, dry 

Chillies and 
peppers, green  
Cucumbers 
and gherkins 
Eggplants 
(aubergines) 
Fibre crops nes 
Flax fibre and 
tow 
Fonio 
Garlic 
Ginger 
Grain, mixed 
Hemp tow 
waste 
Hempseed 
Jute 

Leeks, other 
alliaceous 
vegetables  
Lettuce and 
chicory 
Linseed 
Lupins 
Melons, other 
(inc.cantaloup
es) 
Melonseed 
Mushrooms 
and truffles 
Mustard seed 
Oats 
Oil, stillingia 
Oilseeds nes 

Okra 
Onions, dry  
Onions, 
shallots, 
green 
Peas, green 
Pineapples 
Popcorn 
Poppy seed 
Pumpkins, 
squash and 
gourds 
Quinoa 
Roots and 
tubers, nes 
Safflower 
seed 

Sesame seed 
Spinach  
Strawberries 
String beans 
Sugar crops, nes 
Sweet potatoes 
Taro (cocoyam) 
Tobacco, 
unmanufactured 
Tomatoes 
Triticale 
Vegetables, fresh nes 
Watermelons 
Yams 
Yautia (cocoyam) 

 

Continued 
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Table B.1. Mapping of FAO crops to MIRCA2000 crops (continued) 
MIRCA2000 
Crop FAO Crop     

Others 
perennial 

Agave fibres 
nes 
Almonds, 
with shell 
Apples 
Apricots 
Areca nuts 
Artichokes 
Asparagus 
Avocados 
Bananas 
Berries nes 
Blueberries 
Brazil nuts, 
with shell 
Carobs 
Cashew nuts, 
with shell 

Cashewapple 
Castor oil seed 
Cherries 
Cherries, sour 
Chestnut 
Chicory roots 
Cinnamon 
(canella) 
Cloves 
Cocoa, beans 
Coconuts 
Cranberries 
Currants 
Dates 
Figs 
Fruit, fresh nes 
 

Gooseberries 
Gums, natural 
Hazelnuts, 
with shell 
Hops 
Jojoba seed 
Kapok fruit 
Karite nuts 
(sheanuts) 
Kiwi fruit 
Kola nuts 
Mangoes, 
mangosteens, 
guavas 
Manila fibre 
(abaca) 
 

Maté 
Plantains 
Plums and 
sloes 
Nutmeg, 
mace and 
cardamoms 
Nuts, nes 
Olives 
Papayas 
Peaches and 
nectarines 
Pears 
Pepper 
(piper spp 
Peppermint 
Persimmons 

Pistachios 
Pyrethrum, dried 
Quinces 
Ramie 
Raspberries 
Rubber, natural 
Sisal 
Spices, nes 
Tallowtree seed 
Tea 
Tea nes 
Tung nuts 
Vanilla 
Walnuts, with shell 

Potatoes Potatoes     
Pulses Bambara 

beans 
Beans, dry 

Broad beans, 
horse beans, 
dry 

Chick peas 
Cow peas, dry 
Lentils 

Lupins 
Peas, dry 

Pigeon peas 
Pulses, nes 
Vetches 

Rapeseed/ 
canola 

Rapeseed     

Rice Rice, paddy     
Rye Rye     
Sorghum Sorghum     
Soybeans Soybeans     
Sugar beet Sugar beet     
Sugarcane Sugar cane     
Sunflower Sunflower 

seed 
    

Wheat Wheat     

Source: Mapping defined by authors. MIRCA2000 crops are from Portmann et al. 2010. FAO crops 
are from FAO (2015c). 
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Table B.2. Pairings of countries missing prices and countries providing proxy prices 

Country Missing Prices 
Country 

Providing Proxy 
Prices 

 
Country Missing Prices 

Country 
Providing Proxy 

Prices 
Afghanistan Pakistan  Mauritania Mali 

Angola Namibia  Montenegro Bosnia and 
Herzegovina 

Benin Togo  Myanmar Thailand 
Central African 
Republic Cameroon 

 
North Korea South Korea 

Chad Niger  Oman Yemen 

Cuba Dominican 
Republic 

 Papua New Guinea Indonesia 

Democratic Republic of 
the Congo Congo 

 
Sierra Leon Guinea 

Djibouti Eritrea  Somalia Ethiopia 
Gabon Cameroon  South Sudan Sudan 

Haiti Dominican 
Republic 

 Swaziland South Africa 

Iraq Iran  Syria Lebanon 
Kuwait Qatar  Uganda Rwanda 
Lesotho South Africa  United Arab Emirates Qatar 
Liberia Ivory Coast  Uzbekistan Kazakhstan 
Libya Algeria  Zambia Botswana 
Liechtenstein Switzerland  Zimbabwe Botswana 

Source: Pairings defined by authors. 
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Appendix C 
 
We compare production value shares calculated (1) by multiplying output 

volumes by prices and (2) by assuming that production value shares are equal to 
output volume shares, as in Haqiqi et al. (2016). Table C.1 summarizes global 
production values calculated under the two methods. To compare the two value 
estimates for each crop sector, we compute a “value ratio” defined as the irrigated 
production value estimated from output share divided by the irrigated production 
value calculated using our price dataset, and present the average value ratio across 
GTAP regions. Deviations from a value ratio of 1.0 in the homogenous crop sectors 
can be attributed to shapefile variations in the price and production datasets. 

Table C.1. Irrigated crop production values under alternative methods 

Crop Sector 
(1) From Output Share (2) Direct Calculation Average Ratio 

of Values 
(1)/(2) 

Irrigated Value 
(Million USD) 

Irrigated Value 
Share 

Irrigated Value 
(Million USD) 

Irrigated Value 
Share 

Vegetables and 
fruit (v-f) 42,355 32.0% 40,164 30.4% 1.09 

Coarse grains (gro) 37,504 30.2% 38,119 30.7% 1.02 

Other crops (ocr) 130,319 22.8% 147,801 25.8% 1.02 

Wheat (wht) 30,908 43.9% 30,915 43.9% 1.01 
Sugar crops 

(c-b) 16,334 52.2% 16,336 52.2% 1.00 

Paddy rice (pdr) 95,626 81.0% 95,613 81.0% 0.99 
Plant-based fiber 

(pfb) 52,878 69.6% 52,904 69.7% 0.98 

Oilseeds (osd) 6,887 11.4% 7,707 12.8% 0.95 

All crops 412,811 34.8% 429,559 36.3% 1.01 

Source: Authors’ calculations. 

We compare production value estimates by GTAP region and crop sector to 
flag cases where the two methods yield significantly different results. While we 
expect comparable estimates within homogeneous crop sectors ― wheat (wht), 
paddy rice (pdr), and plant-based fiber (pbf) ― we note that in addition to the v-f 
sector highlighted in the main text, the heterogeneous oilseed (osd) and other crop 
(ocr) sectors also yield different irrigated crop value shares for certain GTAP 
regions (see Figures C.1 and C.2). 

Interestingly, the two methods actually produce comparable estimates within 
the sugar crop sector (c-b) even though the c-b sector contains two crops, 
sugarcane and sugar beet. Labeled in Figure C.3, Venezuela and India are among 
the countries with greater than 75% irrigated sugar crop production. In Venezuela, 
both sugarcane and sugar beet sell for about $223/t, so the crops’ irrigated output 
shares are approximately equal to their irrigated value shares. In India, nearly all 
of the c-b production is sugarcane rather than sugar beet, so sugarcane’s 
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contributions to rainfed and irrigated c-b production approach 100% while sugar 
beet’s contributions to irrigated and rainfed production approach 0%. A heavy 
focus on one sugar crop or the other is characteristic of many of the GTAP regions, 
and therefore the output share often provides a reasonable estimate for value 
share. The region XSA – consisting of Afghanistan, Bhutan, and Maldives – is an 
exception to this trend, however, because both sugarcane and sugar beet are 
produced, and the price per tonne of sugar beet is exceptionally high relative to 
the price per tonne of sugar cane. Specifically, the price ratio of sugar beet to sugar 
cane is 2.74 times higher in XSA than in the average region producing both crops. 
 

 

Figure C.1. Irrigated share of production value estimated from the output share (y-axis) 
versus direct calculation (x-axis) for the oilseed (osd) sector. 

Notes: Points represent GTAP regions. The red line marks 45 degrees. 

Source: Authors’ calculation using Portmann et al. (2010), Siebert and Döll (2010), and FAO (2015a, 
2015c). Crop mapping from Haqiqi et al. (2016). 
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Figure C.2. Irrigated share of production value estimated from the output share (y-axis) 
versus direct calculation (x-axis) for the other crop (ocr) sector. 

Notes: Points represent GTAP regions. The red line marks 45 degrees. 

Source: Authors’ calculation using Portmann et al. (2010), Siebert and Döll (2010), and FAO (2015a, 
2015c). Crop mapping from Haqiqi et al. (2016). 
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Figure C.3. Irrigated share of production value estimated from the output share (y-axis) 

versus direct calculation (x-axis) for the sugar crop (c-b) sector. 

Notes: Points represent GTAP regions. The red line marks 45 degrees. 

Source: Authors’ calculation using Portmann et al. (2010), Siebert and Döll (2010), and FAO (2015a, 
2015c). Crop mapping from Haqiqi et al. (2016). 
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