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Abstract. This article provides a proof of concept for us-
ing a biogeochemical/ecosystem/optical model with a radia-
tive transfer component as a laboratory to explore aspects
of ocean colour. We focus here on the satellite ocean colour
chlorophyll a (Chl a) product provided by the often-used
blue/green reflectance ratio algorithm. The model produces
output that can be compared directly to the real-world ocean
colour remotely sensed reflectance. This model output can
then be used to produce an ocean colour satellite-like Chl a
product using an algorithm linking the blue versus green re-
flectance similar to that used for the real world. Given that
the model includes complete knowledge of the (model) wa-
ter constituents, optics and reflectance, we can explore un-
certainties and their causes in this proxy for Chl a (called
“derived Chl a” in this paper). We compare the derived Chl a
to the “actual” model Chl a field. In the model we find that
the mean absolute bias due to the algorithm is 22 % between
derived and actual Chl a. The real-world algorithm is found
using concurrent in situ measurement of Chl a and radiome-
try. We ask whether increased in situ measurements to train
the algorithm would improve the algorithm, and find a mixed
result. There is a global overall improvement, but at the ex-
pense of some regions, especially in lower latitudes where
the biases increase. Not surprisingly, we find that region-
specific algorithms provide a significant improvement, at
least in the annual mean. However, in the model, we find
that no matter how the algorithm coefficients are found there
can be a temporal mismatch between the derived Chl a and
the actual Chl a. These mismatches stem from temporal de-
coupling between Chl a and other optically important water
constituents (such as coloured dissolved organic matter and

detrital matter). The degree of decoupling differs regionally
and over time. For example, in many highly seasonal regions,
the timing of initiation and peak of the spring bloom in the
derived Chl a lags the actual Chl a by days and sometimes
weeks. These results indicate that care should also be taken
when studying phenology through satellite-derived products
of Chl a. This study also reemphasizes that ocean-colour-
derived Chl a is not the same as the real in situ Chl a. In
fact the model derived Chl a compares better to real-world
satellite-derived Chl a than the model actual Chl a. Mod-
ellers should keep this is mind when evaluating model output
with ocean colour Chl a and in particular when assimilating
this product. Our goal is to illustrate the use of a numerical
laboratory that (a) helps users of ocean colour, particularly
modellers, gain further understanding of the products they
use and (b) helps the ocean colour community to explore
other ocean colour products, their biases and uncertainties,
as well as to aid in future algorithm development.

1 Introduction

Satellite ocean colour measurements have allowed the sci-
entific community an unprecedented ability to study phyto-
plankton on a global scale and at regular and frequent in-
tervals. In particular, ocean colour products have been used
extensively to explore seasonal and interannual variability,
trends in ocean surface chlorophyll a (Chl a), and in biogeo-
chemical, ecological and climate model evaluation. And yet,
there remains a large degree of uncertainty in the satellite-
derived Chl a, with estimates ranging from 30 to greater than
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614 S. Dutkiewicz et al.: Modelling ocean-colour-derived chlorophyll a

50 % (Moore et al., 2009). Uncertainties arise from clouds,
patchiness, atmospheric corrections and measurement errors,
as well as the algorithm used to deduce Chl a. Here we focus
on the uncertainty from one of these algorithms.

The most commonly used algorithm for estimating Chl a
from ocean colour uses the fact that phytoplankton absorb
more in the blue range of the light spectrum than the green
(Morel and Prieur, 1977). The ratio of the amount of blue
to green light reflected at the ocean surface at any location
therefore supplies information on the concentration of Chl a.
Using datasets of coincident radiometric observations and
in situ Chl a, a 4th order polynomial can be constructed to
estimate Chl a from measured blue/green reflectance ratios
(e.g. O’Reilly et al., 2000). This empirical algorithm is then
used globally with satellite remotely sensed reflectance. The
relationship is typically considered robust in open ocean con-
ditions, where the optical effects of phytoplankton co-vary
with other optical constituents including coloured dissolved
organic matter (CDOM) and detritus (so called Case-I con-
ditions; Smith and Baker, 1977; Morel, 1988; O’Reilly et
al., 2000). Though even in these waters the error estimate
is about 35 % (Moore et al., 2009). Uncertainties that arise
from this type of algorithm can be attributed to the poten-
tial divergence in the relative role of the optically impor-
tant water constituents (e.g. see Siegel et al., 2005b; Brown
et al., 2008). There is significant ongoing work to improve
algorithms. For instance, the newest National Aeronautics
and Space Administration (NASA) reprocessing of Chl a
products has included a merged approach that uses differ-
ent combinations of reflectance bands at low Chl a (Hu et
al., 2012). There have also been many attempts to develop
more mechanistically derived algorithms, using for instance
known relationships between absorption, scattering and re-
flectance (e.g. Werdell et al., 2013a). Here we focus on the
Chl a estimated from the blue/green reflectance as it is still
the most commonly known product, and until very recently
used in products downloaded from both NASA and the Eu-
ropean Space Agency (ESA) data portals, as well as merged
products such as the Ocean Colour Climate Change Initiative
(OC-CCI). However, we note that similar techniques used in
this paper could help inform on other algorithms.

The observation that satellite-derived products have large
errors and specific regional biases is relatively well under-
stood in the ocean colour scientific community (Hu et al.,
2000; Moore et al., 2009; Blondeau-Parissier et al., 2014;
Szeto et al., 2011). However, there remain many aspects of
errors, biases and uncertainties that are poorly quantified,
particularly in regions where there are little or no in situ data
to compare to the satellite-derived products. Further, many
users of ocean colour products whose main expertise are in
other arenas (e.g. biogeochemical and ecosystem modellers)
are less aware of these issues. Thus, though some of our re-
sults may not seem especially exciting to an ocean colour
expert at first glance, we note these results could be of much
interest in an interdisciplinary context.

Ocean colour satellite-derived Chl a is often used as an
evaluation tool for numerical models, and has been used for
data assimilation (e.g. Gregg, 2008; Ciavatta et al., 2011,
2014; Rousseaux and Gregg, 2012). The likely biases in
the Chl a estimates are often not appreciated by the mod-
elling community: modellers sometimes misinterpret mis-
matches that are actually potentially due to product biases,
or worse have tuned their models or assimilated the prod-
ucts to capture the ocean-colour-derived Chl a even where
it is likely biased. There is also an inherent disconnect be-
tween model output and ocean colour products. Most biogeo-
chemical models have a base currency of carbon, some have
a dynamically varying phytoplankton Chl :C, very few re-
solve spectral irradiance and even fewer resolve reflectance.
However, there are some models that have recently incorpo-
rated a more thorough treatment of the light field (e.g. Gregg
and Casey, 2007; Mobley et al., 2009; Dutkiewicz et al.,
2015), and some now include aspects such as reflectance or
water-leaving irradiances that more directly relate to ocean
colour (Dutkiewicz et al., 2015; Baird et al., 2016; Gregg
and Rousseaux, 2017).

By resolving variables that are similar to ocean colour
measurements (e.g. reflectance), models can be used to
help explore uncertainties in ocean colour products and po-
tentially even to aid in algorithm development. Mouw et
al. (2012) used diagnosed optical parameters offline using
output from a numerical model to provide ocean-colour-
like products such as reflectance. That study isolated the ef-
fects of chlorophyll concentration, phytoplankton cell size
and size-varying absorption on remotely sensed reflectance.
However, it is only recently that models have directly in-
cluded the treatment of ocean optics to allow for explicitly
including diagnostics such as remotely sensed reflectance
(e.g. Dutkiewicz et al., 2015; Baird et al., 2016). Here we
use one of these models; a global three-dimensional biogeo-
chemical, ecosystem and radiative transfer numerical model
(Dutkiewicz et al., 2015) that can act as a virtual laboratory
to explore the connections between satellite-derived prod-
ucts and the ecosystem variability that they are attempting to
capture. The model resolves sufficient details of the marine
ecosystem, water optical constituents and explicit upwelling
irradiance.

We first briefly describe the numerical model (Sect. 2), be-
fore calculating a “satellite-like” derived Chl a product from
the model spectral reflectance output and explore the poten-
tial biases that arise between derived and “actual” model
Chl a (Sect. 3). Here we focus only on the biases due to
the choice of algorithm, and not from other uncertainties
that arise in the real-world Chl a products. (In this article
“real-world” will be used to refer to the real ocean and the
derived ocean colour products that are provided by space
agencies. The “real world” is thus different to the numeri-
cal biogeochemical/ecosystem/optical model output and the
products derived from it. Additionally, when we use the word
“model” in this paper, we refer to the numerical biogeochem-
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ical/ecosystem/optical model: in the ocean colour commu-
nity “model” often refers to bio-optical relationships, we do
not use “model” with this definition here.) Section 4 exam-
ines the temporal mismatches that occur in the derived prod-
uct. We specifically explore how other optically important
constituents, such as CDOM, detrital particles and accessory
pigments, limit the performance of the algorithm (Sect. 5).

This paper provides a proof of concept for using numer-
ical model output to explore uncertainties and biases in in-
formation derived from surface ocean colour by specifically
considering the potential uncertainties in the frequently used
blue/green reflectance ratio algorithm for determining Chl a.
Here, using the knowledge of model “actual” Chl a, other
optically important parameters and reflectance at every loca-
tion and every day allows us to examine these uncertainties
and their causes more completely than is possible in the real
world with its limited in situ observations.

2 The biogeochemical/ecosystem/optical model –
description and results

We use the biogeochemical/ecosystem/optical numerical
model as configured in Dutkiewicz et al. (2015). We provide
a brief description of the pertinent features here but refer the
reader to that paper for more details, equations, parameter
values and evaluation. The model resolves the cycling of car-
bon, phosphorus, nitrogen, silica, iron and oxygen through
inorganic, living, dissolved and particulate organic phases
(including CDOM). The biogeochemical and biological trac-
ers are transported and mixed by the MIT general circula-
tion model (MITgcm; Marshall et al., 1997), constrained to
be consistent with altimetric and hydrographic observations
(the ECCO-GODAE state estimates; Wunsch and Heimbach,
2007). This three-dimensional configuration has a coarse res-
olution (1◦×1◦ horizontally) and 23 levels ranging from 10 m
at the surface to 500 m at depth. We resolve nine phytoplank-
ton functional types (diatoms, other large eukaryotes, coccol-
ithophores, picoeukaryotes, Synechococcus, high- and low-
light Prochlorococcus, Trichodesmium and unicellular dia-
zotrophs) and two grazers. These phytoplankton types dif-
fer in the types of nutrients they require (e.g. diatoms re-
quire silica), maximum growth rate, nutrient half-saturation
constants, sinking rates and palatability to grazers. The phy-
toplankton also differ in their spectral absorption and scat-
tering (see Fig. 1 in Dutkiewicz et al., 2015) and maximum
Chl a :C ratio. The different scattering and absorption spec-
tra for each functional group incorporate the packaging ef-
fect (e.g. diatoms have a flatter absorption spectrum than the
pico-phytoplankton), but we note that the model does not in-
corporate changes in the shape of the absorption or scattering
spectra due to temporal photo-acclimation. The phytoplank-
ton have dynamic Chl a :C ratios that change with light avail-
ability, temperature and nutrient stress following Geider et
al. (1998). Thus the model explicitly resolves the Chl a con-

tent of each of the nine phytoplankton types as model state
variables. The sum of this dynamic Chl a across all phyto-
plankton types will be referred to as model “actual” Chl a in
the rest of this paper.

This model also explicitly includes radiative transfer of
spectral irradiance in 25 nm bands between 400 and 700 nm.
The three-stream (downward direct, Ed; downward diffuse,
Es; upwelling, Eu) model follows Aas (1987), Ackleson et
al. (1994) and Gregg (2002), though here it is reduced to a tri-
diagonal system that is solved explicitly (Dutkiewicz et al.,
2015). The model captures the spectral absorption and scat-
tering properties of water molecules, the nine phytoplank-
ton types, detritus and CDOM. It does not, however, include
additional potentially important components such as miner-
als and viruses (Stramski et al., 2001) or salt (Werdell et al.,
2013b). Irradiance just below the surface of the ocean (direct,
Edo, and diffuse, Eso, downward) is provided by the Ocean–
Atmosphere Spectral Irradiance Model (OASIM; Gregg and
Casey, 2009).

The model was run for 10 years for a recurrent “typical”
year and then with interannual forcing from 1992 to 2006.
In this paper, we only use the model output from the last
13 years (1994–2006). Model output compares well to in situ
and satellite-derived biogeochemical and ecosystem observa-
tions (Dutkiewicz et al., 2015). In particular, the magnitudes
and patterns of absorption and scattering of different water
constituents are captured along the Atlantic Meridional Tran-
sect cruise (AMT15), as well as the spectral penetration of ir-
radiance and key aspects of the community structure. Model
actual Chl a (the sum of the time varying Chl a from each of
the nine phytoplankton types resolved) captures the regional
patterns seen in the satellite-derived Chl a. Here we use the
Ocean Colour Climate Change Initiative (OC-CCI) v2 prod-
uct. As noted (and discussed more fully) in Dutkiewicz et
al. (2015), there are biases between the model and the ob-
servations, in particular larger values in the Southern Ocean
and seasonally in the North Pacific than in the real-world
satellite-derived Chl a (Fig. 1a, b, d, e).

The numerical model provides spectral surface upwelling
irradiance: output that is similar to measurements made by
ocean colour satellites. We calculate model subsurface re-
flectance for each waveband as the upwelling irradiance just
below the surface (all diffuse) divided by the total downward
(direct and diffuse) irradiance also just below the surface:

R
(
λ, 0−

)
=

Euz(λ)

Ed0z (λ)+Es0z (λ)
,

where “z” in the subscript indicates that the irradiance has
been recomputed using OASIM code for a 0 solar zenith
angle to compare more directly to observed normalized re-
flectance. Satellite sensor measurements (e.g. NASA and
ESA products) have been normalized such that they are pro-
jected as if there was 0 solar zenith angle.

To compare to satellite products, we first convert from irra-
diance reflectance to remote sensing reflectance using a bidi-
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Figure 1. Chl a (mgm−3). (a) and (d) OC-CCI-derived, (b) and (e) default model “actual” 0–50 m (summed over the nine phytoplankton
types), (c) and (f) default model “derived” (calculated from reflectance ratio and satellite-like algorithm trained with subsampled dataset,
GS). Top row shows January climatological means and bottom row shows July climatological means. OC-CCI products (a, d) have no data
when irradiances are too low. The model does not resolve the Arctic and thus there is no output there in (b), (c), (e), and (f). Additional
lack of output in (c) and (f) indicates regions where PAR is less than 15 µEinm−2 s−1. OC-CCI products were downloaded from https:
//www.oceancolour.org. We use version 2 of the OC-CCI, which uses an OC4 algorithm for determining the Chl a product, and thus is a
comparable algorithm as used in our model derived Chl a shown in (c) and (f).

0.005 0.01 0.015 0.02

OC-CCI (443 nm) MODEL (450 nm)
(a) (b)

(c) (d)

0.001 0.002 0.003 0.004

OC-CCI (555 nm) MODEL (550 nm)
(e) (f)

(g) (h)

Jan

Jul

Figure 2. Remotely sensed reflectance (1/sr) for (a) OC-CCI at 443 nm, January; (b) model at 450 nm, January; (c) OC-CCI at 443 nm, July;
(d) model at 450 nm, July; (e) OC-CCI at 555 nm, January; (f) model at 550 nm, January; (g) OC-CCI at 555 nm, July; (h) model at 550 nm,
July. We compare the model wavebands against the nearest OC-CCI wavebands, but note that they are not identical. OC-CCI products (a, c,
e, g) have no data when irradiances are too low. For the model, lack of output indicates regions where PAR is less than 15 µEinm−2 s−1 or
the unresolved Arctic region. OC-CCI products were downloaded from https://www.oceancolour.org.

rectional function Q:

RRS
(
λ, 0−

)
=
R

(
λ,0−

)
Q

.

The bidirectional function Q has values between 3 and 5 sr
(Morel et al., 2002) and depends on several variables, includ-
ing inherent optical properties of the water, wavelength and
solar zenith angles (Morel et al., 2002; Voss et al., 2007).
Here for simplicity we assume thatQ= 3 sr (see Appendix A
for discussion of this assumption and for evidence that the
choice ofQmakes little difference to model results). We note

that Gregg and Rousseaux (2017) make a similar choice of a
constant Q. Secondly we convert to above-surface remotely
sensed reflectance using the formula of Lee et al. (2002):

RRS
(
λ, 0+

)
=

0.52RRS
(
λ, 0−

)
(1− 1.7RRS

(
λ, 0−

)
)
.

Hereafter we will refer to this quantity as RRS.
We compare the model output to real-world remotely

sensed reflectance using the OC-CCI product (Fig. 2). We
note that the model does not have the exact same wavebands
as any of the ocean colour satellites and as such here we
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Figure 3. Model “actual” Chl a and model blue/green reflectance ratio (X) for (a) subset of model output similar to that available from
real world in situ observations (e.g. NOMAD, Werdell and Bailey, 2005); (b) full model output (every day for 13 years from each grid cell,
about 140 million points). The black solid line indicates the algorithm for chld for where coefficients were determined from the subsampled
datasets (GS), and in (b) the dashed line is the algorithm where coefficients were calculated using the full dataset (GA). Dots are coloured
red for locations equatorward of 30◦, light blue for 30◦ to 60◦ and dark blue for poleward of 60◦.

compare to the nearest bands: 450 nm model to 443 nm for
the OC-CCI product and 550 nm model to the 555 nm OC-
CCI product. The model captures the reversed patterns be-
tween blue (443/450 nm) and green (555/550 nm) RRS be-
tween gyres and highly productive regions. The model blue
RRS captures the spatial and seasonal patterns in the real-
world satellite product. However, the model has lower blue
RRS in the Southern Pacific gyre in January. We note, though,
that the model lowest Chl a in this region is offset from the
real-world OC-CCI product (Fig. 1a, b). Similarly the model
blue RRS is too high in the equatorial Atlantic and Pacific,
and again in regions where the model Chl a is likely too
low relative to the real-world Chl a product (see Fig. 1).
The model has noticeably higher green (550 nm) RRS in the
equatorial Atlantic and Indian oceans than the satellite mea-
surements but note that these are regions of high cloud cover
where the real-world satellite product may be biased. We also
find higher green RRS (Fig. 2e, f, g, h) in the North Pacific,
but this might be due to model Chl a being too high in this
region (see Fig. 1). In general the differences between model
and the real-world satellite RRS appear often to be linked to
discrepancies between the model and the real-world satellite-
derived Chl a product (and likely also in situ measurements).
The model blue and green RRS appear to be consistent with
the model actual Chl a fields in a way that is similar to the
real world and as such we believe it is appropriate and useful
to use these model remotely sensed reflectance data (“model
ocean colour”) to construct “satellite-like” derived Chl a us-
ing the blue to green reflectance ratio algorithm.

3 Constructing “satellite-like” derived Chl a

We follow the blue/green reflectance ratio methods used
to derive Chl a from surface reflectance (e.g. O’Reilly et
al., 2000). We first determine the log of the blue/green re-
flectance ratio: X = log(RRSB/RRSG), where RRSB is the

largest of the reflectance at 450, 475, or 500 nm at any lo-
cation and RRSG is the reflectance at 550 nm. We calculate
X using the daily model output from 1992 to 2006. We ex-
clude any grid locations with daily mean photosynthetically
active radiation (PAR) is less than 15 µEinm−2 s−1 (see Ap-
pendix A for explanation of this cutoff), with “actual” Chl a
less than 0.01 mgChlm−3 or with depths less than 1000 m
since the coarse resolution model does not adequately resolve
coastal dynamics.

The blue/green reflectance ratio method uses a 4th order
polynomial such that the derived Chl a (chld) is the follow-
ing:

chld = 10a0+a1X+a2X
2
+a3X

3
+a4X

4
. (1)

The key here is to determine the best coefficients a0 to a4.
We use a least squares fit to find a0 to a4 using three different
approaches in our model “virtual laboratory”.

3.1 Approach 1: global coefficients using subsampled
fields (GS)

The first approach follows that used in real-world algo-
rithm development (e.g. OC4 for SeaWiFS and OC-CCI,
OC3M-547 for MODIS). The NASA bio-Optical Marine Al-
gorithm Dataset (NOMAD; Werdell and Bailey, 2005) was
constructed from coincident radiometric observations and
phytoplankton pigment data and have been extensively used
for satellite-derived Chl a (and other) algorithm develop-
ment. For direct comparison between real-world and emer-
gent within-model relationships, we therefore sub-sample the
model “actual” Chl a and reflectance ratio, X, at locations
and dates nearest in time and space to those in NOMAD. The
resulting relationship between model blue/green reflectance
ratio (X) and Chl a from subsampling the model (Fig. 3a)
is similar to that found for real-world algorithms (Fig. 4;
Table 1). Some of the differences between real-world and
model coefficients are likely to come from the use of differ-
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Table 1. Coefficients for global model derived algorithms (Eq. 1) and for the SeaWiFS and MODIS default algorithms.

a0 a1 a2 a3 a4

model (GS, subsampled) 0.4507 −2.6040 −1.2876 6.5324 −5.1420
model (GA, all output) 0.6588 −3.2742 0.5860 3.2253 −3.0903
OC4 (SeaWiFS) 0.3272 −2.9940 2.7218 −1.2259 −0.5683
OC3M-547 (MODIS) 0.2424 −2.7423 1.8017 0.0015 −1.2280

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

−2

10
−1

10
0

10
1

OC4
OC3M−547
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GA

GS, Q variable
GS, monthly   average

X

C
h

l (
m

g
 m

)
-3

Figure 4. Polynomials for the Chl a algorithm using the blue/green
reflectance ratio. Shown are two real-world algorithms: NASA OC4
(red solid, used in SeaWiFS and OC-CCI products) and NASA
OC3M-547 (red dashed, used for MODIS product). Model algo-
rithms shown are GS (light blue, same as in Fig. 3a), where coef-
ficients are found from a subset of model output as dictated from
real-world in situ observations and GA (dark blue, same as dashed
line in Fig. 3b) where coefficients are found using the full dataset.
Also shown are two additional polynomials discussed in the Ap-
pendix: one found using a variable bi-directional coefficient,Q, and
a subsampling of output as in GS (dotted black line almost exactly
on top of the light blue line), and another where coefficients were
found from a subsampling as in GS but using monthly average re-
flectance and Chl a (black line). Note that the algorithms for the
model come from band ratios of the largest of RRS at 450, 475,
500 nm to RRS at 550 nm. For the real-world algorithms, the band
ratios are different and specific for the satellite sensor (SeaWifs or
MODIS).

ent exact bands in the blue and green (e.g. 550 nm for model
green versus 555 nm for OC-CCI). We note that this subsam-
pling is highly biased at the low latitudes.

We use a least squares fit to find a0 to a4 from this subsam-
pled dataset; the corresponding function is shown with a solid
line (Fig. 3a). We then used these coefficients and X from
every grid cell of the model to produce a model “satellite-
like” derived Chl a (Figs. 1c, f, 5a) for the entire model
output (daily from each grid cell, about 140 million data
points). This derived Chl a is analogous to the real-world

satellite-derived Chl a product (e.g. the OC-CCI product).
Differences in coefficients relative to those for real-world al-
gorithms (Table 1) are not large and the function looks very
similar to those for the real world (Fig. 4). We note that while
the model world is an idealized system (and hence differ-
ences to the real world are to be expected), one advantage
is that there are no errors in the properties themselves (in
contrast to measurement uncertainties in in situ Chl a and
satellite-derived reflectance in the real world) so the model
allows for a more precise interrogation of the algorithm bi-
ases by themselves.

The root mean square error (RMSE) between the model
derived Chl a and the model actual Chl a is 0.48 mgChlm−3

(0.16 for log transformed output) and has an r2 of 0.60 in lin-
ear space (0.91 in log transformed data, see Table 2). There
are substantial errors at higher Chl a (Fig. 5a), which trans-
late to large biases in the high latitudes (Fig. 6a, d). Larger
errors at higher absolute concentrations are anticipated given
that the polynomial fitting was done in log space. The mean
value of the absolute bias for all occasions and times where
the derived product could be calculated was 22 %, though
we find that over 35 % of the open-ocean points (in space
and time) had less than 10 % absolute error (Fig. 7a). We
find that the monthly biases have regionally distinct patterns
(Fig. 6a, d).

Finally in this section, we ask which model Chl a (derived
versus actual) best matches the real-world OC-CCI product?
We did not do this for model validation purposes (see eval-
uation in Dutkiewicz et al., 2015) but rather to re-emphasis
that the satellite-derived Chl a products are proxies for real-
world actual Chl a – the two are not the same thing. We
compare climatological monthly model derived Chl a and
model actual Chl a to OC-CCI monthly climatology regrid-
ded to the model configuration (1◦ resolution). We find that
the model derived Chl a has a global RMSE of 0.29 mgm−3,
which is significantly lower than 0.64 mgm−3 found when
comparing model actual Chl a to OC-CCI. Comparisons are
particularly better for the Southern Ocean and North Pacific
(Fig. 1). Consequently, some (though certainly not all) of the
biases noted when comparing model actual Chl a (Fig. 1b,
e) to real-world satellite derived Chl a products (Fig. 1a, d;
Sect. 2; and in the model evaluation done in Dutkiewicz et
al., 2015) are due to the real-world Chl a derived product bias
and not a deficiency in the biogeochemical/ecosystem/optical
model. It follows that a model satellite-like derived product
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Figure 5. Two-dimensional density histogram of model “actual” and model “derived” Chl a using algorithm coefficients found for: (a) default
experiment using approach 1 (global, subsampled output, GS), (b) default experiment using approach 2 (global, all output, GA), (c) default
experiment using approach 3 (region-specific, RA). The dashed line indicates the 1-to-1 line. Colour indicates the log of the fraction of all
data that occur in phase space (the lightest yellow reflects a single instance in that bin). Statistics noted on the plot are for the log transformed
output. The r2 and RMSE in linear space is provided in Table 2.

Figure 6. Percentage bias between monthly mean model “actual” Chl a and model “derived” Chl a (chld) using algorithm coefficients found
for (a, d) subset of output (GS), (b, e) full model output (GA) and (c, f) each grid cell (region-specific, RA). The top row is for January and
the bottom row is for July. White areas indicate the unresolved Arctic and regions where PAR is less than 15 µEinm−2 s−1.

(Fig. 1c, f) might be a better evaluation tool for comparing
to ocean colour products derived with the same algorithm
(Fig. 1a, d) than the model actual Chl a fields themselves.

3.2 Approach 2: global coefficients using output from
all locations (GA)

Secondly, we tested whether a lack of data to train the algo-
rithm leads to some of the large errors in the derived Chl a.
We used model output for every surface grid cell and for
each day (about 140 million points) to train the algorithm
(Fig. 3b). We note this is a purely hypothetical exercise; if
one knew the Chl a at every point and every day, why would
one need to derive the Chl a from a proxy (X)? However,
here we are rather asking the following; given almost perfect
knowledge of Chl a andX, what is the best that a global set of
coefficients for the algorithm given in Eq. (1) can do in cap-
turing the actual Chl a? In other words, even given a perfect

training dataset (and in an idealized model virtual world),
how good could the global OC4-style algorithm possibly be?

In contrast to sub-sampling the model (approach GS),
when the full model output is included the relationship be-
tween X and actual Chl a shows considerably more scatter
and reveals a distinct cluster below the main body of points at
low Chl a (Fig. 3b; the second “tail” below the main cloud).
Although this cluster contains only a minority of points (less
than 0.003 % of the total number of points), the mismatch is
of interest and will be discussed in Sect. 5. Though the co-
efficients for the algorithm for the full dataset are different
(Table 1), the fit is very similar at low Chl a, but diverges
at intermediate and high Chl a (see solid and dashed line
in Fig. 3b). When comparing derived and actual Chl a the
GA coefficients lead to a better r2 (Fig. 5b; Table 2) than
were achieved using the subsampled algorithm (GS). Though
there are improvements in some regions in the higher lati-
tudes, there is actually a decrease in skill at lower latitudes
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Table 2. Results of the comparison between model “actual” and model “satellite-like” derived Chl a for the three algorithm approaches
discussed in Sect. 3. Statistics are calculated for each grid and each day over 13 years, except for grid cells and times with low light, very
low Chl a and shallow regions (see text).

Approach 1: GS Approach 2: GA Approach 3: RA

r2 (log space) 0.91 0.92 0.95
RMSE (log space) 0.16 0.15 0.12
r2 (linear space) 0.60 0.77 0.83
RMSE (linear space) 0.48 0.37 0.31
Absolute % bias 22 % 23 % 17 %
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Figure 7. Distribution of percentage of model output (time and
space, about 140 million “data” points) with absolute percent error
between model derived Chl a and model actual Chl a for (a) global
subsampled approach (GS), (b) global all output approach (GA) and
(c) region-specific approach (RA).

(Fig. 6b, e compared to Fig. 6a, d). There is in fact a slight in-
crease in the mean percent absolute bias (23 %) between this
and the GS estimates; when transformed into percent errors,
the increased biases at low Chl a and low latitude regions
become more prominent in the calculation of the mean bias.

Not surprisingly our results suggest that a 4th order poly-
nomial with one set of global coefficients will not in fact be
able to fit both high and low concentrations accurately, no
matter how much “data” is available to train the algorithm.
Thus, though getting more in situ data in the ocean will still
be beneficial for future algorithm development, the use of a
single set of coefficients, derived from an improved in situ
dataset, used over the whole globe is not likely to signifi-
cantly improve biases everywhere.

3.3 Approach 3: region-specific coefficients (RA)

Recognizing that waters can have distinct optical properties
(Moore et al., 2009; Szeto et al., 2011), there have been

several projects to produce regionally distinct algorithms
(e.g. Szeto et al., 2011; Johnson et al., 2013; latest release
(V3) of the OC-CCI project, https://www.oceancolour.org).
Here we take this concept to the extreme and construct a
set of coefficients for each grid cell in the numerical model.
We use the algorithm function as provided in Eq. (1) and
find the coefficients for each location using output from ev-
ery day over 13 years. Here, we are testing whether X and
Chl a co-vary over time at each location, as opposed to over
both time and space as in the previous two approaches (GS,
GA). As with the global algorithm described in Sects. 3.1
and 3.2, we exclude any grid locations with daily mean PAR
less than 15 µEinm−2 s−1, with model actual Chl a less than
0.01 mgChlm−3, and where depths are less than 1000 m. We
also exclude any grid cells where the output falls outside
these cut offs for more than half the year.

The region-specific algorithms provide a better Chl a
product with a significant reduction in the bias (Fig. 6c, f),
r2 and RMSE (Fig. 5c; Table 2). The mean absolute bias of
all places and occasions where the derived product can be
calculated is 17 %, lower than the global approaches (GS,
GA), and more than 50 % of the model output points hav-
ing less than 10 % error (Fig. 7c). Unsurprisingly, when aver-
aged over the full time period, the region-specific algorithms
at every location perform better than either of the global
algorithms. However, there are still significant seasonal bi-
ases (Fig. 6c, f; discussed more below). Note that the biases
switch sign between seasons, such that the annual mean bias
is extremely low. There are some locations where at some
times of the year there is even less accuracy with region-
specific approaches, as seen by the cloud of points at low
derived Chl a (Fig. 5c). This indicates that in some regions
Chl a and X do not vary coherently over time and/or that
Chl a and X do not vary in a similar way to the global rela-
tionship (noting that the global relationship incorporates both
temporal and spatial variability). In these locations the actual
Chl a at some times of the year is closer to the global 4th
order polynomial (Eq. 1) than the local. We note also that
there is still a cloud of points below the main cluster (where
derived Chl a is higher than model actual) as was found for
approaches GS and GA (Fig. 5).
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Figure 8. Illustrative example time series for 1 year from a single
location in the North Atlantic (shown as o on Fig. 9). (a) “actual”
Chl a (black), derived Chl a using subsampled output (GS, light
blue), derived Chl a using all output (GA, dark blue) and the Chl a
product derived using a region-specific algorithm (RA, purple).
(b) actual Chl a (black), CDOM (red) and detritus (green), all nor-
malized to their peak value. The dashed vertical line indicates the
“initiation of the bloom” which is taken to be when Chl a reaches
5 % above the annual median value following Cole et al. (2012) and
discussed further in Appendix A (dotted horizontal line shows this
value for the model actual Chl a). The vertical dotted line indicates
the timing of the peak of the bloom. Shown here is only a single
year and location but for a larger scale perspective, the difference in
initiation and peak timing between model actual and derived Chl a
averaged over all years are shown for the globe in Fig. 9.

4 Temporal considerations

We have noted that in all approaches, though even more obvi-
ous in RA, there is a seasonally altering pattern between the
derived and actual model Chl a (Fig. 6). The amplitude of the
peak of spring blooms is often underestimated in the prod-
ucts derived using global coefficients (GS and GA) in high
latitude, especially in the subsampled algorithm (GS; Fig. 6).
Derived Chl a values were also often higher than model ac-
tual Chl a outside of bloom peaks. We consider the phenol-
ogy using a single location (in the subpolar North Atlantic)
for a single year as illustration (Fig. 8a). Though the derived
products show similar (though smaller) peaks to the actual
Chl a, and sometimes similar peak timing early in the season
(see for instance the first distinct peak in this illustrative loca-
tion), there are noticeable lags for the maximum peak (shown
with a vertical dotted line) and other mismatches later in the
season. We also find that the bloom period lasts later into
the year. The actual Chl a also starts its sharp increase in
spring (the initiation of the spring bloom, shown with dashed
line) considerably before all three derived products (Fig. 8a).
We follow the approach of Cole et al. (2012) for determin-

ing the “initiation of the spring bloom” as the time when the
Chl a first increases 5 % above the annual median (horizontal
dashed line, more description in Appendix A).

Figure 8 shows just one location for 1 year. To consider the
large-scale patterns, we determine the lag in the spring initia-
tion (Fig. 9a) and maximum bloom timing (Fig. 9b) for each
location averaged over all years. We find that in almost all
locations, the derived Chl a shows the bloom starting later
than the model actual Chl a (Fig. 9a). This offset is typi-
cally by about 5–10 days but can be as much as 30 days.
The maximum Chl a from the derived product also lags the
actual Chl a in most locations, though by only a few days
(Fig. 9b). These results indicate that temporal as well as spa-
tial biases occur as a result of deriving Chl a fromX and sug-
gests care should be taken when calculating phenology from
satellite products or when evaluating phenology in models
using satellite-derived Chl a. We discuss the reason for the
lags in the next section.

5 The role of other optically important constituents

Chl a is not the only optically important constituent in sea-
water. Phytoplankton have a variety of accessory pigments
that lead to large differences in their spectral absorption. Ad-
ditionally, different morphologies and structures lead to a va-
riety of scattering spectra (e.g. see Fig. 1 in Dutkiewicz et
al., 2015). CDOM and detrital particles also absorb more in
the blue than the green. How do these other optically im-
portant constituents affect the ability of the blue/green ra-
tio algorithm to accurately estimate “in situ” Chl a? Studies
have indeed suggested that 2nd order variability in ocean-
colour-derived Chl a can be tracked to the effect of CDOM
and non-algal particles (e.g. Loisel et al., 2010; Brown et al.,
2008; Siegel et al., 2005a, b). Here, using knowledge of all
constituents in the default experiment (discussed above) in
time and space, we can examine the importance of the opti-
cally important constituents on model reflectance more thor-
oughly than is possible in the real world (albeit in the sim-
plified model ocean) and also perform a series of sensitivity
experiments individually targeting the other optically impor-
tant properties.

There is a close connection between CDOM, detrital mat-
ter and Chl a (Fig. 10). In general, most model data points
lie on a linear line: higher Chl a is closely linked with higher
CDOM and detrital matter. However, the co-variation be-
tween CDOM and detrital matter is not perfect, as has been
noted in the real ocean (e.g. see Bricaud et al., 1981; Kitidis
et al., 2006; Morel et al., 2010; Siegel et al., 2005b). In the
model output, there is significant scatter around the core lin-
ear relationship (Fig. 10). In particular, high CDOM can be
associated with a wide range of Chl a concentrations. On the
one hand, the co-variability between Chl a, CDOM and detri-
tal matter might help the reflectance ratio algorithm since all
absorb more in the blue than the green. However, we find that
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Figure 9. Global maps of the lag in phenology. Number of days between (a) the initiation of the spring bloom from model actual Chl a and
that for the model derived Chl a (GS), (b) yearly maximum of model actual Chl a and that for the derived Chl a (GS), (c) initiation of the
spring bloom from model actual Chl a and the initiation of the CDOM increase and (d) initiation of the spring bloom from model actual
Chl a and the initiation of detrital particle increase. Bloom initiation is defined as when Chl a, CDOM or detrital particles reach 5 % above
their annual median value (see Appendix A). The white areas indicate regions with no significant seasonal cycle or are not resolved by the
model (e.g. Arctic Ocean).

Figure 10. Two-dimensional histogram of model output for
“actual” Chl a (mgm−3) plotted against (a) model CDOM
(mmolCm−3) and (b) detritus (mmolCm−3). The colour indicates
the log of the fraction of all data that occur in bins in the phase space
(the light yellow reflects a single instance in that bin).

though linked, there are noticeable lags in the sharp increase
in accumulation (Figs. 8b, 9c, d), peak timing and decline
(Fig. 8b) between CDOM and detrital matter and the model
actual Chl a. Since CDOM and detrital matter are a prod-
uct of primary production, there is a lag in the high latitude
spring between the accumulation and peak of CDOM, detri-
tal matter and Chl a. It is the lag in the accumulation of the
different constituents that causes the algorithms to struggle to
get the phenology accurate. Moreover, detrital particles also
lag in their removal, and CDOM (which has a long reminer-
alization timescale) remains relatively high throughout sum-
mer and autumn. This leads to the later decrease in derived
Chl a than actual Chl a seen in Fig. 8a. The algorithms also
all overestimate the background model actual Chl a. This re-
sult may not seem surprising to those in the ocean colour

community. In fact, the role of CDOM as an independent
tracer has led to the suggestion that CDOM could be used to
track mixing in the deep ocean (Nelson et al., 2010). The fact
that there is a difference in timing between peaks of CDOM
and Chl a is also known (e.g. see Fig. 8 in Nelson and Siegel,
2013). However, to our knowledge this is the first time a nu-
merical model has been used to pull apart the differences in
timing of the different constituents and the consequent im-
pact on phenology from an algorithm derived Chl a product.

We add the caveats that the exact definition of “initiation of
bloom” does impact how much of a lag there is in the phenol-
ogy. For instance, if the first peak in the model actual Chl a
in Fig. 8a was defined as “the spring bloom” we would sug-
gest the derived Chl a does capture the timing better (though
not the magnitude). We also note that the model parameter-
ization of CDOM and detrital particles are not necessarily
sufficiently well developed to make quantitative statements
on the likely real-world lags. Thus, though we do suggest
there could be significant lags in phenology in the real-world
satellite Chl a product, we do not suggest that the values in
Fig. 9 are necessarily accurate for the real world. This anal-
ysis should instead be seen as a cautionary statement about
using satellite-derived products for phenology of the quanti-
ties for which they are proxies.

The result that the other optically important constituents
lead to a mismatch in derived and actual Chl a leads us to
ask the following question: would the algorithms work better
if there was no spatial or temporal variation in detrital matter,
CDOM or accessory pigments (and phytoplankton commu-
nity structure)? The accessory pigments and the absorption
and scattering spectra differ between phytoplankton types
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Figure 11. Results from sensitivity experiments. Two-dimensional
density histogram of model “actual” and model “derived” Chl a us-
ing algorithm coefficients found for (a) default experiment using
approach 1 (global, subsampled output, GS), (b) EXP-1 (uniform
and constant aCDOM) approach 1, and (c) EXP-2 (uniform and con-
stant adet and bdet) approach 1, (d) EXP-3 (no optical differences
between phytoplankton) approach 1. The dashed line indicates the
1-to-1 line. Colour indicates the log of the fraction of all data that
occur in phase space (the lightest yellow reflects a single instance
in that bin). Statistics noted on the plot are for the log transformed
output. The r2 and RMSE in linear space is provided in Table 3.
In these plots, monthly mean output of Chl a and RRS were used
to calculate the algorithm, and only monthly mean output is shown
(4 million versus 140 million points), thus at a great computational
savings. The difference in the algorithm for the default simulation is
shown in Fig. 4 (the light blue line is the algorithm with coefficients
found using daily values, versus the solid black line where coef-
ficients where found using monthly values). Differences between
Figs. 11a and 5a are due to this difference in sampling (discussed
in Appendix B). Also notice the difference in values on the colour
bars between this figure and Fig. 5.

and hence the community structure affects the reflectance ra-
tio. However, how the community structure (co-)varies in re-
lation to total Chl a, and the corresponding combined effects
on reflectance, are complex.

To explore how these other constituents affect the algo-
rithm, we perform three sensitivity experiments. Each exper-
iment is performed similar to the “default” run (a 10 year
spin-up, 1992–2006 interannually varying component) and
we construct 4th order polynomials equivalent to Eq. (1) us-
ing the subsampling approach (GS) for each experiment and
derive Chl a in each case. However, given computational
and storage constraints we used monthly averaged values
of Chl a and RRS to calculate the algorithm coefficients in
these experiments rather than daily values (see Appendix B
for discussion). We compare the results from these experi-
ments (Fig. 11; Table 3) to the GS results from the default

run (i.e. the Chl a derived product using a subset of the data
to find the algorithm coefficients, i.e. most like the real satel-
lite product) also using monthly values for consistency.

1. EXP-1 – aCDOM: this experiment was the same as the
default, but aCDOM was (artificially) set to uniform con-
stant values, specific for each waveband (e.g. 0.016 m−1

for 450 nm, approximately a global mean). The constant
aCDOM leads to substantial differences in biogeochem-
istry and community structure (see Dutkiewicz et al.,
2015). We construct the satellite-like Chl a using the ap-
proach explained above (Fig. 11b, compare to Fig. 11a).
The algorithm derived Chl a compares better to the
model actual Chl a by some metrics (see Fig. 11b, Ta-
ble 3), but not all, than they did in the original experi-
ment (“default”; Fig. 11a). Thus the correlation between
Chl a and CDOM can enhance the algorithm in some
locations (see improvement at high Chl a), but not at
others (e.g. at low Chl a, see the cloud above the 1-to-
1 line). However, most noticeable is the lack of points
below the main cluster at low Chl a that was detailed
in all other experiments and all types of algorithm ap-
proaches (Fig. 5a, b, c, and Fig. 11a, c, d). The fact that
this cluster of points does not occur in EXP-1 where
there is no variability in aCDOM, helps explain their ori-
gin. CDOM is photo-bleached in the surface waters but
has a long remineralization timescale at depth (Nelson
and Siegel, 2013). As such, CDOM concentrations (and
hence aCDOM) tend to be lower in the surface water
and higher at mid-depths (e.g. see Nelson and Siegel,
2013); a pattern that is captured in the model (see Fig. 3
in Dutkiewicz et al., 2015). When Chl a is low in the
model during autumn, some deep mixing brings high
un-bleached CDOM to the surface. This mixing in the
highly seasonal regions is what leads to the cluster of
points with lower blue/green reflectance ratio than is
typical for the actual Chl a concentration (in Fig. 3b).

2. EXP-2 – detrital matter: similarly to EXP-1, the ab-
sorption and scattering by detrital matter was set (ar-
tificially) to a constant mean value over the entire globe
in this experiment. Detritus itself continued to vary, but
the impact of detritus on the optics was as if it constantly
had a concentration of 0.36 mmolCm−3. Biogeography
and community structure did change as a consequence
of the difference in the irradiance. When we calculate
the derived Chl a in a similar manner as in the default
with GS approach, we found the r2 and RMSE are very
similar to the default experiment (Fig. 11c). However, as
with EXP-1, there are some times and/or places where
the algorithm does better than in an ocean with vary-
ing optical signature of detritus (e.g. high Chl a) and
some where they were not. This suggests that detritus
and Chl a have a complimentary effect within the algo-
rithm in many, but not all, locations.
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Table 3. Results of the comparison between model “actual” and model “satellite-like” derived Chl a for the sensitivity experiments discussed
in Sect. 5. All “satellite-like” derived Chl a were calculated using the GS approach. “Default” is the full experiment discussed in Sect. 3,
but with monthly RRS used to calculate the algorithm coefficients. Statistics are calculated for each grid cell and each month over 13 years,
except for grid cells and times with low light, very low Chl a and shallow regions (see text).

Default EXP-1: EXP-2: EXP-3:
uniform aCDOM uniform adet phytoplankton optical same

r2 (log space) 0.90 0.87 0.89 0.95
RMSE (log space) 0.17 0.16 0.17 0.12
r2 (linear space) 0.54 0.63 0.60 0.75
RMSE (linear space) 0.44 0.38 0.40 0.26
Absolute % bias 21 % 20 % 23 % 18 %

3. EXP-3 – differences in phytoplankton absorption and
scattering: finally, to explore the role of differing ab-
sorption and scattering properties of the different phy-
toplankton types, we conduct an experiment where all
phytoplankton types were assumed to have the same
optical properties: the mean of the different absorp-
tion and scattering spectra (see black lines in Fig. 1
of Dutkiewicz et al., 2015), and the same maximum
Chl :C ratio. Thus the phytoplankton are optically iden-
tical. The main biogeochemistry was similar between
this simulation and default experiment, though there is
some re-arrangement of the phytoplankton communities
as species specific absorption is important to their com-
petitiveness and biogeography (Hickman et al., 2010;
Dutkiewicz et al., 2015). We find a substantially higher
r2 and lower RMSE for the derived Chl a in this exper-
iment. Thus the accessory pigments lead to a large scat-
ter in the relationship between blue/green reflectance ra-
tios and actual Chl a, making the algorithm approach
less accurate. Whether and how these known differences
in absorption and scattering make it possible to differen-
tiate species from optical measurements is a promising
area of current research (e.g. IOCCG report 2014).

These experiments illustrate how variability in the different
optical constituents in time and space leads to significant in-
accuracies in deriving Chl a from the blue/green reflectance
ratio, yet on the other hand correlations also enhance the al-
gorithm in many locations. Some of the results, and in par-
ticular the statistics, are specific to the choices made for the
fixed values of aCDOM and detrital concentration, as well as
the mean spectra chosen for EXP-3. On the other hand, no
matter the choice of aCDOM, EXP-1 is especially useful in
elucidating the role of autumn mixing that can bring high
CDOM to the surface and impacting the derived Chl a signa-
ture. This is, to our knowledge, the first time such interactions
and their impacts on satellite-derived products have been il-
lustrated using a global biogeochemical model. We believe
that similar experiments will be a useful tool in further stud-
ies, especially for studies exploring the impact of different
phytoplankton absorption spectra.

6 Discussion and summary

In this study we have used a global three-dimensional bio-
geochemical, ecosystem and radiative transfer numerical
model to explore how well the magnitudes and seasonal vari-
ability of Chl a can be captured by a product derived from a
reflectance ratio algorithm. The model outputs spectral sur-
face upwelling irradiance that includes the effects of the
scattering and absorption of optically important water con-
stituents (phytoplankton, water molecules, CDOM and detri-
tal matter), and as such we calculate a remotely sensed re-
flectance that compares to actual satellite data. We then con-
struct a frequently used algorithm to calculate a “satellite-
like” Chl a product from the model blue/green reflectance
ratio. Given a complete knowledge of all these components
and derived products in the model ocean, we can explore the
uncertainties and causes more completely than is possible in
the real world.

When the model algorithm coefficients are calculated from
only a subset of data, similar to that which is available in
the real world (e.g. NOMAD, Werdell and Bailey, 2005),
the resulting function is similar to those used for SeaWiFS
and MODIS Chl a products (Table 1; Fig. 4). Using this al-
gorithm, the model derived Chl a underestimates the actual
Chl a at high latitudes (Fig. 6a, d). Overall the algorithm has
a mean absolute bias of 22 % in capturing the actual Chl a,
but more than 35 % of the model output has less than a 10 %
absolute error (Fig. 7a). However, seasonally the errors can
be substantially higher and the biases can shift from posi-
tive to negative (Fig. 6a, d). This study only considers the
errors involved in the algorithm development. It does not ex-
plore the other potential errors that arise in the real world,
for instance from cloud cover, errors in atmospheric correc-
tion, instrument drift and in situ measurement errors and does
not resolve all the complexity in the real-world optical con-
stituents. As such, the errors and biases we calculate are un-
derestimates relative to the real world. However, they do sug-
gest that the error of 35 % in ocean colour Chl a estimates
that had been desired (e.g. McClain et al., 2006) is theoreti-
cally possible in many regions of the ocean.
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We explored the potential to reduce the error by having a
much larger dataset (i.e. knowledge of Chl a and reflectance
at every location every day) for calculating the coefficients of
the reflectance ratio algorithm. Although there was improve-
ment in the bias at high Chl a concentrations, there was also
an increase in percent bias at low Chl a concentrations. It is
perhaps not surprising that a single set of coefficients for the
whole globe will not produce an accurate Chl a product, even
with much improved coverage of data to train the algorithm.

Several studies have explored region-specific algorithms
and have indeed found different sets of coefficients work bet-
ter for different locations (e.g. Szeto et al., 2011; Johnson et
al., 2013; Haentjens et al., 2017). To explore this using the
model, we again assumed a large dataset (i.e. knowledge of
Chl a and reflectance at every location and day) and calcu-
lated the coefficients for an algorithm unique to each grid cell
of the model. The improvement is large, reducing to 17 % ab-
solute bias, and almost 50 % of the model output points have
less than 10 % error (Fig. 7c). Though this result is based on
the “best case scenario”, it nonetheless suggests that signif-
icant improvements in detecting Chl a from space will be
possible with region-specific algorithms. However, seasonal
biases (Fig. 6c, f) can be quite large (though they do can-
cel out over the course of the year, such that the annual bias
is small). Thus temporal variations in Chl a and reflectance
ratio (X) are also not perfectly captured by a 4th order poly-
nomial.

Significantly, there is a mismatch between the timing of
the spring bloom between any of the algorithm-derived prod-
ucts and the actual Chl a. In almost all seasonal regions, the
derived Chl a products suggest the initiation (and peak) of
the spring bloom occur later than the actual model Chl a. We
showed how this mismatch could be explained by the role of
other optically important water constituents.

Because CDOM and detrital matter are also by-products of
primary production and subsequent heterotrophic processes,
they vary, at least in the surface ocean, in a similar manner
to Chl a (Fig. 10) and have a similar effect on the blue/green
reflectance ratio. The blue/green ratio algorithm has these co-
variations intrinsically built into it (e.g. Morel, 1988, 2009).
Previous studies have noted that there are, however, discrep-
ancies with this approach (Bricaud et al., 1998; Siegel et al.,
2005a, b; Brown et al., 2008). In fact, the differences in how
CDOM and detrital matter absorb and scatter light has been
used in algorithm development (e.g. Sathyendranath et al.,
1989; Roesler and Perry, 1995; Maritorena et al., 2002). The
largest discrepancies between algorithms that explicitly in-
clude or exclude the differences in the optical properties is
most noticeable at high latitudes (Siegel et al., 2005b), and
CDOM and non-algal particles are noted to be especially
important (Brown et al., 2008). Additionally, it has been
found that there are strong seasonal trends in variability of
reflectance and reflectance ratios (Brown et al., 2008). Here,
we have used the model to show that indeed when the detrital
matter and CDOM are distinctly decoupled from Chl a there

are stronger mismatches between actual and satellite-derived
Chl a. In particular we find that since CDOM and detrital
matter in the surface water accumulate later in the spring than
Chl a (Fig. 8b), the derived Chl a increases and peaks later
than the actual Chl a (Fig. 8a). Our model suggest that the
timing of the spring bloom can be several days to weeks off
when using satellite data to determine phenology (Fig. 9).

CDOM can also muddy the signal at other times. CDOM is
bleached in the surface waters (and is therefore mostly in low
concentration) but is higher at depth where a long remineral-
ization timescale allows it to accumulate. During the autumn
when in situ Chl a is low, deep mixing can bring CDOM
to the surface. At these times there is an anti-correlation be-
tween Chl a and CDOM, and as such the algorithms tend
to overestimate the Chl a. This leads to the cloud of points
where reflectance is lower than anticipated given the in situ
Chl a (Fig. 3b), providing higher derived Chl a than is actu-
ally there (Fig. 5a, b, c). We suggest that care should be taken
when defining an autumn bloom from satellite-derived prod-
ucts given the effects of CDOM on reflectance during deep
mixing.

It has been recognized that 2nd order variability in re-
flectance spectra provides a potential method to determine
phytoplankton species from space (e.g. Alvain et al., 2005).
Using differences in the absorption and scattering spectra by
various phytoplankton types to distinguish them optically is
an important topic of research (e.g. IOCCG report, 2014; see
many techniques cited therein; Werdell et al., 2014; Bracher
et al., 2017). Here our model results echo this promising di-
rection in showing that a large amount of the variability in
the reflectance ratio versus Chl a variability is due to the
optical differences in phytoplankton (Fig. 11d). In our sen-
sitivity study, this appears in fact to have a larger effect than
CDOM or detrital particles. The fact that temporal changes
in the shape of the Chl a specific light absorption and scat-
tering spectra for each phytoplankton type does not vary with
photo-acclimation in the model formulation means this result
is likely under-estimated, though such within-type variability
is likely to have a small effect on sea surface reflectance com-
pared to differences in spectra between types.

Chl a derived from the model reflectance compares better
to the OC-CCI Chl a than the model actual Chl a (Fig. 1),
with a significantly lower RMSE. These differences can par-
ticularly be seen in the high latitudes. This finding serves to
highlight that Chl a and reflectance-derived Chl a are not
the same thing and suggests that modellers should be careful
in attempting to compare too strongly with satellite derived
Chl a, especially at high latitudes where mismatches between
derived and actual Chl a are shown to be important. Biases
are particularly noticeable in the Southern Ocean, which ap-
pears to have a very different optical signature (e.g. Szeto et
al., 2011; Johnson et al., 2013). Our model results suggest
that deep mixer layers (bringing high CDOM to the surface),
a potentially different species composition (e.g. Ward, 2015),
and high seasonality (leading to mismatches in timing of the
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peaks in the different optically important constituents) leads
these waters to have very different and seasonally varying
optical characteristics.

The results presented here provide a novel assessment
of the interactions between optical constituents and their
effects on reflectance and derived Chl a that compliment
those that are possible for the real world (e.g. Moore
et al., 2009, 2014; OC-CCI uncertainty products, http://
www.esa-oceancolour-cci.org/?q=webfm_send/321). In the
model, all properties are known precisely everywhere allow-
ing details of how the optical constituents and their interac-
tions impacts reflectance and the derived products. However,
the results should be taken in the context of a modelling ap-
proach. The uncertainty estimates reflect only the subset of
constituents and mechanisms resolved in the model and the
model does not perfectly capture the Chl a, optics or the re-
flectance algorithm. Thus the biases presented here should be
considered qualitatively, rather than expecting the exact val-
ues and statistics to apply to the real ocean. The mismatch
in bloom timing should also be interpreted in this way. It
is unlikely that the model captures the correct lag between
accumulation of CDOM and detrital matter. Thus the exact
number of days that the derived Chl a product lags the actual
Chl a is likely to be different in the real ocean. However, the
model captures enough of the real world to give insight into
the interpretation of the ocean colour product.

A key motivation for this study was to demonstrate that
a biogeochemical/ecosystem/optical model with a radiative
transfer component can be used as a laboratory to explore
aspects of ocean colour. As such this study bridges be-
tween disciplines: particularly ocean colour and biogeo-
chemical/ecosystem modelling. We believe that our approach
could help modellers understand some of the limitations of
ocean colour, something that is often lacking when their ex-
pertise in not in satellite measurements. We also hope that
the ocean colour community will see the potential of model
approaches such as this for deriving sampling strategies, fur-
ther studies on newer Chl a algorithms (e.g. NASA Repro-
cessing 2014.0, and OC-CCI V3 release), other ocean colour
products and will help with algorithm developments for cur-
rent and future ocean colour measurements.

Code and data availability. New data used in this study are from
the MIT Darwin Project Biogeochemical, Ecosystem, and Optical
Model. The code is part of the MITgcm, which is available from
http://mitgcm.org. The specific version of the code, as well as in-
put fields and links to forcing files, used in this study are avail-
able (https://doi.org/10.7910/DVN/R12GTM, Dutkiewicz, 2018).
Due to the large volume, we cannot make all the model out-
put publically available. However, the simulated “actual” Chl a,
“derived” (GS) Chl a and the remotely sensed reflectance at
450, 475, 500 and 550 nm daily for 13 years (1994–2006) are
available (https://doi.org/10.7910/DVN/NWR1QY, Dutkiewicz and
Jahn, 2018). Additional selected model fields can be made available
on request from the corresponding author (stephd@mit.edu).
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Appendix A: Assumptions and definitions

A1 Value of bi-directional factor, Q

The bidirectional function Q has values between 3 and 5 sr
(Morel et al., 2002) and depends on several variables, includ-
ing inherent optical properties of the water, wavelength and
solar zenith angles (Morel et al., 2002; Voss et al., 2007).
We calculated model reflectance both with a constant value
(3 sr) and with time/space/wavelength varying values calcu-
lated from the table of Morel et al. (2002). The differences in
the relationships between Chl a and blue/green reflectance
ratio with variable and uniform Q was almost impercepti-
ble (Fig. 4). We used the constant/uniform Q (similar to that
used in Gregg and Rousseaux, 2017) in this paper. However,
we note that the resulting values would only be slightly dif-
ferent if we had used the variable Q, and, in particular, the
choice of Q would not have changed the interpretation and
implications of our results.

A2 Photosynthetically active radiation (PAR) cutoff

Satellite measurements of ocean colour cannot be obtained
when irradiance fields are too low. These occasions occur
during the winter at high latitudes. To compare better to satel-
lite measurements, we choose to not include model data in
similar conditions. We examined where and when satellite
RRS (from OC-CCI) lacked data (due to low light) at the high
latitudes, and found that the geographic locations and times
matched well to when the OASIM input daily mean irradi-
ance fields were less than 15 µEinm−2 s−1 (see Figs. 1, 2) .
We thus used this value as a cutoff for calculating derived
Chl a.

A3 Determining the initiation of the spring bloom

We found that determining the spring bloom peak was quite
noisy such that it was more informative to consider “initia-
tion of the spring bloom”. We therefore compared the timing
of the bloom initiation between the actual and derived Chl a.
Following the approach of Cole et al. (2012), we first reset
each “year” at each grid cell by centring to the peak model
actual Chl a. We then determine when the model actual Chl a
reaches 5 % above the annual median value. We define this
as the actual “initiation of the spring bloom”. To determine
the lag in the initiation (Fig. 9) we calculated the day that the
GS derived Chl a product (that is closest to the real-world
satellite-like derived Chl a, e.g. OC4-like) reaches 5 % of its
respective median values.

Appendix B: Exploring the impact of using monthly
means to determine algorithm coefficients

The daily values for 13 years at each grid point creates a very
large data file. Diagnostics with, and storage of, this large
dataset becomes extremely computationally expensive. In or-
der to conduct sensitivity studies we found that we needed to
reduce this dataset. Here we explore only outputting monthly
means of model RRS and Chl a and thus reducing the dataset
by 1/30. We determined the algorithm coefficients (a0 to a4
in Eq. 1) using monthly rather than daily means and subsam-
pling for the GS approach. The resulting function (Fig. 4,
solid black) is similar at low and intermediate Chl a, but does
deviate at high Chl a from the algorithm found using daily
mean values (light blue line). The r2 from this algorithm with
coefficients defined with monthly means was also not quite
as good as that found using daily means (see Tables 2 and 3).
However, we found that the results were similar enough that
we could obtain a qualitative comparison between sensitivity
experiments (EXP-1, EXP-2, EXP-3, discussed in Sect. 5).
We also note that the resulting two-dimensional histogram
(Fig. 11) has far lower density when using 4 million relative
to 140 million points. Though not perfect, using monthly out-
put does allow us to perform EXP-1 through EXP-3 and still
feel confident that the between experiment differences are ro-
bust.
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