
MIT Joint Program on the Science and Policy of Global Change 
combines cutting-edge scientific research with independent policy 
analysis to provide a solid foundation for the public and private 
decisions needed to mitigate and adapt to unavoidable global 
environmental changes. Being data-driven, the Joint Program uses 
extensive Earth system and economic data and models to produce 
quantitative analysis and predictions of the risks of climate change 
and the challenges of limiting human influence on the environment—
essential knowledge for the international dialogue toward a global 
response to climate change.

To this end, the Joint Program brings together an interdisciplinary 
group from two established MIT research centers: the Center for 
Global Change Science (CGCS) and the Center for Energy and 
Environmental Policy Research (CEEPR). These two centers—along 
with collaborators from the Marine Biology Laboratory (MBL) at 

Woods Hole and short- and long-term visitors—provide the united 
vision needed to solve global challenges. 

At the heart of much of the program’s work lies MIT’s Integrated 
Global System Model. Through this integrated model, the program 
seeks to discover new interactions among natural and human climate 
system components; objectively assess uncertainty in economic and 
climate projections; critically and quantitatively analyze environmental 
management and policy proposals; understand complex connections 
among the many forces that will shape our future; and improve 
methods to model, monitor and verify greenhouse gas emissions and 
climatic impacts.

This reprint is intended to communicate research results and improve 
public understanding of global environment and energy challenges, 
thereby contributing to informed debate about climate change and the 
economic and social implications of policy alternatives.

—Ronald G. Prinn and John M. Reilly, 
 Joint Program Co-Directors

MIT Joint Program on the Science and Policy  
of Global Change

Massachusetts Institute of Technology 
77 Massachusetts Ave., E19-411  
Cambridge MA 02139-4307 (USA)

T (617) 253-7492 F (617) 253-9845 
globalchange@mit.edu 
http://globalchange.mit.edu/

February 2018
Report 325

Description and Evaluation of the MIT 
Earth System Model (MESM)
Andrei Sokolov, David Kicklighter, Adam Schlosser, Chien Wang,  
Erwan Monier, Benjamin Brown-Steiner, Ron Prinn, Chris Forest,  
Xiang Gao, Alex Libardoni and Sebastian Eastham



 February 2018

Description and Evaluation of the MIT Earth 
System Model (MESM)
andrei Sokolov1,6, David Kicklighter2, adam Schlosser1, Chien Wang1, erwan Monier1, benjamin brown-Steiner1,3, ron 
Prinn1, Chris Forest4, Xiang Gao1, alex Libardoni4 and Sebastian eastham5

Abstract: The MIT Integrated Global System Model (IGSM) is designed for analyzing the global 
environmental changes that may result from anthropogenic causes, quantifying the uncertainties associated 
with the projected changes, and assessing the costs and environmental effectiveness of proposed policies 
to mitigate climate risk. The IGSM consists of the MIT Earth System Model of intermediate complexity 
(MESM) and the Economic Projections and Policy Analysis (EPPA) model. This paper documents the 
current version of the MESM, which includes a 2-dimensional (zonally averaged) atmospheric model with 
interactive chemistry coupled to the Global Land System model and an anomaly-diffusing ocean model.

1 Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge, MA, USA
2 The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, USA
3 Currently at Atmospheric and Environmental Research, Lexington, MA, USA
4 Department of Meteorology & Earth and Environmental Systems Institute, Pennsylvania State University, University Park, PA, USA
5 Laboratory for Aviation and the Environment, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 
Cambridge, MA, USA
6 Corresponding author:  Andrei Sokolov (sokolov@mit.edu) 

1. INTRODUCTION .........................................................................................................................................................2

2. MODEL DESCRIPTION .............................................................................................................................................3
2.1 aTMOSPHerIC DyNaMICS aND PHySICS ...............................................................................................................3
2.2 urbaN aND GLObaL aTMOSPHerIC CHeMISTry ...............................................................................................4

2.2.1 urban atmospheric Chemistry ................................................................................................................... 4
2.2.2 Global atmospheric Chemistry ................................................................................................................... 4
2.2.3 Coupling of urban and Global atmospheric Chemistry ........................................................................ 5

2.3 OCeaN COMPONeNT .......................................................................................................................................................5
2.4 LaND COMPONeNT ..........................................................................................................................................................6

2.4.1  The Community Land Model (CLM) ......................................................................................................... 7
2.4.2 The Terrestrial ecosystems Model (TeM) ................................................................................................. 8

3. MODEL EVALUATION ...............................................................................................................................................9
3.1 DISTrIbuTION OF CLIMaTe ParaMeTerS aND CHaraCTerISTICS DeSCrIbING MODeL 

reSPONSe TO eXTerNaL FOrCING. ..........................................................................................................................9
3.2 HISTOrICaL CLIMaTe CHaNGe ................................................................................................................................. 11
3.3 PreSeNT-Day CLIMaTe .................................................................................................................................................13

3.3.1 Meteorological Variables ...........................................................................................................................13
3.3.2 Terrestrial Water Cycles .............................................................................................................................14
3.3.3 ecosystem Productivity and Natural emissions of Trace Gases ........................................................16

3.4 eMISSIONS-DrIVeN PrOJeCTIONS OF FuTure CLIMaTe ................................................................................21

4. CONCLUSION ..........................................................................................................................................................23

5. REFERENCES ...........................................................................................................................................................24

mailto:sokolov@mit.edu)


1. Introduction
There is significant uncertainty in projections of future 
climate associated with uncertainty in possible pathways of 
economic development and corresponding anthropogenic 
emissions of different gases as well as with uncertainty 
in climate system response to these emissions.  Climate 
system properties that determine its response to transient 
forcing, such as climate sensitivity and the rate at which the 
deep ocean absorbs heat  simulated by atmosphere-ocean 
general circulation models (AOGCMs, e.g. Andrews et al., 
2013; Forster et al., 2013; IPCC, 2013); and the strength of 
the carbon cycle and carbon-climate feedbacks,  simulated 
by Earth System Models (ESMs,  Friedlingstein et al, 2006 
and 2014) differ significantly leading to a large spread in 
the future atmospheric CO2 concentration and radiative 
forcing for a given emission scenario. There are additional 
uncertainties in the forcing itself, especially in the forcing 
associated with aerosol-cloud interaction.
Unfortunately, the available directly-measured ocean, land 
and atmospheric data can only place limited constraints 
on these key quantities (e.g. Andronova & Schlesinger, 
2001; Gregory et al., 2002; Forest et al., 2008, Libardoni 
and Forest, 2011). Thus, these uncertainties have not been 
reduced over the last few decades in spite of significant 
efforts and are unlikely to be substantially reduced within 
the next decade or more, when important policy choices 
must nevertheless be made. These uncertainties, in turn, 
result in a rather wide uncertainty in projected future cli-
mate change. 
To place our current understanding of potential future 
climate change within the context of these uncertainties 
to policy-makers and the general public, the latest report 
of Intergovernmental Panel on Climate Change (IPCC, 
2013) provides mean values and probability intervals for 
projected changes of future climate, based on a multi-model 
ensemble (MME). There are, however, well known problems 
with MMEs, such as small sample size and the fact that 
different modes are neither independent nor likely plausible 
(IPCC, 2013 and literature referenced there). In addition, 
there are no guaranties that the existing AOGCMs and 
ESMs sample the full ranges of uncertainties in different 
climate characteristics and moreover sample these ranges 
homogeneously. An alternative approach is to estimate the 
probability distributions of climate parameters based on 
available data for past climate and then carry out large (few 
hundred members) ensembles of future climate simulations 
by sampling parameter values from these distributions.
Even with much greater computational power than is avail-
able today, however, it will not be possible to carry out such 
an exercise using a fully complex state-of-the-art AOGCM 
or ESM. Therefore, such studies are usually carried out with 
Earth System Models of Intermediate Complexity (EMICs) 
(Knutti et al., 2003; Rogelj et al., 2012; Sokolov et al, 2009; 

Webster et al., 2003 and 2012). It has been shown that, 
with an appropriate choice of parameter values EMICs 
can reproduce global mean changes simulated by different 
AOGCMs and ESMs under different forcing scenarios 
(Raper et al., 2001; Sokolov et al., 2003; Meinshausen et al. 
2011). Model intercomparisons also have shown that in 
many cases changes in climate predicted by models of 
intermediate complexity are very similar to those obtained 
in the simulations with AOGCMs (Gregory et al., 2005; 
Stouffer et al., 2005).
The MIT Earth System Model (MESM) is designed to 
provide the flexibility and computational speed required 
to handle uncertainty analysis while representing to the 
best degree possible the physics, chemistry and biology of 
the more computationally intensive AOGCMs.  Within 
the MIT Integrated System Model (IGSM), the MESM 
is linked to a model of human interactions so that the 
consequences of various economic and policy decisions 
on future climate may be evaluated. The MESM can be 
run in both concentration-driven and emissions-driven 
modes. As a result, it can be used to quantify uncertainties 
in future climate.  To do this, the MESM is first used to 
produce probability distributions for the climate sensitivity, 
the rate of heat uptake by the deep oceans, and the net 
forcing due to aerosol-radiation interaction by comparing 
observed temperature changes over the 20th century with 
the results of historical (concentration-driven) simula-
tions in which model parameter values were varied over 
wide ranges (Forest et al., 2002 and 2008; Libardoni and 
Forest 2011 and 2013; Libardoni 2017). The constructed 
distributions are then used to carry out ensembles of future 
climate emissions-driven simulations and produce proba-
bility distributions for changes in different climate variables. 
Uncertainty in climate system response are then combined 
with uncertainty in anthropogenic emissions (Webster et al., 
2002 and 2008) to estimate overall uncertainty in possible 
anthropogenic climate change (Sokolov et al., 2009; Web-
ster et al., 2003 and 2012). In previous publications acronym 
“IGSM” was used for both Integrated System Model as a 
whole and its climate component. Here we use acronym 
“MESM” for the latter.
The first version of the MESM was developed in the 
mid-1990s (Sokolov and Stone 1995 and 1997; Prinn et al., 
1999) and has since been continually modified and ex-
tended (Sokolov et al., 2005). Different versions of the 
MESM were used in a number of model intercomparison 
projects (e.g., Gregory et al., 2005; Petoukhov et al., 2005; 
Stouffer et al., 2005; Brovkin et al., 2006; Plattner et al., 
2008; Eby et al., 2013; Olsen et al. 2013; Zickfeld et al., 
2013; Brasseur et al., 2016). The MESM shows generally 
comparable results to those of more complex models. For 
example, the study of the impact of aviation emissions on 
atmospheric chemical composition and climate showed 
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that MESM performs within the envelope of the more 
complex 3-D chemistry-climate models (Brasseur et al., 
2016; Olsen et al., 2013).

In this paper, we describe the current version of the MESM, 
as of the middle of 2017. Description of the model com-
ponents is given in Section 2. Section 3 provides a com-
parison of simulated present-day climate and historical 
climate change with results produced by CMIP5 models 
and available observations. 

2. Model Description
The major model components of the MESM 
(Figure 1) include:

• An atmospheric dynamics, physics and chemistry model, 
which includes a sub-model of urban chemistry,

• An ocean model with carbon cycle and sea-ice 
sub-models,

• A linked set of coupled process-based land models, the 
Terrestrial Ecosystem Model (TEM), a fully integrated 
Natural Emissions Model (NEM), and the Communi-
ty Land Model (CLM), that simulate terrestrial water, 
energy, carbon and nitrogen budgets including carbon 
dioxide (CO2) and trace gas emissions of methane (CH4) 
and nitrous oxide (N2O).

The earth system depicted in Figure 1 represents a fully 
coupled system that allows simulation of critical feedbacks 
among its components. Time-steps used in the various 
sub-models range from 10 minutes for atmospheric dy-
namics, to 1 month for TEM, reflecting differences in the 
characteristic time-scales of different processes simulated 
by the MESM. The major model components of the MESM 
and linkages are summarized below.

2.1 Atmospheric Dynamics and Physics
The MIT two-dimensional (2D) atmospheric dynamics and 
physics model (Sokolov & Stone, 1998) is a zonally-aver-
aged statistical dynamical model that explicitly solves the 
primitive equations for the zonal mean state of the atmo-
sphere and includes parameterizations of heat, moisture, 
and momentum transports by large-scale eddies based 
on baroclinic wave theory (Stone & Yao, 1987, 1990). The 
model’s numerics and parameterizations of physical process-
es, including clouds, convection, precipitation, radiation, 
boundary layer processes, and surface fluxes, build upon 
those of the Goddard Institute for Space Studies (GISS) 
GCM (Hansen et al., 1983). The radiation code includes 
all significant greenhouse gases (H2O, CO2, CH4, N2O, 
CFCs and O3) and multiple types of aerosols. The model’s 
horizontal and vertical resolutions are variable, but in the 
standard version of MESM it has 4° resolution in latitude 
and eleven levels in the vertical.
The MIT 2D atmospheric dynamics and physics model 
allows up to four different types of surfaces in the same grid 
cell (ice-free ocean, sea-ice, land, and land-ice). The surface 
characteristics (e.g., temperature, soil moisture, albedo) as 
well as turbulent and radiative fluxes are calculated sepa-
rately for each kind of surface while the atmosphere above 
is assumed to be well mixed horizontally in each latitudinal 
band. The area weighted fluxes from different surface types 
are used to calculate the change of temperature, humidity, 
and wind speed in the atmosphere. Fluxes of sensible heat 
and latent heat are calculated in the atmospheric model 
by bulk formulas with turbulent exchange coefficients 
dependent on the Richardson number. The atmosphere’s 
turbulence parameterization is also used in the calculation 
of the flux derivatives with respect to surface temperature. 
To account for partial adjustment of near surface air tem-
perature to changes in fluxes, the derivatives are calculated 
under the assumption that the exchange coefficients are 
fixed. A more detailed discussion of the technical issues 
involved in the calculations of these fluxes and their de-
rivatives is given in Kamenkovich et al. (2002).
The moist convection parameterization, which was origi-
nally designed for the GISS Model I (Hansen et al. 1983), 
requires knowledge of sub-grid scale temperature variance. 
Zonal temperature variance associated with transient ed-
dies is calculated using a parameterization proposed by 
Branscome (see Yao and Stone 1987). The variance associ-
ated with stationary eddies is represented by adding a fixed 
variance that follows more closely the climatological pattern 
(see Figure. 7.8b of Peixoto and Oort 1992). In addition, 
the threshold values of relative humidity for the formation 
of large-scale cloud and precipitation varies with latitude 
to account for the dependence of the zonal variability of 
relative humidity on latitude. Zonal precipitations simulated 
by the atmospheric model are partitioned into land and 

Figure 1. MIT earth System Model of Intermediate 
Complexity (MeSM)
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ocean components using present day climatology. These 
changes led to an improvement in the zonal pattern of the 
annual cycle of land precipitation and evapotranspiration 
(Schlosser at al. 2007).
The atmospheric model’s climate sensitivity can be changed 
by varying the cloud feedback. Namely, the cloud fraction 
used in radiation calculation (Crad) is adjusted as follows:

C rad = C o∙ (1 .0  +  κ ∙ΔT srf) ,   (1)

where Co is a cloud fraction simulated by the model, ΔTsrf 
is a difference of the global-mean surface air temperature 
from is values in the control climate simulation and κ is a 
parameter used to vary climate sensitivity.
This method was proposed by Hansen et al. (1993) and 
was extensively tested in simulations with the MIT cli-
mate model (Sokolov & Stone, 1998). The choice of cloud 
feedback seems very natural because differences in climate 
sensitivity between different AOGCMs are to large extent 
caused by large differences in this feedback (Cess et al. 
1990; Colman 2003; Bony et al. 2006; Webb et al. 2006; 
Williams et al. 2006). The method was later modified by 
using κ of different signs for high and low clouds (Sokolov, 
2006), accounting for the fact that the feedback associated 
with changes in cloud cover has different signs for high 
and low clouds. Therefore, using different signs in Equation 
1 depending on cloud heights minimizes the value of κ 
required to obtain a specific value of climate sensitivity. 
In addition, the use of the modified method improves the 
agreement in simulated changes is surface fluxes between 
the MIT climate model and different AOGCMs. This ap-
proach to changing climate sensitivity was also tested in 
simulations with CAM3 (Sokolov and Monier, 2012), by 
comparison with perturbed physics approach. 

2.2 Urban and Global Atmospheric Chemistry
To calculate atmospheric composition, the model of atmo-
spheric chemistry includes the climate-relevant chemistry 
of gases and aerosols at two domains: the urban scale and 
the global scale. The urban model is a sub-grid scale chem-
istry model whose emissions and pollutants are exported 
(along with emissions from non-urban areas) into the 2D 
global zonal-mean model of atmospheric chemistry, which 
is linked to the atmospheric dynamics and physics model 
described above. This atmospheric model provides wind 
speeds, temperatures, solar radiation fluxes, and precipita-
tion to both the urban and global scale chemistry models. 
The details of the sub-grid scale urban chemistry model 
and the 2D zonal-mean atmospheric chemistry model, 
and their coupling, are described below.

2.2.1 Urban Atmospheric Chemistry

Urban emissions and air pollution have a significant impact 
on global methane, ozone, and aerosol chemistry, and 

thus on the global climate. However, the nonlinearities in 
the chemistry cause urban emissions to undergo different 
net transformations than rural emissions, and thus urban 
chemistry is treated separately from non-urban emissions 
within the MESM. Accuracy in describing these transfor-
mations is necessary because the atmospheric lifecycles of 
exported air pollutants such as CO, O3, NOx and VOCs, and 
the climatically important species CH4 and sulfate aerosols, 
are linked through the fast photochemistry of the hydroxyl 
free radical (OH) as we will emphasize in the results dis-
cussed later in section 5. Urban air-shed conditions need 
to be resolved at varying levels of pollution. The urban air 
chemistry model must also provide detailed information 
about particulates and their precursors important to air 
chemistry and human health, and about the effects of local 
topography and structure of urban development on the 
level of containment and thus the intensity of air pollu-
tion events. This is an important consideration because 
air pollutant levels are dependent on projected emissions 
per unit area, not just total urban emissions.
The urban atmospheric chemistry model has been intro-
duced as an additional component to the original global 
model (Prinn et al. 1999) in MESM (Calbo et al. 1998; 
Mayer et al. 2000; Prinn et al. 2007). It was derived by 
fitting multiple runs of the detailed 3D California Institute 
of Technology (CIT) Urban Airshed Model, adopting the 
probabilistic collocation method to express outputs from 
the CIT model in terms of model inputs using polynomi-
al chaos expansions (Tatang et al. 1997). This procedure 
results in a reduced format model to represent about 200 
gaseous and aqueous pollutants and associated reactions 
over urban areas that is computationally efficient enough 
to be embedded in the global model. The urban module 
is formulated to take meteorological parameters including 
wind speed, temperature, cloud cover, and precipitation 
as well as urban emissions as inputs. Calculated with a 
daily time step, it exports fluxes along with concentrations 
(peak and mean) of selected pollutants to the global model.

2.2.2 Global Atmospheric Chemistry

The 2D zonal mean model that is used to calculate atmo-
spheric composition is a finite difference model in lati-
tude-pressure coordinates, and the continuity equations 
for the trace constituents are solved in mass conservative, 
of flux, form (see Wang et al., 1998 for a more complete 
description). The model includes 33 chemical species with 
41 gas-phase and 12 aqueous-phase reactions (Wang et al., 
1998). For the longer-lived species (CFCl3, CF2CL2, N2O, 
CO, CO2, NO, NO2, N2O5, HNO3, CH4, CH2O, SO2, H2SO4, 
HFC, PFC, SF6, and black carbon and organic carbon aero-
sols), the chemistry model includes convergence due to 
transport, parameterized north-south eddy transport, con-
vective transport, and local true production and loss due 
to surface emissions, deposition, and chemical reaction. 
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For the very-reactive atoms (e.g. O), free radicals (e.g. 
OH), and molecules (e.g. H2O2), their concentrations are 
unaffected by transport due to their very short lifetimes, 
and only their chemical production and loss (in both the 
gaseous and aqueous phase) is considered. The scavenging 
of carbonaceous and sulfate aerosol species by precipitation 
is also included using a method based on a detailed 3D 
climate-aerosol-chemistry model (Wang, 2004). Water 
vapor and air (N2 and O2) mass densities are computed 
using full continuity equations as part of the atmospheric 
dynamics and physics model (described above) to which 
the chemical model is coupled.

2.2.3 Coupling of Urban and Global Atmospheric 
Chemistry

The urban chemistry module was derived based on an 
ensemble of 24-hour long CIT model runs and thus is 
processed in the IGSM with a daily time step, while the 
global chemistry module is run in a real time step with 
the dynamics and physics model, 20 minutes for advection 
and scavenging, 3 hours for tropospheric reactions. The 
two modules in the IGSM are processed separately at the 
beginning of each model day, supplied by emissions of 
non-urban and urban regions, respectively. At the end of 
each model day, the predicted concentrations of chemical 
species by the urban and global chemistry modules are 
then remapped based on the urban to non-urban volume 
ratio at each model grid. Beyond this step, the resultant 
concentrations at each model grid will be used as the back-
ground concentration for the next urban module prediction 
and also as initial values for the global chemistry module 
(Mayer et al. 2000).

2.3 Ocean Component
The ocean model used in the version of MESM described 
in this paper, consists of a mixed-layer model with a hor-
izontal resolution of 4° in latitude and 5° in longitude and 
a 3000-m deep anomaly-diffusing ocean model beneath. 
Mixed-layer depth is prescribed based on observations as 
a function of time and location (Hansen et al., 1983). In 
addition to the temperature of the mixed layer, the model 
also calculates the average temperature of the seasonal 
thermocline and the temperature at the annual maximum 
mixed layer depth (Russell et al. 1985). Heat mixing into 
the deep ocean is parametrized by the diffusion of the 
difference of the temperature at the bottom of the season-
al thermocline from its value in a pre-industrial climate 
simulation (Hansen et al. 1984; Sokolov and Stone 1998). 
Since this diffusion represents a cumulative effect of heat 
mixing by all physical processes, the values of the diffusion 
coefficients are significantly larger than those used in the 
sub-grid scale diffusion parameterizations in ocean global 
circulation modesl (OGCMs). The spatial distribution of 
the diffusion coefficients used in the diffusive model is 

based on observations of tritium mixing into the deep 
ocean (Hansen et al. 1988). The rate of oceanic heat uptake 
is varied by multiplying diffusion coefficients by the same 
factor in all locations.

The coupling between the atmospheric and oceanic models 
takes place every hour. The heat flux (FH) at the longi-
tude-latitude point (i , j) is calculated as:

FH(i,j)=FHZ(j)+∂FHZ /∂T (j)*(Ts(i,j)-Tsz(j)), (2)

where FHZ  (j) and ∂FHZ  /∂T  (j) are zonally averaged 
heat flux and its derivative with respect to surface tem-
perature, and Ts(i , j) and Tsz(j) are surface temperature 
and its zonal mean.

The mixed-layer model also includes specified vertical-
ly-integrated horizontal heat transport by the deep oceans, 
a so-called “Q-flux”. This flux has been calculated from a 
simulation in which sea surface temperature and sea-ice 
distribution were relaxed toward their present-day cli-
matology with relaxation a coefficient of 300 Wm–2/K, 
corresponding to an e-folding time-scale of about 15 days 
for the 100 m deep mixed-layer. Relaxing SST and sea ice 
on such a short time scale, while being virtually identical 
to specifying them, avoids problems with calculating the 
Q-flux near the sea ice edge.

A thermodynamic ice model is used for representing sea ice. 
The model has two layers and computes ice concentration 
(the percentage of area covered by ice) and ice thickness.

An alternative version of MESM was developed by re-
placing simplified ocean model with the MIT 3D OGCM 
(Dutkiewicz et al., 2005). A detailed comparison of the 
results of simulations with the two versions of the MESM 
was carried out to evaluate the performance of the anomaly 
diffusing ocean model (ADOM) on different time scales 
Sokolov et al. (2007). This comparison led to significant 
modification of the ocean carbon model originally used 
in AODM (Holian et al. 2001). In the current version of 
MESM, the formulation of carbonate chemistry and pa-
rameterization of air-sea carbon fluxes are similar to the 
ones used in the MIT 3D OGCM (Dutkiewicz et al., 2005).

Vertical and horizontal transports of the total dissolved 
inorganic carbon, though, are parameterized by diffusive 
processes. The values of the horizontal diffusion coefficients 
are taken from Stocker et al. (1994), and the coefficient of 
vertical diffusion of carbon (K _(vc )) depends on the coefficient 
of vertical diffusion of heat anomalies (K _(v )). Originally, K _(vc ) 
was assumed to be proportional to K _(v ) (Prinn et al. 1999; 
Sokolov et al. 1998). This assumption, however, does not 
take into account the vertical transport of carbon due to 
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the biological pump. In the present version of MESM, Kvc 
is, therefore, defined as:

K vc = K vco + rK v (3)

Where K _(vco ) represents mixing due to the biological pump 
and rKv due to physical processes. Values of K _(vco ) and r 
are chosen based on comparison with results obtained 
in simulations with MIT 3D OGCM and observations 
(see section 3.1).  Because K _(vco ) is a constant, the vertical 
diffusion coefficients for carbon have the same latitudinal 
distribution as the coefficients for heat anomalies. For sim-
ulations with different rates of oceanic uptake, the diffusion 
coefficients are scaled by the same factor in all locations. 
Therefore, rates of both heat and carbon uptake by the 
ocean are defined by the global mean value of the diffusion 
coefficient for heat. In the rest of the paper the symbol Kv 
is used to designate the global mean value.

Comparisons with 3D ocean simulations have shown that 
the assumption that changes in ocean carbon can be simu-
lated by the diffusive model with fixed diffusion coefficient 
works only for about 150 years. On longer timescales, the 
simplified carbon model overestimates the ocean carbon 
uptake. However, if Kvc is assumed to be time dependent, 
the MESM reproduces changes in ocean carbon as simulated 
by the 3D OGCM on multi century scales (Sokolov et al. 
2007). Thus, for the runs discussed here, the coefficient for 
vertical diffusion of carbon was calculated as:

K vc(t)  = (K vco + rK v) .  f(t)  (4)

Where f(t) is a time dependent function constructed based 
on the analyses of the depths of carbon mixing in simula-
tions with the 3D OGCM.

Overall results presented by Sokolov et al. (2007) show 
that in spite of its inability to depict feedbacks associated 
with the changes in the ocean circulation and a very simple 
parameterization of the ocean carbon cycle, the version 
of the MESM with the ADOM is able to reproduce the 
important aspects of the climate response simulated by the 
version with the OCGM through the 20th and 21st century 
and can be used to produce probabilistic projections of 
changes in many of the important climate variables, such 
as surface air temperature and sea level, through the end 
of 21st century.

The MESM also has been shown, with an appropriate choice 
of the model’s cloud feedback and effective diffusion coef-
ficients, to reproduce the transient surface warming and 
sea level rise due to thermal expansion of the ocean as 
calculated in various coupled AOGCMs for 120–150 year 
time-scales (Sokolov & Stone, 1998; Sokolov et al., 2003).

2.4 Land Component
The land component of the MESM estimates how fluxes of 
heat, water, carbon and nitrogen, both within land ecosys-
tems and between land and the atmosphere, vary across the 
globe over time. In addition, the land component estimates 
how soil moisture and the storage of carbon and nitrogen 
in vegetation and soils vary across the globe over time. 
The land fluxes and storages are estimated based on values 
of near-surface atmospheric states (e.g. air temperature, 
humidity, pressure, wind speed) and fluxes (radiation, 
precipitation), as well as atmospheric chemistry (carbon 
dioxide, ozone), determined by the atmospheric component 
of the MESM along with external data sets that prescribe 
the distribution of land cover and soil texture across the 
globe. The land component estimates of albedo, sensible 
heat, latent heat, evapotranspiration, and fluxes of carbon 
dioxide (CO2), methane (CH4), and nitrous oxide (N2O) 
are then used by the atmospheric component of the MESM 
to determine changes in atmospheric physics and chem-
istry. In order to assess the value of global land resources, 
estimates of net primary production (NPP) are used by 
the EPPA model in the MIT IGSM to indicate how this 
ecosystem service influences economic activity.
Global processes in the land component are represented 
with a dynamically linked set of terrestrial biogeophysical 
(i.e., water and energy budgets) and biogeochemical (i.e., 
carbon and nitrogen budgets including carbon dioxide, 
methane, and nitrous oxide fluxes) sub-models. These 
biogeophysical and biogeochemical calculations are or-
ganized into a single, self-consistent framework for the 
global terrestrial environment and hereafter referred to 
as the Global Land Systems (GLS) framework (Schloss-
er et al. 2007). The GLS framework, employs three coupled 
sub-models to represent the terrestrial water, energy, and 
ecosystem processes:

• The Community Land Model (CLM) described by 
Bonan et al. (2002) calculates the global, terrestrial 
water and energy balances.

• The Terrestrial Ecosystems Model (TEM) of the Ma-
rine Biological Laboratory (Melillo et al., 1993, 2009; 
Xiao et al., 1997, 1998; Tian et al., 1999; Felzer et al., 
2004) simulates carbon and nitrogen fluxes and the 
storage of carbon and nitrogen in vegetation and soils 
including the uptake and release of CO2 associated with 
NPP, decomposition and carbon sequestration or loss.

• The Natural Emissions Model (NEM) described by 
Liu (1996) and Prinn et al. (1999) simulates CH4 and 
N2O fluxes.

Water, energy and carbon are conserved among these 
sub-models. The GLS is also designed to be flexible and 
runs either with the meridional resolution (4˚) of the zonal-
ly-averaged atmospheric model within the MESM, or over a 
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latitude-longitude grid for targeted studies (e.g., 2˚ by 2˚ as 
in Gao et al. 2013, and 0.5˚x0.5˚ as in Melillo et al., 2009).
Herein, we describe the coupled configuration of the GLS 
used within the MESM. In this GLS configuration, a veg-
etation mosaic scheme has been used to represent the 
distribution of vegetation within a latitudinal zonal band 
at the same spatial resolution for all submodels. Each lati-
tudinal band is represented with a mosaic of 35 land cover 
or IGSMVEG types (Schlosser et al., 2007) based on the 
presence or absence of a dominant tree, shrub or grass 
cover, ecological region (i.e., boreal, temperate, tropical), 
moisture status (upland, floodplain or wetland) and land 
management (crop, pasture). In most applications of the 
GLS within the MESM, the land cover has been assumed 
to be potential vegetation (i.e., natural vegetation in the 
absence of human activity) such that the potential impacts 
of land-use change on the ability of land to store carbon 
and nitrogen have not been considered. However, a scheme 
for incorporating the influence of land-use change on land 
carbon dynamics in the GLS has been developed and applied 
in Eby et al. (2013) and Zickfeld et al. (2013).
Below we highlight the key features of each of the land 
sub-models and modifications made to these sub-models 
for their implementation in the MESM.

2.4.1  The Community Land Model (CLM)

As in previous implementations of land biogeophysical 
and hydrologic processes within the IGSM framework, 
we have drawn from the Community Land Model (CLM, 
Lawrence et al., 2011). The CLM has been developed from 
a multi-institutional collaboration of land models, and 
serves as the core land system model for energy, water, 
carbon, and nutrient cycle studies within the Community 
Earth System Model (Oleson et al., 2010). CLM has also 
been widely used and documented in land data assimila-
tion research (e.g., Zhang et al., 2012), hydrologic studies 
at the global (e.g. Pu et al., 2012), regional (e.g. Swen-
son et al., 2012; Zampieri et al., 2012), and river-basin 
(e.g. Vano et al., 2012) scales, as well as coupled climate 
prediction studies (e.g., Tseng et al., 2012; Xin et al., 2012). 
CLM is also benchmarked within the iLAMB framework 
(e.g. Randerson et al., 2009).
Within current version of MESM, we have employed CLM 
Version 3.5 that largely follows the detailed documentation 
provided by Oleson et al. (2010) as well as many of the 
features highlighted by Lawrence et al. (2011). We however 
have made some modifications to CLM’s configuration used 
within the MESM. Within CLM’s surface soil hydrologic 
formulation, infiltration of rainfall in the uppermost layer of 
the soil required further refinement for its implementation 
in MESM. In the initial testing of CLM within the MESM’s 
zonal configuration, it was found that CLM produced ex-
cessive infiltration into the soil column. This resulted in 

an appreciably low bias in runoff and subsequently an 
excessive amount of evapotranspiration as compared to 
our previous versions of CLM implemented in the model 
and also against a multi-model consensus of estimates 
(Schlosser et al., 2007 – see Fig. 15). The algorithm that 
describes the infiltration rate, q _(inmax ), into the uppermost 
soil layer can be summarized as:

 (5)

where b  is the Clapp-Hornberger parameter,  is the 
soil suction from the top layer of soil, dz  is the thickness of 
the top soil layer, F _(dry is a dryness factor of the upper soil 
layer, and K _(sat ) is the saturated hydraulic conductivity. This 
infiltration formulation closely follows that of the classic 
Green-Ampt formulation (1911) for “enhanced” (i.e. values 
greater than saturated hydraulic conductivity) infiltration 
rate for dry soils—and will sustain this condition for dry 
soils (i.e. sub-saturated) in the uppermost soil layer. The 
inherent assumption with this formulation is that saturated 
and unsaturated conditions in the uppermost soil layer will 
occur sporadically over a large heterogeneous landscape 
of intermittent precipitation. However, within our zonally 
resolved implementation of CLM, we have removed this 
enhancement effect. While the MESM does resolve the 
temporal episodic nature of precipitation provided to the 
GLS (see Schlosser et al., 2007)—the spatially heteroge-
neous nature of these conditions is not comprehensively 
resolved. Therefore, we simply set the maximum infil-
tration rate equal to saturated hydraulic conductivity. As 
a result of this modification, we find that our estimates 
of runoff and subsequent evapotranspiration are more 
aligned with present-day estimates from the more detailed 
models—judged commensurately on a zonally averaged 
basis (discussed in Section 3.3).

The CLM, as well as atmospheric physics, is run at an 
hourly time scales in order to resolve diurnal variations 
in the surface energy budget and associated radiative and 
turbulent heat exchange as well as momentum flux between 
the land and atmosphere. All inputs to CLM that require a 
temporal sampling resolution at the time-step are provided 
by the atmospheric model (as shown in Figure 1); CLM then 
calculates surface heat, water and momentum fluxes that 
are passed back to the atmospheric model. The calculations 
of soil/vegetation water and energy states and fluxes (and 
corresponding storages and temperatures) are averaged 
and accumulated as necessary given the time-steps of TEM 
and NEM. CLM provides estimates of soil moisture and 
temperature profiles, as well as evapotranspiration rates 
that are required inputs for the TEM and NEM components 
and used to estimate fluxes of CO2, N2O and CH4 between 
terrestrial ecosystems and the atmosphere.
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2.4.2 The Terrestrial Ecosystems Model (TEM)

The Terrestrial Ecosystem Model (TEM) is a process-based 
biogeochemistry model that uses spatially referenced in-
formation on atmospheric chemistry, climate, elevation, 
soil texture, and land cover to estimate monthly fluxes and 
pool sizes of carbon, nitrogen and water among vegetation, 
soils and the atmosphere. The TEM is well documented 
and has been used to examine patterns of land carbon 
dynamics across the globe including how they are influ-
enced by multiple factors such as CO2 fertilization, ozone 
pollution, climate change and variability, and land-use 
change, (Felzer et al., 2004, 2005; Reilly et al., 2007, 2012; 
Sokolov et al., 2008; Melillo et al., 2009, 2016; Galford et al. 
2010, 2011; Kicklighter et al. 2012, 2014).
In TEM, the uptake of atmospheric carbon dioxide by 
vegetation, also known as gross primary production or 
GPP is dependent upon photosynthetically active radiation 
(PAR), leaf phenology, air temperature, evapotranspiration 
rates, atmospheric concentrations of carbon dioxide and 
ozone, the availability of inorganic nitrogen in the soil, and 
the ratio of carbon to nitrogen (C:N) of new plant biomass 
(Raich et al. 1991; McGuire et al. 1997; Tian et al. 1999; 
Felzer et al. 2004). Carbon dioxide is released back to the 
atmosphere from terrestrial ecosystems as a result of the 
autotrophic respiration (RA) of plants and the heterotro-
phic respiration (RH) associated with the decomposition 
of detritus.  Net primary production (NPP), which is an 
important source of food and fiber for humans and other 
organisms on earth, is the net uptake of atmospheric car-
bon dioxide by plants and is calculated as the difference 
between GPP and RA. Heterotrophic respiration, which also 
releases carbon dioxide back to the atmosphere, depends 
upon the amount of soil organic matter, the C:N ratio of 
the soil organic matter, air temperature and soil moisture 
(Raich et al. 1991; McGuire et al. 1997; Tian et al. 1999). 
Within an ecosystem, carbon may be stored either in veg-
etation biomass or in detritus (i.e. litter, standing dead 
and soil organic matter). In TEM, the carbon in vegeta-
tion biomass and detritus are each represented by a single 
pool. The transfer of carbon between these two pools is 
represented by litterfall carbon (LC), which is calculated 
as a proportion of vegetation carbon. Changes in vegeta-
tion carbon (ΔVEGC, also known as biomass increment), 
detritus (ΔSOILC) and terrestrial carbon (ΔTOTALC) are 
then determined as a linear combination of these fluxes:

ΔVEGC =  GPP – R A –  L C (6)

ΔSOILC = L C -  R H (7)

ΔTOTALC = ΔVEGC + ΔSOILC = NPP - RH= GPP -RA -RH (8)

Carbon sequestration in undisturbed terrestrial ecosystems 
can be estimated by the GLS either as the sum of the esti-
mated changes in carbon in vegetation and detritus or by 

the difference between NPP and RH (Eq. 8) which is also 
known as net ecosystem production or NEP.
An important feature of TEM is that the model simulates 
the influence of terrestrial nitrogen dynamics on terrestrial 
carbon dynamics. First, the uptake of carbon dioxide by 
plants is assumed by TEM to be limited by nitrogen avail-
ability in most land ecosystems on earth. Tropical forests 
are the only exceptions, where nitrogen availability is not 
assumed to limit GPP under contemporary conditions. 
The effect of nitrogen limitation on GPP is determined 
by first calculating GPPC assuming no nitrogen limitation:

GPPC=f(CO2,ET) f(PAR) f(CANOPY) f(LEAF) f(T) f(O3,ET)  (9)

where CO2 is atmospheric CO2 concentration, ET is evapo-
transpiration, PAR is photosynthetically active radiation, 
CANOPY is the relative state of a vegetation canopy recov-
ering from a disturbance as compared to the canopy state 
of a mature, undisturbed stand, LEAF is the monthly leaf 
area relative to the maximum leaf area of a stand, T is air 
temperature, and O3 is atmospheric ozone concentration. 
The influence of atmospheric CO2 and O3 concentrations on 
GPP depends on the status of vegetation stomates, which 
close during drier conditions (i.e. low ET) to reduce the 
uptake of CO2 or O3 and open during wetter conditions 
(i.e. high ET). Details of Equation 9 have been described 
elsewhere (e.g Raich et al. 1991; McGuire et al. 1992, 1995, 
1997; Pan et al. 1998; Tian et al. 1999; Felzer et al. 2004).
If GPP is limited by nitrogen availability, GPPN is then 
calculated based on the effects of nitrogen supply on net 
primary production (NPPN):

NPP N =  P CN (NUPTAKE + NMOBIL)  (10)

GPP N =  NPP N + R A (11)

where PCN is the carbon to nitrogen ratio (C:N) of newly 
produced plant tissue, NUPTAKE is the amount of inor-
ganic nitrogen acquired by plants from the soil and NMO-
BIL is the amount of vegetation labile nitrogen mobilized 
during a particular month (McGuire et al. 1997; Pan et al. 
1998; Tian et al. 1999). Similar to GPPC, NUPTAKE also 
depends on local environmental conditions (Raich et al. 
1991; McGuire et al. 1992; Felzer et al. 2004):

NUPTAKE = f(NAVL,  H2O) f(CANOPY) f(T) f(O3,  ET)

where NAVL is soil available nitrogen and H2O is soil mois-
ture. Monthly GPP is then determined as follows:

GPP = min (GPP C,  GPP N)  (12)

In TEM, the uptake of atmospheric CO2 by plants is assumed 
to follow Michaelis-Menten kinetics such that the effect 
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of atmospheric CO2 at time t as modified by ET on the 
assimilation of CO2 by plants is parameterized as follows:

f(CO 2(t))  = (C max CO 2(t))  /  (kc +  CO 2(t))  (13)

where Cmax is the maximum rate of C assimilation, and 
kc  is the CO2 concentration at which C assimilation pro-
ceeds at one-half of its maximum rate (i.e., Cmax). Because 
the response of carbon uptake by plants to atmospheric 
CO2 concentrations is uncertain (Sokolov et al. 2009), we 
examine the influence of this uncertainty on terrestrial 
carbon dymanics by adjusting the value of kc in our un-
certainty analyses.

The Natural Emissions Model (NEM) has been embedded 
within the TEM infrastructure as described in Schloss-
er et al. (2007). As such, the CH4 and N2O flux estimates 
by NEM are directly based on monthly TEM estimates of 
soil organic carbon. Although the simulated carbon and 
nitrogen dynamics of NEM are still mostly separated from 
those in TEM, the embedded NEM provides a platform 
for improving the linkages between the two biogeochemis-
try-models. For example, NEM estimates of CH4 emissions 
diminish the stock of soil organic carbon estimated by TEM. 
The embedded NEM allows simulation of daily CH4 and 
N2O emissions based on monthly estimates of soil organic 
carbon by TEM combined with the CLM estimates of daily 
soil temperatures, daily and hourly soil moistures, hourly 
rainfall intensities and storm durations. CLM also provides 
all data on soil properties required by TEM/NEM. Fluxes 
of CO2, CH4 and N2O are passed to atmospheric model 
and are used in calculations of the corresponding gases 
by the atmospheric chemistry sub-model.

3. Model Evaluation
As mentioned earlier, the MESM can be run either in con-
centration-driven or emissions-driven mode. In historical 
simulations, the MESM is forced by the prescribed changes 
in by greenhouse gases and ozone concentrations, aerosols, 
and solar irradiance. Greenhouse gas concentrations and 
stratospheric aerosols from volcanic eruptions are taken 
from the NASA GISS modeling group forcing suite. Mill-
er et al. (2014) describe the methods for updating the 
greenhouse gas concentrations from Hansen et al. (2007) 
and the volcanic aerosol optical depths from Sato et al. 
(1993). Sulfate aerosol loadings are from Smith et al. (2011) 
extended by Klimont et al. (2013), solar irradiance is from 
the Kopp and Lean (2011) dataset, and ozone concentrations 
are from the SPARC dataset used in the CMIP5 experiments 
(Cionni et al., 2011). In future climate simulations, the 
MESM is driven by anthropogenic emissions of different 
gases produced by the MIT Economic Projection and Policy 
Analysis (EPPA) model (Paltsev et al., 2005).

3.1 Distribution of climate parameters 
and characteristics describing model 
response to external forcing.

To determine climate model parameters that produce chang-
es in surface air and ocean temperatures consistent with 
available observations, 1800 historical simulations from 
1861 to 2010 were carried out changing climate sensitivity, 
the rate of ocean heat uptake and the strength of aerosol 
forcing over wide ranges. Probability distributions for cli-
mate parameters were constructed using the methodology 
described in Forest et al., (2002 and 2008) and Libardoni 
and Forest (2011 and 2013). Detailed descriptions of the 
distributions obtained using different observational data 
sets, different estimates of natural variability and other 
assumptions are given in Libardoni et al (2017). Below we 
described our final distributions and present the results 
of simulations with the set of climate parameters sampled 
from it. This distribution was derived using multiple data-
sets for changes in surface temperature from 1905 to 2010 
and in ocean heat content from 1990 to 2010. Individual 
distributions were merged across all surface datasets to 
produce the final distribution. Estimates of natural vari-
ability from all CMIP5 models were used to estimate the 
noise-covariance matrix.
Table 1 shows medians and 90% probability intervals for 
model climate parameters from distribution used in this 
paper. The median values for equilibrium climate sensitiv-
ity (ECS, Figure 2a) is rather close to the median climate 
sensitivity of CMIP5 AOGCMs (3.2 K), while the 90% 
probability interval is shifted toward higher values com-
pared with the CMIP5 models (1.9 to 4.5 K).
To assess uncertainty in the transient climate response 
(TCR, i.e., temperature change in the time of CO2 doubling), 
we carried out a set of climate simulations with a 1% per 
year increase of CO2 concentration using 400 samples of 
climate parameters. To estimate uncertainty in the car-
bon cycle we calculated carbon uptake by the ocean and 
terrestrial ecosystems in these simulations. As discussed 
above, the vertical diffusion coefficient for carbon depends 
on the vertical diffusion coefficient for heat anomalies. As 
a result, uncertainty in oceanic carbon uptake is defined 
by the uncertainty in the heat uptake. In all simulations 

Table 1. Percentiles for climate parameters.

Climate 
sensitivity

Square root 
of diffusion 
coefficient

Radiative forcing  
due to aerosol 

radiation interaction

K cm/s 1/2 W/m 2

5% 2.4 0.9 -0.47
50% 3.2 1.8 -0.24
95% 4.6 3.7 -0.05
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described in this paper we used Kvco =1cm/s and r=0.52 
(Eq. 3). Uncertainty in the terrestrial carbon uptake was 
taken into account by varying the half-saturation con-
stant, kc (Eq. 13). The results of CO2-enrichment studies 
suggest that plant growth could increase by 24% - 54% in 
response to doubled CO2 given adequate nutrients and 
water (Raich et al. 1991; McGuire et al. 1992; Gunderson 
and Wullschleger 1994; Curtis and Wang 1998; Norby et al. 
1999, 2005). In the stand-alone TEM, a value of 400 ppmv 
CO2 is chosen for the half-saturation constant, kc, so that 
f(CO2(t)) increases by 37% for a doubling of atmospheric 
CO2 (e.g. McGuire et al. 1997; Pan et al. 1998). A 24% and 
54% response to doubled CO2 would correspond to kc values 
of 215 and 800 ppmv CO2, respectively. The sensitivity of 
plant uptake on CO2 increase is defined not by the absolute 
value of f(CO2(t)), which decreases with kc, but by the 
ratio of f(CO2(t)) to f (CO2 (0)) which increases with kc. 
Based on a comparison of the TEM version implement-
ed in the MESM with other terrestrial carbon models 
(Sokolov et al., 2008) and results from stand-alone TEM 
simulations, different values of kc are used for nitrogen-lim-
ited and non-limited ecosystems. In the simulations dis-
cussed below, the value of kc was varied from 200 to 800 
ppmv CO2 for nitrogen-limited ecosystems and from 75 to 
300 ppmv CO2 for ecosystems with no nitrogen limitations.
Total carbon uptake can be estimated from available data 
on carbon emissions and observed CO2 concentrations 
and is less uncertain than carbon uptake by the ocean and 
carbon uptake by terrestrial ecosystem separately. To take 
this into account, low values of Kv (small carbon uptake 
by the ocean) are coupled with high values of kc (large 
terrestrial carbon uptake).
Figure 2b shows frequency distributions for TCR from 400 
simulations. The median value for TCR (1.7 K) is close to 
that for CMIP5 model (1.8 K), while the 90% probability 

interval (1.4 – 2.0 K) is significantly narrower than estimates 
based on CMIP5 models (1.2 – 2.4 K). The relatively small 
range of TCR in our simulations is explained in part by 
the correlation between climate sensitivity and the rate of 
oceanic heat uptake imposed by observations (Figure 3). 
Another characteristic often used to describe transient 
model response to forcing is a “realized warming” defined 
as a ratio of equilibrium climate sensitivity to TCR. In 
our simulations, this characteristic ranges from 0.35 to 
0.66 (90% interval) with median value of 0.54. The fact 
that these values are smaller than corresponding values 
for CMIP5 model (0.46–0.72 and 0.58) indicates that the 
rate of oceanic heat uptake in CMIP5 models is most likely 
smaller than in our simulations.
The transient climate response to cumulative carbon emis-
sion (TCRE), is defined as the ratio of surface warming to 
cumulative implied carbon emissions at the time of CO2 
doubling from simulations with a 1% per year increase 
in CO2 concentrations (Matthews et al. 2009). Values of 
TCRE in MESM simulations vary (90% range) from 1.2 to 
1.9 K/EgC (Figure 2c). According to Gillett et al., (2013), 
a similar range for CMIP5 models is 0.8–2.4 K/EgC. At 
the same time observationally constrained range, obtained 
using CMIP5 simulations and observed temperature to 
2010 is 0.7–2.0 K/EgC (Gillett et al., 2013).
To evaluate uncertainty in long-term climate system re-
sponse implied by the distribution of climate parameters 
described above, we carried out an ensemble of simula-
tions using RCP8.5 GHGs concentrations. Comparison 
between the results from this ensemble and those from the 
multi-model CMIP5 ensemble are presented in Table 2. 
The MESM simulates less surface warming during the 
21st century than the CMIP5 ensemble which, in part, 
may be explained by the fact that most of CMIP5 models 
overestimate warming in the first decade of 21st century. 
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Figure 2. Frequency distribution of (a) eCS, (b) TCr and (b) TCre. Vertical line shows median value and horizontal bar shows 90% 
probability interval. red line CMIP5 estimate, from Table 9.5 of IPCC (2013) for TCr and from Gillett et al., (2013) for TCre.
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At the same time, MESM simulates stronger temperature 
increase during 22nd and 23rd centuries than CMIP5 models. 
It should be kept in mind that from the 39 CMIP5 models 
that ran the RCP8.5 simulation only 12 were run beyond 
2100. As can be seen on Figure 12.5 of IPCC (2013), the 
multi-model mean surface warming in 2100 is smaller 
for these 12 models than for all 39 models. The use of 
a different number of CMPI5 models in different simu-
lations somewhat complicates the comparison between 
CMIP5 and MESM results. The estimates for ECS and 
TCR, shown above, are from simulations with 23 and 30 
CMIP5 models, respectively (Table 9.5 in IPCC 2013). 
The TCRE estimates are based on the results of 15 CMIP5 
ESMs (Gillett et al., 2013).

3.2 Historical Climate Change
To assess the quality of the probability distributions for 
climate model parameters, we carried out 400 historical 
simulations from 1861 to 2010. The model reproduces 

the observed changes in surface air temperature very well 
(Figure 4a). Temperature averaged over the first decade 
of the 21st century increases in our simulations relative to 
the 1861–1880 mean between 0.67 and 1 K (90% prob-
ability interval) with a mean value of 0.835 K. Similar to 
the TCR, the range of temperature change simulated by 
MESM is significantly narrower than one produced by 

Figure 3. Distribution of climate sensitivity and the rate of ocean heat uptake (square root of vertical diffusion coefficient). red dots 
show values of CS and SQrT(Kv) for 400 samples. 

The contour lines are for the 5,10,25,50,75,90 and 95% percentiles.

Table 2. Median values and 90% probability intervals for 
surface air temperature anomaly relative to 1986-2005 mean 
in simulations with rCP8.5 scenario. CMIP5 results are from 
Table 12.2 of IPCC (2013).

CMIP5 MESM

2046–2065 2.0 (1.4, 2.6) 1.7 (1.3, 2.0)

2081–2100 3.7 (2.6, 4.8) 3.1 (2.6, 3.8)

2181–2200 6.5 (3.3, 9.8) 7.0 (5.7, 8.9)

2281–2300 7.8 (3.0, 12.6) 8.9 (6.9, 11.0)
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CMIP5 models. The MESM ensemble mean agrees better 
with the observation than the CMIP5 mean, especially 
after year 2000, when CMIP5 models overestimate ob-
served warming. Changes in global mean precipitation 
simulated by MESM (Figure 4b) also agree well with ob-
servations, especially the increase in the last 50 years, and 
improves upon the simulations by the CMIP5 models. 
However, inter-annual variability simulated by MESM is 
much smaller than observed. The MESM simulates a larger 
increase in the ocean heat content both in the top 700m 
and 2000m (Figure 5) compared with observations and 

CMIP5 models (Figure 9.17 in IPCC 2013). At the same 
time, sea level increases due to thermal expansion at the 
rate of 0.85 (0.625–1.4) mm/yr between 1971 and 2010 
and at the rate of 1.2 (0.96–1.6) mm/yr between 1993 and 
2010. These trends are not too different from the estimates 
given by IPCC 2013: 0.8(0.5 to1.1) mm/yr and 1.1(0.8 to 
1.4) mm/yr, respectively (Table 3.1 in IPCC 2013). 

While the TEM calculates carbon fluxes for natural ecosys-
tems using potential land cover distribution, CO2 emissions 
associated with agricultural activity are provided by the 

Figure 4. Time series of global mean surface air temperature and precipitation relative to 1861–1880 mean. The simulations 
with the MeSM are shown in blue (ensemble mean and one standard deviation in shading) and the simulations from the CMIP5 
multi-model ensemble are shown in red (multi-model ensemble mean and one standard deviation in shading). after 2006, 
simulations under the rCP8.5 are used. Observations are shown in black lines, namely the HadCruT4 (Morice et al., 2012) and 
global reconstructed precipitation (reC) data (Smith et al., 2012) for temperature and precipitation respectively.

Figure 5.  Changes in ocean heat content relative to 1971 in the top 700m (a) and top 2000 m (b). black lines are ensemble of 
MeSM simulations. blue lines are ensemble means. red lines are observations from Levitus et al. (2012).

rePOrT 325 MIT JOINT PrOGraM ON THe SCIeNCe aND POLICy OF GLObaL CHaNGe

12



EPPA model in the emissions-driven simulations.  None-
theless, terrestrial carbon uptake estimates generally fall 
within the range of the Global Carbon Project multi-model 
analysis (Le Quéré et al., 2016), while being smaller than 
the Global Carbon Project’s estimate obtained as the re-
sidual from the global carbon budget (Figure 6a). The 
median value of the terrestrial carbon uptake averaged 
over 2000–2009 (Figure 7a) is about 0.25 GtC/y smaller 
than the best estimate provided by IPCC (2013). This can 
be partially attributed to the fact that nitrogen deposi-
tion is not taken into account. Simulated uncertainties in 
terrestrial uptake are also smaller than those suggested 
by IPCC (2013). Ensemble mean carbon uptake by the 
ocean (Figure 6b) agrees very well with data from the 
Global Carbon Project (Le Quéré et al., 2016). However, 
the range on oceanic carbon obtained in our simulations 
is slightly shifted towards high values compare to IPCC 
estimate (Figure 7b).

3.3 Present-day Climate

3.3.1 Meteorological Variables

In this section, we compare annual mean data from our 
simulations averaged over 1991–2010 period with available 
observations and results from CMIP5 (Taylor et al., 2011) 
simulations. While simulating changes in global mean tem-
perature and precipitation really well (Figure 4), the MESM 
simulations have some difficulties matching observed zonal 
distributions for present-day climate. MESM simulates 
somewhat lower temperature in the southern hemisphere 
and noticeably higher temperature in the mid-latitudes 
in the northern hemisphere (Figure 8a). The MESM also 
overestimates precipitation in the descending branch of 
mean meridional circulation in the northern hemisphere 
and underestimate precipitation in the mid-latitude storm 
track regions (Figure 8b), which shows the limitations 
of using a zonal-mean atmosphere model. The MESM 
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Figure 6. (a) Terrestrial and (b) oceanic carbon uptake. Data for comparison are from Le Quéré et al (2016).

(a) Terrestrial carbon uptake (b) Oceanic carbon uptake

Figure 7. Frequency distribution of (a) terrestrial and (b) oceanic carbon uptake averaged over years 2000–2009. The black line 
represents the 90% interval from the MeSM ensemble. The red line represents the ar5 estimate (Table 6.1 IPCC 2013).
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realistically simulates the general characteristics of both 
surface latent and sensible heat fluxes (Figure 8c,d) and 
their latitudinal distributions fit within the range of the 
CMIP5 state-of-the-art climate except over a few latitude 
bands, specifically 20S-Equator and 20N-35N for latent 
heat flux and 90S-80S and 65–75N for sensible heat flux. 
Latitude-height cross sections of annual mean tempera-
ture, specific humidity and relative humidity are shown 
in Figure 9. The MESM is able to reproduce the overall 
latitudinal and vertical distributions of temperature and 
humidity generally well despite a cold bias in the polar 

regions, the maximum specific humidity in the equatorial 
regions not extending into the upper troposphere and high 
relative humidity values, especially in the mid-latitudes 
and polar regions.

3.3.2 Terrestrial Water Cycles

Global precipitation over land constitutes a substantial 
segment of the terrestrial water cycle and strongly influ-
ences the carbon and nutrient cycles tracked by TEM. As 
such, we compared MESM to the observationally-based 
estimate from the Global Precipitation Climatology Project 

Figure 8. Zonal distribution of (a) surface air temperature (in ºC), (b) precipitation (in mm/day), (c) surface latent heat flux (in W/m2), 
and (d) surface sensible heat flux (W/m2) averaged over the 1991–2010 period. The MeSM simulation with the median values 
of climate parameters (climate sensitivity, ocean heat uptake rate and net aerosol forcing) is shown in blue. Simulations from the 
CMIP5 multi-model ensemble are shown in red (multi-model ensemble mean and full range in shading). after 2006, simulations 
under the rCP8.5 are used. Observations are shown in black lines, namely the HadCruT4 (Morice et al., 2012), GPCP v2.3 
(adler et al. 2003) and Merra2 (Gelaro et al., 2017) for temperature, precipitation and the heat fluxes respectively.
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(a) Temperature

(b) Specific humidity

(c) Relative humidity

Figure 9. Latitude-height cross section of (a) temperature (in ºC), (b) specific humidity (in kg/kg), and (c) relative humidity (in %) 
averaged over the 1991-2010 period. Observations from Merra2 (Gelaro et al., 2017) are shown on the left panels, the CMIP5 
multi-model ensemble mean is shown in the middle panels and the MeSM simulation with the median values of climate parameters 
(climate sensitivity, ocean heat uptake rate and net aerosol forcing) is shown in the right panels. after 2006, CMIP5 simulations under 
the rCP8.5 are used.
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(GPCP, Adler et al. 2003 and Adler et al., 2012). We find 
that the MESM estimate of land-only precipitation depicts 
the key seasonal and zonal attributes to a level that is very 
comparable with the CMIP5 models (Figure 10). At the 
global scale (Table 3), the MESM is closely aligned with 
the GPCP estimate and also is centrally placed across the 
estimates of the CMIP5 models (equally biased high and 
low across each of these climate models). Some notable 
discrepancies are that land-only precipitation is biased 
low during the NH summertime midlatitude regions. This 
deficiency in summertime precipitation contributes cor-
respondingly to slightly lower evapotranspiration rates 
compared to most of the CMIP5 models (Figure 11 and 
Table 3), although MESM is still within the range of CMIP 
models. For total runoff, MESM produces more runoff on 
the global scale than the CMIP5 models (Table 3), although 
the predominant seasonal and latitudinal features are pre-
served (Figure 12). As previously discussed in Section 2.4, 
the modification of the soil-infiltration scheme (i.e. removal 
of enhanced hydraulic conductivity under excessive dry 

soil conditions) was of considerable benefit to the perfor-
mance of evapotranspiration and runoff rates shown here.

3.3.3 Ecosystem Productivity and Natural 
Emissions of Trace Gases

Net Ecosystem Productivity: The results from the key water 
and energy fluxes of the land system provide a first-order 
expectation to the climatological behavior of the terrestrial 
carbon cycle within MESM. As in previous evaluations of 
the land systems implemented within this Earth-system 
model framework (Schlosser et al., 2007), we focus on the 
net exchange of carbon between the land and the atmo-
sphere, which represents a key coupling. Further, the TEM 
model is commonly used in a “standalone” configuration 
to simulate historical conditions and thus driven by ob-
served atmospheric conditions (e.g. Zhu et al., 2011), and 
previous evaluations have used this as a baseline for TEM 
reduced-form configuration with the MESM framework 
(e.g. Schlosser et al., 2007). We extend this approach by 
considering the net ecosystem productivity (NEP) of TEM 
on a month versus latitude projection (Figure 13). We find 

Table 3. Summary statistics for simulated fluxes in the land water/energy cycles. Shown are correlations and bias (in mm/
day) of precipitation, evapotranspiration, and runoff. The correlations are performed on the month vs. latitude projections shown 
and discussed. For precipitation, all model simulations are judged against the Global Precipitation Climatology Project (GPCP) 
observations. For evaporation and runoff, these metrics are performed for the CMIP5 models against the MeSM result in order to 
convey the degree of consistency between the more complex CMIP models to MeSM’s intermediate complexity. Note that for the 
aCCeSS1-3 outputs of total runoff were not made publicly available (N/a). Sign convention for bias is positive when CMIP5 value 
exceeds MeSM or model exceeds observation.

Evaluation with GPCP 
Observed Precipitation 

(1981-2005)

Comparison to MESM Simulation

(1981-2005)

Model Correlation Bias
Evaporation Runoff

Correlation Bias Correlation Bias

MESM 0.91 -0.04

ACCESS1-3 0.95 0.48 0.85 0.69 N/A

CanESM2 0.94 -0.50 0.90 -0.02 0.62 -0.43

CCSM4 0.95 0.32 0.90 0.69 0.72 -0.19

CNRM-CM5-2 0.93 0.10 0.90 0.50 0.58 -0.14

CSIRO-Mk3-6-0 0.91 -0.27 0.86 0.01 0.70 -0.24

FGOALS-g2 0.94 0.07 0.87 0.49 0.73 -0.07

GFDL-ESM 0.96 0.32 0.90 0.61 0.77 -0.15

GISS-E2-H 0.89 0.47 0.83 0.73 0.66 -0.35

HadGEM2/CM3 0.93 0.01 0.85 0.48 0.57 -0.21

IPSL-CM5A-MR 0.90 -0.29 0.84 0.27 0.67 -0.19

MIROC5 0.95 0.54 0.86 0.73 0.72 -0.07

MPI-ESM-MR 0.90 -0.25 0.81 0.23 0.50 -0.45

MRI-CGCM3 0.91 0.11 0.83 0.35 0.73 -0.03

NorESM1-ME 0.95 0.20 0.87 0.74 0.70 -0.28
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Figure 10. Month vs. latitude profiles of precipitation (mm/day) given by observations from the Global Climatology Precipitation Project 
(GPCP, upper left); MeSM (upper right panel), as well as two simulations from the Coupled Model Intercomparison Project Phase 5 
(CMIP5, lower panels). In each of the model-result panels, the correlation of its month vs. latitude profile to that of GPCP is given. The 
CMIP5 results show the pattern with the highest (lower left) and lowest (lower right) pattern correlation with the GPCP observations.

Figure 11. Month vs. latitude profiles of evapotranspiration (mm/day) given by observations from the MeSM (upper right panel), as 
well as two simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5, lower panels). The CMIP5 results show 
the pattern with the highest (lower left) and lowest (lower right) pattern correlation with MeSM. also shown is the simulation from 
CCSM4 (upper left) panel.
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that the implementation of TEM within the MESM structure 
preserves all of the salient seasonal and latitudinal attributes 
as seen in previous evaluations (Figure 19 of Schlosser et al., 
2007), and the characteristics of these patterns are consistent 
and corroborated by recent and detailed simulations with 
TEM in standalone configuration (e.g. Chen et al., 2011; 
Zhu and Zhuang, 2013; and Lu et al., 2015). Overall, ter-
restrial ecosystems represented a net uptake of carbon both 
globally as well as across all latitudes through our historical 
period of evaluation (1981–2005). In addition, the strongest 
(annual) sinks of carbon are found to be across the boreal 
latitude bands are comprised of extensive forest cover. An 
additional relative peak is also seen across the southern 
sub-tropical latitudes and is comparable in magnitude to 
the sink produced by northern midlatitude ecosystems. 
Although these areas are strong sinks – they carry a distinct 
seasonality and serve as considerable carbon sources during 
the late Fall through early Spring months. 
Methane Emissions: In keeping with our overall approach 
to evaluate the performance of the land biogeochemical 
fluxes, we have evaluated the methane emissions against 
previous evaluations with models that contain similar core 
parameterization recipes but also a recent multi-model 
assessment (the WETCHIMP study of Melton et al., 2013) 
with distinct structural differences in overall design as well 
as implementation of the participating models. In order to 

provide the most consistent comparative evaluation in this 
regard, we focus on the historical period of 1993–2004. We 
find that for nearly all latitudes, the annual emission of meth-
ane from MESM falls within the range of the multi-model 
assessment (Figure 14). The most notable exception is found 
at boreal latitudes with the MESM estimate well above the 
upper bound of the WETCHIMP range. However, one 
notable feature of this multi-model assessment is that it did 
not contain a model participant with TEM as its core eco-
system model that MESM employs. Looking at model-based 
studies that have used TEM as the core ecosystem model 
(e.g. Zhuang et al., 2004) as well as an observation-based 
artificial neural-network method (Zhu et al., 2013) to esti-
mate total methane emissions in boreal latitudes (north of 
45˚N), they indicate values on the order of 44 to 54 Tg CH4/
yr. The methane emission rates from the MESM historical 
simulation provide a more consistent latitude profile of 
emission across the boreal zone in this regard. Given that 
the higher boreal emission rates are more closely aligned 
to the observation-based result, we are confident that the 
MESM estimate is providing not only a result that is repre-
sentative of the core ecosystem model behavior (i.e. TEM) 
but also a value that is empirically defensible. 
Nitrous Oxide: In a similar vein to our evaluation of NEP, 
we find that the MESM historical simulation and a stand-
alone version of CLMCN coupled to a N2O emissions 

Figure 12. Month vs. latitude profiles of runoff (mm/day) given by observations from the MeSM (upper right panel), as well as two 
simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5, lower panels). The CMIP5 results show the pattern with the 
highest (lower left) and lowest (lower right) pattern correlation with MeSM. also shown is the simulation from CCSM4 (upper left) panel.
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Figure 13. Simulations of emissions of net ecosystem productivity (NeP) by the MIT earth-System Model (MeSM) within the IGSM 
framework. Top panel displays the month versus latitude results averaged over 1981–2005, and the bottom panel shows the 
corresponding annual fluxes by latitude. units are in 109 kg-C/month and 109 kg-C/year, respectively. Shown also in the bottom 
panel with the shaded red area is the multi-model range from five of the CMIP5 earth-system models that provided data from 
historical simulations that cover the evaluation period.

Figure 14. Simulations of emissions of methane by the MIT earth-System Model (MeSM) within the IGSM framework. Top panel 
displays the month versus latitude results (units in Tg-CH4/month) averaged over 1993–2004, and the bottom panel shows the 
corresponding annual fluxes by latitude (units in Tg-CH4/year). Shown also in the bottom panel with the shaded red area is the 
multi-model range from the results of WeTCHIMP with. More recent studies (not shown in figure) indicate that the excess in 
emissions from MeSM at high northern latitudes is credible (see corresponding text for details).
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model (CLMCN-N2O, Saikawa et al., 2009) share common 
features but also exhibit distinct differences. It is important, 
however, to note that this model-to-model comparison 
cannot provide any judgement on the fidelity or veracity 
of either model. Rather, this is an evaluation of the sensi-
tivity to the configuration and application of the soil N2O 
emissions module (a variant of the DNDC model) within 
and Earth-system model framework. As such, both of the 
models exhibit consistent latitudinal locations of relative 
maximum emission rates (Figures 15 and 16) – which occur 

along the equator as well as during the summer season in 
both the northern and southern sub-tropical bands. Consis-
tent across all these simulations is that the tropics provide 
the strongest annual emission source. While both models 
provide an additional source of emissions across the mid 
and higher northern latitude bands, a distinct difference is 
seen in the seasonality of this feature. The CLMCN-N2O 
model exhibits a distinct summertime peak in emissions 
that is coincident and widespread across the middle and 
into higher latitudes. In the MESM zonal configuration – the 

Figure 16. Simulations of soil emissions of nitrous oxide by the MIT earth-System Model (MeSM) within the IGSM framework. 
The top panel shows month versus latitude results averaged over 1981-2005 with units in 108 kg-N2O/month. The bottom panel 
provides the annual emission rates (108 kg-N2O/year) for the corresponding latitudes of the top panel. Shown also in the bottom 
panel with the shaded red area is a multi-estimate range based on the results from Saikawa et al. (2011) and Hashimoto (2012).

Figure 15. Simulations of soil emissions of nitrous oxide by the CLMCN-N2O model (Saikawa et al., 2013) forced by two different 
meteorological datasets (CaS and GMFD). Shown are month versus latitude results averaged over 1981–2005. units are in 108 kg-N2O/month.

rePOrT 325 MIT JOINT PrOGraM ON THe SCIeNCe aND POLICy OF GLObaL CHaNGe

20



extent and summer timing of the peak is aligned with the 
CLMCN-N2O estimate between 45–75˚N, however for 
latitudes 25–45˚N there is an earlier onset and terminus 
of this feature. Through the course of a number of vari-
ants and sensitivity simulations with the IGSM, we have 
identified that the most likely culprit to this behavior lies 
within the MESM simulation of land precipitation. When 
compared to an observationally-based estimate (GPCP), we 
find that the MESM estimate of precipitation is biased low 
during the summertime across the corresponding latitude 
bands (Figure 10). In conjunction with low evapotranspi-
ration rates during the spring (not shown) – soil moisture 
stores become elevated at these latitudes and trigger the 
soil anaerobic conditions necessary for denitrification, and 
thus leads to the earlier emissions peak. However, by the 
beginning of the summer – elevated evapotranspiration 
levels combined with a precipitation deficit support dry soils 
and the emissions processes in MESM become dormant. 
Nevertheless, we have made salient progress from our 
earlier implementation (Schlosser et al., 2007) in providing 
a more consistent depiction of soil N2O emissions with a 
reduced form of the model compared to its more detailed 
counterpart. The scientific community has recently recog-
nized key areas for improvement (Butterbach-Bahl et al., 
2013) and will continue to make necessary strides in the 
detailed modeling of nitrous oxide emissions and verifi-
cation studies. As such, this strategy will continue to be a 
critical element of our model development, particularly 
with regard to the N2O emissions component. 

3.4 Emissions-driven Projections of Future 
Climate

In the simulations discussed below, the MESM was forced 
by anthropogenic emissions calculated by the EPPA mod-

el, including carbon emissions associated with land use. 
MESM also takes into account natural emissions of CH4 

and N2O calculated by NEM. 

Wang et al., (1998) describe a tropospheric chemistry and 
transport scheme for a chemical tracer used in the MESM. 
In the framework of the Aviation Climate Change Research 
Initiative (ACCRI, Brasseur et al., 2016), the MESM was 
used in a tracer transport comparison exercise. In these 
simulations, the ACCRI 2006 fuel burn inventory (Bar-
ret et al., 2010) above 8km were used as a proxy for tracer 
emissions. Simulations were carried out for six months 
starting in January and July with tracers being released in 
the atmosphere during the first month only. Below we show 
comparisons between results obtained in simulations with 
the MESM and GEOS-Chem models for three different 
types of tracers: an inert tracer (no losses), a tropospheric 
ozone-like tracer with a prescribed a 21-day e-folding life-
time and a tracer with a dry deposition removal process. 
Results are shown only for simulations started in January 
because results of simulations started in July look very 
similar. The total mass of the tracer with dry deposition 
decreases slightly faster in simulations with MESM than 
with GEOS-Chem, while the changes for the other two 
tracers are practically identical in both model simulations 
(Figure 17). Figure 18 shows latitude- pressure distribu-
tions for the ozone-like tracer for the first, third and sixth 
months of the simulations. Because the total mass of the 
tracer decreases exponentially, data for the third and sixth 
months were multiplied by factors of 10 and 104, respectively. 
In general, the study of the impact of aviation emissions 
on atmospheric chemical composition and climate showed 
that MESM results lie well within the envelope of the more 
complex 3-D chemistry-climate models (Olsen et al., 2013).

Figure 17. Time evolutions of total mass (109 kg) for inert ozone-like and tracer with dry deposition in simulations with January 
emissions with MIT MeSM (solid lines) and GeOS-Chem (dashed lines)
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Our simulations with interactive chemistry start in year 
2006 as a continuation of an historical simulation and future 
projections are then usually given to 2100. Here, however, 
we will concentrate on short-term simulations (2006–2015) 
when model mixing ratios using model emissions can be 
compared with observed mixing ratios.

As can be seen, the MESM simulates global concentrations 
of the 3 major long-lived greenhouse gases rather well 
(Figure 19). Figure 20 plots tropospheric mixing ratios 

for some climate-relevant species (O3, CH4, CO, SO2, NO 

and NO2) as well as the very short-lived OH species from the 
MESM output as well as the zonal average for the ACCMIP 
archived version of the CESM CAM-Chem, with CAM 
version 3.5 (available at http://browse.ceda.ac.uk/browse/
badc/accmip). The CESM output has 26 vertical levels, which 
have been regridded to match the 11-level MESM output in 
Figure 20. In general, the MESM results are comparable to 
the CESM data, with the vertical and latitudinal distributions 

Figure 18. Latitude-pressure distributions of ozone-like tracer concentration (ppbm) in simulations with January emissions for first 
(top), third (middle) and sixth (bottom) months of simulation. Left column: results obtained with the MIT MeSM. right column: result 
from GeOS-Chem.

Figure 19. Observed (red) and projected (black) concentrations of CO2 (left), CH4 (middle) and N2O (right).
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of O3, CH4, and OH in fairly close agreement. The MESM 
does not have the hemispheric asymmetries for CO and NO2 
that are shown in the CESM data, and the MESM vertical 
distribution of SO2 peaks at the third level, as a result of SO2 
emissions being distributed evenly in the bottom two layers. 
In addition, in contrast to most chemistry models (including 
the CESM-CAM-Chem), MESM does not use prescribed 
surface concentrations as low boundary conditions.

The radiative forcing and the simulated surface air tem-
perature (not shown) are almost identical in historical 

(concentration-driven) and emissions-driven simulations. 
In general, the simulated climates are very similar during 
the overlapping period of the two simulations (2006–2010).

4. Conclusion
This paper describes the current version of the MIT Earth 
System Model. The MESM belongs to the class of Earth 
system models of intermediate complexity (EMICs), which 
occupy a place between simple conceptual models and 
comprehensive global circulation models (Claussen et al., 

Figure 20. Present-day simulated zonal output from the MeSM (left) and zonally averaged output from the CeSM CaM-Chem, CaM 
version 3.5 archived data from the aCCMIP archive (right) for O3, CH4, CO, SO2, OH, and NO2. The CaM data has been regridded to 
match the MeSM levels, and only data below the tropopause (here defined as 150 ppbv O3) is shown.
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2002). It provides a physical representation of key climate 
processes and feedbacks, while remaining computationally 
efficient, and thus allowing for large ensemble of climate 
simulations to be conduct at significantly less cost than 
state-of-the-art climate models. The number of climate 
system components and their complexity are defined by 
the nature of studies for which the model is intended to 
be used in. The MESM was designed for and has been 
used in two major types of studies. First, the MESM has 
been used to evaluate the uncertainty in key parameters 
controlling the climate system response to changes in ex-
ternal forcing. Large ensembles of climate simulations are 
run under historical concentrations of greenhouse gases 
and aerosols while the relevant climate model parameters 
are systematically varied (e.g, climate sensitivity, rate of 
ocean heat uptake, strength of the net aerosol forcing). 
The simulated climate is then compared with available 
observations using optimal fingerprint diagnostics to derive 
probability distributions of the parameters (Forest et al., 
2002, 2008; Libardoni and Forest, 2011, 2013). Second, 
the MESM has been used to investigate the uncertainty in 
future climate projections arising from the uncertainty in 
the climate system response to changes in external forcing 
and the uncertainty in future human activity. This is done 
by running large ensemble of climate simulations with Latin 
hypercube sampling of the key climate parameters from 
their probability distributions under various greenhouse 
gas and aerosols emissions scenarios developed with the 
EPPA model (Sokolov et al., 2009; Webster et al., 2012).
Key model requirements to conduct such analysis are: i) 
the capability to vary key climate model parameters over a 
wide range representative of our current knowledge of the 
climate system, ii) computational efficiency in order to run 
large ensemble for robust uncertainty quantification, and 
iii) the availability of a comprehensive chemistry model 
to simulate the fate of various radiatively active chemical 
species and their impact on the climate system. Since our 
studies showed that the rate of heat uptake in a 3-dimen-
sional dynamical ocean general circulation model can only 
be changed over a rather narrow range (Dutkiewicz et al., 
2005, Sokolov et al., 2007), the version of MESM used in 
uncertainty studies incorporates a simplified anomaly-dif-
fusing ocean model, in which the ocean heat uptake rate 
can be varied over a much wider range. Computational 
efficiency, required to perform thousands of simulations, is 
achieved by using a zonally averaged atmospheric model. 
Nonetheless, the MESM includes a rather comprehen-
sive chemistry model, which can simulate the interaction 
between different chemical species, such as an impact 
of changes in NOx emissions on methane lifetime, and 
the interaction between climate and chemistry, such as 
an impact of changes in surface ozone concentration on 
productivity of terrestrial ecosystem (Felzer et al, 2004, 
2005). As a result, the MESM can be used to evaluate the 

uncertainty in future climate projections associated with 
different emission scenarios, accounting for complex in-
teractions and feedbacks between atmospheric chemistry, 
carbon cycle, and climate.

While not originally designed for such purposes, the MESM 
has also been used for multi-centennial climate simulations, 
such as projections beyond 2300 to investigate longer-term 
commitment and irreversibility (Zickfeld et al., 2013), or 
preindustrial portions of the last millennium to assess 
historical carbon-climate feedbacks (Eby et al., 2013). 
In addition, the MESM has been combined with statisti-
cal climate emulator techniques, such as pattern scaling 
(Schlosser et al., 2013; Monier et al., 2015), to compute 
regional climate information that not only accounts for 
the uncertainty in the global climate system response and 
human activity, but also for the uncertainty in the regional 
patterns of climate change associated with different climate 
models. For example, the MESM has been used to derive 
probabilistic distributions of changes in temperature and 
precipitation over Northern Eurasia (Monier et al., 2013). 
Large ensembles of regional climate simulations using the 
MESM were also used to investigate the risk of permafrost 
degradation and the associated high latitude methane emis-
sions (Gao et al., 2013), to compute probabilistic projections 
of water stress over a large portion of Asia (Fant et al., 
2016), and to examine the climate change and economic 
growth prospects for agriculture, road infrastructure and 
hydropower generation in Malawi (Arndt et al., 2014).

Overall, the results presented in the paper show that, despite 
simplifications made in the model, the MESM simulates 
rather well changes in observed climate since the middle 
of 19th century as well as the main features of present-day 
climate. The results of the simulations performed in emis-
sions-driven model also compare favorably with results 
obtained with comprehensive climate-chemistry models 
and available observations. Therefore, the MESM provide 
a valuable and efficient tool for climate change modeling, 
uncertainty quantification and climate risk analysis.
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