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Aggregation of Gridded Emulated 
Rainfed Crop Yield Projections at the 

National or Regional Level 

BY ELODIE BLANCa 

To estimate the impact of climate change on yields, researchers traditionally use 
process-based models or statistical models. To benefit from the capabilities of 
processed-based models while preserving the application simplicity of statistical 
models, Blanc and Sultan (2015) and Blanc (2017) provide an ensemble of statistical 
tools emulating crops yields from global gridded crop models at the grid cell level 
using a simple set of environmental variables. This paper and companion code 
provide a tool for researcher to use those statistical emulators and estimate crop 
yields of rainfed maize, rice, soybean and wheat at the regional level. Crop yields 
estimates for various regional delineations can then simply be used as input into a 
variety of numerical equilibrium models and other analyses. 

JEL codes: Q19, Q54. 
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1. Introduction 

The vulnerability of crops to environmental conditions is well known and 
numerous studies have attempted to estimate the impact of climate change on 
yields (Challinor et al. 2014). These studies generally rely on either process-based 
crop models  (e.g., Rosenzweig and Parry 1994; Parry et al. 1999; Deryng et al. 
2014), which simulate rainfed yield (no irrigation) or irrigated yield (optimal yield 
under perfect irrigation), or statistical techniques (e.g. Blanc 2012; Blanc and Strobl 
2013; Lobell and Field 2007; Sue Wing et al. 2015). While process-based models are 
able to capture the effect of weather and other environmental conditions, they are 
computationally demanding and sometimes proprietary, which limits their 
accessibility. On the other hand, statistical models are more easily applicable but 
depend on the availability of observations to estimate the impact of average 
weather conditions on crop yields while controlling for other factors. To benefit 
from the capabilities of processed-based models while preserving the application 
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simplicity of statistical models, Blanc and Sultan (2015) and Blanc (2017) provide 
an ensemble of statistical tools emulating crops yields from global gridded crop 

models (GGCM) at the grid cell level (at a resolution of 0.5°x0.5° or roughly 
50x50km) using a simple set of environmental variables. 

These crop model emulators are based on GGCM simulations from the ISI-MIP 
Fast Track experiment (Warszawski et al. 2014; Rosenzweig et al. 2013) driven by 
climate simulations from the Coupled Model Intercomparison Project, phase 5 
(CMIP5) archive (Hempel et al. 2013; Taylor, Stouffer, and Meehl 2012). To 
statistically estimate the determinants of crop yields, Blanc and Sultan (2015) and 
consider a parsimonious specification that only includes monthly precipitation, 
temperature and annual CO2 concentrations. Among various representations of 
environmental effects on crop growth, this set of variables was found to provide 
the best compromise in term of predictive ability and simplicity. Additionally, as 
the weather effect on crops is expected to differ across soil types, the preferred 
estimation strategy estimates separate weather response functions for each soil 
order. Validation exercises by Blanc and Sultan (2015) and Blanc (2017) showed 
that, in general, the emulator reproduces relatively well the temporal and spatial 
patterns of climate change impacts on crop yields projected by GGCMs. Areas of 
disagreement regarding the sign of climate change impact on yields are limited 
and generally observed in areas where the projected yield impact is close to zero. 

As these crop yield emulators provide annual crop yield estimates at the grid 
cell level only, they require further processing to obtain regional estimates. This 
paper and companion code1 provide a tool for researchers to obtain crop yields 
estimates of rainfed maize, rice, soybean and wheat at the regional level from the 
statistical emulators . Such aggregation tools have already been made available to 
the research community on GeoHub (mygeohub.org) for other variables, such as 
climate data from general circulation models using the Climate Scenario 
Aggregator tool (Villoria et al. 2015) and even crop yield outputs from the GGCMs 
considered by the emulator using the AgMIP tool (Villoria et al. 2014). When 
interested in obtaining crop yield projections for one of the CMIP5 climate change 
scenario (i.e. HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, GFDL-
ESM2M, and NorESM1-M climate models), the AgMIP tool would be the most 
appropriate. However, the crop yield emulator aggregation tool would be 
necessary when considering alternative plausible user-defined climate change 
scenarios. Crop yields estimates for various regional delineations can then simply 
be used as input into a variety of numerical equilibrium models and other 
analyses. 

                                                           
1 The companion code is included in the supplementary materials published with this 
article. 
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2. Statistical emulator characteristics  

These emulators provide response functions for rainfed maize, rice, soybean, 
and wheat yields while accounting for the structural uncertainty of five different 
GGCMs: the Geographic Information System (GIS)-based Environmental Policy 
Integrated Climate (GEPIC) model (Liu et al. 2007; Williams and VP 1995), the 
Lund Potsdam-Jena managed Land (LPJmL) dynamic global vegetation and water 
balance model (Bondeau et al. 2007; Waha et al. 2012), the Lund-Potsdam-Jena 
General Ecosystem Simulator (LPJ-GUESS) with managed land model (Bondeau 
et al. 2007; Lindeskog et al. 2013; Smith, Prentice, and Sykes 2001), the parallel 
Decision Support System for Agro-technology Transfer (pDSSAT) model (Elliott 
et al. 2013; Jones et al. 2003), and the Predicting Ecosystem Goods And Services 
Using Scenarios (PEGASUS) model (Deryng et al. 2011). For each of these GGCMs, 
model simulations consider the effect of CO2 concentrations to account for the 
CO2 fertilization effect, and assume no irrigation to capture the effect of 
precipitation on crop yields.  

The response functions considered in the aggregation tool correspond to the 
preferred specification in Blanc (2017), S1fpintsoil, which provides a flexible 
fractional polynomial specification of the effect of weather on crop yields and 
account for parameter heterogeneity across soil types. The regression results 
showed that precipitation and temperature during all the months of the growing 
seasons and annual CO2 have a significant non-linear effect on crop yields from 
all GGCMs. In general, temperature and precipitation curves are concave and 
skewed toward low values, especially for low precipitation. Examples of response 
functions of temperature, precipitation and CO2 effects on maize yields for the 
LPJmL model estimated using the S1fpint specification for the Mollisol soil type 
subsample are provided in Figure 1. More details regarding the estimation of the 
response functions can be found in Blanc (2017). 
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Figure 1. Examples of response functions of temperature, precipitation and CO2 effects 
on maize yields for the LPJmL model estimated using the S1fpint specification for the 

Mollisol soil type subsample 

Notes: The variables Tmean, Pr, and Co2 represent monthly mean temperature, precipitation and 
presents annual CO2 concentration respectively; The terms_1, _2 and _3 refer to the first, second 
and third month of summer respectively. 

All GGCMs provide estimates of actual annual crop yields, except for the LPJ-
GUESS model, which simulates potential yields (yield non-limited by nutrient or 
management constraints). Blanc and Sultan (2015) and Blanc (2017) showed that 
the statistical emulators are overall able to replicate reasonably well the spatial 
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patterns of yields crop projected by crop models in levels but also in term of 
changes overtime. However, as noted in Blanc (2017), “due to GGCM specificities, 
simulations are more suited to assess long-term trends in yields rather than inter-
annual yield variability”. Users of the aggregation tool should therefore ensure 
that it is used to simulate changes in crop yields between multi-year periods (e.g. 
one decade to another). When considering the ensemble of GGCMs, the user 
should also consider crop yield changes in percentage terms rather than in levels 
to account for the discrepancy between actual and potential yields. 

3. Regional aggregation of gridded crop yields 

To aggregate simulated gridded crop yields at the regional or national level, 
information on crop-specific harvested areas is required. Considering four 
different land use datasets, Porwollik et al. (2017) find that the choice of land use 
dataset has an effect on the mean and temporal dynamics of aggregated gridded 
crop yields. However, as noted by the authors, none of the four dataset is superior 
to the others, we use the MIRCA2000 (Portmann, Siebert, and Döll 2010) data of 
harvested area of each rainfed crop to calculate the area cultivated for each grid 
cell. Grid cells are assigned to each region of interest, and where grid cells overlap 
different regions, the grid cell is assigned to the region having the largest share of 
area within that grid cell.  
 

Figure 2. MIRCA2000 harvested rainfed crop areas  
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The regional aggregation of gridded crop yields follows the equation: 

 

𝑌𝑖𝑒𝑙𝑑̅̅ ̅̅ ̅̅ ̅
𝑐,𝑟,𝑦,𝑔𝑔𝑐𝑚 =

∑ 𝑌𝑖𝑒𝑙𝑑𝑐,𝑔,𝑦,𝑔𝑔𝑐𝑚
𝐺

𝑔=1
∗ 𝐴𝑟𝑒𝑎𝑐,𝑔

∑ 𝐴𝑟𝑒𝑎𝑐,𝑔
𝐺

𝑔=1

 (1) 

 
where for each crop, c, region, r, year, y, and GGCM, ggcm, the average yield, 

𝑌𝑖𝑒𝑙𝑑̅̅ ̅̅ ̅̅ ̅
𝑐,𝑟,𝑦,𝑔𝑔𝑐𝑚 (in t/ha), is given by first multiplying yield estimates, Yield, at the 

grid cell level, g, by the corresponding rainfed harvested area, Area, at the grid cell 
level, g, and summing over all grid cells within the region. The sum of rainfed 
production is then divided by the total sum of harvested area within the region.  
 

4. Processing tool folder structure 

This paper provides a code (included in the supplementary materials published 
with this article) to enable one to estimate crop yields at the regional level using 
the response functions of the emulator under given climate data inputs. The 
program is written in Stata 14 and is part of the folder \Stata code. In this folder 
are also four subfolders: (i) \Data, containing weather and land use inputs; (ii) 
\Parameters, containing response function parameters; (iii) \Shapefile, containing 
shapefiles for output regions delineation; and (iv) \Results, containing the outputs 
of the program. Each components is described below. 

4.1. Data 

The \Stata code\Data folder is composed of the subfolder \Climate, containing 
weather input data, and \Land use, containing the land use mask (crop growing 
area). 

4.1.1. Climate 

To run the program, the user must provide monthly average temperature and 
precipitation during summer: June, July, and August for maize, rice and soybean 
and May, June, and July for wheat in the northern hemisphere; and December, 
January, and February for maize rice and soybean and November, December, and 
January for wheat in the northern hemisphere. The user must also provide annual 
CO2 concentration data. 

As an example, the code comes with three climate input data located in 
\Data\Climate. The climate data correspond to those used to estimate the 
response functions in Blanc (2017).  
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4.1.2. Land use 

The \Land use subfolder contains the MIRCA2000 data of harvested area of 
each rainfed crop at the grid cell level necessary to average crop yields over 
regions following the methodology described in Section 2.  

4.2. Parameters 

The \Stata code\Parameters folder is composed of three subfolders. The 
subfolder \Estimates contains Stata coefficients estimates of explanatory variables 
for the S1fpinsoil specification. Estimates are stored in .ster files for each crop, 
model and soil category. The subfolder \Fixed Effects contains the fixed effects 
coefficients for each crop, model and soil category. The subfolder \FP contains the 
file FP_formula.dta which includes all fractional polynomial transformation 
associated with each variable, for each crop, model and soil category. 

4.3. Shapefiles delineating output regions 

The program is set up to calculate regional average crop yields across different 
regions. The data required to average grid-cell level projections at the regional 
level are provided in the folder \Stata code\Shapefile. Files for each regions are 
located in corresponding subfolders: world countries are located in \world, gtap9 
regions in \gtap9, EPPA6 regions in \EPPA6, and EPPA5 regions in \EPPA5. Each 
of these subfolders contains a shapefile of the regions of interest as well as a 

shapefile of these same regions at the 0.5°x0.5°-degree resolution. The centroid 
coordinates of each of these grid cells and the corresponding country name are 
extracted in a excel file labeled *_grid.xlsx. Maps representing the different regions 
are provided in Figures 3 to 6.  

To create a new regional delineation (for regional delineations not already 
provided), follow the instructions provided in the Appendices. The subfolder 
folder \grid contains a gridded shapefile of the world necessary to create new 
regional delineations. 
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Figure 3. World regions (countries) 
 

Figure 4. GTAP9 regions 
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Figure 5. EPPA6 regions 
 

Figure 6. EPPA5 regions 
 

 

4.4. Results 

The program cr_projections.do will output regional averages of crop 
yields in metric tons per hectare (t/ha) for each year in the folder \Stata 
code\Results. Relatedly, the program cr_maps.do will output maps for the 
specified options. The name of the file starting by Preds_* and Map_* are 
composed of the options set up by the user at the beginning of the code.  
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As an example, Figure 7 provides two maps representing changes in maize 
yields (in percentage terms) between the periods 2001-2010 and 2091-2100 
projected using the S1fpint of the LPJmL emulator under the GFDL rcp8p5 climate 
scenario. The first map represents changes in yields at the EPPA5 regional level, 
and the second map represents changes in yields at the country level. 

 

 

 

Figure 7. Example of results for two different regional delineation  
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5. Running instructions 

To run the tool, install the ‘Stata code’ folder in your home directory.  
Prepare desired climate data and place them in . \Stata code\Data\Climate. 

The name of the file should correspond to the name of the climate model (or 
simulation). 

Open Stata and install the functions wtmean and spmap if not already installed. 
Type ssc inst _gwtmean and ssc inst spmap. 

Open the do file cr_projections.do in \Stata code and amend the options 
located at the top of the file. For options with name ending with list (e.g. model 
list), the user can specify a list of options. For the other variables, only one option 
can be specified. The options to specify are: 

path: directory of the \Stata code folder (e.g. local 

path="C:\Users\quidam\Stata code") 
regions: name of the region delineation required for aggregation. In the 

standard setup, four options are available: gtap9, world, EPPA6, and EPPA5. 
gcmlist: list of climate change scenarios. In the standard setup, three predefined 

scenarios are available: gfdl, hadgem2, and noresm1. 
croplist: list of crops to consider among maize (mai), rice (ric), soybean (soy) 

and wheat (whe) 
modellist: list of GGCMs to consider among LPJmL (lpjml), LPJ-GUESS (lpj-

guess), PEGASUS (pegasus) and pDSSAT (pdssat). 
co2: the option yes indicates to account for the CO2 effect. The option no 

assumes that CO2 remains constant at base year level (first year of dataset). This 
option can be used to tease out the specific contribution of CO2 fertilisation effect 
on crop yields. 

Model specific options: 
gepic_seas: the option yes will reproduce GEPIC’s 10-year seasonality (GEPIC 

simulations are run independently for each decade to account of soil fertility 
erosion). The option no = will provide an average yields, without the GEPIC 
seasonality. 

pdssat_seas: the option yes will reproduce pDDSAT input of CO2 every 30 
years, and therefore update CO2 every 30 years. The option no will take new 
values of CO2 every year. 

Run the file cr_projections.do file. The outputs will be placed in the folder 

\Stata code\Results. 
To create maps of the outputs, open the Stata do file cr_maps.do. Specify the 

options path, regions gcmlist, croplist, modellist and co2 as instructed above. 
Specify the map options: 

type: The option level provides a map of crop yields in level over a given 
period. The option change  provides a map of crop yields in terms for changes 
between a present period and a future period. 
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For the option level: 
fyear: first year of the period 
lyear: last year of the period 
For the option change: 
ch: the option Pctch specify a change in percentage terms and the option 

Absch specify a change in absolute terms. 
fyear_present: first year of the present period 
lyear_present: last year of the present period 
fyear_future: first year of the future period 
lyear_future: last year of the future period 
Run the cr_maps.do file. The outputs will be placed in the folder \Stata 

code\Results. 

6. Conclusions 

The current program allows users to easily obtain emulated rainfed crop yields 
projections for four crops and five different CGCMs at the regional level. This 
program is designed to be run with user-given climate change scenarios. However, 
users must be careful to consider scenarios that are within the range of the climate 
change scenarios used to estimate the response functions in Blanc (2017). 

In further developments (depending on the publication of the underlying 
studies), the program will be updated to included irrigated crops and a larger 
number of crops. Possible extensions also include emulations of irrigation water 
requirements. 
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Appendix. Create new regional delineation 

To create a new regional delineation (for regional delineations not already 
provided), follow the instructions below (the example are provided to create the 
regional delineation for the world countries, which is already included in the 
folder): 

Create new folder and name it by the name of the region (e.g. world) 
In ArcGIS:  
install spatial join - largest overlap tool from http:\\www.arcgis.com\home

\item.html?id=e9cccd343bf84916bda1910c31e5eab2  
open regional shapefile (e.g. world.shp) 
open . \Stata code\Shapefile\grid\0_5_world_grid.shp 
run the ‘spatial join - largest overlap’ tool with the options: Target Feature = 

0_5_world_grid; Join Feature = world.shp; Output Feature Class = \Stata 
code\Shapefile\world\world_grid.shp; and uncheck the option "keep all" 

In Excel: 
open world_grid.dbf 
save as world_grid.xlsx 
in Stata: 
note the name of the variable in the shapefile corresponding to the region (e.g. 

in the world.shp shapefile, the name of each region (i.e. country) is provided by 
the variable called ‘NAME’). 

open the do file inc_gridcell_regions.do 

specify the name of the variable (e.g. include the line: if 

"`regions'"=="world" local regname="NAME") 

http://www.arcgis.com/home/item.html?id=e9cccd343bf84916bda1910c31e5eab2
http://www.arcgis.com/home/item.html?id=e9cccd343bf84916bda1910c31e5eab2
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