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Efforts to estimate the physical and economic impacts of future climate change face sub-

stantial challenges. To enrich the currently popular approaches to impact analysis—which

involve evaluation of a damage function or multi-model comparisons based on a limited

number of standardized scenarios—we propose integrating a geospatially resolved physical

representation of impacts into a coupled human-Earth system modeling framework. Large

internationally coordinated exercises cannot easily respond to new policy targets and the

implementation of standard scenarios across models, institutions and research communities

can yield inconsistent estimates. Here, we argue for a shift toward the use of a self-consistent

integrated modeling framework to assess climate impacts, and discuss ways the integrated

assessment modeling community can move in this direction. We then demonstrate the

capabilities of such a modeling framework by conducting a multi-sectoral assessment

of climate impacts under a range of consistent and integrated economic and climate

scenarios that are responsive to new policies and business expectations.
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Estimating the impacts of climate change is challenging
because they span a large number of economic sectors and
ecosystems services, and can vary strongly by region1–3.

Many integrated assessment models (IAMs) rely on simple box
climate models and use a damage function approach to estimate a
social cost of carbon4 that relates changes in emissions to
economic damage5. These models are useful. For example, the US
EPA and other government agencies use these estimates to
evaluate the climate benefits of rulemakings2. But this approach
has also attracted criticism6,7 as the existing literature
offers sparse theoretical support and provides scant empirical
evidence for a specification of economic damages, especially at
temperatures outside the historical range.

Another widely used approach relies on model inter-
comparison projects (MIPs) that apply the results of detailed
biogeophysical models. They can offer valuable insights into
specific climate impacts (e.g., the Agricultural Model Inter-
comparison and Improvement Project (AgMIP) for agriculture8).
However, these exercises suffer from a rigid and complex fra-
mework, driven by the need for international coordination, so
they must rely on a limited number of socio-economic scenarios,
like the four representative concentration pathways (RCP)
scenarios9. Since the developers and the users of these scenarios
come from different research groups and disciplinary commu-
nities, major inconsistencies in their implementation, such as
socio-economic assumptions and ecosystem characteristics, can
easily occur. For example, when a common land-use scenario is
implemented in different Earth system models (ESMs), differ-
ences appear in cropland and pastureland areas because of the
different interpretations of land-use classes by the ESMs10. The
resulting differences in the carbon cycle and land-use forcing are
thus difficult to interpret. Also, each of the four RCP scenarios
was developed by a different IAM group, and their projections of
future air pollutant emissions are inconsistent with one another11,
making comparisons of air quality among RCP scenarios of little
value. Since many climate impact assessments do rely on MIPs,
and are not done within a cohesive IAM framework, these
inconsistencies can contaminate analysis of the benefits of climate
policies.

Furthermore, the MIPs lack flexibility, and responsiveness to
changes in economic and environmental policies (like the recent
Paris Agreement), and thus they are of limited usefulness in
analysis of policy choice. In addition, because of their single
sector focus these exercises do not capture important inter-
dependencies, linkages and feedbacks, and this lack of integration
among sectors is likely to lead to misrepresentation of climate
impacts12. Moreover, IAMs that use a single-sector macro-
economic representation of the global economy lack the cap-
ability for evaluation of particular sectors of the economy where
damages occur. Finally, there is little effort and limited capability
to synthesize the many MIPs into an overarching assessment of
climate impacts across sectors of the economy, which further
limits the information value these exercises bring to the decision
process.

In recent years, major efforts have been pursued toward the
development of consistent modeling frameworks to assess climate
impacts using a new generation of IAM, which place a greater
emphasis on representing the coupled human-Earth system
(CHES) model—essentially IAM version 2.0. Such modeling
frameworks include both a detailed representation of economic
activities, to track inter-sectoral and inter-regional links, and a
detailed representation of the various physical, chemical, and
biological components of the Earth system that are impacted by
human activity. The aim is to provide a tight integration among
three communities that, though internally collaborative, have
remained largely isolated from one another: the IAM, the Earth

System Modeling (ESM), and the impacts, adaptation, and vul-
nerability (IAV) communities. An advantage of such an approach
is that research groups can construct new scenarios of climate
change and conduct climate impact assessments, while ensuring
consistent treatment of interactions among population growth,
economic development, energy and land system changes and
physical climate impacts. Such new scenarios can provide
improved estimates of the impact of current and proposed
international agreements, and other aspects of climate policy13.

To provide an example of such a CHES modeling framework
and demonstrate its capabilities, we examine socio-economic and
climate change impacts under a range of consistent and inte-
grated economic and climate scenarios using the MIT Integrated
Global System Model (IGSM)14–17. The IGSM couples a human
system model to an ESM of intermediate complexity (EMIC), and
links to a series of geospatially resolved physical impact models
(see Methods section). While we showcase the IGSM, other
models could be used as well, as other IAM groups have made
similar improvements in the integration of the coupled human
and Earth systems. Examples include the Integrated Model to
Assess the Greenhouse Effect (IMAGE)18, the Global Change
Assessment Model (GCAM)19, the model for energy supply
strategy alternatives and their general environmental impact
(MESSAGE)20 and the Asia Pacific Integrated Model (AIM)21. In
this paper, we first discuss strategies for coupling between human
and ESMs and the improved integration of geospatially resolved
physical impact models. We then present a multi-sectoral climate
impact assessment focusing on ocean acidification, air quality,
water resources and agriculture under consistent and integrated
economic and climate scenarios that are responsive to new
policies and business expectations. This example then provides a
basis for arguing the advantages of such a shift toward a
consistent CHES modeling framework to assess climate impacts.

Results
Strategies for coupling human and ESMs. The human system
component of a CHES model should represent the world’s
economy, disaggregated into multiple regions and with sectoral
detail (i.e., agriculture, services, industrial and household trans-
portation, energy-intensive industry). It also should include trade,
investments, savings, and consumption decisions, as well as
abatement of greenhouse gases (GHGs) through the imple-
mentation of policies like carbon taxes, emissions trading, mea-
sures to support specific technologies (e.g., wind, solar, carbon
capture), and regional fuel and emissions standards. The Earth
system component should simulate the coupled atmosphere,
ocean, land (including rivers and lakes) and cryosphere (sea ice,
land ice, permafrost), including the dynamical and physical
processes (i.e., river flow, ocean eddies, cloud processes, erosion),
chemical processes (chemical gases and aerosols), biogeochemical
processes (life-mediated carbon-nutrient dynamics), and bio-
geophysical processes (life-mediated water and energy balance).

In practice, because state-of-the-art ESMs are computationally
expensive, a CHES model can be built by coupling a human
system model to a simplified model of the climate system and to
specific impact models for key ecosystems and sectors of the
economy (Fig. 1). Different coupling strategies exist22, from off-
line one-way information exchange between research commu-
nities to fully coupled modeling approaches that yield more or
less instantaneous (depending on the timestep of the coupling)
two-way interactions between the human and Earth system
components. Other strategies include improving the representa-
tion of the Earth system in IAMs or improving the representation
of societal elements within ESMs. Beyond the challenge
of coupling the human and Earth systems, an important
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characteristic of CHES models should be a detailed representation
of the biophysical impacts of climate change, spanning key
economic sectors and ecosystem services. (Additional details on
the various coupling strategies and their advantages are provided
in the Supplementary Table 1.)

While the coupling strategy remains an important issue, and
full coupling between the human and Earth systems is an
aspirational goal, the effort will not be very insightful if it involves
dubious damage functions, like it does in social cost of carbon
models23,24. Also, full coupling raises many additional challenges,
e.g., difficulties of coupling different software systems, complex-
ities of representing the cascading of uncertainty among
components of the system, and differences in temporal and
spatial scale of the various components. As a result, full coupling
is generally limited to a specific pathway, like the land system25.
In addition, full integration is not warranted unless there is
evidence that it would substantially change the estimates of
climate impacts. In the process of developing a CHES model,
therefore, a one-way coupling where physical impacts of climate
change are explicitly modeled, but do feed back onto GHG
emissions and the climate system (e.g., land-use change), is a
useful first step. A salient response from the one-way testing will
then warrant exploration of two-way coupling which, if found to
produce significant new insights, can be incorporated in
subsequent versions of the model. A similar approach is suggested
to interactions among impact models, for example between air
quality and agriculture.

Improved integration of physical impact models. To simulate
regional changes in temperature and precipitation, the IGSM can
be combined with statistical emulation techniques (pattern scal-
ing) to represent the differences in the regional patterns of change
exhibited by different climate models26,27, or it can be coupled to
a 3-dimensional atmospheric model when 3-dimensional and
highly-resolved temporal climate information is required or to
assess the role of natural climate variability at the regional scale28.
To examine the fate of the oceans under future climate change,
the IGSM includes a 3-dimensional dynamical, biological, and
chemical ocean general circulation model capable of physically
estimating global and regional changes in ocean acidification,
the meridional overturning circulation, or the structure of
phytoplankton communities29–31.

To analyze the co-benefits of GHG mitigation on air quality,
the IGSM is linked to a 3-dimensional atmospheric chemistry

model32,33 that simulates, among others, changes in ground level
fine particulate matter (PM2.5) concentrations, where the human
system model is combined with a detailed emissions inventory to
provide anthropogenic emissions of precursors. Because the
influence of climate change on air quality has been found to be
small compared to the impact of reduction in emissions, we do
not couple the atmospheric chemistry model to the climate model
in the IGSM, instead using fixed meteorological fields for a
chosen year (e.g., 2010) or set of years that capture distinct
climate conditions (e.g., El Niño/La Niña/neutral year) for all
simulations. To assess the changes in water resources driven by
climate change and socio-economic drivers (e.g., population
increase) the IGSM includes a river basin scale model of water
resources management34,35, representing the competition for
water among industry, agriculture and domestic use in the face of
changes in water demand and water supply in 282 Assessment
Sub-Regions (ASRs) over the globe—but that can also run at a
more spatially resolved capacity over specific regions36,37.

Finally, to investigate the future of agriculture, the IGSM is
coupled to a global gridded process-based terrestrial ecosystem/
biogeochemistry carbon-nitrogen model, which simulates the
impact of climate (temperature, precipitation, and solar radia-
tion), atmospheric chemistry (CO2 fertilization and ozone
damage) and nitrogen limitation on crop yield, and accounts
for land-use change adaptation decisions made by the human
system model38,39. Because ozone damage has been identified as a
major stressor on land productivity40, it is included in this
analysis. However, the impact of land-use change on the climate
system, through GHG emissions and changes in surface
albedo10,41, is not included because it has not been demonstrated
to be a key feedback on agricultural productivity. (More details
are provided in Methods section.)

Integrated economic and climate scenarios. The integrated
economic and climate scenarios are developed following three
typical approaches in business, government and academia to
explore the future: the desired, a normative scenario aimed at
limiting global warming in 2100 to 2 °C from pre-industrial
(named 2C) using a global economy-wide carbon tax; the likely,
an outlook based on existing policy, here an assessment of the
results from the UN COP-21 meeting42 (named Paris Forever),
assuming no additional climate policy after 2030, resulting in 3.5 °
C warming in 2100, emphasizing that the current pledges are not
sufficient to meet the goal to stay “well below 2 °C”43; and the
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Fig. 1 Conceptual representation of a coupled human-Earth system model with improved integration of physical impact models. Different coupling
strategies between the various components of the modeling framework are represented by the different arrows. Potential impacts are listed in the right box
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plausible, two exploratory scenarios to assess the potential
development of low-carbon energy technologies (named Oceans
and Mountains)44, with warmings of 2.7 °C and 2.4 °C in 2100,
respectively. Compared to the RCP scenarios (Fig. 2), these sce-
narios are responsive to and grounded in the latest existing cli-
mate policies (UN COP-21). They do not include a business-as-
usual scenario like the RCP8.5, and they avoid scenarios based on
unproven negative emissions technologies, like the RCP2.6. We
provide a few applications of integrated impact assessments
focusing on ocean acidification, air quality, water resources and
agriculture (Fig. 3). (Additional details on the scenarios are
provided in Supplementary Table 2, and GHG emissions are
shown in Supplementary Fig. 1.)

Multi-sectoral climate impact assessment. Under the Paris
Forever scenario, the global ocean pH would drop to levels under
7.9 by 2100, which would significantly impact all calcareous
phytoplankton that are the base of the ocean food chain, and
would damage or destroy coral reefs45, but the ocean acidification
is significantly reduced under the 2C scenario. China and India,
two countries that currently experience severely polluted ambient
air (with annual mean concentrations of PM2.5 greater than air
quality standards over major areas), would see increased pollution
by 2100 under the Paris Forever scenario, with PM2.5 con-
centrations doubling in many regions. However, these countries
would experience significant co-benefits of imposing a carbon tax
under the 2C scenario, with reductions in co-emitted air pollu-
tants including PM2.5. By 2100, the population exposed to water
stress is generally projected to increase by several hundred million
under most scenarios, mainly driven by increases in water
demand from a growing population. However, the use of different
climate models—through statistical emulation techniques—
results in contrasting estimates of the impact of climate mitiga-
tion, because of differences in regional patterns of precipitation
change. Under a relatively dry climate model pattern (model N),
the higher warming scenario is associated with stronger regional
decreases in precipitation and thus increased water scarcity over
densely-populated areas. Emissions mitigation reduces the degree
of water scarcity. On the other hand, this finding is reversed
under a relatively wet climate model pattern (model M), thus
motivating the implementation of much larger ensemble simu-
lations to properly assess these risks46. Finally, large increases in
temperature, exceeding the damaging temperature thresholds for
crop productivity47,48, and major ozone damage40 are projected
under the Paris Forever scenario. Even under cropland relocation,
extension and intensification, the overall global crop yield (over

crop land areas) decreases by 2100. Emissions mitigation results
in substantial reductions in warming and surface ozone con-
centrations, so land-use change adaptation can lead to benefits to
the agriculture sector. (Additional analyses for all scenarios are
provided in Supplementary Figs. 2, 3 and 4, with a summary of
the major findings in Supplementary Table 3.)

Our results show varying levels of agreement with existing
impact assessments, especially those within the Inter-Sectoral
Impact Model Intercomparison Project (ISIMIP) framework49.
The ocean acidification analysis is consistent with existing ESM
intercomparison under the RCP scenarios50. The population
exposed to water stress is generally in agreement with the analysis
from a large ensemble of global hydrological models forced by
five global climate models under the RCP scenarios51, but it lies
on the lower end because we explicitly integrate the biogeophy-
sical modeling of water resources with a water resources
management model and thus optimize water resources. Also,
our finding that there are conditions under which GHG
mitigation could increase water scarcity resonates with an
analysis focusing on the US52. The major co-benefits of reducing
GHG emissions on air quality are consistent with existing
estimates11, although the actual magnitude of the co-benefits can
vary substantially among studies because of differences in the
scenarios and differences in the treatment of criteria pollutant
emissions by different IAMs. Finally, the climate impacts on
agricultural productivity differ from AgMIP analyses53 because
our estimates include ozone damage and land-use change
adaptation. Few studies bring together estimates of climate
impacts across ecosystems and sectors of the economy under a
consistent modeling framework, using consistent socio-economic
and climate scenarios.

Discussion
Assessing climate change impacts is a challenging task, and many
researchers are cautious about reducing impacts to a monetary
value. Despite being an active area of research, there is little
theory to guide the damage functions needed to directly translate
change in global mean temperature to impacts on gross domestic
product (GDP), and in many cases arbitrary functional forms and
corresponding parameter values are chosen54. In contrast, we
focus on understanding the chain of actual physical changes at
the regional and sectoral levels and then estimating the economic
impacts, thus bridging the gaps among the IAM, ESM, and IAV
communities. Our results show that the projected climate impacts
vary dramatically across the globe, with large uncertainties in the
physical climate impacts associated with differences in the
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magnitude and patterns of climate change from different climate
models, thus putting in question the adequacy of damage func-
tions based on global mean temperature. These results also sup-
port the need to rely on probabilistic ensembles of climate
simulations to determine the full range of outcomes and move
into quantitative climate risk assessments. Such probabilistic
impact assessment has been conducted with the IGSM for specific
regions of the world46. Furthermore, our analysis shows that
more stringent emission reduction scenarios (Oceans, Mountains,
2C) are successful in mitigating a large portion of these climate
impacts. These projections demonstrate the relative value of each
emissions mitigation policy by relying on consistent economic
and climate projections that provide a sound physical basis for
the estimates of climate impacts. Finally, they do not require
internationally coordinated modeling efforts that can be cum-
bersome and time consuming, and that sometimes lag the
implementation of climate policies in the real world.

This strategy to move toward a more integrated and self-
consistent representation of the coupled human and Earth sys-
tems, with a geospatially resolved physical representation of

climate impacts, has largely emerged from a recent research focus
on the food-energy-water (FEW) nexus and outcomes from
MIPs, like ISIMIP, which have shown the importance of linking
IAMs with physical impact models53,55–57. The improvement of
existing IAMs, implementing the paradigm shift that a CHES
approach represents, is ongoing in many integrated assessment
modeling research groups58, with different levels of integration,
number of impacts considered, and speed of model develop-
ment59–64. Thus far, however, these efforts have focused largely
on individual sectors of the economy, like energy for heating and
cooling65–67, water resources68–71 or air pollution72.

While an uncertainty analysis is beyond the scope of this paper,
we recognize that the climate impact results discussed above are
subject to substantial uncertainty. The common approach to
address uncertainty in climate impact studies is through multiple
impact model ensembles driven by multiple climate model
ensembles (e.g., ISIMIP/AGMIP). Because of the lack of flexibility
and responsiveness of these coordinated multi-model exercises,
we argue that a complementary approach is to use model emu-
lators (e.g., crop yield emulators73 or climate emulators26,27,46)
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along with large model ensembles—perturbing the physics,
parameters, and initial conditions—within a consistent CHES
modeling framework13,27,74,75. Such an approach could not only
help quantify parametric or scenario uncertainty, but also address
structural uncertainty (associated with the use of different mod-
els) by using emulators to reproduce and account for the varying
behavior of different models.

We further argue that it is possible to develop computationally-
efficient models, which represent the various essential compo-
nents of the Earth system and provide a physical representation of
climate impacts, albeit in reduced forms (e.g., EMIC or emula-
tors). These modeling frameworks can be used for risk analysis
instead of relying on box models and dubious damage functions.
At the same time, computationally demanding process-based
impact models are still required to assess the climate impacts on
specific sectors, such as air quality and health. The need for state-
of-the-art models is well illustrated by recent evidence of the
important role of natural climate variability on regional atmo-
spheric chemistry76,77, further questioning the adequacy of
damage functions based on global mean temperature. At the very
least, the relevance of these damage functions could be tested
against the more geospatially resolved and physically grounded
CHES modeling framework.

The modeling framework presented in this study can offer a
new and complementary way for multi-sectoral climate impact
assessments under a wide range of up-to-date policy scenarios
while ensuring the needed consistency among the various com-
ponents of the human and Earth systems. We propose that the
development of more integrated and self-consistent models of the
coupled human and Earth systems, with a geospatially resolved
physical representation of climate impacts be the next step
beyond the traditional RCP and MIP approaches. Such an effort
will promote an increasingly tighter collaboration among the
IAM, ESM, and IAV communities. While there is still a need to
bridge the gap between physical impacts and the resulting
monetary values for economic damages, ongoing research shows
important progress in this direction, such as efforts on health
impacts78,79 and agricultural impacts80, and continued focus
should be devoted on this aspect of climate impact research.

Methods
Coupled human-Earth system model. In this study, we use the MIT Integrated
Global System Modeling (IGSM) framework14–17 that links a human system
model, the economic projection and policy analysis (EPPA) model, to an ESM of
intermediate complexity, the MIT Earth System Model (MESM). The schematic of
the IGSM is provided in Supplementary Fig. 5.

Human system model. To evaluate long-term scenarios of energy and economic
development we employ the EPPA model81,82, which provides a multi-region,
multi-sector dynamic representation of the global economy. The Global Trade
Analysis Project (GTAP) dataset83 provides the base information on the input-
output structure for regional economies, including bilateral trade flows. The base
year for the model is 2010, based on the calibration of the GTAP data for 2007, and
from 2010 the model solves at 5-year intervals. We also further calibrate the data
for 2010–2015 based on the data from the International Monetary Fund (IMF)
World Economic Outlook84 and the International Energy Agency (IEA) World
Energy Outlook85.

The model includes a representation of CO2 and non-CO2 (CH4, N2O, HFCs,
PFCs, and SF6) GHG emissions abatement, and calculates reductions from gas-
specific control measures as well as those occurring as a byproduct of actions
directed at reducing emissions of CO2. The model also tracks major air pollutants:
sulfates (SOx), nitrogen oxides (NOx), black carbon (BC), organic carbon (OC),
carbon monoxide (CO), ammonia (NH3), and non-methane volatile organic
compounds (VOCs).

Future scenarios can be calibrated to specified energy or emissions profiles or
driven by economic growth (resulting from savings and investments) and by
exogenously specified productivity improvement in labor, energy, and land.
Demand for goods produced from each sector increases as GDP and income grow;
stocks of limited resources (e.g., coal, oil, and natural gas) deplete with use, driving
production to higher cost grades; sectors that use renewable resources (e.g., land)
compete for the available flow of services from them, generating rents. Combined

with policy and other constraints, these drivers change the relative economics of
different technologies over time and across scenarios, as advanced technologies
only enter the market when they become cost-competitive.

The production structure for electricity is the most detailed of all sectors, and
captures technological changes that will be important to track under a GHG
emissions mitigation policy. The deployment of advanced technologies is
endogenous to the model. Advanced technologies, such as cellulosic biofuel or wind
and solar technologies, enter the market when they become cost-competitive with
existing technologies. Technologies are ranked according to their levelized cost of
electricity, plus additional integration costs for wind and solar. When a carbon price
exists, low carbon technologies are introduced. Initially, a fixed factor is required to
represent costs of deployment (e.g., institutional costs, learning costs) for new
technologies that—while competitive—require some time to penetrate into the
market. The fixed-factor supply grows each period as a function of deployment until
it becomes non-binding, allowing for large-scale deployment of the new technology.
A complete description of the nesting structure of electricity generation and other
production sectors in the EPPA model can be found in the model description81.

Earth system model. The MESM86 couples a zonally-averaged model of atmo-
spheric dynamics, physics and chemistry, a land model with a representation of the
terrestrial ecosystem biogeochemistry, and a choice of either a mixed layer anomaly
diffusive ocean model or a 3-dimensional dynamical ocean component based on
the MIT ocean general circulation model87,88, including a detailed representation
of physical, chemical, and biological processes29–31, along with carbon cycle and
thermodynamic sea-ice submodels.

The atmospheric model is a zonally-averaged statistical dynamical model that
explicitly solves the primitive equations for the zonal mean state of the atmosphere
and includes parameterizations of heat, moisture, and momentum transports by
large-scale eddies based on baroclinic wave theory. The parameterizations of
physical processes include clouds, convection, precipitation, radiation, boundary
layer processes, and surface fluxes. The radiation code includes all significant
GHGs (H2O, CO2, CH4, N2O, CFCs, and O3) and eleven types of aerosols. The
land model simulates terrestrial water, energy, carbon, and nitrogen budgets
including carbon dioxide (CO2) and trace gas emissions of methane (CH4) and
nitrous oxide (N2O). The MESM also includes an urban air chemistry model and a
detailed global scale zonal-mean atmospheric chemistry model that consider the
chemical fate of 33 species, 41 gaseous-phase, and 12 aqueous-phase chemical
reactions.

The global climate response of the MESM can be varied by modifying its
climate sensitivity, strength of aerosol forcing and rate of ocean heat and carbon
uptake, thus allowing for uncertainty analysis in global climate change. For regional
studies, the MESM can be coupled to the NCAR 3-dimensional Community
Atmosphere Model (CAM)28 or to a climate emulator that relies on a pattern-
scaling method that extends the MESM zonal mean variables based on climate
change patterns from various climate models26.

Geospatially resolved physical representation of impacts. To simulate the
physical impacts of global change, the MIT IGSM is linked to a series of impact
models. In this study, we focus on the representation of climate impacts on ocean
acidification, air quality, water resources and agriculture.

Changes in pH are simulated using the MESM 3-dimensional dynamical ocean,
with a detailed representation of physical, chemical, and biological processes. The
MESM can simulate changes in ocean carbon uptake and acidification under
various scenarios of global change, consistent with the associated changes in the
physical ocean (e.g., warming and changes in the meridional overturning
circulation). In addition, since the ocean model is fully coupled within the MESM,
changes in ocean circulation and carbon impact the global climate system.

To estimate regional atmospheric pollutant concentrations, the IGSM is linked
to GEOS-Chem version 9.02, a three-dimensional chemical transport model89 with
a 2° × 2.5° horizontal grid cell resolution. Non-agricultural anthropogenic
emissions are projected in ten-year intervals out to 2100 using the projections from
EPPA. In previous studies, we have coupled a three-dimensional chemical
transport model to the MESM to examine the impact of climate change on air
quality77,79. However, here, meteorological fields from 2010 were used, thus
isolating the air quality impact of anthropogenic emissions changes, while biomass
burning and biogenic emissions are left constant at 2010 levels.

We assess trends in water stress using the Water Resource System (WRS)34,35, a
river basin scale model of water resources management, which is forced by global
simulations of climate change as well as socioeconomic drivers simulated by the
IGSM. The WRS framework includes: (1) water supply: the collection, storage, and
diversion of natural surface water and groundwater; (2) water requirements: the
withdrawal, consumption, and flow management of water for economic and
environmental purposes; and (3) the supply/requirement balance at river basin
scale and measures of water scarcity. We assess changes in water stress for the globe
at 282 Assessment Sub Regions (ASRs), which are geographic regions delineated by
large river basin and country boundaries.

Finally, we estimate changes in agricultural productivity using the Terrestrial
Ecosystem Model (TEM) component of the MESM, which is a process-based
model that describes the carbon, nitrogen, and water dynamics of plants and soils
for terrestrial ecosystems over the globe38,90,91. TEM uses spatially referenced
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information on climate, elevation, soils, and vegetation as well as soil-specific and
vegetation-specific parameters to estimate important carbon, nitrogen, and water
fluxes and pool sizes of terrestrial ecosystems and land productivity for a large
number of vegetation types, including crops. TEM has a 1-month time step and a
0.5° × 0.5° horizontal grid cell resolution. TEM is coupled to the EPPA model to
provide an integrated modeling framework to project land-use change and its
associated changes in land productivity and net land carbon fluxes38,39,91, driven by
changes in atmospheric carbon dioxide (CO2) and ozone (O3) concentrations and
climate variables (i.e., temperature, precipitation, radiation) from the MESM
model. In most studies, there is no feedback of land-use change GHG emissions
and changes in albedo onto the climate system, however, the two-way coupling has
been implemented for targeted studies41.

Code availability. Various codes that support the findings of this study are pub-
licly available. A public version of the EPPA 6 model can be downloaded upon
request by emailing globalchangewebmaster@mit.edu. The MESM source code will
be publicly available via repository once the user license is completed (email mesm-
request@mit.edu for further information). The MITgcm source code is publicly
available via repository at http://mitgcm.org. The versions of WRS and TEM
models used in this study are maintained by the MIT Joint Program on the Science
and Policy of Global Change and service requests should be directed to the cor-
responding authors. The GOES-Chem model is managed by the GEOS-Chem
Support Team, based at Harvard University and Dalhousie University with support
from the US NASA Earth Science Division and the Canadian National and
Engineering Research Council and a public release of the model can be obtained at
http://geos-chem.org/.

Data availability. The underlying data supporting the findings of the study are
available at the DSpace@MIT (http://hdl.handle.net/1721.1/113296).
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