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Abstract
The influence of anthropogenic aerosol emissions on the optical properties of clouds and
the radiative forcing arising from these interactions, known as the aerosol indirect effect on
climate, constitutes a fundamental uncertainty in our understanding of 20th century climate
change. In this dissertation, we investigate the role of a keystone physical process, droplet
activation, in contributing to this uncertainty. The first half of the ensuing work focuses on
the parameterization of this process in global model, assessing both existing schemes and
developing a novel one. The second half then quantifies the influence of activation by using
a suite of aerosol-climate models which include a complete description of the physics which
give rise to the indirect effect.

Parameterizations of droplet activation perform well for idealized single-mode aerosol
populations, but show systematic biases in high-pollution, weak-updraft regimes. These are
exacerbated when the aerosol in question is a complex mixture. We show that estimates of
droplet nucleation are highly sensitive to changes in the accumulation mode size and number
concentration; this mode is itself sensitive to anthropogenic aerosol emissions, which poten-
tially further biases modeled cloud droplet number. Using a model emulation technique, we
develop a framework for building efficient metamodels of activation, which greatly reduce
the mean error in droplet number predicted across regimes.

The biases in these parameterizations raise questions the influence of activation on the
indirect effect. Using different schemes, we calculate a spread of 1W m−2 in the indirect
effect, which we show is equal to the spread computed from an independent suite of global
models with different aerosol and physics modules. The estimated indirect effect scales more
strongly with the baseline cloud droplet number concentration simulated by each model than
by its change from pre-industrial to present day, indicating a strong saturation effect. While
present-day estimates of aerosol-cloud interactions derived from satellite-based instruments
are inadequate at constraining the pre-industrial cloud droplet burden, we show that process-
based measurements could overcome this problem.

Thesis Supervisor: Chien Wang
Title: Senior Research Scientist
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Chapter 1

Overview

Within the atmospheric sciences, a wide of variety of tools and idealized models have

been developed to aid us in tackling fundamental questions about the climate system:

How do we account for the geological record of frequent, large swings in climate?

What internal and external factors set the climate state? How sensitive is the climate

to perturbations in those factors? What is the relationship between meteorology and

climate across scales? At the apex of our available toolchain are elaborate, coupled

models of the atmosphere, ocean, land, and ecological systems which attempt to

encompass the complete body of human knowledge about the climate system.

But, as Twomey (1991) pointed out, eschewing these tools for the simplest “climate

equation” can be surprisingly insightful:

𝜎𝑇 4
𝑒 = (1− 𝛼)𝑆0 (1.1)

Stating a fundamental energy balance, this equation asserts that the amount of

energy the Earth radiates to space (LHS) must balance the amount of energy it

intercepts from the sun (RHS). But not all solar energy (𝑆0) is up for grabs; there

is some factor 𝛼 (the planetary albedo) which the Earth never even realizes as it is

immediately reflected back to space, either by clouds or the surface of the Earth itself.

Interpreting 𝑇𝑒 is slightly more difficult, but can be taken as a proxy for the emission,

transmission, absorption, and re-emission of energy absorbed at the Earth’s surface,
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and depends on that surface’s temperature along with the absorptivity and structure

of the atmosphere above it. In this way, it is similar to a planetary “temperature”.

Depending on one’s scientific proclivities, it is possible to torture this climate

equation in many different ways. One of the most basic would be to observe that

there are two ways methods to perturb 𝑇𝑒: either turn up or down the output of

the Sun (𝑆0), or change how much solar energy is reflected back to space (𝛼). If we

hold the Sun’s output constant, then changes in the albedo can be quite potent. For

instance, Budyko (1969) and Sellers (1969) offered concise models of the interplay

between glacial extent (which strongly influences 𝛼 as glaciers are very reflective) and

the global temperature. But changes in the properties of clouds could accomplish

the same climactic feat, and clouds can respond to perturbations on far shorter time

scales than glaciers.

How specifically, then, can the properties of cloud influence albedo? On the one

hand, since 𝛼 represents a globally-integrated effect, one could simply increase the

average fractional cloud cover. Doing so would incur enhanced cloud interactions

with longwave radiation, producing a feedback on 𝑇𝑒 whose sign depends on the

altitude at which a given cloud forms (such that increases in the global coverage of

low-level clouds could produce a cooling effect on the climate, whereas increases in

high altitude clouds could produce a warming effect). Alternatively, one could modify

cloud reflectance, say by increasing the droplet number concentration 𝑁𝑑 in the cloud

(Twomey, 1977). This would not necessarily create a counteracting effect in the

longwave; if anything, one might expect a positive feedback, since increases in 𝑁𝑑 are

often associated longer cloud lifetimes (Albrecht, 1989) and therefore larger 𝛼, in an

integral sense. This observation is foundational to a corner of the academic literature

on climate change aimed at developing novel engineering schemes to mitigate global

warming by large-scale modification of cloud albedo (Latham, 1990; Latham et al.,

2012; Kravitz et al., 2013; Crook et al., 2016) Furthermore, changes in 𝑁𝑑 necessarily

invoke changes in the microphysical structure of a cloud (the spatiotemporally varying

droplet or hydrometeor size distribution) which play additional, secondary roles in

modifying its albedo and dynamical properties (such as precipitation), although the
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complexity of the processes involved in this may buffer the system and mute its

response under many circumstances (Stevens and Feingold, 2009).

The question of how to perturb 𝑁𝑑 is inextricably linked with the atmospheric

aerosol: ultimately, most droplets in the atmosphere form via condensation on some

particle. As a consequence, the simplicity of Equation (1.1) obfuscates a far more

complicated, underlying, coupled aerosol-cloud-climate system. The sheer complexity

of the processes involved in the dynamics of each system would respectively take up

a complete textbook (to name one each, Seinfeld and Pandis (2006), Pruppacher and

Klett (1997), and Pierrehumbert (2010)). The potential influence of perturbations to

the aerosol-cloud-climate system’s components is encoded in 𝛼.

Unlike Equation (1.1), the aerosol-cloud-climate system is not readily amenable

to a simple, analytical treatment. But we can still make an effort to understand its

behavior with a reductionist approach. To borrow from the ecology literature, we

might describe a fundamental or “’keystone” component in the aerosol-cloud-climate

system which, when taken away or modified, can grossly affect the character of the

system as a whole (Paine, 1966). In the aerosol-cloud-climate system, that keystone

is the process of droplet nucleation, or aerosol “activation”. Activation acts as a

machine which, for a given meteorological context, translates the complexities of

the ambient aerosol size distribution into an assemblage of cloud droplets, our 𝑁𝑑,

with a narrow size distribution. Many processes then act to further modify 𝑁𝑑 and its

underlying size distribution. For instance, mixing of dry air, collision and coalescence,

and precipitation are some ways that influence how 𝑁𝑑 evolves over time in a cloud.

Clouds themselves can be coupled in a dynamical cycle, something which has also

been described using frameworks co-opted from the ecology community, such as the

Lotka-Volterra or predator-prey model (Koren and Feingold, 2011). That cycle can

doubly intersect with aerosol via cloud processing, where evaporating cloud droplets

release the aerosol material they have collected, in a chemically-altered form. But

prior to any such cycle, activation dictates a basic relationship between the aerosol

and 𝑁𝑑.

This fundamental aerosol-cloud linkage has long been recognized, and served to
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motivate the development of prognostic cloud microphysics schemes in global climate

models—the apex tools which try to resolve detail hidden by Equation (1.1). Using

data from aircraft campaigns, works like Jones et al. (1994) employed simple empirical

relationships to relate aerosol properties like sulfate mass to 𝑁𝑑, enabling a first, crude

online estimate of the indirect effect (the influence of aerosols on climate via modifying

cloud properties). Further developments increased the complexity of each component

in the aerosol-cloud-climate system. Ghan et al. (1997) added a prognostic scheme for

𝑁𝑑 into the mix, including an activation parameterization very closely related to one

widely used in present-day models (Abdul-Razzak et al., 1998), but with prescribed

aerosol number. Lohmann and Feichter (1997) included an interactive sulfate aerosol

chemistry scheme in a different model to enable prognostic aerosol number which was

fed to a different activation scheme (Lohmann et al., 1999). Over the ensuing two

decades, these models (and other spiritual descendants) have continued to evolve,

including ever-increasingly complex descriptions of the ambient aerosol and cloud

hydrometeor size distributions and the processes which act on them. Underpinning

this ballooning complexity has been the hope that any given innovation could provide

insight or the opportunity for new observational constraints or bounds on the behavior

of the aerosol-cloud-climate system.

Yet recently, despite its instigation in the development of global modeling tools,

activation has played a back-seat role to other physical processes in this pursuit. We

see this is in at least two ways. First, there has been a proliferation of physically-based

aerosol activation schemes which work with arbitrary modal or sectional descriptions

of the aerosol size distributions (Ghan et al., 2011). Modifying the aerosol scheme in a

given climate model no longer requires an investment in the fundamental development

of a new, suitable activation scheme. As a result, there is less incentive to rigorously

study the nuances of how changes in that aerosol description influence droplet number,

either using an activation scheme or a detailed process model. A related consequence

is a disincentive to validate activation of said aerosol populations against real-world

observations. Available observations cover but an increasingly small set of the aerosol

parameter space in these models, and thus may only provide weak constraints on the
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aerosol-cloud linkage in them.

Second, there are many microphysical processes in global models which may be

far more poorly constrained or understood than activation, and these are attractive

targets for sensitivity analysis and deriving observational constraints. For instance,

autoconversion of cloud-water to rain-water involves bulk parameterizations tuned to

large-eddy simulation output (Khairoutdinov and Kogan, 2000) and which require

additional scaling or tuning factors for deployment in a global model. Changes in

such a tuning systematically modify cloud macro-physical properties but still take

𝑁𝑑 as an input, and are thus an important link in the aerosol-cloud-climate chain.

Another example is the modeled representation of sub-grid phenomena. Global mod-

els necessarily are run at far coarser spatial and temporal resolution than those on

which most cloud processes. Resolving relevant cloud-scale meteorology parameters

in global simulations is thus a very difficult problem. Within the aerosol-cloud frame-

work, one such parameter is the distribution of local vertical velocities driving the

plumes which generate clouds. Potentially-convergent lines of work seek to develop

either higher-order moist turbulence closures (Bogenschutz et al., 2013) which can be

used to drive probabilistic approaches to sub-grid scale cloud physics, or to identify

characteristic values from the resulting distributions of vertical velocity (Morales and

Nenes, 2010) which can be used to drive traditional, deterministic parameterizations.

Propagation of uncertainty in these types of parameter(ization)s through to the cli-

mate scale under the constraints of available theory and observation is a means to

disentangle the web of processes in the aerosol-cloud-system into some semblance of

order or importance.

Uncertainty in the aerosol and cloud components of the aerosol-cloud-climate sys-

tem has been systematically and rigorously quantified. But how does the linkage

between the two—activation—contribute to uncertainty in the climate system? The

work presented in this dissertation targets this basic question, seeking to retain Equa-

tion (1.1) in its broader perspective through the assessment of aerosol indirect effects

on climate (AIE) and aerosol-cloud interactions (ACI).

In pursuit of answers to this question, this dissertation is divided into two halves.
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In its first half (Chapters 2 and 3), we develop a novel method for parameterizing

aerosol-cloud interactions in global models (droplet activation). Unlike recent devel-

opments in the field, this parameterization is built from the statistical emulation of

a detailed process model. Such a parent model would be amenable to the inclusion

of many physical and chemical details, such as entrainment or the influence of atmo-

spheric chemistry on condensation and activation. The statistical emulation process

yields a form of parameterization akin to a look-up table, but extendable to a very

large number of inputs without sacrificing accuracy, speed, or computational com-

plexity. With this tool, we systematically assess the influence of aerosol physical and

chemical properties on aerosol activation and cloud droplet number concentration,

𝑁𝑑, first for an idealized lognormal aerosol size distribution and then for a highly-

complex, multi-modal aerosol formulation. As part of the process used to develop

the emulator, we employ a greedy, iterative analysis to assess the constraints exerted

by different modes on activation. We find that the number concentration of accu-

mulation mode sulfate particles strongly predicts 𝑁𝑑 in the vast majority of cases,

including in the presence of giant CCN such as dust or sea salt particles. Even the

presence of a small number of these particles is enough to offset large variations in

the number of smaller, Aitken mode particles.

We then use our emulators and reference process model to evaluate two widely-

used activation schemes. Compared to the reference model, the emulators we build

in this work produce much smaller mean errors in 𝑁𝑑 for aerosol populations sampled

across the modeled globe. However, there are strong contrasts in the performance

of all the parameterizations and emulators between oceanic and continental aerosol

regimes. In particular, all of our schemes systematically over-predict 𝑁𝑑 in polluted

regimes over continents, and under-predict it clean regimes over oceans. Compar-

ing the sampling distribution of aerosol populations from our global model versus

a much larger parameter space suggests that these systematic biases are related to

the underlying, modeled aerosol size distribution; we tend to produce sample aerosol

populations which the schemes do not necessarily handle successfully. As a result,

using different activation schemes can lead to large differences in the model-simulated
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climatology of 𝑁𝑑. We hypothesize that these differences could dramatically influence

estimates of the indirect effect.

In the latter half of the dissertation (Chapter 4 and 5) we test this hypothesis,

aided by a large ensemble of modern aerosol-climate models. Using a modern aerosol-

climate model of our own implementation, we couple each of the previously-studied

activation schemes, along with a set of heuristic variants, and estimate the magnitude

of the indirect effect. The spread among estimates using models with each activation

scheme considered is 1.1Wm−2, which is as large as both the spread in our reference

ensemble and that reported by the IPCC (Boucher et al., 2013). The spread is also

larger than that reported by other works which perturb different components of the

emissions, aerosol, and cloud components of similar global models. In agreement with

previous work, we find that the magnitude of the indirect effect in our simulations

scales poorly with the change in 𝑁𝑑 between the pre-industrial and present day, and

instead strongly with the base state climatology of 𝑁𝑑 in the pre-industrial case

under natural emissions. Because of this, differences in the relationship between 𝑁𝑑

and aerosol encoded in each activation scheme, particularly in the natural or clean

aerosol regimes, contributes significantly to uncertainty in the indirect effect. This

is somewhat distressing, because unlike empirical parameterizations between 𝑁𝑑 and

aerosol or microphysical processes, do not have free parameters which could be tuned

to correct biases compared to observations.

In an effort to resolve this source of distress, we perform analyses of aerosol-

cloud interactions (ACI) and the impact of the choice of activation scheme on their

magnitude and relationship to the indirect effect. We note that AOD-based metrics

are problematic for this purpose, as the influence of anthropogenic aerosol emissions

into our global model produces a step change in the distribution of regional AOD.

Thus, measures of ACI derived using the present day climate are a poor proxy for the

pre-industrial one. However, using CCN obviates this problem, as there is a smooth

transition in the distribution of CCN which overlaps between both climate states.

This motivates an assimilation of new data sources to quantify CCN-𝑁𝑑 relationships

for constraining models and extending observational constraints on the indirect effect.
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In addition to examining this fundamental source of uncertainty, we show that ACI

differs greatly between the models using different activation schemes and strongly

correlates with regional diversity in the strength of the indirect effect. This further

motivates the need for in situ measurements of CCN and cloud microstructure as a

means to providing constraints on the physics simulated in global models.

Finally, in Chapter 6, we reflect on the lessons learned in this dissertation, and

contemplate the future of assessments of the aerosol indirect effect and aerosol-cloud

interactions. We focus these reflections on three broad topics. First, we consider

how field measurements and observation campaigns could provide data that would

help constrain the indirect effect by concentrating on fundamental microphysical pro-

cesses. Second, we consider the possibility of new, emergent constraints on aerosol-

cloud interactions arising from our investigations here. Finally, we propose a renewed

investment in a holistic analysis of the climate response to aerosol perturbation in

lieu of continued efforts to constrain the climate forcing to those same factors. Such

an effort could directly contribute to the investigation into emergent constraints on

the indirect effect, and would be more relevant to a society faced with an imminent,

rapid decline in aerosol emissions and associated climate penalties.
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Chapter 2

Metamodeling of Droplet Activation

for Global Climate Models

© American Meteorological Society. Used with permission

2.1 Introduction

Interactions between aerosol and clouds yield one of the largest sources of uncertainty in

understanding climate and future climate change on regional and global scales (Boucher

et al., 2013). Within the Earth’s atmosphere, homogeneous liquid water droplet formation

is not thermodynamically favorable (Pruppacher and Klett, 1997); instead, the pathway to

nucleating cloud droplets is aided by the presence of ambient aerosols, a subset of which

possess physical and chemical characteristics which allow them to serve as cloud condensa-

tion nuclei (CCN). These CCN provide a linkage between the physiochemical processes of

atmospheric particles and cloud microphysics.

Changes in the background aerosol population can directly affect the properties of a

nascent cloud droplet population. For instance, holding liquid water content constant, an

increase in the number of CCN would tend to increase the total cloud droplet number con-

This chapter is adapted from Rothenberg, D., and C. Wang, 2015. Metamodeling of Droplet
Activation for Global Climate Models. Journal of the Atmospheric Sciences. doi:10.1175/JAS-D-
15-0223.1.
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centration (the “Twomey” effect) while necessarily reducing the average size of the droplets

(Twomey, 1974). Such a change could enhance a cloud’s albedo, an effect which could be

further amplified through microphysical feedbacks since smaller droplets impede the pro-

duction of drizzle and thus lengthen cloud lifetime (Albrecht, 1989). Mechanisms whereby

aerosol influence the properties of clouds (and ultimately climate) are generally known as

“aerosol indirect effects” (Haywood and Boucher, 2000; Lohmann and Feichter, 2004) and

provide a path for changes in the ambient aerosol to produce cascading effects up to progres-

sively larger scales of atmospheric motion (e.g. Wang, 2005a; Ekman et al., 2011; Morrison

et al., 2011; Tao et al., 2011; Fan et al., 2012; Altaratz et al., 2014).

Aerosol indirect effects can either warm or cool the climate, but they all fundamentally

depend on a subset of the ambient aerosols which function as CCN. The theory describing

the dependency of cloud droplet nucleation (also known as aerosol activation) on CCN

availability and ambient aerosol has been rigorously developed using adiabatic and entraining

parcel theory (Seinfeld and Pandis, 2006; Pruppacher and Klett, 1997), and depends on

details of the heterogeneous chemical composition, number, size distribution(s) and mixing

state of the background aerosol (Mcfiggans et al., 2006) as well as local meteorology (Morales

and Nenes, 2010). Under polluted conditions, effects relating to chemical composition could

produce a climatic effect as large as the basic “Twomey” effect (Nenes et al., 2002; Lance

et al., 2004).

The development of activation parameterizations was pioneered by Twomey (1959) and

Squires and Twomey (1961), who derived a relationship between the number of activated

particles and the environmental supersaturation based on an aerosol size distribution ap-

proximated by a power law. Ghan et al. (2011) presented a thorough overview of subse-

quent developments over the past five decades and an inter-comparison of several modern

parameterizations. However, there is still an active effort to improve these parameteriza-

tions, as they are increasingly called upon to mediate between ever more complex aerosol

models and the climate models to which they are coupled. For instance, the parameteri-

zation initially developed by Nenes and Seinfeld (2003) has seen continuous development,

including modifications to handle condensation onto insoluble but wettable particles using

adsorption-activation theory (Kumar et al., 2009), environmental entrainment (Barahona

and Nenes, 2007), and numerical improvement of the population-splitting technique (Bara-

hona et al., 2010; Morales Betancourt and Nenes, 2014a). Similarly, Ghan et al. (2011)
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extended the parameterization of Abdul-Razzak and Ghan (2000) to account for non-unity

values of the accommodation coefficient 𝑎𝑐. Beyond idealized testing and droplet closure

studies (Meskhidze, 2005; Fountoukis et al., 2007), these modern parameterizations have

been implemented in coupled climate-aerosol models such as the Community Earth System

Model (CESM) to predict online cloud droplet number concentrations, where they have been

shown to correct biases in global average cloud droplet number concentrations and improve

agreement with cloud properties measured from satellite-born instruments (Gantt et al.,

2014). Furthermore, adjoints of these parameterizations have been derived and coupled to

chemical transport and global models in order to study the sensitivities of cloud droplet

number to aerosol, chemical and microphysical factors (Karydis et al., 2012; Moore et al.,

2013).

Additionally, following the original integral/geometric approach by Twomey (1959), an-

alytical representations of supersaturation evolution from adiabatic parcel theory have been

progressively generalized to relate aerosol distributions to activation kinetics (Cohard et al.,

1998; Khvorostyanov and Curry, 2006, 2008; Shipway and Abel, 2010; Shipway, 2015). Al-

though fundamentally analytical parameterizations, schemes of this class typically must rely

on expensive numerical operations, such as in the evaluation of hypergeometric functions

and iterative loops.

While most of these recent efforts towards improving activation parameterizations have

focused on building highly generalized, “physically-based” tools, there is still an application

for other parameterization approaches. Saleeby and Cotton (2004) parameterized droplet

nucleation for a cloud-resolving model, the Regional Atmospheric Modeling System (RAMS),

by constructing a four-dimensional lookup table based on temperature, vertical velocity,

aerosol number concentration, and the median radius of a lognormal aerosol mode with

assumed chemical composition. Ward et al. (2010) added a fifth dimension representing

chemical composition via aerosol hygroscopicity (following 𝜅-Köhler theory (Petters and

Kreidenweis, 2007) to the lookup table, and later generalized to aerosol soluble fraction by

Saleeby and van den Heever (2013)). Constructing lookup tables of detailed parcel model

results can be considered a form of model emulation combining a cache of known results

and local polynomial (linear) approximation.

As the degrees of freedom and number of parameters describing a given aerosol popula-

tion in a model increase, the burden of saving enough known points to interpolate through
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the parameter space via lookup table to some reasonable accuracy increases algebraically.

For instance, the CESM features a modal aerosol population with three predefined, inter-

nally mixed lognormal modes, each with a fixed geometric standard deviation (Liu et al.,

2012). Each mode is uniquely described by two moments (total number and total mass con-

centration) and the chemical composition of the mode by a single prognostic hygroscopicity

term. Thus, the entire aerosol population has 𝑁 = 9 degrees of freedom - too many to build

a lookup table of activation statistics. Physically-based parameterizations were designed to

accommodate these sorts of arbitrary mixtures of aerosol, but have a tendency to system-

atically underestimate activated fractions and subsequently cloud droplet number (Simpson

et al., 2014). This is due to the parameterizations’ use of a set of assumptions which become

increasingly likely to be violated as the aerosol population becomes more complex, specif-

ically (1) that proto-droplets grow in equilibrium with environmental changes in relative

humidity, and (2) that there are no kinetic or inertial limitations to droplet growth. The

presence of giant CCN (Barahona et al., 2010) and weak updrafts or excessively polluted

conditions (Nenes et al., 2001) exacerbates this problem.

The goal of this study is to apply a surrogate modeling or emulation technique com-

monly used in the uncertainty quantification literature to a detailed parcel model capable

of describing aerosol activation; this yields an efficient parameterization optimized for the

high-dimensional parameter space affecting droplet nucleation in coupled aerosol-climate

model. In essence, employing the derived emulator as an activation parameterization would

be akin to directly coupling a detailed parcel model to a global model. Such a parameter-

ization would be directly physically-based, but rely on fewer assumptions which affect the

condensational growth of aerosol into CCN. However, it would also incorporate the efficiency

of a lookup table, since the emulator would be designed to require a scarce amount of cached

information and to be computationally cheap to evaluate. Additionally, it would improve

upon the framework of lookup table and be extensible to a very high-dimensional parameter

space and thus be compatible with aerosol-climate models of increasing complexity.

Section 2.2 describes the parcel model and the probabilistic collocation method (PCM)

used to build its emulator. Section 4.3 presents results from applying the PCM to build

a parcel model emulator designed to simulate the activation of a single lognormal aerosol

mode under a wide variety of background environments and compares the new emulator to

existing activation parameterizations. Section 2.4 motivates an extension of the technique
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to an emulator suitable of mediating aerosol activation in a coupled aerosol-climate model.

2.2 Methodology

2.2.1 Parcel Model

Adiabatic parcel models are commonly used to study droplet activation and its sensitivity

to factors such as environmental conditions and ambient aerosol properties. For this work, a

novel parcel model based on previous studies (Leaitch et al., 1986; Nenes et al., 2001; Sein-

feld and Pandis, 2006) was designed and implemented to accommodate diverse, chemically

heterogeneous, polydisperse aerosol populations. The model simulates droplet growth on the

initial aerosol population due to condensation within a constant-speed adiabatic updraft.

Although an arbitrary aerosol size distribution function can be supplied as an input to

the model, for the purposes of this study the initial aerosol distribution is assumed to be

lognormal and described by the equation

𝑛𝑁 (𝑟) =
𝑑𝑁

𝑑 ln 𝑟
=

𝑁𝑡√
2𝜋 ln𝜎𝑔

exp

(︂
− ln2(𝑟/𝜇𝑔)

2 ln2 𝜎𝑔

)︂
(2.1)

where the parameter set (𝑁𝑡, 𝜇𝑔, 𝜎𝑔) correspond, respectively, to the total aerosol number

concentration, the geometric mean radius, and the geometric standard deviation of the dis-

tribution. Within the model, this distribution is discretized into 200 size bins equally spaced

over the logarithm of particle radius (𝑟) and covers the size range (min [0.1 nm, 𝜇𝑔/10𝜎𝑔] , 𝜇𝑔×

10𝜎𝑔). The mean radius in each bin grows due to condensation so that the activation of

wetted aerosol into droplets is calculated in a Lagrangian sense. To relate size-dependent

droplet growth to its embedded aerosol’s chemical composition, each bin is prescribed a

hygroscopicity following 𝜅-Köhler theory (Petters and Kreidenweis, 2007).

To simulate droplet activation, the parcel model first computes an equilibrium wet-size

distribution from the given initial aerosol population and initial environmental temperature,

pressure, and relative humidity. Then, a set of conservation equations which describe the

evolution of the parcel temperature, supersaturation, liquid/vapor water content, and pres-

sure are integrated forward in time using a solver suitable for stiff systems (VODE; Brown

et al., 1989). The complete system of equations and further details on the parcel model can

be found in Appendix A of this chapter.
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2.2.2 Polynomial Chaos Expansion

We construct an emulator of the parcel model in order to assess droplet activation by ap-

plying the probabilistic collocation method (PCM; Tatang et al., 1997). The PCM maps an

output from the parcel model to a set of input parameters by building a response surface

using a polynomial chaos expansion. The polynomial which results from this process is op-

timally a computationally-efficient, high-fidelity reproduction of the detailed parcel model

simulation. Although often used for conducting global sensitivity analyses (Pan et al., 1997;

Calbó et al., 1998; Mayer et al., 2000; Lucas and Prinn, 2005; Anttila and Kerminen, 2007)

chaos expansion-based emulators have also been used to build deterministic parameteriza-

tions (Cohen and Prinn, 2011). To apply and build the chaos expansions discussed here, the

open-source Design Analysis Kit for Optimization and Terascale Applications (DAKOTA;

Adams et al., 2014) version 6.1 was used, which automates the sampling of the PCM col-

location points and the computation of the coefficients of the polynomial chaos expansion

given a user-generated interface to a numerical model (the parcel model described in Section

2.2.1) and a description of the inputs/outputs to and from that interface.

A review of the theoretical basis of polynomial chaos expansion and its potential applica-

tions is provided by Sudret (2008); here, we highlight the important details of the technique

as applied via PCM for the benefit of the reader. PCM is a non-intrusive polynomial chaos

expansion technique; rather than require complex, significant modifications to the model

being emulated, PCM instead considers the model to be a black box and constructs a map

from an input parameter space to the model output parameter space. To accomplish this,

PCM re-casts the input parameters to a model as a set of 𝑀 independent random variables,

X = 𝑋1, . . . , 𝑋𝑀 , each with an associated probability density function. For each input in

X, the associated PDF is used as a weighting function to derive an orthogonal polynomial

which adds to the bases for the polynomial chaos expansion, 𝜑𝑗 . Using a finite number of

these bases, the chaos expansion for a given model response, 𝑅, is then

𝑅 ≈
𝑃∑︁

𝑗=0

𝛼𝑗𝜑𝑗(X) (2.2)

The complete basis of polynomials up to a fixed total-order 𝑝 is retained in the expansions

computed here. For such a total-order expansion, equation (2.2) has 𝑁𝑡 = 𝑃 + 1 = (𝑀 +

𝑝)!/(𝑀 !𝑝!) terms as it contains each of the 𝑝+1 orthogonal basis polynomials for each input
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parameter. PCM provides an experimental design for determining the coefficients of the

expansion, 𝛼𝑗 , by evaluating the model response for a set of 𝑁𝑠 total input parameter sets,

X1, . . . ,X𝑁𝑠 , corresponding to the roots of 𝜑𝑗 and solving a regression problem

Φ𝛼 = R (2.3)

where R is the vector of model responses, 𝛼 is the vector of expansion coefficiens, and

the matrix Φ contains rows for each of the polynomial terms 𝜑𝑗 evaluated for a given input

parameter set X𝑗 .

A practical consideration in applying the PCM to a particular problem is what subset

of the 𝑁𝑠 potential points to use in solving for the coefficients. In general, there exists a

full factorial design of size 𝑁𝑠 = (𝑝 + 1)𝑀 available for use (all the roots of the orthogonal

basis polynomials for all inputs). However, for even moderately-sized 𝑝 and 𝑀 , the number

of potential model evaluations grows very rapidly. In our application we choose a subset of

𝑁 ′
𝑠 parameter sets when applying the PCM by using two rules of thumb:

1. Choose parameter sets with roots closest to the origin (Sudret, 2008);

2. Cross-validate the regression result using 3𝑁𝑡 parameter sets chosen according to rule

(1).

These rules will always produce an over-determined system for Equation (2.3). The

accuracy of the resulting emulators derived in this study were not sensitive to increasing

𝑁 ′
𝑠, and 3𝑁𝑡 does not produce an excessive number of required parcel model simulations.

Three different techniques were tested for solving this system: typical linear regression by

ordinary least squares (OLS), Least Angle Regression (LARS; Tibshirani et al., 2004), and

Least Absolute Shrinkage and Selection Operator (LASSO; Tibshirani, 2011). Both LARS

and LASSO involve computing

𝛼 = arg min ||Φ𝛼−R||2𝑙2 such that ||𝛼||𝑙1 ≤ 𝜏 (2.4)

in an iterative, greedy fashion with the potential to yield sparse solutions with some

coefficients 𝛼𝑗 = 0. This would be desirable for high-order chaos expansions for many input

parameters, as it would reduce the number of coefficients necessary to save for re-using the

expansion as an emulator. Additionally, this greedy characteristic helps to avoid overfitting
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the chaos expansions. Each time a potential term is added to the trial expansion, an error

estimate is calculated based on leave-one-out sampling (Blatman and Sudret, 2011); if the

error estimate increases, the potential term is rejected. Inspecting the resulting terms gives

a metric to compare the OLS-derived chaos expansion. The same error calculation using

leave-one-out sampling can be applied using the larger, independent sampling dataset used

to evaluate the chaos expansions in Section 2.3.1 for each higher-order chaos expansion to

help identify when overfitting is occurring.

2.2.3 Emulation of Parcel Model

The PCM was applied to emulate the activation of a single, lognormal aerosol mode em-

bedded in a constant-speed adiabatic updraft as simulated by the parcel model described

in Section 2.2.1. Specifically, the model was used to predict the base-10 logarithm of the

maximum supersaturation 𝑆max given aerosol of different lognormal size distributions and

hygroscopicities, for different environmental and thermodynamic conditions. The mechanics

of the PCM - and polynomial chaos expansion more generally - permit the use of arbitrary

PDFs to describe the input parameters over their physically relevant values. In this appli-

cation, uniform distributions were chosen to emphasize that the derived chaos expansion

should perform equally well anywhere within the input parameter space. Each uniform

distribution is defined by minimum and maximum permissible bounds for each input pa-

rameter, 𝑎 and 𝑏, such that its probability distribution is just given as 𝑓(𝑥) = 1/(𝑏− 𝑎) for

𝑎 < 𝑥 < 𝑏. The complete list of input parameters and their bounds is summarized in Table

2.1.

In order to utilize the PCM, the uniform distribution for each parameter must be rescaled

to the range [−1, 1]. This produces a new set of random variables for each parameter 𝑋𝑖:

𝑍𝑖 =
2(𝑋𝑖 − 𝑎𝑖)

𝑏𝑖 − 𝑎𝑖
− 1 (2.5)

The orthogonal polynomials used in the basis of the chaos expansion which correspond

to a uniform PDF over the interval [−1, 1] are the canonical Legendre polynomials which

follow the three-term recurrence relation:

38



Table 2.1: Input parameters and bounds used in computing chaos expansion for
emulating droplet activation from a single, lognormal aerosol mode embedded in a
constant-speed updraft.

Symbol Name Units Bounds
log10𝑁 Mode Number Concentration log10 cm-3 [1, 4]
log10 𝜇𝑔 Mode Geometric Mean Radius log10 µm [-3.0, 1.0]

𝜎𝑔 Mode Standard Deviation - [1.2, 3.0]
𝜅 Mode Hygroscopicity - [0.0, 1.2]

log10 𝑉 Updraft Velocity log10 ms−1 [-2.0, 1.0]
𝑇 Air Temperature K [240, 310]
𝑃 Air Pressure Pa [50000, 105000]
𝑎𝑐 Accommodation Coefficient - [0.1, 1.0]

𝑃0(𝑍) = 1 (2.6)

𝑃1(𝑍) = 𝑍 (2.7)

𝑃𝑛+1(𝑍) =
(2𝑛+ 1)𝑍𝑃𝑛(𝑍)− 𝑛𝑃𝑛−1(𝑍)

𝑛+ 1
(2.8)

The roots of these Legendre polynomials can be inverted using Equation (2.5) to deter-

mine values in the original, physical parameter space to use in sampling the parcel model.

The bounds for the physical parameters supplied to the PCM were chosen in order

to characterize activation near cloud base (Table 2.1). The logarithm of several variables

(aerosol number concentration, aerosol geometric mean radius, and updraft velocity) is used

because the supersaturation maximum computed by the parcel model is sensitive to changes

in these parameters over several orders of magnitude. Updraft velocity is permitted to

vary between 0.01 and 10.0 m s−1; over this range (which covers a spectrum from weakly

convecting, stratiform clouds to strong, deeply convecting ones) and the range of aerosol

number concentration (which includes clean and very polluted regimes), activated fraction

can range from virtually nothing to complete activation of the entire aerosol population.

The lower bound of updraft speeds considered here is less than the minimal value allowed

in many climate models (Golaz et al., 2011). The aerosol mode geometric mean radii 𝜇𝑔

span a variety of smaller Aitken-type modes to large, coarse aerosol modes and potentially

giant CCN (Seinfeld and Pandis, 2006). The mode geometric standard deviation is fixed
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in some global model aerosol schemes (e.g. Kim et al., 2008; Liu et al., 2012) and the

range chosen here cover many potential values. Hygroscopicity values are based on Table

1 of Petters and Kreidenweis (2007) and span values for materials ranging from organic

aerosol to highly-hygroscopic salts. The accommodation coefficient was limited to a globally

representative range based on observations of CCN activation kinetics from many campaigns

(Raatikainen et al., 2013). Temperature and pressure ranges were chosen to reflect typical

lower troposphere values. Note that the bounds on the parameters considered here are

expanded from those considered by Ghan et al. (2011) in their intercomparison of activation

schemes.

Many parameterizations of droplet nucleation diagnose activation directly by applying

equilibrium Köhler theory. To do this, the maximum supersaturation achieved by a cloudy

parcel is used as a threshold; particles with a Köhler-predicted critical supersaturation lower

than this maximum environmental supersaturation are considered to be activated. However,

physically, for a droplet to activate it must grow beyond a critical size corresponding to this

critical supersaturation. Due to kinetic limitations on droplet growth, this may not be

realized for droplets growing on very large CCN (Nenes et al., 2001). Ghan et al. (2011)

suggests particles with radius larger than 0.1 µm or those whose critical supersaturations are

close to the environmental maximum supersaturation are likely to suffer from this effect. By

directly considering a detailed parcel model, the emulators constructed here consider kinetic

limitations on droplet growth and their feedback on the evolving parcel supersaturation. In

existing, physically-based parameterizations in the literature, an instantaneous growth-rate

assumption must be applied. This assumption causes parameterizations to under-predict

supersaturation maximum because instantaneous growth will tend to condense water from

the vapor phase too quickly and release surplus latent heat which suppresses the increase of

the supersaturation.

Because the computed supersaturation maximum in a parcel model activation simulation

can also vary over several orders of magnitude, we use log10 𝑆max as the response function

emulated by the PCM. However, in order to apply this transform to the response function, it

must be assumed that the cloudy parcel always supersaturates with respect to water vapor,

i.e. 𝑆max > 0. To ensure this, all simulations performed during sampling by the PCM start

with an aerosol population equilibrated to 100% relative humidity and an initial environ-

mental supersaturation of 0. Many existing parameterizations in the literature implicitly
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make this same assumption by representing the aerosol population with respect to a coordi-

nate derived from the critical supersaturation for a given size [Ghan et al. (2011); equations

(12)-(17)]; in this case the integral over the size distribution spans 0 ≤ 𝑆 ≤ 𝑆max, and thus

considers the same situation with respect to the growth of the nascent droplet population

as equation (3) of Ghan et al. (2011).

For the 8-parameter input space governing single-mode activation considered here, the

3rd- and 4th-order chaos expansions produced by the PCM have 165 and 495 terms, respec-

tively. The number of terms is equivalent to the number of coefficients one must store in

order to re-use a given chaos expansion. This small memory footprint afford chaos expan-

sions a huge advantage over similar parameterizations based on detailed look-up tables. An

isotropic look-up table with 𝑀 parameters and 𝑛 sample points for each parameter would

require 𝑛𝑀 values to be stored - a value which for even small numbers of parameters can be

several orders of magnitude larger than even a high-order chaos expansion. A more detailed

description of how the chaos expansions are saved and later evaluated is given in Appendix

2.6.

The parcel model emulator yields log10(𝑆max) as a function of an input parameter set

drawing from the terms defined in Table 2.1,

log10(𝑆max) = 𝑓(log10𝑁, log10 𝜇𝑔, 𝜎𝑔, 𝜅, log10 𝑉, 𝑇, 𝑃, 𝑎𝑐) (2.9)

From this value of log10(𝑆max) the number concentration of cloud droplets activated,

𝑁act, can be obtained by integrating over the original lognormal aerosol size distribution re-

expressed as a function of critical supersaturation rather than droplet radius (Ghan et al.,

2011), yielding the expression

𝑁act =
𝑁

2

(︂
1− erf

[︂
2 ln

(︂
𝑆𝑚

𝑆max

)︂⧸︀
(3
√
2 ln𝜎𝑔)

]︂)︂
(2.10)

where 𝑆𝑚 is the critical superasturation for the geometric mean radius, 𝜇𝑔.

2.2.4 Global Sensitivity Analysis

We supplement the assessment of our new droplet activation emulator by calculating a set of

global sensitivity metrics not previously applied to this problem. The method deployed here

41



is a variance-based decomposition, which seeks to assign uncertainty in a model response

to uncertainty in both individual model input parameters and their interactions with one

another. Two different quantities, called Sobol’ indices (Sobol’, 2001), are produced by this

method: main (𝑆𝑖) and total (𝑇𝑖) effect indices. Sobol’ indices can be used to rank the

relative importance of model inputs in influencing its response and for identifying potential

inputs which are unimportant and also candidates to be held fixed without grossly biasing

the accuracy of a model emulator (Sobol’, 2001). Additionally, these indices can identify

higher-order terms in expansions like Equation (2.2) (Sobol’, 2001).

The main effect index, 𝑆𝑖, indicates what fraction of the uncertainty in a model response,

𝑅, is attributable to a single member of the model parameter set, 𝑋𝑖, by comparing the

variance of the model response conditioned on 𝑋𝑖 against the total variance in 𝑅. That is,

𝑆𝑖 =
Var𝑋𝑖(𝐸[𝑅|𝑋𝑖])

Var(𝑅)
(2.11)

This is in contrast with the total effect index, 𝑇𝑖, which instead compares the variance

of 𝑅 conditioned on all the input parameters save for 𝑋𝑖 (notated as 𝑋∼𝑖). 𝑇𝑖 quantifies

the variance of 𝑅 attributable to 𝑋𝑖 and the sum of its interaction with other input terms.

Similar to the main effect index,

𝑇𝑖 =
Var(𝑅)−Var(𝐸[𝑅|𝑋∼𝑖])

Var(𝑅)
(2.12)

Sudret (2008) derives alternative equations which further clarify the meanings of these

terms in the context of studying model emulators. Critically, these terms can be expressed

as multi-dimensional integrals over model input parameters which can be approximated via

Monte Carlo or other sampling techniques, although it is very computationally expensive to

do so. We adopt the column swap-out sampling method of Weirs et al. (2012) which com-

bines Latin Hypercube Sampling with perturbed combinations of parameters to efficiently

approximate 𝑆𝑖 and 𝑇𝑖 (see also Saltelli et al. (2010)). However, the sampling procedure

adopted still requires a large number of model evaluations; for an initial 𝑛-size sample of

the 𝑀 parameters being studied, the method requires (2 +𝑀) × 𝑛 evaluations of the full-

complexity model. We found that the computed 𝑆𝑖 and 𝑇𝑖 converged to stable values for the

parcel model (and other parameterizations studied here) for 𝑛 ∼ 𝒪(103), and used 𝑛 = 1280

to derive the values reported here.
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Although the sampling procedure can be repeated for the emulators derived via polyno-

mial chaos expansion, the orthogonality of the basis terms comprising each expansion lends

itself to a more direct computation of 𝑆𝑖 and 𝑇𝑖. Following Sudret (2008), we compute these

indices directly from the coefficients of the derived chaos expansions. The sampling tech-

nique used to derive Sobol’ indices for the parcel model, applied to the chaos expansions,

produces similar estimates to those computed from the coefficients.

2.3 Results

2.3.1 Evaluation of Emulators

In order to assess the performance of the emulator, two sets of 𝑛 = 10, 000 samples were

drawn using maximin Latin Hypercube Sampling from the parameter space defined in Table

2.1. This randomized design ensured that representative, equal numbers of samples were

drawn from across the multi-dimensional parameter space. In the first set, variables whose

logarithms were used to build the emulator were sampled in logarithmic space; in the second

set, these variables were transformed back to their original values (e.g. from log10𝑁 to 𝑁)

before the sample was constructed. The two independent sets were blended together to

assess the emulator. This helps ensure that both very high and very low values of the log-

transformed are thoroughly represented within the sample. The set of sample parameter

sets were run through all the derived chaos expansions of all orders, as well as the detailed

parcel model as a reference benchmark for activation dynamics.

Figure 2-1 illustrates the performance of a 4th-order expansion whose coefficients were

derived using ordinary least squares. The large range of initial temperatures, pressures,

aerosol populations, and updraft speeds sampled here leads to a very large range of super-

saturation maxima achieved by the ascending parcel. Weaker updraft speeds are generally

associated with lower maximum supersaturations and corresponding to lower aerosol acti-

vated fraction; the opposite is true when strong updrafts are present, although there are

some cases where a strong updraft activates a small fraction of aerosol. This typically oc-

curs when initial aerosol size distribution is shifted towards larger radii and under polluted

conditions with aerosol number concentrations greater than 3, 000 cm−3. However, over

the large parameter space sampled, the chaos expansion accurately reproduces the parcel
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Figure 2-1: One-one plot comparing predicted supersaturation maximum (a) and
diagnosed equilibrium droplet activated fraction (b) between parcel model and a
polynomial chaos expansion of order 𝑝 = 4, with coefficients computed using ordinary
least squares. Black lines denote factor of 2 difference between predicted values using
parcel model and those computed with the parameterization. Glyph shading denotes
updraft velocity, 𝑉 , with corresponding scale on panel (a).

model’s determination of 𝑆max and corresponding activated fraction. This is even true for

predictions of small 𝑆max, which could potentially have a larger bias since the predicted

error is expected to be uniform in log10(𝑆max).

For parameter sets leading to a large activated fraction of 0.8-1.0, the relative error of

the chaos expansion (compared to the parcel model) rarely exceeds 5%, and on average

(for all activated fractions) is 5.7%. While the mean relative error in each activated fraction

decile is close to 0, the standard deviation in the relative error tends to increase for the lower

ones; the standard deviation in relative error decreases from 19.7% for activated fractions

ranging from 0.1-0.2 to 3.5% for those ranging from 0.8-0.9. This suggests that there is

a non-linear component in the mapping from the input parameter space to the emulated

maximum supersaturation and diagnosed droplet number concentration which is prevalent

in the weak droplet activation regime; the predicted activated fraction is more sensitive to

small changes in the input parameters in this regime than in others.

Increasing the order of the chaos expansion tends to improve the accuracy of the pre-

dicted 𝑆max, as recorded in Table 2.2. However, there is not much difference between the

methods used to compute the coefficients of the expansion beyond expansion order. For ex-

ample, for the 4th- and 5th-order expansions, the expansions perform equally well regardless

of what method (OLS, LARS, or LASSO) was used to compute the coefficients when con-
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Table 2.2: Summary statistics for supersaturation maxima predicted by chaos expan-
sions derived in this study compared to detailed parcel model calculations. The chaos
expansions are organized by the method used to derive their coefficients and the ex-
pansion order in the two left-most columns. From left-to-right, the reported statistics
are the normalized root mean square error (NRMSE), coefficient of determination (r2,
mean relative error (MRE), and standard deviation of the mean relative error (MRE
std. dev.)

NRMSE r2 MRE MRE std. dev.

LASSO

2 0.292766 0.877600 -4.963330 31.098459
3 0.193247 0.946670 -1.012509 19.797674
4 0.112323 0.981983 3.941698 13.396632
5 0.119231 0.979699 0.772525 9.904727

LARS

2 0.325442 0.848752 3.055232 39.776865
3 0.250264 0.910559 -5.433902 17.853369
4 0.104401 0.984435 -0.517486 13.092187
5 0.135634 0.973729 -0.572383 9.962430

OLS

2 0.266774 0.898368 7.956622 40.762613
3 0.220034 0.930861 -1.232172 20.441521
4 0.201934 0.941768 4.243836 14.483854
5 0.128687 0.976351 -0.259165 10.430909

sidering the mean and spread of the relative error to the parcel model reference simulations.

In all cases, the chaos expansions produce very large r2 values and normalized fractional

root mean square errors (RMSE/
𝑛∑︀

𝑖=1
(𝑋2

𝑖 /𝑛)) which decrease as the order of the expansion

increases.

These same statistics, computed for the diagnosed droplet number concentration given

the predicted supersaturation maximum, are summarized in Table 2.3. Here, the trend is

similar to before; increasing the order of the expansion tends to improve the accuracy of the

diagnosed number concentration in terms of mean relative error, and also tends to decrease

spread around that value. Third-order expansions tend to produce more accurate results

with respect to the mean relative error, but this is overshadowed by the fact that there is

far more variance in their predicted values as indicated by the standard deviation of their

relative errors, which are almost twice as large as those of the higher-order expansions.
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Table 2.3: Same as Table 2.2, but for predicted droplet number concentration.

NRMSE r2 MRE MRE std. dev.

LASSO

2 0.165043 0.929439 5.697161 49.813356
3 0.108790 0.969342 -0.930886 20.270639
4 0.074406 0.985659 2.545998 19.834428
5 0.058872 0.991022 1.441665 14.497129

LARS

2 0.167168 0.927611 3.524631 39.031227
3 0.121896 0.961510 -0.030537 34.613813
4 0.075984 0.985044 -0.280769 16.430850
5 0.058961 0.990995 0.884227 17.817749

OLS

2 0.174550 0.921076 7.640377 43.978774
3 0.125045 0.959496 0.380943 28.562715
4 0.079971 0.983434 2.556756 20.929598
5 0.061762 0.990119 1.295857 17.903202

2.3.2 Comparison with Other Parameterizations

We compare the performance of the chaos expansion-based emulators to two existing pa-

rameterizations from the literature. The scheme by Abdul-Razzak and Ghan (2000) (ARG)

- which is widely used in global models - utilizes a psuedo-analytical solution to an integro-

differential equation derived from the adiabatic parcel system with embedded aerosol grow-

ing via condensation. This is in contrast to the scheme by Morales Betancourt and Nenes

(2014a) (MBN), which is based on an iterative scheme to separate the aerosol population

into subsets whose growth is inertially limited or not, and uses this information to derive a

maximum supersaturation for a given parcel system. The MBN scheme is generally more

expensive to evaluate than the ARG scheme due to its iterative nature, but is often more

accurate owing to its consideration of the potentially important effect of large albeit unacti-

vated aerosol particles (Simpson et al., 2014). In contrast with these schemes, our emulators

simulate the activation process based on the explicit numerical solution obtained from a de-

tailed parcel model which is similar to the one used to build and evaluate the MBN scheme

(e.g. Nenes and Seinfeld, 2003)

The parameter sets used in Section 2.3.1 were also used to compute droplet activation

with the ARG and MBN parameterizations. The relative errors between the supersatura-

tion maximum and droplet number predicted by these schemes and the chaos expansions

compared to the parcel model are illustrated in Figure 2-2. Both the ARG and MBN pa-
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Figure 2-2: Boxplots illustrating mean relative error between supersaturation max (a)
and droplet number concentration (b) predicted by chaos expansions and parameter-
izations versus detailed parcel model. The chaos expansions have been grouped by
expansion order (x-axis) and method for computing their coefficients (OLS, LARS,
and LASSO; hue). “ARG” refer to the scheme of Abdul-Razzak and Ghan (2000);
“MBN” refers to the scheme of Morales Betancourt and Nenes (2014a).

rameterizations are more accurate than the 2nd and 3rd order chaos expansions. The ARG

scheme tends to underpredict the maximum supersaturation, which is consistent with pre-

vious investigations into its performance (Abdul-Razzak and Ghan, 2000; Ghan et al., 2011;

Simpson et al., 2014). This tends to produce a bias towards under-prediction of droplet

number. The MBN scheme tends to yield more accurate predictions of both maximum su-

persaturation and droplet number. However, both schemes are out-performed by the 4th and

5th order chaos expansions, both on average and in terms of the variance of the predictions;

for instance, the OLS-derived 4th and 5th order expansions yield relative error in predicted

𝑆max with a mean and standard deviation of 4.2% ± 14.4% and −0.32% ± 10.4%, whereas

the ARG and MBN schemes yield −13.7%± 18.2% and −2.4%± 15.8%, respectively. This
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is larger than other studies have reported, but we explore a much larger parameter space in

our sampling for the purposes of deriving the chaos expansion.

As a consequence of tending to slightly under-predict 𝑆max, both the ARG and MBN

schemes under-predict the number of activated droplets in the framework considered here.

The mean relative error in droplet number predicted by the ARG and MBN schemes for

the samples here are −9.6% ± 23.4% and −4.9% ± 16.8%, respectively. All of the chaos

expansions outperform the mean relative error of the ARG scheme, and those of order 𝑝 ≥ 3

do so with less variance.

In addition to producing low mean relative error in predicted 𝑆max and droplet number

activated, the chaos expansions also reproduce the dependence of activation dynamics on

aerosol physical properties and updraft speed, as illustrated in Figure 2-3. In response to

increasing aerosol number concentration, the 𝑆max reached by an ascending parcel tends to

decrease because there is a larger surface area available where condensation can occur, pro-

ducing a larger source of latent heat release which limits the production of supersaturation.

Overall, though, the droplet number concentration increases in spite of this effect as the

aerosol activated fraction only decreases by a factor of 4 when the total number of initial

aerosol increases by an order of magnitude (Figure 2-3a-b). Shifting the aerosol population

to larger sizes (Figure 2-3c-d) produces a similar effect in inhibiting the increase in a parcel’s

supersaturation; however, Köhler theory predicts that these larger particles will more easily

activate, which offsets the increase in 𝑆max and yields larger droplet number concentrations.

A similar effect occurs as aerosol hygroscopicity increases (Figure 2-3e-f).

The chaos expansions, as well as both the ARG and MBN schemes, capture these sub-

tleties of activation dynamics as well as the detailed parcel model. More importantly, the

expansions reproduce the sensitivity of activation to updraft speed (Figure 2-3g-h) which is

the most important factor controlling 𝑆max and setting the droplet number. At the largest

updraft speeds of a few meters per second - indicative of deep, vigorous convection - the

MBN scheme outperforms both the chaos expansions and the ARG scheme. However, for

the aerosol population considered in Figure 2-3g-h (with 𝑁 = 1000 cm−3, 𝜇 = 0.05 µm, and

𝜎 = 2.0), the relative error in predicted 𝑆max by the chaos expansions at high updraft speeds

does not substantially affect the diagnosed droplet number concentration, since in this case

all but the smallest aerosol particles activate under equilibrium considerations. Note that

this 𝑆max-overprediction coupled with an accurate assessment of activated fraction occurs
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Figure 2-3: Sensitivity of parameterized and simulated maximum supersaturation (a-
d) and activated number fraction (e-h) to changes in mode number concentration,
mode geometric mean radius, mode hygroscopicity, and updraft speed with all other
parameters held fixed at the values 𝑇 = 283K, 𝑃 = 850 hPa, 𝑉 = 0.5ms−1, 𝑎𝑐 = 1.0,
𝜇 = 0.05 µm, 𝜅 = 0.54, 𝑁 = 1000 cm−3, and 𝜎 = 2.0. “MBN” and “ARG” correspond
to the schemes of Morales Betancourt and Nenes (2014a) and the update by Ghan
et al. (2011) to Abdul-Razzak and Ghan (2000), respectively; the curves correspond
to 4th order chaos expansions with coefficients derived using the named method.
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Figure 2-4: Mean relative error in activated fraction for 4th-order OLS-derived chaos
expansion (a), ARG (b), and MBN (c) schemes relative to detailed parcel model.
Updraft speeds range from light (10-50 cm s−1), moderate (0.5-2.0 m s−1), and strong
(2.0-10.0 m s−1); pollution levels range from clean (10-250 cm−3), light (250-1000
cm−3), moderate (1000-2500 cm−3), and heavy (2500-10000 cm−3). Error bars denote
95% confidence interval on mean relative error from in-bin samples; samples with
𝜇 < 10 nm were omitted from these calculations.

for many different single-mode, lognormal aerosol populations.

Although all the chaos expansion results in Figure 2-3 appear biased high compared to

the parcel model, this bias does not hold in general. Note that the ARG scheme is biased

low in this particular analysis; this is generally just an artifact of fixing seven of the eight

parameters and analyzing one-dimensional transects. Fixing the non-varying parameters

at different values tends to shift the bias positive or negative in a non-systematic way.

Critically, the choice of values for these parameters does not affect the chaos expansion’s

ability to reproduce the sensitivity to the varying parameter, which lends confidence that

the expansions accurately reproduce the behavior of the parcel model.

Since Figure 2-3 highlights the fact that different schemes potentially perform better in

different parts of the parameter space governing droplet activation, we stratified the sam-

pling results based on level of pollution and updraft speed strength and computed activated

fraction relative error statistics in each of these bins as shown in Figure 2-4. All of the

schemes are accurate in clean and lightly polluted conditions (with aerosol number concen-

tration, 𝑁 < 1000 cm−3). However, there is a tendency for both the ARG and MBN schemes

to under-predict droplet number in heavily polluted conditions (𝑁 > 2500 cm−3).

The 4th-order OLS-derived chaos expansion is plotted in Figure 2-4a as a representative

example of the chaos expansions, and it retains its accuracy across the pollution level-updraft

strength spectrum. The combination of light updrafts and heavy pollution tends to produce

the largest under-prediction in activated droplet number, ranging from 10-30% for the ARG
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and MBN schemes. Unsurprisingly, relative error in activated fraction tends to be least

sensitive to increasing aerosol number concentration in the strong updraft regime. In this

case, the vigorous updraft produces strong adiabatic cooling which overwhelms latent heat

release from condensation as the droplets in the parcel grow, contributing to a rapid and

large 𝑆max (Equation (2.13)) and thereby activating a significant fraction of the aerosol.

It should be noted that parts of the parameter space we considered in applying the PCM,

evaluating its output, and comparing to existing parameterizations may not be typical of

real atmospheric cases. We chose a large parameter space in order to derive the most

general emulator possible for this particular single mode aerosol case. In the real world,

there should be some correlation between the ambient temperatures, pressures, and updraft

speeds used when diagnosing aerosol activation, while we sample these factors as if they

were independent from one another. The output from applying the parcel model to non-

realistic activation scenarios could tend to inflate the computed relative errors and exacerbate

differences between the parcel model and the existing, physically-based parameterizations.

2.3.3 Global Sensitivity Analysis

Total Sobol’ indices, 𝑇𝑖, for each of the input parameters summarized in Table 2.1 corre-

sponding to the prediction of 𝑆max are plotted for each of the chaos expansions, parameter-

izations, and parcel model in Figure 2-5. The order of the chaos expansion does not impact

the relative importance of each term between different schemes or for higher-order expan-

sions of the same scheme. Both updraft speed and the aerosol distribution size parameter

most strongly contribute to the variance in 𝑆max, followed by the total number of aerosol.

This is in contrast with the chemical parameters in the model, 𝑎𝑐 and 𝜅, provide the weakest

constraints, suggesting the importance of the total aerosol surface area in dominating the

potential for droplet activation by controlling 𝑆max.

Indices derived using the chaos expansions very closely approximate those derived by

sampling the full parcel model. This is expected since they simply provide an alternative

framework for calculating the indices from the parcel model. However, the differences be-

tween the ARG and MBN schemes and the parcel model highlight the potential for biases

in these schemes due to over-sensitivity to particular model parameters. For instance, the

ARG scheme is less sensitive to variations in 𝜎𝑔 than the full parcel model; however, the
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Figure 2-5: Total Sobol’ indices corresponding to the prediction of 𝑆max for each
parameter in Table 2.1 for each chaos expansion (OLS, LARS, and LASSO), param-
eterization (ARG and MBN), and parcel model. For the chaos expansions, the ligher
colors indicate successively higher-order expansions.

dependence of 𝑆max in that scheme on 𝜎𝑔 is tuned to their own numerical calculations which

may differ from ours (Abdul-Razzak et al., 1998). Furthermore, the ARG scheme is more

sensitive to variations in 𝑎𝑐 than our parcel model and emulators, which parameterizes the

dependence of the condensational growth coefficient by a simple re-scaling against a reference

value computed for 𝑎𝑐 = 1 rather than explicitly account for it.

Maximum supersaturations produced by the MBN scheme are more sensitive to the

geometric mean size of the aerosol than those from the parcel model or ARG scheme, and

generally less sensitive to the strength of the updraft speed. The relative importance of

each term for both the ARG and MBN scheme generally agrees with the estimates from the

parcel model and chaos expansions, although the ARG scheme is most sensitive to updraft

speed rather than geometric mean aerosol size. By means of those parameters’ higher 𝑇𝑖,

the aerosol size distribution parameters exert far more influence over 𝑆max robustly for both

parameterizations and the parcel model.

The chaos expansions contextually the relative importance of each input parameter with

the potential for important interactions between terms. The leading eight terms ranked

by main Sobol’ index computed using the OLS-dervied chas expansions are summarized in
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Table 2.4: Input parameters and combinations ranked by Main Sobol’ index for the
OLS-based chaos expansions.

Order 2 3 4 5
Rank term Main (𝑆𝑖) term Main (𝑆𝑖) term Main (𝑆𝑖) term Main (𝑆𝑖)

1 log10 𝜇𝑔 0.379 log10 𝜇𝑔 0.358 log10 𝜇𝑔 0.360 log10 𝜇𝑔 0.359
2 log10 𝑉 0.331 log10 𝑉 0.311 log10 𝑉 0.315 log10 𝑉 0.312
3 log10𝑁 0.122 log10𝑁 0.129 log10𝑁 0.127 log10𝑁 0.129
4 𝜎𝑔 0.049 𝜎𝑔 0.058 𝜎𝑔 0.055 𝜎𝑔 0.056
5 𝑇 0.042 𝑇 0.052 𝑇 0.045 𝑇 0.047
6 log10 𝑉 log10 𝜇𝑔 0.016 log10𝑁 log10 𝜇𝑔 0.022 log10𝑁 log10 𝜇𝑔 0.021 log10𝑁 log10 𝜇𝑔 0.021
7 log10𝑁 log10 𝜇𝑔 0.016 𝜅 0.017 𝜅 0.019 𝜅 0.019
8 𝜅 0.015 log10 𝑉 log10 𝜇𝑔 0.017 log10 𝑉 log10 𝜇𝑔 0.018 log10 𝑉 log10 𝜇𝑔 0.017

Table 2.4. For all four (2nd-4th order) chaos expansions summarized, all the terms with

rank greater than eight were an order of magnitude less important than those in the table.

With the exception of the 2nd-order scheme, the rankings of the top eight terms do not

change relative order, and the main terms dominate the higher-order ones. The only higher-

order terms which contribute grossly to the variance in 𝑆max are combinations of the updraft

speed and aerosol size distribution parameters, reiterating their importance compared to the

chemistry terms (only 𝜅 appears in the top eight).

2.3.4 Computational Efficiency of Chaos Expansions

As detailed in Appendix 2.6, evaluating the emulator produced by the chaos expansion

requires two sets of straightforward floating-point operations. The first set requires the

projection of the input parameters into the vector space spanned by the basis polynomials

of the chaos expansion, which can then be used to evaluate the basis polynomials up to the

required order. The remaining operations simply multiply these intermediate evaluations

together and sum them to evaluate the full expansion. In general, this procedure should lie

in between the ARG and MBN schemes in terms of computational complexity. The ARG

scheme relies on straightforward floating point operations to derive an estimate for 𝑆max

which at worst involve evaluating a logarithm. However, the MBN scheme requires sets

of iterations, each of which necessitates a costly evaluation of the error function and the

complementary error function.

On average, the 2nd and 5th-order OLS-derived chaos expansion was 10-17 times faster

than the MBN scheme given the same single mode aerosol population. The exact speedup

depended on the background velocity; for weak updraft speeds, the performance of the MBN
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scheme fared better, although it became much worse for updrafts where 𝑉 < 2m s−1. The

ARG scheme was consistently 1-3 times faster than those same chaos expansions. Since the

pathway for evaluating either the ARG or chaos expansion schemes do not change depending

on the input parameters, their performance was the same regardless of what inputs were

provided.

2.4 Summary and Conclusions

An efficient parameterization of droplet activation for a single aerosol model under a wide va-

riety of different physico-chemical properties and thermodynamic conditions was developed

via statistical emulation of a detailed parcel model using polynomial chaos expansion. The

emulators predict the maximum supersaturation achieved by a parcel, which is then used to

diagnose activated droplet number using Köhler theory in a similar framework to existing

activation parameterizations. The 4th- and 5th-order chaos expansions derived from the de-

tailed parcel model are more accurate on average than two commonly-used, physically-based

parameterizations from the literature (Abdul-Razzak and Ghan, 2000; Morales Betancourt

and Nenes, 2014a). Additionally, the chaos expansions are all at least 10 times faster to

evaluate than the MBN scheme and only about twice as expensive as the ARG scheme. A

simple algorithm was suggested for evaluating a chaos expansion which requires a minimal

amount of data about the expansion (such as the basis polynomials and the coefficients of the

expansion terms) to be saved; in this way, the chaos expansions offer a method for extend-

ing lookup tables to very high dimensionalities without suffering from exponentially-rising

storage costs.

Based on the large set of aerosol properties and thermodynamic conditions we sampled

in order to derive and evaluate the chaos expansions, we observed that our emulators par-

ticularly outperform the existing schemes in conditions where a light updraft and heavy

aerosol pollution (with respect to number concentration) are present. Because the ultimate

goal of an activation parameterization is to couple the aerosol physics and chemistry to the

cloud microphysics of a global-scale model, this deficiency in the existing parameterizations

could be particularly important. Few global models have aerosol-microphysics connections in

their deep convection parameterizations, but many source potential cloud droplet formation

based on a detailed aerosol activation calculation for their shallow convection and stratiform
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microphysics schemes. These schemes sometimes artificially restrict the lowest possible up-

draft speed available for estimating droplet activation, but as a consequence they ensure

that weak updrafts make up a large portion of the activation conditions considered during

a model run. In regions of the world with heavy anthropogenic aerosol pollution - such as

southern and eastern Asia - this provides a recipe for systematically under-predicting droplet

number and potentially impacting either a global model’s simulated aerosol indirect effect

on climate or the modeled aerosol-cloud interaction’s sensitivity to changes in anthropogenic

aerosol emissions.

The global sensitivity analysis framed on the input parameter set used to derive the

new chaos expansion emulators provides an additional, new check on the performance of

existing activation schemes compared to the detailed parcel model. The breakdown of main

Sobol’ indices calculated using the chaos expansions provides insight into the importance of

interactions between the dominant first-order terms (updraft speed, number concentration,

and geometric mean size of the aerosol distribution), which are further summarized by the

total Sobol’ indices derived for the parcel model and both ARG and MBN schemes. The over-

sensitivity of the MBN scheme to the geometric mean radius and the under-sensitivity of the

ARG scheme to the updraft speed contribute to their disagreement with the parcel model

across the range of pollution levels and updraft speeds studied here. Further sensitivity

analyses could shed additional light on the potential biases of activation schemes, and could

provide useful metrics for evaluating the improvement of parameterizations more generally

than simple ones based on relative or absolute error alone.

Critically, the framework from which the chaos expansions reported here are derived is

extendable to the case where a complex, multi-species/multi-modal aerosol population is

tracked by a global model; in that case, the number of parameters describing the aerosol

size distribution and chemical composition simply increases. Future work will derive chaos

expansions emulating activation for a multi-modal aerosol distribution specific to a par-

ticular global aerosol-climate model. Additionally, physical processes not considred here

can also be introduced into the chaos expansion framework. For instance, entrainment can

be incorporated into the parcel model following Seinfeld and Pandis (2006) and Barahona

and Nenes (2007). Subgrid-scale variability in updraft speeds due to the coarse resolution

of global model grids and the distribution of these updrafts can be represented either by

a characteristic value (Morales and Nenes, 2010) or by numerical integration over a dis-
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tribution (Lohmann et al., 1999; Golaz et al., 2011). In the latter case, many activation

calculations must be performed, incurring a large computational cost. However, the entire

integration over a spectrum of droplet speeds could be parameterized in the chaos expan-

sion framework, greatly reducing the cost of this calculation and potentially improving the

accuracy of diagnosed cloud droplet number.

As the complexity of global aerosol-climate models increases with respect to the number

of aerosol modes and species tracked by the model, there is a pressing need to understand how

biases in activation calculations across the high-dimensional parameter spaces defining the

aerosol-climate model affect cloud properties and ultimately impact modeled climate. This

work highlights a novel way to build efficient, accurate activation schemes for this purpose

akin to customized lookup tables which cannot themselves extend to cover the necessary

parameters. Employing such schemes should help improve simulated cloud microphysical

properties and constrain modeled aerosol indirect effects on climate.

2.5 Appendix A: Parcel Model Description

The adiabatic cloud parcel model implemented for this study follows the basic equations

of Pruppacher and Klett (1997) and adopts the framework used by Nenes et al. (2001) to

account for kinetic limitations on droplet growth. Fundamentally, the model integrates a

system of coupled ordinary differential equations which describe the thermodynamic evolu-

tion of an adiabatically-lifted, non-entraining parcel. In all the simulations described here,

we use the Variable-coefficient Ordinary Differential Equation solver (VODE; Brown et al.,

1989) to integrate the system forward in time.

The model tracks the evolution of supersaturation, 𝑆, with respect to water as

𝑑𝑆

𝑑𝑡
= 𝛼(𝑇, 𝑃 )𝑉 − 𝛾(𝑇, 𝑃 )

𝑑𝑤𝑐

𝑑𝑡
(2.13)

where 𝛼(𝑇, 𝑃 ) = 𝑔𝑀𝑤𝐿
𝑐𝑝𝑅𝑇 2− 𝑔𝑀𝑎

𝑅𝑇 and 𝛾(𝑇, 𝑃 ) = 𝑃𝑀𝑎
𝑒𝑠𝑀𝑤

+𝑀𝑤𝐿2

𝑐𝑝𝑅𝑇 2 are functions which are weakly

dependent on temperature and pressure (Leaitch et al., 1986), 𝑀𝑤 and 𝑀𝑎 are the molecular

weights of water and air, 𝐿 is the latent heat of vaporation of water, 𝑐𝑝 is the specific heat

of dry air at constant pressure, 𝑅 is the universal gas constant, 𝑔 is the acceleration due

to gravity, 𝑒𝑠 is the saturation vapor pressure, and 𝑤𝑐 is the liquid cloudwater mass mixing
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ratio. Equation (2.13) expresses the supersaturation as a balance between production due

to adiabatic cooling and loss due to latent heat release. This same framework describes the

parcel’s change in temperature over time,

𝑑𝑇

𝑑𝑡
= −𝑔𝑉

𝑐𝑝
− 𝐿

𝑐𝑝

𝑑𝑤𝑣

𝑑𝑡
(2.14)

where 𝑉 is the updraft velocity and 𝑤𝑣 is water vapor mass mixing ratio. Water mass

is conserved as vapor condenses into cloud water,

𝑑𝑤𝑣

𝑑𝑡
+

𝑑𝑤𝑐

𝑑𝑡
= 0 (2.15)

Equations (2.13)-(2.15) are linked through the growth of the cloud droplet population

from the initial aerosol. Given 𝑛 bin sizes, each associated with a number concentration 𝑁

and a radius 𝑟, the change in cloud water can be written as

𝑑𝑤𝑐

𝑑𝑡
=

4𝜋𝜌𝑤
𝜌𝑎

𝑛∑︁
𝑖=1

𝑁𝑖𝑟
2
𝑖

𝑑𝑟𝑖
𝑑𝑡

(2.16)

where 𝜌𝑤 and 𝜌𝑎 denote the density of water and air, respectively.

The diffusional growth rate for droplets in the 𝑖th bin is calculated by

𝑑𝑟𝑖
𝑑𝑡

=
𝐺

𝑟𝑖
(𝑆 − 𝑆eq) (2.17)

where 𝑆 is the environmental supersaturation, 𝑆eq is the Köhler-predicted equilibrium

supersaturation of the droplet, and 𝐺 is a growth coefficient which is a function of both the

physical and chemical properties of the particle receiving condensate,

𝐺 =

(︂
𝜌𝑤𝑅𝑇

𝑒𝑠𝐷′
𝑣𝑀𝑤

+
𝐿𝜌𝑤[(𝐿𝑀𝑤/𝑅𝑇 )− 1]

𝑘′𝑎𝑇

)︂−1

(2.18)

Non-continuum effects on the diffusivity (𝐷′
𝑣) and thermal conductivity (𝑘′𝑎) factors are

accounted for with the corrections

𝐷′
𝑣 = 𝐷𝑣

⧸︂(︃
1 +

𝐷𝑣

𝑎𝑐𝑟

√︂
2𝜋𝑀𝑤

𝑅𝑇

)︃
(2.19)

and
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𝑘′𝑎 = 𝑘𝑎

⧸︂(︃
1 +

𝑘𝑎
𝑎𝑇 𝑟𝜌𝑎𝑐𝑝

√︂
2𝜋𝑀𝑎

𝑅𝑇

)︃
(2.20)

In these correction terms, the thermal accommodation coefficient, 𝑎𝑇 , is assumed to be

0.96; the condensation coefficient, 𝑎𝐶 , is allowed to vary as observations suggest it could take

values between 0.1−1.0 (Raatikainen et al., 2013). The instantaneous droplet growth rate is

further modulated by the difference between the environmental supersaturation, 𝑆, and the

saturation ratio over the surface of the aqueous droplet, 𝑆eq. We treat the droplet-dependent

𝑆eq following Petters and Kreidenweis (2007), who employ a single-term 𝜅 to parameterize

particle hygroscopicity; values of 𝜅 can be derived from laboratory experiments. Under the

framework of 𝜅-Köhler theory the curvature effect term remains the same, while the solute

effect term is re-written such that

𝑆eq =
𝑟3 − 𝑟3𝑑

𝑟3 − 𝑟3𝑑(1− 𝜅)
exp

(︂
2𝑀𝑤𝜎𝑤
𝑅𝑇𝜌𝑤𝑟

)︂
(2.21)

where 𝑟 and 𝑟𝑑 are the droplet radius and the dry radius of its embedded aerosol particle

(which is tracked for each initial aerosol size in the model), and 𝜎𝑤 is the droplet surface

tension, which we take to be independent of the droplet solution composition and described

following the recommendation of Pruppacher and Klett (1997), 𝜎𝑤 = 0.0761−1.55×10−4(𝑇−

273). A limitation of the this approach for computing 𝑆eq is that it is not convenient to derive

analytical expressions for the critical supersaturation and radius; they must be computed

numerically by finding the value 𝑟crit such that

𝜕𝑆eq

𝜕𝑟

⃒⃒⃒⃒
𝑟crit

= 0 (2.22)

and then computing 𝑆crit = 𝑆eq(𝑟crit) for a given 𝜅 and 𝑟𝑑. This is accomplished using

Brent’s method (Brent, 1973) and by bounding 𝑟crit from below with the observation that

𝑟crit > 𝑟𝑑.

Finally, the parcel thermodynamic description is closed by predicting the pressure change

within the ascending parcel following the hydrostatic relationship, which can be written using

the ideal gas law as

𝑑𝑃

𝑑𝑡
= − 𝑔𝑃𝑉

𝑅𝑑𝑇𝑣
(2.23)
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where 𝑇𝑣 is the virtual temperature, which is employed to account for changes in air

density due to loss of water vapor to condensate. Equations (2.13)-(2.16), (2.23), and (2.17)

applied to each 𝑛 droplet size bins form a closed system which conserves total water mass.

2.6 Appendix B: Chaos Expansion Emulator Evalu-

ation

The PCM as applied here produces two outputs: a 𝑃 -length vector of coefficients 𝛼 com-

prised of real values, and a 𝑃 ×𝑀 matrix of orthogonal polynomial orders Φ comprised

of integers. Each term in matrix Φ contains a multi-index component for each term in the

chaos expansion and indicates the order of the orthogonal polynomial corresponding to term

1 ≤ 𝑗 ≤𝑀 for expansion term 0 ≤ 𝑖 ≤ 𝑃 . For any expansion, max[Φ] = 𝑝, the desired order

of the chaos expansion. Algorithm 1 describes the evaluation of a chaos expansion.

Algorithm 1 Psuedo-code for evaluating a polynomial chaos expansion of the form
given in Equation (2.2), applied to the computation of 𝑆max

1: for all 𝑋𝑗 do
2: 𝑍𝑗 ← project 𝑋𝑗

3: end for
4: 𝑆 ← 0
5: for row 𝑖 = 0; 𝑖 ≤ 𝑃 do
6: 𝑆𝑖 ← 1
7: for column 𝑗 = 0; 𝑗 ≤𝑀 do
8: 𝑘 ← Φ[𝑖, 𝑗]
9: 𝑃𝑗,𝑘 ← 𝜑k

𝑗 (𝑍[𝑗])

10: 𝑆𝑖 = 𝑆𝑖 × 𝑃𝑗,𝑘

11: end for
12: 𝑆 = 𝑆 + 𝛼[𝑖]× 𝑆𝑖

13: end for
14: 𝑆max ← 10𝑆

Evaluating the chaos expansion involves two parts. First, the input parameters must

be projected to conform to the space supported by the PDFs associated with each basis

polynomial type, producing a set of parameters 𝑍𝑗 . In general, a set of mixed orthogonal

polynomials could be used to derive a chaos expansion, but here only Legendre polyno-

mials were used, and each parameter can be projected using Equation (2.5). Second, the
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polynomial can be evaluated by treating Φ as a look-up table for the orders of each basis

orthogonal polynomial. In practice, the evaluation of these orthogonal polynomials at 𝑍𝑗

for orders up to 𝑘 can be efficiently precomputed (before the polynomial evaluation loop)

by existing orthogonal polynomial libraries (Gautschi, 1994).

In general, the only computationally complex part of the chaos expansion evaluation

algorithm is the projection from 𝑋𝑗 to 𝑍𝑗 ; given certain basis orthogonal polynomials and

their associated PDFs, this procedure could involve numerical integration or otherwise com-

plicated function evaluations. In the case of simple uniform PDFs, though, the process is

achieved entirely by re-scaling the parameters, with little computational overhead. Further-

more, although evaluating a chaos expansion requires looping over each of its terms, each

term can be computed independently from one another and efficiently optimized. This is in

contrast with an iterative scheme which could involve numerical integration or other costly

operations and must be performed in sequence.
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Chapter 3

Development and Assessment of an

Aerosol Activation Metamodel for the

CESM/MARC Aerosol-Climate

Model

3.1 Introduction

Ambient aerosol play a critical role in the climate system by interacting with radiation

through several different mechanisms. Depending on its composition, aerosol can directly

scatter or absorb incoming solar radiation, leading to a direct radiative effect and rapid

changes in the energy budgets of the surface and atmosphere. Additionally, aerosol mediate

the production of clouds by providing surface area on which water vapor may condense to

form droplets. Through this second pathway, changes in the aerosol population perturb the

radiative properties of clouds by altering their microstructure and lifecycle, thereby impact-

ing the planetary radiative budget. Despite decades of focused research by the scientific

This chapter is adapted from Rothenberg, D., and C. Wang, 2016. An aerosol activation meta-
model of v1.2.0 of the pyrcel cloud parcel model: Development and offline assessment for use in an
aerosol-climate model. Geoscientific Model Development Discusssions. doi:10.5194/gmd-2016-228.
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community, the radiative forcing produced through this second pathway, known as aerosol-

cloud interactions, remains one of the largest uncertainties in understanding contemporary

and future climate change on both regional and global scales (Boucher et al., 2013).

Contemporary Earth System Models are a valuable tool for assessing this uncertainty.

Compared to their predecessors, these models incorporate aerosol microphysics schemes

which represent the global variation in particle size distributions and aerosol composition.

These aerosol size distributions can then be used to predict cloud droplet number concen-

trations. As a result, changes in the aerosol size distribution due to anthropogenic emissions

can impact cloud optical properties and produce an aerosol-climate indirect effect. The

interactions between aerosol particles, water vapor, and cloud droplets are often described

using the conceptual model of a possibly-entraining, adiabatic cloud parcel (e.g. Feingold

and Heymsfield, 1992; Nenes et al., 2001; Ervens et al., 2005; Topping et al., 2013). This par-

cel model framework provides a convenient means for both direct numerical and laboratory

simulation of aerosol-cloud interactions, and has been used to establish the physical basis

through which change sin the available aerosol perturb cloud radiative processes (Feingold

et al., 2001).

However, it is not practical to directly include parcel model calculations in global models

due to their coarse grid scales. Adiabatic parcel theory describes a process which occurs on a

spatial scale of tens of meters, over the course of a few seconds—scales much finer than those

resolved in many global model simulations. Some efforts have sought to incorporate fine-

scale information about aerosol-cloud interactions by embedding higher-resolution models

within each grid cell of a global model (for example, the “multi-scale modeling framework”

of Wang et al., 2011). However, while this approach has improved the representation of

cloud processes in global models, it still does not resolve the scales of motion associated

with parcel theory. To bridge this gap in spatial scales, global models employ activation pa-

rameterizations which predict cloud droplet number concentrations using information about

the subgrid-scale variability in meteorology and aerosol size distribution.

Twomey (1959) first developed a scheme for placing an upper bound on this number

of droplets derived from geometrical arguments applied to parcel theory. In subsequent

decades, these arguments were used in conjunction with aircraft measurements to broadly

characterize typical cloud droplet numbers in different regimes. For instance, Boucher and

Lohmann (1995) developed power-law relationships between droplet number and sulfate
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mass concentration for separate continental and maritime regimes; similarly, Jones et al.

(2001) developed a global parameterization for droplet number based on total aerosol number

concentration using a survival function. While appropriate for earlier climate models which

did not seek to resolve the complexity of the ambient aerosol, contemporary coupled aerosol-

climate and aerosol-cloud-resolving models include more details about aerosol properties

which can be used to predict cloud droplet number through explicit activation calculations.

Broadly speaking, efforts to improve these activation calculations have proceeded down two

avenues: caching of pre-computed, detailed parcel model calculations; and extensions to

Twomey’s geometrical arguments using physically-based approximations.

The simplest technique applied to parameterizing aerosol activation is to pre-compute,

using a detailed parcel model, a set of aerosol and meteorological conditions sampled over

some pre-determined parameter space (Saleeby and Cotton, 2004; Ward et al., 2010). These

samples can then be used to construct a look-up table, using some form of interpolation to

compute activation results for points within the domain of the initial parameter space. How-

ever, changing or increasing the number of parameters—such as including additional aerosol

modes or a composition dimension—in the look-up table rapidly increases its computational

cost, since it is costly to both store and access the required information in memory during

run-time.

Alternatively, one can extend Twomey’s analytical approach to bounding the maximum

supersaturation achieved in the constant-speed, adiabatic ascent of a parcel (e.g. Cohard

et al., 1998; Cohard J-M. and Pinty, 2000). Several techniques have been employed to

account for the sensitivity of the maximum supersaturation achieved by such a parcel to

variations in the initial dry aerosol particle size distribution (Khvorostyanov and Curry, 2006;

Shipway and Abel, 2010; Shipway, 2015). These techniques yield closed-form expressions

which relate the parameters describing the initial aerosol size distribution and updraft speed

to the supersaturation maximum, and can be used to predict droplet number concentrations

for a given scenario.

Such studies have led to a number of explicit activation schemes, each applying a dif-

ferent computational and analytical approach but fundamentally relying on the same set

of physical approximations (see Ghan et al., 2011, for a more complete review). Some of

these schemes have been extended to account for additional physical or chemical processes

which can influence activation, such as the presence of organic surfactants on the surface of

63



droplets which tends to reduce surface tension (Abdul-Razzak and Ghan, 2004), or to ac-

count for entrainment in the ascending parcel (Barahona and Nenes, 2007). These schemes

generally rely on iterative calculations to settle on an estimate of how many aerosol par-

ticles activate into cloud droplets (e.g. Shipway and Abel, 2010; Nenes and Seinfeld, 2003;

Ming et al., 2006), although some employ pseudo-analytical solutions to avoid this process

(Abdul-Razzak et al., 1998).

Since they offer generalized formulations independent of the representation of the aerosol

particle size distribution provided to them, physically-based schemes have been the preferred

tool for coupling with global aerosol-climate models. But, they are not without their short-

comings. Simplifying assumptions used to construct physically-based schemes, such as par-

ticles’ equilibrium growth in response to changes in the ambient relative humidity, neglect

kinetic limitations on growth and also lead to an underestimate in cloud droplet number

in both polluted conditions and ones with weak updraft speeds (Nenes et al., 2001). Some

schemes tend to under-estimate the number of droplets nucleated in the presence of multiple,

competing aerosol modes, owing to their representation of water vapor uptake by particles

(Simpson et al., 2014). Although Gantt et al. (2014) showed that using a variety of acti-

vation schemes in a modern aerosol-climate model with a complex aerosol particle size and

composition distribution can lead to a global increase of estimated cloud droplet number by

155%, many evaluations of activation scheme performance have focused on the same set of

relatively simple aerosol particle size distributions. For instance, Abdul-Razzak (2002) used

the Whitby (1978) aerosol particle size distributions but with only two aerosol composition

scenarios, varying the insoluble mass fraction in the coarse aerosol mode between either 0%

or 90%. Nenes and Seinfeld (2003) and Fountoukis and Nenes (2005) used the same aerosol

particle size distributions, but assumed just one additional aerosol composition scenario,

exploring the impact of aerosol which are composed of 20% (by mass) of an organic which

displays surface-active behavior; Ming et al. (2006) employed an identical set of evaluation

simulations. Shipway and Abel (2010) restricted the analysis of their scheme’s performance

with multi-modal aerosol particle size distributions to an idealized bi-modal distribution

with non-varying, homogeneous particle composition. Ghan et al. (2011) summarized the

performance of all of these simulations with the same set of tri-modal aerosol particle size

distributions, but extended their analysis to evaluate droplet number simulated by two

schemes (Abdul-Razzak and Ghan, 2000; Fountoukis and Nenes, 2005) when employed in a
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global model. Meskhidze (2005) used in situ data collected from two different aircraft ob-

servation campaigns to evaluate the sectional formulations of the Nenes and Seinfeld (2003)

and Fountoukis and Nenes (2005) schemes; these evaluations were extended by Fountoukis

et al. (2007), which analyzed the modal formulations of the same schemes, and Morales et al.

(2011) which showed that accounting for entrainment reduced the over-prediction of droplet

number in stratiform clouds by the activation schemes.

However, look-up table approaches do not necessarily solve these shortcomings. De-

tailed parcel models can more easily accommodate additional physics and chemistry which

influences aerosol activation, but it would not be practical to incorporate this information

into a look-up table. However, in previous work, Rothenberg and Wang (2016) developed

a framework for producing an emulator of a detailed parcel model, which could be used to

extend the benefits of look-up tables to high-dimensional parameter spaces. In their exam-

ple, which focused on the activation of a single lognormal aerosol mode, the meta-models

produced by such a framework had lower error statistics on average than existing activation

schemes when compared to a benchmark parcel model.

In this work, we extend the methodology developed in Rothenberg and Wang (2016)

to develop an emulator suitable for inclusion in a modern, coupled aerosol-climate model.

Furthermore, we assess the performance of the emulator against existing activation schemes

across a large input parameter space and a subset reproducing the tendencies of the aerosol-

climate model. By reproducing the original, detailed parcel model on which it is trained,

such an emulator could reduce biases in estimates of cloud droplet number concentration in

cloud regimes characterized by either high pollution or relatively weak forcing and ascent.

This could in turn lead to improved estimates of the aerosol indirect effect from global

models.

This chapter is organized to reflect the exploratory process used to develop the activa-

tion emulator presented here, with the hope that clearly delineating the steps involved will

encourage other groups to pursue similar lines of work. Section 3.2 provides background

on the parent aerosol-climate model for which our activation emulator was derived. Sec-

tion 3.3 details the construction of the emulators and the tools used to produce them. Two

different evaluations of the emulators are presented in Section 3.4. Finally, in Sect. 3.5 we

motivate future projects using these emulators and, more broadly, this approach to building

parameterizations.
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3.2 Activation Parameter Space

The parent aerosol-climate model for which we seek to derive a droplet activation emulator

is the MultiMode, two-Moment, Mixing-state resolving Model of Aerosols for Research of

Climate (MARC, version 1.0.1 here Kim et al., 2008, 2014). MARC extends the NCAR

Community Earth System Model (CESM; version 1.2.2 here), which is a fully-coupled global

climate model with sub-components for simulating climate processes in the land, ocean,

atmosphere, and sea ice domains. In particular, MARC replaces the default modal aerosol

treatment (Liu et al., 2012) in the atmosphere component of the CESM, the Community

Atmosphere Model (CAM5; version 5.3 here), with a scheme which simultaneously resolves

both an external mixture of different aerosol species and internal mixtures between others

(Wilson et al., 2001). In this sense, MARC refers to a configuration of the CESM with the

CAM5 atmosphere component and the alternative aerosol formulation.

The aerosol population within MARC is comprised of a tri-modal sulfate distribution

(nucleation [NUC], aitken [AIT], and accumulation [ACC] modes), discrete modes for pure

black carbon (C) and a generic organic carbon species (OC), and two internally-mixed

modes, one of each for mixed sulfate-black-carbon (MBS) and sulfate-organic-carbon parti-

cles (MOS. The ratio of the masses within each mixed species evolves over time, changing

the optical and chemical properties of those particles. For each of these seven modes, MARC

predicts total particle mass (𝑀) and number concentrations (𝑁) for a corresponding log-

normal size distribution with a prescribed width (geometric standard deviation; 𝜎𝑔).

Additionally, both sea salt (“SSLTn”) and dust (“DSTn”) particle size distributions are

described within MARC by a 4-bin, single-moment scheme with fixed particle sizes. For these

single moment modes, MARC predicts a total number concentration for each bin and then

diagnoses a total mass in order to simulate a lognormal mode with prescribed geometric mean

radius (which is narrower for super-micron dust and sea-salt). Each mode has a prescribed

particle hygroscopicity follow 𝜅-Köhler theory (Petters and Kreidenweis, 2007) except for

the MOS mode, which has a composition-dependent 𝜅 computed assuming that the carbon

and sulfate in the particle forms a simple internal mixture. Unlike the MOS mode, the MBS

mode assumes a core-shell structure with sulfate coating a black carbon nucleus, and has

a fixed hygroscopicity corresponding to that of sulfate, 𝜅 = 0.507. The sea salt modes are

assumed to be comprised of NaCl with 𝜅 = 1.16, and the dust modes are assumed to be a

66



mixture of minerals with a hygroscopicity of 𝜅 = 0.14 (Scanza et al., 2014). The organic and

black carbon modes are assumed to be non-hygroscopic and not significant players in aerosol

activation. These assumptions about the aerosol size distribution simulated by MARC are

summarized in Table 4.1.

Alternative frameworks exist for parameterizing aerosol composition and hygroscopicity

for use in global or process models. Sorjamaa and Laaksonen (2007) proposed using the

Frenkel, Halsey and Hill (FHH) two-parameter adsorption theory which modifies the treat-

ment of the Raoult effect in traditional Köhler theory and can accommodate condensation

of monolayers on particle surfaces Although each of the parameters in this particular theory

must be fit to empirical data for a specific aerosol composition, it has been used to parame-

terize the activation of insoluble aerosol particles (Kumar et al., 2009). In laboratory studies,

Garimella et al. (2014) showed that 𝜅-Köhler theory agreed with FHH adsorption theory

for predicting critical supersaturations for large dust particles of atmospherically-relevant

sizes. However, for application in global models like MARC, 𝜅 is advantageous because the

hygroscopicity of particles with multiple constituents (such as in the MOS mode) can be

estimated using the volume-weighted average of each component.

The aerosol size distributions predicted by MARC interact with both radiation and cloud

microphysics. With respect to the latter, MARC adopts the two-moment, stratiform cloud

microphysics scheme found by default in CAM5 (Morrison and Gettelman, 2008) which

provides an explicit source of cloud droplet formation via aerosol activation from aerosol.

This interaction is facilitated by means of a physical parameterization which takes as input

both the physical and chemical properties of the ambient aerosol as well as limited informa-

tion about meteorology—in particular, the distribution of subgrid-scale vertical velocities.

In MARC, a single subgrid-scale characteristic updraft velocity (𝑉 ) diagnosed from the

grid cell turbulent kinetic energy (TKE) provided by the moist turbulence scheme (Park

and Bretherton, 2009) and assumed to be isotropic is used to estimate droplet nucleation

following Ghan et al. (1997) and Lohmann et al. (1999), such that

𝑉 = 𝑉 +

√︂
2

3
TKE

where 𝑉 is the large-scale resolved updraft velocity. Furthermore, we limit 𝑉 > 0.2m s−1

because the processes driving turbulence are not represented well in MARC, particularly
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Aerosol Mode Geometric Mean
Particle

Diameter (µm)

Geometric Std
Deviation (𝜎𝑔)

Density
(g cm−3)

Hygroscopicity
(𝜅)

NUC 0 to 0.005 84 1.59 1.8 0.507
AIT 0.005 84 to 0.031 1.59 1.8 0.507

ACC >0.031 1.59 1.8 0.507
OC - 2.0 2.0 10−10

MOS - 2.0 † †
BC - 2.0 2.0 10−10

MBS - 2.0 2.0 0.507
DST01 0.16 1.4 - 0.14
DST02 0.406 1.4 - 0.14
DST03 0.867 1.4 - 0.14
DST04 1.656 1.4 - 0.14

SSLT01 0.5 1.59 - 1.16
SSLT02 2.0 1.37 - 1.16
SSLT03 5.0 1.41 - 1.16
SSLT04 15.0 1.22 - 1.16

Table 3.1: MARC aerosol mode size distribution and chemistry parameters. The
MOS mode (†) has a composition-dependent density and hygroscopicity which is
computed using the internal mixing state of organic carbon and sulfate present at a
given grid-cell and timestep.

those driven by cloud-top radiative cooling above the planetary boundary layer (Ghan et al.,

1997). Morales and Nenes (2010) and West et al. (2014) have explored how using different

characteristic updraft velocities to represent subgrid-scale variability can influence simulated

aerosol-cloud interactions; in particular, West et al. (2014) showed that using a similar TKE-

based parameterization produced more realistic spatial and temporal variability in 𝑉 , but

tends to produce an unrealistically high frequency of its minimum-permissible value. We

further assume that activation only occurs in non-entraining, adiabatic updrafts which carry

air up and into the base of stratiform clouds.

3.2.1 MARC Aerosol and Meteorology Parameters

The set of size distribution parameters describing each aerosol mode in MARC and the num-

ber of meteorological factors influencing droplet nucleation in MARC is large, and each pa-

rameter can vary over several orders of magnitude across the globe in even a single timestep.

To assess this parameter space, we sample instantaneous snapshots of the 3D aerosol and

meteorology fields from a MARC simulation run with present-day aerosol and precursor gas
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Figure 3-1: Distributions of model-predicted instantaneous sub-grid scale vertical
velocity for near-surface (below 700 mb) grid-cells broken down by land (red) and
ocean (black) regimes. Bars show a histogram of the distribution; the lines show
kernel density estimate.

emissions. In total, 70 timesteps were sampled covering the complete seasonal and diurnal

cycle at each model grid cell.

The variability in sub-grid scale vertical velocity as a function of continental versus

maritime grid cells across all time samples in this output is summarized in Fig. 3-1. In both

regimes, the mode updraft speed falls at the lower bound of 0.2m s−1, and occurs about 50%

of the time. These velocities rarely exceed 1m s−1 - 10% and 1% of the time over land and

ocean, respectively. On average, land velocities are slightly larger (0.41m s−1 vs 0.32m s−1),

but have higher variance. The distribution of vertical velocities in both regimes has a long

positive tail, maxing out between 3m s−1 to 4m s−1 and never approaching the artificial cap

imposed by MARC.

The different particle size distributions in MARC are influenced by both different emis-

sions sources and acted upon by different physical processes. This leads to a great deal of

spatial heterogeneity in the size distribution parameters. One aspect of this heterogeneity

is depicted in Fig. 3-2, which shows distributions of the total number concentration of four

of the modes aggregated into latitude and height bins. In general, number concentration for

each mode decreases with height, as expected since (with the exception of the pure sulfate

modes) all the modes have strong sources near the surface in the model. Natural aerosols
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Figure 3-2: Violinplots showing the distribution of the logarithm of the number con-
centration for total dust (DST), total sea salt (SSLT), accumulation mode (ACC)
and mixed sulfate-black-carbon mode (MBS) aggregated by latitude (columns) and
vertical level (rows). The width of each violinplot is scaled by the number of observa-
tions for each mode in a given aggregation. The inner boxplot on each figure shows
the median and interquartile range for reference.

(dust and sea salt) are generally much less abundant than anthropogenic ones. Further-

more, there are generally more aerosol by number in the Northern Hemisphere than in the

Southern Hemisphere to the preponderance of anthropogenic emissions sources.

Many of the distributions featured in Fig. 3-2 have long tails extending towards very

low number concentrations. These very low values can be problematic for activation param-

eterizations, especially those constructed from statistical methods or sampling, such as a

lookup table, as they necessitate many saved interpolation points. However, aerosol activa-

tion produces at most one droplet per aerosol, so sensible lower bounds can be imposed to

create a minimum threshold below which little activation is assumed to occur. Furthermore,
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particle size is a critical factor in assessing aerosol activation; larger particles have a much

lower barrier to activation following Köhler theory (Seinfeld and Pandis, 2006). To simplify

the assessment of how activation is influenced by the simulated aerosol size distributions in

MARC, we diagnose 𝜇𝑔 from the prognostic moments output by MARC, and study it in lieu

of the total mass concentration (𝑀).

Although there is a great deal of variability in the number concentrations simulated by

MARC, for all but the nucleation mode sulfate and coarse dust and sea salt modes, those

values are most often drawn from a range of just a few orders of magnitude. In general,

the number burden in each mode approximately scales with the total aerosol burden. Put

another way, the number concentrations in the main sulfate and carbonaceous modes tend

to correlate strongly with one another, as does each mode’s corresponding mean size. The

exception to this rule is typically the sea salt mode, which is abundant in remote areas

distant from the primary sources of anthropogenic sulfate and carbonaceous aerosol. The

range of geometric mean mode particle sizes tends to be smaller than the range in number

concentrations for each corresponding mode.

3.2.2 Reducing the Parameter Space

In total, MARC simulates 15 modes - seven double-moment and eight single-moment. As a

result, we require 22 parameters to completely describe the aerosol size distribution.

Two parameters are needed to close the description of its composition; the hygroscopicity

and density of the MOS mode evolves in response to its relative mixture of carbon and

sulfate, and the MBS mode accrues sulfate mass through aging, which also impacts its

particle density. Finally, the ambient temperature and pressure, as well as the vertical

velocity of the updraft in which activation is occurring are meteorological parameters which

can influence the droplet number nucleated. This yields a total activation parameter space

with 27 independent dimensions.

The emulation method used by Rothenberg and Wang (2016) is designed to work with

an arbitrary number of input parameters. However, in order to focus our analysis on those

parameters most influential on predictions of droplet nucleation, we restrict the input pa-

rameter space by eliminating parameters which exert little or no influence on the activation

process. For instance, the pure carbonaceous modes (OC and BC) are hydrophobic and
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not sources of CCN, so we neglect them in the activation calculation. The nucleation mode

sulfate typically has much fewer and much smaller particles than the Aitken mode and ac-

cumulation modes present in a grid cell. Furthermore, where nucleation mode particles are

abundant in number, the other sulfate modes generally are, too. Thus, we also assume that

the nucleation mode is not a source of CCN, and exclude it from our activation calculations.

Additionally, the mixed black-carbon-sulfate mode (MBS) is assumed to be composed of

particles with a carbon core and sulfate shell; we further assume that the entire surface

of these particles are coated, effectively rendering the MBS particle hygroscopicity to be

equal to that of sulfate. These assumptions effectively reduce the number of parameters we

must consider by seven, bringing the initial parameters to a set of 17 aerosol ones and 3

meteorological ones.

3.2.3 Iterative Activation Calculations

To further reduce this number, we assess the relative importance of each individual aerosol

mode and its influence on activation dynamics. This helps to identify a subset of aerosol

modes to use as predictors in our emulator, avoiding the need to include all 17 potential

aerosol parameters.

We accomplish this with an ensemble of iterative activation calculations using a detailed

reference parcel model (Rothenberg and Wang, 2016), drawn from a sample of aerosol size

distributions simulated by MARC. This strategy effectively employs a “greedy” algorithm

to sort the set of available aerosol modes, ranking their influence on activation by their

cumulative depression on the supersaturation maximum achieved for a given parcel ascent.

Given a set of 𝑛 aerosol modes, the iterative calculations provide a sorted order for the

modes, indicating their relative contribution to activation dynamics. Specifically, for each

𝑛 modes, we pick a test mode and run a parcel model simulation to compute the minimum

supersaturation maximum (𝑆max) achieved in an updraft in which that mode is embedded.

The mode which produces the minimum 𝑆max is said to be the “dominant” mode, and we

record its size distribution. We then remove that aerosol from the original set of 𝑛 modes.

At this point, we re-visit each of the 𝑛 − 1 remaining modes, and run parcel simulations

in which the first “dominant” mode is present along with one additional mode. Again, we

record the minimum 𝑆max and remove the contributing mode from the original set, adding
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Figure 3-3: Illustration of particle number, surface area, and mass distributions (left)
for typical marine size distribution from Whitby (1978), along with iterative activation
calculations (right). In all calculations, we assume the aerosol are all sulfate particles
with a hygroscopicity of 𝜅 = 0.56, and are activated in constant-speed updraft of
𝑉 = 0.5ms−1. Note that the nucleation mode in the Whitby distribution is closer in
size to the Aitken mode included in many moder aerosol-climate models

it to the set of dominant modes. The end result of 𝑛− 1 iterations is a complete sorting of

the modes, based on their contribution to reducing 𝑆max in the parcel model simulations.

Figure 3-3 illustrates this iterative process for an example marine aerosol distribution

following Whitby (1978). In this example, all particles are assumed to be pure sulfate. This

size distribution is particularly interesting because by number, the vast majority of particles

exist in the smaller, nucleation mode, but the coarse mode dominates the mass distribu-

tion. However, the most important factor for influencing the activation process is a mode’s

number-weighted surface area distribution, since this controls the rate of condensation and

latent heat release, and thus the evolution of supersaturation in a cooling parcel. On the

surface area distribution of Figure 3-3 we begin to visualize the accumulation mode, but

both the nucleation and coarse modes have a larger presence. While the surface area dis-

tribution physically controls the activation process, its outcome—a diagnosed cloud droplet

number concentration—is closely related to the number distribution, because we assume

that droplets must form from individual particles. The interplay here is complex, though;

the supersaturation maxima influenced by the surface area distribution sets the threshold

which droplets must overcome in order to activate. Thus, it would be reasonable to assume

that the nucleation mode particles (which feature prominently in both the number and sur-

face area distributions) would “dominate” activation in this case, or that small changes in
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the burden of these particles could have large consequences on how many cloud droplets will

form.

However, that doesn’t happen. On the right-hand panel of Fig. 3-3 are plotted traces of

the supersaturation achieved in a parcel with the indicated aerosol population, as a function

of height above the parcel’s initial altitude. In the first iteration, the parcel achieved mini-

mum supersaturation maxima of 1.2%, 1.4%, and 1.3% when just the accumulation, coarse,

and nucleation modes are present, respectively. These are much higher supersaturations

than the Köhler-theory critical supersaturation for the geometric mean particle size in both

the accumulation and coarse modes (0.3% and 0.1%, respectively), and a large fraction of

the particles in those two modes activate. However, the number concentration of particles in

those two modes is very small (60 and 3.1 particles cm−3), and it takes time before the latent

heat release due to condensation balances the cooling in the ascending parcels. Although

the nucleation mode particles are much smaller and fewer of them activate, their number

concentration is much higher (340 cm−3) and the total liquid water condensed on them is

similar through the ascending parcel’s trajectory, hence the similar values for 𝑆max in all

three cases.

In the second iteration—with the accumulation mode omnipresent—the coarse and nu-

cleation modes only reduce 𝑆max to 0.96% and 1.08%, respectively. The final iteration,

which includes all three modes, produces an 𝑆max of 0.92% with an ordering of (accumu-

lation, coarse, nucleation). These reductions in 𝑆max are due to the higher total particle

number concentration and surface area available for condensation which leads to a more

rapid balancing between the parcel’s adiabatic cooling and warming due to latent heat re-

lease.

We apply this algorithm to a sample of 50,000 aerosol size distributions and meteorologi-

cal parameters taken from our reference, present day MARC simulation. For each parameter

set, we calculate the first four dominant modes, and record the supersaturation maxima pro-

duced by each successive combination. Using these supersaturation maxima, we diagnose

the number of activated aerosol across the total aerosol population, including modes which

are not present in the parcel model simulation at a given iteration. Additionally, for each

parameter set we perform a reference parcel model calculation where all aerosol modes are

included, for comparison with the iterative calculations.

Overall, the accumulation mode sulfate (ACC) is the dominant mode in 96.5% of the
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Figure 3-4: Relative errors in 𝑆max (left) and 𝑁act (right) in subsequent iterations of
the greedy activation calculations. The coloring of each box indicates which mode
was the first or dominant one. In each boxplot, box encompasses the interquartile
range and the whiskers extend to the 1st and 99th percentiles in the corresponding
sub-sample. Outliers beyond these percentiles are not plotted.

sample cases. Infrequently, the mixed-sulfate-carbon modes and smallest dust mode are

the dominant mode, accounting for all of the remaining cases. When ACC dominates the

activation dynamics, either the mixed-modes (MBS and MOS) or smallest sea salt mode is

the second-most dominant one (in 10.3%, 36.2%, and 52.8% of cases, respectively). In fact,

this ordering is so common that in 85% of cases, three of ACC, MOS, MBS, or SSLT01

comprise the top three dominant modes.

Figure 3-4 illustrates the potential error in calculating both 𝑆max and 𝑁act for each iter-

ation of the activation calculations relative to using the full aerosol population, aggregated

by which mode was the first-most dominant one. In all cases, using a subset of the modes

tends to over-predict the droplet number activation as a consequence of predicting a high

value for 𝑆max. This is consistent with the physics of the activation problem; the presence

of more aerosol surface area on which condensation can occur tends to produce a greater

source of latent heat release to counter-balance adiabatic cooling in the ascending parcel,

suppressing the development of a higher 𝑆max. But as Fig. 3-4 shows, this over-prediction

decreases rapidly as modes are included in the calculation. Part of this decrease is related to

the fact that adding modes in each iteration captures a higher fraction of the total aerosol

number; on average, the first dominant mode contains 70%± 27% of the total aerosol num-

ber, which increases to 80%±17% and 89%±13% after adding the second and third modes.
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Following this increase in fraction of the total aerosol number included by the dominant

mode set in each iteration is a decrease in the absolute error in 𝑁act relative to the full

aerosol population, with an average of less than 1 cm−3 and max of 57 cm−3 by the third

iteration.

With respect to the goal of reducing the aerosol parameter space necessary for assessing

aerosol activation, what’s more important in these calculations than the frequently dominant

modes, though, is the the absence of several modes altogether. In particular, the Aitken

mode sulfate is never one of the first three dominant modes; beyond the modes depicted in

Fig. 3-4, the only other modes in that set are the larger dust and sea salt modes. But in

nearly all the cases sampled here, those modes have number concentrations that decrease

as the bin’s particle size increases. Also, the smallest dust and sea salt bins tend not to

feature very high number concentrations in the first place. Even though the larger bins

contribute particles which will almost always activate, owing to their size and composition,

the particles in them simply aren’t numerous enough to impact the activation calculations.

3.3 Emulator Development

We now seek to construct an emulator of a detailed adiabatic cloud parcel model capable

of resolving droplet activation within an ascending, constant-speed updraft. The following

sections briefly re-introduce the chosen cloud parcel model and emulation technique, poly-

nomial chaos expansion; more information can be found in Chapter 2 of this dissertation.

3.3.1 Parcel Model

Adiabatic cloud parcel models are a standard modeling tool for detailed assessments of

aerosol activation and other studies focused on the composition of atmospheric particulates

(Seinfeld and Pandis, 2006). In such a model, a constant-speed updraft drives adiabatic

cooling in a closed, zero-dimensional air parcel within which are any number or configuration

of aerosol particles. Initially prescribed a temperature, pressure, and water vapor content,

the cooling parcel eventually develops a supersaturation with respect to water vapor. In

a sufficiently supersaturated environment, water vapor condenses on particulate surfaces.

However, condensation releases latent heat, which counter-balances the parcel’s adiabatic

cooling. This balance can be expressed
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𝑑𝑆

𝑑𝑡
= 𝛼(𝑇, 𝑃 )𝑉 − 𝛾(𝑇, 𝑃 )

𝑑𝑤𝑐

𝑑𝑡
(3.1)

where 𝑉 is the updraft speed, 𝛼(𝑇, 𝑃 ) = (𝑔𝑀𝑤𝐿/𝑐𝑝𝑅𝑇 2) − (𝑔𝑀𝑎/𝑅𝑇 ) and 𝛾(𝑇, 𝑃 ) =

(𝑃𝑀𝑎/𝑒𝑠𝑀𝑤)+(𝑀𝑤𝐿
2/𝑐𝑝𝑅𝑇 2) are functions weakly dependent on temperature and pressure

(Leaitch et al., 1986), 𝑀𝑤 and 𝑀𝑎 are the molecular weights of water and air, 𝐿 is the latent

heat of vaporization of water, 𝑐𝑝 is the specific heat of dry air at constant pressure, 𝑅 is

the universal gas constant, 𝑔 is the acceleration due to gravity, 𝑒𝑠 is the saturation vapor

pressure, and 𝑤𝑐 is the liquid cloud water mass mixing ratio (please refer to Appendix A of

Chapter 2 for more details).

At some time 𝑡, the balance between heating due to latent heat release and cooling

due to the parcel’s adiabatic ascent will approximately balance such that 𝑑𝑆
𝑑𝑡 = 0 and a

supersaturation maximum, 𝑆max, will occur. Thereafter, 𝑆 generally decreases, relaxing to

some value close to unity as condensation drives droplet growth, quenching the ambient

water vapor surplus. Beyond this point, the aerosol bifurcates into two populations: proto-

cloud droplets which will continue to grow due to condensation and eventually collision

and coalescence, and interstitial haze particles which may have become hydrated, but upon

which further condensation is not thermodynamically favorable.

In order to compute these effects, we simulate an arbitrary number of initial dry particle

size distributions following a lognormal assumption:

𝑛𝑁 (𝑟) =
𝑑𝑁

𝑑 ln 𝑟
=

𝑁𝑡√
2𝜋 ln𝜎𝑔

exp

[︂
− 𝑙𝑛2𝑟/𝜇𝑔

2 ln2 𝜎𝑔

]︂
(3.2)

Each aerosol mode is thus defined uniquely by three parameters (𝑁𝑡, 𝜇𝑔, 𝜎𝑔) correspond-

ing to the total aerosol number concentration, the geometric mean particle radius, and the

geometric standard deviation. The modes are each further discretized into a Lagrangian grid

of 200 size bins, equally spaced over the logarithm of the particle radius such that each bin

represents a different number of particles. The particles are then hydrated to an equilibrium

size with respect to the initial relative humidity in the model; condensation acts to grow

this size in response to the thermodynamic evolution of the parcel.

Furthermore, each bin is assigned a fixed hygroscopicity following 𝜅-Köhler theory (Pet-

ters and Kreidenweis, 2007). By tracking the dry particle size, a hygroscopicity, and the wet

radius of each particle, aerosol activation can be directly assessed within the model.
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3.3.2 Polynomial Chaos Expansion

We emulate the behavior of the detailed parcel model by applying the probabilistic colloca-

tion method (PCM; Tatang et al., 1997). PCM is a method of polynomial chaos expansion

which seeks to construct a model response surface by mapping input parameters related to

the initial conditions and behavior of a model to some response measured from the model.

This process yields a computationally efficient yet accurate reproduction of the model.

The PCM is a non-intrusive technique which does not require modifications to an existing

model in order to be applied. Instead, the PCM treats the original, full-complexity model

as a black box and the chosen set of 𝑀 input parameters as independent, random variables,

X = 𝑋1, . . . , 𝑋𝑀 , each with an associated probability density function. This PDF is used

as a weighting function to derive a family of orthogonal polynomials which are used as the

bases for the polynomial chaos expansion to be constructed, 𝜑. Using a finite number of

these bases and choosing some model response, 𝑅, we write the polynomial chaos expansion

as

𝑅 ≈
𝑃∑︁

𝑗=0

𝛼𝑗𝜑𝑗(X) (3.3)

Such an expression has 𝑁𝑡 = 𝑃 + 1 = (𝑀 + 𝑝)!/(𝑀 !𝑝!) total terms, since a given

chaos expansion of order 𝑝 will contain 𝑝 + 1 basis terms for each input parameter and

combinations thereof. The coefficients 𝛼𝑗 are computed by evaluating the original model at

a set of particular set of sample points, recording the response of the model, and solving a

regression problem. Those sample points are generated by taking the roots of the orthogonal

polynomials associated with each of the input parameters and their random variables.

In order to compute the polynomial chaos expansions, we use the Design Analysis Kit

for Optimization and Terascale Applications (DAKOTA; Adams et al., 2014), version 6.1.

This software automates the process of generating input parameter sets, sampling the full-

complexity model to be emulated, and constructing the polynomial chaos expansion. Fur-

thermore, it provides many useful statistical properties of the sample dataset and the chaos

expansions themselves.
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Symbol Description Lower Bound Upper Bound

logN_ACC Log of accumulation mode sulfate number concentration (cm−3) -3 (1.2) 4 (100)
logN_MOS Log of mixed sulfate-organic carbon number concentration (cm−3) -5 (1.5) 4 (99.9)
logN_MBS Log of mixed sulfate-black carbon number concentration (cm−3) -5 (1.6) 4 (99.8)
logN_DST01* Log of 0.16 micron dust particle number concentration (cm−3) -5 (18.2) 2 (99.8)
logN_DST02* Log of 0.4 micron dust particle number concentration (cm−3) -5 (38.9) 1 (99.9)
logN_SSLT01* Log of 0.5 micron sea salt particle number concentration (cm−3) -5 (3.6) 1 (100)
logmu_ACC Geometric mean size of accumulation mode (micron) -3 (0.1) 0 (98.9)
logmu_MOS Geometric mean size of mixed sulfate-organic carbon mode (micron) -3 (0.06) -1 (98.3)
logmu_MBS Geometric mean size of mixed sulfate-black carbon mode (micron) -3 (0.1) -1 (98.5)
kappa_MOS Hygroscopicity of mixed sulfate-organic carbon mode 0.1 0.6
log_V Log of updraft velocity (m/s) -2 1
T Temperature (K) 240 310
P Pressure (Pa) 50000 105000

Table 3.2: Input parameter space and bounds on associated uniform probability den-
sity functions used to derive polynomial chaos expansions for MARC activation. For
the lower and upper bounds on the aerosol size distribution parameters, the paren-
thetical values denote the percentile of the distribution for that parameter at which
the bound occurs. All terms are present for the main expansion; terms affixed with
an (*) are added for the gCCN expansion.

3.3.3 Emulation of aerosol activation for MARC

We now apply the parcel model and chaos expansion technique in the previous sections to

construct emulators of aerosol activation suitable for use in MARC. Following the analysis

in Sect. 3.2, we identify a reduced-dimensionality input parameter space which covers the

diverse set of aerosol and meteorology scenarios in which activation occurs in MARC, sum-

marized by Table 3.2. Following the iterative calculations, we restrict the aerosol modes

included in the activation calculation to just the accumulation mode sulfate and both mixed

sulfate-organic carbon and sulfate-black carbon particles, as well as giant CCN particles

from the dust and sea salt modes. To assess the importance of these less-abundant, coarse

particles, we derive two emulators: a “main” scheme which includes just the ACC, MBS,

and MOS modes, and a “gCCN” scheme which adds in the dust and sea salt modes. All the

aerosol size distribution parameters are transformed using a logarithm, since they can take

on values that span several orders of magnitude. Additionally, we consider the hygroscop-

icity of the mixed sulfate-organic carbon mode, as well as the updraft speed and ambient

temperature and pressure in our input parameter space.

For each of these parameters we construct uniform size distributions, which are uniquely

defined by a set of low and high bounds. These bounds are also noted in Table 3.2, along
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with the percentile of the data they correspond to from our sampling study of the parameter

space for the aerosol parameters. For most of those parameters, the bounds cover upwards

of 99% of the sampled parameter space. Notably, the lower cut-off boundaries for dust and

sea salt number concentration occur at much higher percentiles; the number concentration

of droplets nucleated in our calculations is relatively insensitive to changes in the coarse

mode number concentration at very low values, though, so we opt to constrain the input

parameter space to these modes to a more physically relevant range. The MOS hygroscopic-

ity, temperature, pressure, and updraft velocity ranges cover all plausible values that could

be used in an online activation calculation within MARC.

We cast all of the input parameters as random variables with uniform probability density

functions to emphasize that we care equally about computing activation with a parameter set

drawn with any parameter values. However, in MARC, some combinations of parameters are

extremely unlikely. For instance, sea salt has sources far remote, spatially, from the sources

of black carbon; ergo, it is uncommon to see a high number concentration for sea salt as

well as the mixed sulfate-black carbon mode. The trade-off here potentially lies in emulator

performance, because the PCM will attempt to train the emulator to perform well for input

parameters that we’ve assigned equal likelihood to, but may actually be far less likely to

occur. A major benefit from this trade-off is simplicity in matriculating the emulator for use

in a GCM. Using multiple probability density functions for different input variables, while

offering a tuning knob to increase the accuracy of the emulators, would require a larger set

of orthogonal polynomial bases than just the Legendre polynomials used for the uniform

distributions here.

These parameters are used to drive parcel model simulations where we record the log-

arithm of 𝑆max as the response variable. This value can then be used to diagnose the

number concentration of droplets nucleated by assuming that any particles which experi-

ence their Köhler theory-predicted critical supersaturation. We note that although this does

not resolve the issue of kinetic limitations on droplet growth and its potential to cause an

under-prediction in droplet number (Nenes et al., 2001), unlike existing activation schemes,

our emulator accounts for the feedback of these effects on 𝑆max, so one avenue of its impact is

lessened. Furthermore, emulators predicting 𝑆max were much more accurate at reproducing

parcel model behavior than those which directly predicted estimates of 𝑁act accounting for

kinetic limitations on growth.
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The end result of constructing the emulators is a function which maps log10(𝑆max) to a

set of values from our input parameter space,

log10(𝑆max) = 𝑓( log10𝑁ACC, log10𝑁MOS, log10𝑁MBS,

log10 𝜇ACC, log10 𝜇MOS, log10 𝜇MBS, 𝜅MOS, log10 𝑉, 𝑃, 𝑇

[, log10𝑁DST01, log10𝑁DST02, log10𝑁SSLT01])

(3.4)

From a prediction of the 𝑆max achieved in an ascending parcel with the conditions passed

to the emulator, we can then diagnose aerosol activation by re-writing the lognormal size

distribution for each mode as a function of critical supersaturation (Ghan et al., 2011) to

yield an expression

𝑁act =
𝑛∑︁

𝑖=1

𝑁𝑡,𝑖

2

(︂
1− erf

[︂
2 ln

(︂
𝑆𝑚,𝑖

𝑆max

)︂⧸︀
(3
√
2 ln𝜎𝑔,𝑖)

]︂)︂
(3.5)

where 𝑆𝑚,𝑖 is the critical supersaturation for a particle of radius 𝜇𝑔,𝑖 from mode 𝑖.

3.4 Evaluation of Emulators

We evaluate our emulators by applying them to both a synthetic sample of potential input

parameters as well as real samples taken from a MARC simulation. In all of our comparisons,

we study third and fourth order chaos expansions both excluding (“main”) and including

(“gCCN”) the coarse dust and sea salt modes.

As a reference, we compute activation statistics for each sample from several different

sources. First, we run the detailed parcel which the emulator aims to simulate. Second, as

a further benchmark and comparison, we run two widely-used activation parameterizations

from the literature. The first scheme, by Abdul-Razzak and Ghan (2000) (ARG) uses a

pseudo-analytical solution to an integro-differential equation derived from the original adia-

batic parcel model system. However, one part of the pseudo-analytical calculation involves

a fit to parcel model calculations. The second parameterization, by Morales Betancourt

and Nenes (2014a) (MBN), applies an iterative scheme to partition the aerosol population

into two subsets, and uses different limits on the underlying analytical formulas to derive

a maximum supersaturation. Because it requires a sequence of iterations to run, the MBN
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scheme is more computationally expensive than the ARG scheme, but has the potential to

include more detailed links between particle composition and condensation (Kumar et al.,

2009) or entrainment into the parcel (Barahona and Nenes, 2007). Like the ARG scheme,

though, one limiting case in the MBN scheme relies on a fit to parcel model simulations.

In both cases, those simulations involved models conceptually similar to the one emulated

here.

3.4.1 Input Parameter Space Sampling

Using the parameter space defined in Table 3.2, 𝑛 = 10000 sample parameter sets were drawn

using maximin Latin Hypercube Sampling (LHS). This randomized sampling method helps

to ensure that the full aerosol and meteorology parameter space is studied while assessing

its performance.

Figure 3-6: Like Figure 3-5, but plotting the predicted droplet number concentration
activated for the aerosol “main” parameter set

Figure 3-5 compares the performance of each emulator and the two reference activation

scheme against parcel model simulations using all of the LHS samples for the “main” aerosol

parameter sets. In the simulations, higher updraft speeds (shaded) are nearly always asso-
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Figure 3-5: One-one plot comparing predicted supersaturation maxima between par-
cel model and activation parameterizations - 3rd-order emulator (a), 4th-order emu-
lator (b), ARG (c) and MBN (d). The “main” aerosol parameter set (excluding the
dust and sea salt as predictor modes) were utilized here. Glyphs are shaded to denote
updraft velocity corresponding to each sample draw (in m/s), and are consistent for
each panel. Solid black lines denote a factor-of-2 difference between predicted values
from parcel model and corresponding parameterization evaluations

ciated with a much higher supersaturation maximum. For the emulators, accuracy tends

to increase on average going from the 3rd order (Fig. 3-5-a) to the 4th order (Fig. 3-5-b)

scheme, although there is slightly higher variance in the relative error compared to the parcel

model at higher updraft speeds. With respect to the driving updraft speed, though, there

isn’t a consistent mode of bias - on average, the relative error is very low. The same does

not hold true for the two reference schemes. The ARG scheme (Fig. 3-5-c) tends to predict

both too-high and too-low supersaturation maxima at higher updraft speeds but is relatively

well-calibrated at lower updraft speeds yielding a lower supersaturation maximum. On the

other hand, the MBN scheme (Fig. 3-5-d) is generally more accurate and better-calibrated

than either of the emulators or the ARG scheme, especially at higher updraft speeds - but

tends to spuriously over-estimate 𝑆max for weak updraft speeds.

Figure 3-7 takes the results depicted in Fig. 3-5 one step further by diagnosing droplet
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Figure 3-7: Like Figure 3-5, but plotting the predicted droplet number concentration
activated for the aerosol “main” parameter set

number concentrations nucleated from each 𝑆max. For all the schemes, there can be substan-

tial differences between the parcel model and each parameterization. This is particularly the

case in regimes which give rise to fewer overall droplet number concentrations, either due to

a lower driving updraft velocity, or a lower total aerosol number available to activate. Sur-

prisingly, the MBN scheme tends to consistently activate a higher number of droplets with

respect to the parcel model, especially in situations which should have very few droplets

- below 10 cm−3. The ARG scheme does not have as consistent of a bias, but can both

egregiously over-predict and under-predict droplet number, with these biases exaggerated

at lower updraft speeds. By comparison, the emulators show much less overall bias. The

mean error for the emulators follows that of 𝑆max and is small, but there is variance which

tends to impart a small low or high bias on its estimates.
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Figure 3-8: Like Figure 3-5, but for the “gCCN” parameter set

Figure 3-9: Like Figure 3-7, but for the “gCCN” parameter set

Both of these sets of plots are repeated in Figs. 3-8 and 3-9, but for the “gCCN” exper-
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iment. Qualitatively, the results for all parameterizations are very similar, with the same

overall biases - especially for the ARG and MBN parameterizations. The emulators tend not

to perform as well overall in the “gCCN” cases, although they are still the best-calibrated

scheme and do not have the velocity-regime errors that the MBN scheme has. In both the

“main” and “gCCN” parameter sets, the MBN scheme tends to more regularly predict too

many cloud droplets, save for polluted regimes where 𝑁act < 100 cm−3, as the bias reverses

and the scheme has a tendency to under-predict droplet number. Neither the emulators nor

the ARG show this same tendency in bias.

These differences in bias are most likely related to the choice of parcel model used in

testing and building the ARG and MBN schemes; because each scheme relies on some empir-

ical tuning to parcel model calculations, details in the implementation of each parcel model

which influence its sensitivity should show up in ensemble evaluations of each activation

scheme. The “gCCN” case is more taxing to simulate with parcel models using a Lagrangian

description of the particle size distribution, because condensational growth is computed for

each particle bin simultaneously. The stiffness ratio of the underlying differential equations

describing condensation in this case will be extremely large, as the small particles in the

main aerosol modes will grow much more slowly than those in the giant CCN modes. Al-

though modern ODE solvers can automatically handle these scenarios, the subjective choice

of which particular solver and how to discretize the giant CCN population (how many bins

per mode) could influence the sensitivity of 𝑆max to changes in the model inputs and account

for the differences observed here.

To better summarize the results in Figs. 3-5 and 3-7 to 3-9, summary statistics on

the error of each scheme versus their corresponding parcel model calculations are shown

in Table 3.3. In both sampling cases, all of the parameterizations show a strong linear

correlation (𝑟2) between their predictions and the result of the parcel model. The emulators

(PCM Order 𝑝) predict 𝑆max with lower overall absolute and relative error, but with a

much higher variance (not shown here). However, that lower error does not always translate

into the emulators being the most accurate absolute predictors of 𝑁act. For the “gCCN”

parameters, the ARG scheme predicts 𝑁act with a lower average mean relative error. In

both parameter sets, the MBN scheme is the least accurate compared to the parcel model

used in these sampling calculations.
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log10 𝑆max 𝑁act

exp scheme MAE MRE NRMSE 𝑟2 MAE MRE NRMSE 𝑟2

main ARG 0.18 -3.26 0.10 0.94 40.14 25.39 0.15 0.98
MBN 0.20 -11.79 0.18 0.81 59.05 44.95 0.30 0.90

PCM Order 3 0.16 0.59 0.09 0.95 72.54 9.20 0.31 0.90
PCM Order 4 0.10 -0.60 0.06 0.98 45.47 8.89 0.19 0.96

gCCN ARG 0.17 8.54 0.09 0.93 37.41 -3.92 0.15 0.98
MBN 0.20 -9.58 0.17 0.78 56.03 33.30 0.31 0.89

PCM Order 3 0.16 0.59 0.08 0.95 81.19 15.14 0.34 0.87
PCM Order 4 0.10 0.36 0.06 0.98 50.99 6.90 0.23 0.94

Table 3.3: Summary statistics for error in supersaturation maxima and droplet num-
ber activated predicted by emulators and activation parameterization relative to cor-
responding simulations with a detailed parcel model. From left-to-right, each column
represents the coefficient of determination (𝑟2), mean absolute error (MAE), mean
relative error (MRE), and the normalized root-mean-square error (NRMSE)

3.4.2 MARC Aerosol Sampling

Although the sampling in the previous section fully exhausts the input parameter space

over which aerosol activation may need to be assessed, it undoubtedly samples from aerosol

and meteorological conditions which may not be likely to occur in the real world. To

better understand the performance and potential bias of the emulators developed here and

the existing activation schemes, then, we also studied a sample of 𝑛 = 10000 aerosol and

meteorology parameter sets drawn directly from a MARC simulation. All of the schemes

were evaluated again using these parameter sets and the detailed parcel model. This includes

the “main” and “gCCN” emulators, which allows us to identify the importance of including

the dust and sea salt modes as predictors in the chaos expansions. The parameters in these

sets occasionally include values outside the ranges defined in Table 3.2 and studied in the

previous section. These cases are more frequently associated with very low total aerosol

number concentration, especially over the ocean where anthropogenic aerosols are limited

and natural aerosols - which have a lower overall number burden - dominate. Because the

aerosol samples from oceanic and continental grid cells differ in this fundamental way, we

break down the following analysis to reflect those differences. As in the previous sampling

experiment, summary statistics on the performance of each emulator, alongside the ARG

and MBN schemes, are detailed in Table 3.4.

Qualitatively, all of the activation schemes perform similarly when evaluated against
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log10 𝑆max 𝑁act

scheme MAE MRE NRMSE 𝑟2 MAE MRE NRMSE 𝑟2

ARG 0.05 -0.16 0.03 0.92 25.5 2.87 0.16 0.94
MBN 0.06 0.05 0.05 0.71 26.7 -6.68 0.19 0.93

main Order 3 0.12 0.42 0.08 0.33 64.7 -1.81 0.44 0.59
main Order 4 0.04 -0.31 0.02 0.96 24 4.59 0.19 0.93

gCCN Order 3 0.14 -1.84 0.09 0.18 75.6 20.9 0.47 0.52
gCCN Order 4 0.12 4.61 0.10 -0.19 44.3 -19.9 0.33 0.76

Table 3.4: Same as Table 3.3, but for the sampling study using MARC aerosol and
meteorology parameter sets.
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Figure 3-10: Distributions of relative error in scheme prediction of 𝑁act versus de-
tailed parcel, evaluated using samples taken from instantaneous MARC aerosol size
distribution and meteorology and colored by geographical regime. The long tail of
each distribution is clipped at the extrema for each scheme. The box plot in the
center of each distribution shows the median and inter-quartile range of the total
distribution of both land and ocean samples for each scheme.

the MARC parameters as compared to the more generic sampling in the previous section.

Figure 3-10 summarizes distributions of relative error in 𝑁act over land and ocean for each

scheme. Neither the ARG nor the MBN scheme show much difference in error for the two

regimes, although on average, the MBN tends to under-predict 𝑁act. This under-prediction

usually occurs in regimes with higher updraft speeds and thus higher overall droplet number

concentrations. In conditions with weaker updraft speeds, the MBN scheme instead tends to

slightly over-predict 𝑁act. The ARG scheme is particularly well-calibrated in both regimes.
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The emulators derived here do not perform as well as the physically-based parameter-

izations. Both 3rd order schemes tend to over-predict droplet number over oceans, and

under-predict it over land, but with an extremely large variance extending to ±100%. How-

ever, including the effects of giant CCN measurably improves the performance of the 3rd

order emulators in oceanic regimes. Increasing the order of the emulator also has a signif-

icant impact on their accuracy; the 4th order scheme which neglects giant CCN actually

out-performs the ARG and MBN scheme on average, and shows little bias between land

and ocean regimes, indicating good convergence with its parent parcel model. On the other

hand, the gCCN scheme has not yet converged by including 4th order terms, even while

its mean error statistics improve. Particularly troublesome is a secondary mode of extreme

(over 100%) under-prediction of droplet number of oceanic regimes, but this metric is de-

ceptive. Really, what is occurring is that for very low total aerosol number concentrations -

with particle number in the single-digits per cubic centimeter - the 4th order “gCCN” scheme

tends to predict half as many droplets as parcel model calculations indicate should form.

This typically occurs when one or more of the input size distribution parameters (in partic-

ular, the number concentration) for the natural aerosol dips below the minimum threshold

where the emulator was trained. When the emulators encounter inputs greater (lower) than

these thresholds, they hold them to the maximum (minimum) value in its training range.

This follows the assumption that the bounds for each parameter cover the entire range over

which activation is sensitive to changes in that input. Put another way, activation should be

relatively insensitive to changes near the maximum or minimum values in the range for each

parameter. With respect to number concentration, this must be the case; populations with

fewer than 10−3 particles cm−3 offer very little surface area for condensation, and simply

cannot exert a strong influence over the developing supersaturation in the parcel. That the

4th order “gCCN” emulator produces too high of sensitivity in this regime suggests that

statistical over-fitting is occurring near the extremes of the input parameter space.

To contextualize these differences in 𝑁act bias over different geographical regimes, Fig. 3-

11 re-maps the testing samples back to the original MARC grid. Here, the difference in re-

gional biases becomes much clearer. Virtually everywhere, the MBN scheme is biased a little

low, but there is no systematic difference in this bias between land or ocean, or by geograph-

ical areas. The ARG scheme and the 4th order “main” scheme show a different pattern; the

ocean-land contrast in bias is clearly visible in the northern hemisphere. Furthermore, the
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Figure 3-11: Mean relative error in scheme prediction of 𝑁act versus detailed parcel
model plotted against location on globe where those samples originated. At each grid
location, all samples across timesteps and vertical levels (below 700 mb) are averaged
together to compute the mean.

bias is typically positive over maritime regions, but negative over regions with anthropogenic

aerosol influence. In particular, these regions include Europe and Southeastern Asia, where

aerosol distributions are dominated by anthropogenic sulfate and black carbon, and over

north central Africa, where the aerosol is a mixture of both dust and organic carbon emis-

sions from biomass burning. In the zonal average, the main_4 scheme is virtually identical

to the ARG scheme. However, both cases as well as with MBN, there are larger biases over

the southern parts of the oceans, where the aerosol is predominantly comprised of sea salt

and smaller sulfate particles produced indirectly through the emission of DMS.

Figure 3-11 also illustrates the poor performance of the gCCN_4 scheme, which under-

predicts 𝑁act nearly everywhere, but especially so in the southern portions of the ocean

basins. The consistent under-prediction in this region explains the bimodal distribution over

the ocean hinted at in Fig. 3-10. The gCCN_4 scheme does not perform too dissimilarly than

the other schemes over regions with anthropogenic pollution or with mostly dust aerosol.
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3.5 Discussion and Conclusions

In the present work, we extended the meta-modeling technique of Rothenberg and Wang

(2016, Chapter 2 of this dissertation) in order to apply it to assess droplet nucleation from a

complex, multi-modal aerosol mixture simulated by a modern aerosol-climate model. Simul-

taneously, we characterize the performance of both our new emulators for aerosol activation

and two widely-used schemes from the literature, focusing on that same high-dimensional,

complex aerosol parameter space. To identify the most important factors impacting activa-

tion in that complex parameter space, we apply a physically-based approach to assess the

sensitivity of activation statistics to the composition of the aerosol size distribution. Finally,

we explore contrasts between aerosol and meteorology regimes over land and ocean, noting

the potential for different biases in assessed cloud droplet number depending on the choice

of activation scheme used in a particular global modeling application.

In ensembles of iterative calculations using a large sample of aerosol size distributions

from a coupled aerosol-climate model, we note that typically, a single mode tends to dom-

inate activation or otherwise strongly predict the total number of droplets nucleated. This

approach to understanding the sensitivities of activation dynamics on the underlying aerosol

population is distinct from previously-published approaches in the literature. For instance,

Karydis et al. (2012) and Morales Betancourt and Nenes (2014b) apply an adjoint approach

to derive the sensitivity of aerosol activation to perturbations in input parameters sup-

plied to activation schemes. Detailed calculations using this approach yield a map of local

sensitivities or gradients in the relationship between, for example, 𝑁act and one input pa-

rameter while holding all others constant, and are thus difficult to interpret. The iterative

calculations performed here aim instead to address the global sensitivity of activation to

configurations of an aerosol population.

It is somewhat surprising that the accumulation mode sulfate (ACC) successfully serves

as such a strong proxy for the full aerosol population, even in the presence of giant CCN

and a wide swath myriad updraft regimes. This result is likely model-dependent; the ACC

mode in MARC is not only ubiquitous, but may be inadvertently (and subjectively) in a

range of mean particle sizes for which aerosol activation is especially sensitive. At the same

time, the coarse dust and sea salt modes in MARC, on average, hold too small a number

concentration to dramatically impact activation calculations save for maritime regions far
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remote from anthropogenic sources. However, the presence of sea salt as one of the modes

most frequently ranked in the top three influencers of activation points to previous results

which indicate the presence of giant CCN influence activation dynamics (e.g. Barahona et al.,

2010).

The fact that a single mode can place such a strong constraint on aerosol activation is

useful for attempts seeking to extend look-up table methods for building parameterizations.

If two modes—an accumulation-size and a coarse-size—accurately predict aerosol activa-

tion, then one can constrain the look-up table to just a few key aerosol size distribution

parameters. The inclusion of variable aerosol composition would still likely make employ-

ing a look-up table in a global model unwieldy, though, necessitating more sophisticated

approaches. The emulation technique applied here is one such approach to tackling this

problem which appears to work very well.

When sampling against the full training parameter space employed here, our emulators

perform capably. Neglecting the influence of the giant CCN modes, the emulators built

average a mean relative error of less than 1% in predicting log10 𝑆max, which translates to

an mean relative error of 9.2% and 8.9% in predicting 𝑁act. Including the giant CCN mode

appears, at first, to dramatically increase the performance of the emulator, bringing those

same metrics down to 0.3% and 6.9% for the 4th-order scheme. Relative to the ARG and

MBN schemes, the emulators are much more accurate on average when compared to our

reference parcel model. However, we note that both the ARG and MBN schemes contain

components which themselves are tuned to parcel models employed by their developers.

Thus, we should not expect those schemes to perfectly match the parcel model results

calculated here. Instead, we emphasize that the comparison of our emulators with the

ARG and MBN scheme is motivated as part of a broader attempt to understand how the

fundamental activation process initiates a chain of physics which ultimately lead to the

aerosol indirect effect on climate. Assessing the relative performance of activation schemes

which, for all intents and purposes, perform extremely well at reproducing their own reference

parcel models, is a critical step in establishing the parametric uncertainty in translating

aerosol to droplet numbers and which underlies uncertainty in global model estimates of the

indirect effect.

For this reason, we supplemented the evaluation of our emulators by using a second set

of input parameter samples drawn from aerosol fields simulated by an aerosol-climate model.
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In contrast with previous studies, we use instantaneous fields in lieu of monthly or annual

averages for our samples. Activation is inherently a fast process; because the microphysics

schemes in aerosol-cloud models directly account for a tendency of new droplets formed

via nucleation, the activation parameterization in any model will be called every time-

step and for every grid-cell where clouds are occurring. Assessing activation schemes using

temporally-averaged aerosol fields risks missing some combinations of input parameters and

limiting the range of values for which the scheme will need to accurately perform.

Most of the emulators and schemes tested here perform somewhat differently over land

and ocean, owing to the presence (or lack thereof) of natural and anthropogenic aerosols

in these different regimes. Unfortunately, when focusing on the narrower range of aerosol

parameters present in MARC (in comparison with the larger parameter space on which

the emulators were trained), the emulators which explicitly account for giant CCN perform

poorly, especially over ocean regimes dominated by sea salt. However, their counterpart

performs nearly identical to the ARG scheme, showing a slight over-prediction of 𝑁act in

maritime regimes and a slight under-prediction over continents. In the global average, the

emulator agrees better with the detailed parcel model than the ARG scheme. By comparison,

the MBN scheme, while prone to under-predicting 𝑁act in both regimes in these calculations,

shows far less variance in its mis-prediction. This would suggest the MBN scheme actually

performs extremely well - it is simply calibrated against a different baseline (in this case,

a different parcel model). In particular, the MBN scheme does not show a difference in

relative error between ocean and land regions, suggesting it is appropriately sensitive to a

large range of different aerosol populations.

The results presented here have important implications for global modeling studies seek-

ing to quantify uncertain in the aerosol indirect effect on climate. While different activation

schemes generally perform equally well when faced with idealized sets of input parameters

(Ghan et al., 2011), their application in coupled aerosol-climate models may not be straight-

forward. Relative to parcel model calculations, activation schemes can likely show biases in

predicting cloud droplet number in different regions of the world owing to spatial hetero-

geneity in the underlying aerosol and meteorology parameter distributions. This, in turn,

will lead to biases in cloud radiative forcing and diagnosis of the indirect effect.

Some literature has already implicated the role of activation schemes in divergent model

estimates of the indirect effect. Ghan et al. (2011) performed a pair of GCM experiments
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using two different schemes and noted that between their simulations there is a 10% difference

in the global average droplet number concentration, which produces a 0.2W m−2 difference in

the indirect effect. Using a sequence of increasingly-complex activation schemes, Gantt et al.

(2014) performed similar simulations with just a present-day emissions scenario, showing

large regional differences in average cloud droplet number concentration and, as a result, up

to a difference of 0.9W m−2 in global average shortwave cloud forcing. This perturbation

in forcing naturally follows from results such as those highlighted in this work; changes in

the base cloud droplet number concentration simulated in an aerosol-climate model have

important consequences for the chain of cloud microphysical processes which ultimately

give rise to the indirect effect. Those biases will necessarily be model-dependent, since the

formulation of the basic activation diagnostic in each model is intertwined with regional and

global variability in their simulated aerosol size distributions.

Future work should seek to systematically assess the differences in cloud microphysical

processes and aerosol-cloud interactions arising from choice of activation schemes in aerosol-

climate models. As this work illustrates, employing emulators of detailed parcel model

calculations including various chemical and physical effects on the activation process will aid

with this task, providing a way to quickly account for myriad facts which may be difficult

or impossible to include in existing activation schemes or frameworks. However, this work

must proceed in tandem with efforts to place strong constraints on the climatology and

variability of cloud droplet number concentration across regions and meteorological regimes.

The synthesis of these two lines of work may provide the necessary constraints to diagnose

systematic biases in the representation of fundamental aerosol-cloud interactions in global

aerosol-climate models and thus reconcile the disagreement between model- and satellite-

derived estimates of the indirect effect.
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Chapter 4

The Influence of Aerosol Activation

on the Aerosol Indirect Effect on

Climate

4.1 Introduction

The interaction between aerosols and water vapor underpins a gross uncertainty in our un-

derstanding of climate change and the way anthropogenic activity impacts it. By acting as

the nuclei which seed the formation of clouds, aerosols can indirectly influence the climate

system. However, constraining just how large this influence may be has proven elusive, de-

spite nearly a half-century of investigation (Boucher et al., 2013). Twomey (1977) proposed

the idea that for an idealized cloud system with a fixed liquid water content, a change in

the number of aerosol particles or cloud condensation nuclei (CCN) could yield important

changes in the cloud’s microphysical structure, particularly with respect to droplet number

and size. This “first indirect effect” has implications for a cloud’s reflectivity and thus in-

teraction with shortwave radiation. A “second indirect effect” is thought to arise from these

initial changes in cloud microstructure, feeding back on the evolution of the cloud (its life-

This chapter is being prepared (along with the following chapter) for submission to Atmospheric
Chemistry and Physics
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time and precipitation) and ultimately its macrophysical properties (cloud fraction, liquid

water content, etc.) (Albrecht, 1989; Haywood and Boucher, 2000). These indirect effects

occur in liquid clouds, mixed-phase clouds (both in the Arctic and deeply-convecting clouds),

and potentially in certain ice-phase clouds. The sum total of these influence of aerosol on

cloud micro/macro-physical properties and radiation comprises the aerosol indirect effect on

climate (AIE).

Difficulty in constraining the role of the indirect effect on contemporary climate change

arises from two different but closely-related sources. Ghan et al. (2013) and Carslaw et al.

(2013) illustrated, using two very different approaches, that lack of constraints on the emis-

sions and physico-chemical size distribution of the pre-industrial aerosol provide a source of

epistemic uncertainty surrounding AIE. However, interactions between aerosols and clouds

are also state-dependent; the sensitivity of cloud processes and properties such as precipita-

tion or albedo to aerosol perturbations can also vary widely across aerosol and cloud regimes.

Furthermore, the array of aerosol-cloud interactions (ACI) which give rise to these sensitivi-

ties is diverse and complex. Sufficiently representing this complexity in global models which

can only afford spatial and temporal resolution far too coarse to explicitly–and sometimes

consistently–resolve them has proven an enduring scientific challenge, and is a second source

of uncertainty towards AIE.

Here, we consider a fundamental component of ACI—the nucleation of cloud droplets

from the ambient aerosol population, a process known as droplet activation. Droplet ac-

tivation plays a key role in setting the climatology of cloud droplet number in a global

model by providing the initial inputs to cloud microphysical processes, and provides a direct

link between otherwise-independent aerosol and microphysics modules. Hoose et al. (2009)

showed that in one global model, the indirect effect scaled nearly linearly with an artifi-

cial constraint placed on the minimum permissible cloud droplet number, a constraint or

tuning parameter first developed to mitigate unrealistically-low droplet numbers in remote

maritime clouds. This effect has also been observed when assessing ensembles of differ-

ent aerosol-climate models (Quaas et al., 2009). Similarly, Storelvmo et al. (2009) showed

that different empirical relationships between aerosol burden and droplet number produced

grossly different estimates of the indirect effect.

The increasing complexity and scope of aerosol modules and activation schemes used in

tandem with global models has obviated some of the need for this type of tuning parameter.
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However, the choice of activation scheme can directly influence simulated droplet number

climatologies. Ghan et al. (2011) found a 10% difference in AIE when using two different ac-

tivation schemes in the same global model, despite a 20-50% difference in simulated droplet

number, which is much smaller than the typical inter-model spread in AIE (e.g. Lohmann

and Ferrachat, 2010; Boucher et al., 2013) By using a variant on that same global model with

a more-complex chemistry and aerosol module, Gantt et al. (2014) dramatically increased

the difference in simulated droplet number by 55% for the same two schemes; further, incre-

mental improvements to those schemes yielded successively higher average droplet burdens.

Although they did not estimate the indirect effect, they increased the global average short-

wave cloud forcing by 13% for a present-day emissions scenario, illustrating the influence

of activation on clouds’ radiative impacts. In another study using the same global model,

Gettelman (2015) observed a 28% decrease in the indirect effect when altering the numerics

of activation such that droplets are nucleated before other microphysical processes act on

the droplet number.

Of course, activation is just the first linkage in the chain of ACI, and other microphysics

processes also contribute greatly to variance in the indirect effect. For instance, the param-

eterization of autoconversion, which relies on empirical relationships which are extremely

difficult to constrain using observational data, can also grossly influence the indirect effect

(Gettelman et al., 2013; Rotstayn and Liu, 2005; Golaz et al., 2011); implementing prognostic

precipitation reduced the indirect effect by 14% in one model by modulating the sensitivity

of cloud liquid water path to aerosol perturbations (Gettelman, 2015). As previously men-

tioned, though, activation stands apart from these processes because of its role in serving

as the interface between aerosol and cloud microphysics modules in global models. While

many global models use similar microphysical parameterizations and schemes, there is a wide

diversity in approaches towards representing the physics and chemistry of the atmospheric

aerosol. In particular, while many of these aerosol models do a good job at reproducing the

regional and vertical distribution of chemistry-resolved aerosol mass and particle number,

they can simulate vastly different particle size distributions (Mann et al., 2014). Activation

schemes directly translate these particle size distributions into cloud droplet number, setting

the baseline which other microphysical processes modify.

In this study, we quantify the influence of the representation of activation on estimates

of the indirect effect by using a suite of state-of-the-science parameterizations, including
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an emulator of droplet activation based on an adiabatic parcel model (Rothenberg and

Wang, 2016). The first set of analyses highlights the fundamental changes in the simulated

cloud and radiation climatologies attendant with the model configurations using each of

the different activation schemes. We include, as a point of reference, a similar analysis

on a suite of aerosol-climate model simulations explicitly targeted at assessing inter-model

variance in the indirect effect. We then use the results of these analyses to motivate a deeper

investigation into aerosol-cloud interactions simulated by our model configurations and how

they influence the indirect effect on both regional and global scales.

This chapter is organized as follows. Section 4.2 introduces the MARC aerosol-climate

model used as a host model for investigating the influence of droplet activation on the

indirect effect, as well as the observational and model intercomparison datasets we use to

evaluate this influence and our simulation design. In Sections 4.3.1 to 4.3.2 we consider

how the different activation schemes influence the simulation of clouds and radiation in a

present-day emissions scenario, and their sensitivity to aerosol perturbations. We follow this

with analysis in Sections 4.3.3 to 4.3.5 on the influence of droplet activation on the indirect

effect. Section 4.4 summarizes our findings and discusses implications for future studies.

4.2 Methods

4.2.1 MARC Global Aerosol-Climate Model

In order to better assess aerosol impacts on climate, we utilize an improved aerosol-climate

model based on previous work (Kim et al., 2008; Ekman et al., 2012; Kim et al., 2014).

Originally known as the CAM-MIT, the aerosol-climate model directly couples a multi-

modal, mixing-state-resolving aerosol scheme with a three-dimensional, global climate sys-

tem model. In this latest iteration, the parent climate system model is the National Center

for Atmospheric Research’s (NCAR) Community Earth System Model (CESM; version 1.2)

with Community Atmosphere Model (CAM; version 5.3) (Neale et al., 2012), while the

aerosol model remains the multimodal model of Wilson et al. (2001). The aerosol model

has previously been used to resolve aerosol physics in cloud-resolving simulations (Ekman

et al., 2004, 2006; Wang, 2005a,b; Ekman et al., 2007; Engström et al., 2008). This new im-

plementation of the CAM-MIT based on CESM/CAM has been renamed the two-Moment,
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Multi-Modal, Mixing-state-resolving Aerosol model for Research of Climate (MARC).

MARC explicitly simulates a complex mixture of aerosol species, each with an asso-

ciated lognormal size distribution function, using a two-moment scheme. Within MARC,

the aerosol species is divided into a set of externally-mixed modes, including three distinct

sulfate modes (nucleation or "NUC", Aitken or "AIT", and accumulation "ACC"), pure

black carbon (BC), and organic carbon (OC). Additionally, two internally-mixed modes are

separately resolved, including a mixture of sulfate-black-carbon (MBS) and a mixture of

sulfate-organic-carbon (MOS). With the MBS mixture, particles are assumed to consist of a

black carbon core coated with a sulfate shell; within the MOS mixture, particles are totally

internally mixed according to the volumetric ratio of sulfate and organic carbon present. In

addition to the number and mass moments predicted for each mode, the MOS and MBS

modes have an associated prognostic variable indicating how much carbon is present in

the mixture, allowing the mixing state to freely evolve. Additionally, MARC includes a

sectional, single-moment (fixed-size) representation of dust (0.16 µm, 0.406 µm, 0.867 µm,

1.656 µm bins), and sea salt aerosols (0.2 µm, 2 µm, 5 µm, 15 µm bins). All of the MARC,

dust, and sea salt modes are fully coupled to and interact with both the radiation model as

well as with the cloud microphysics scheme (through droplet activation, discussed below)

in the CESM, enabling the model to fully resolve aerosol direct radiative effect and the full

gamut of aerosol indirect effects. Sea salt is assumed to be composed of NaCl, while dust is

assumed to be a mixture of minerals (Albani et al., 2014; Scanza et al., 2014). Prescribed

size distribution and hygroscopicity parameters for each mode are summarized in Table 4.1.

Sulfate particles are formed in MARC via binary nucleation of H2SO4−H2O (Vehkamäki,

2002), with prognostic gaseous sulfuric acid predicted by the default CAM interactive sulfur

chemistry module (Barth et al., 2000). Both gas-phase oxidation of SO2 and dimethyl

sulfide (DMS) provide sources for H2SO4, as well as aqueous reactions of S(IV) with both

H2O2 and O3. Coagulation between modes produces both pure (externally-mixed sulfate)

and mixed (MOS and MBS) particles; the pure carbon (BC and OC) modes age into their

mixed counterparts through a prescribed constant-time aging scheme (40 and 20 h for each)

which is limited by the availability of H2SO4 for condensation. Both primary and secondary

organic carbon aerosol are emitted into the OC mode in the model; biogenic volatile organic

vapors (specifically isoprene and monoterpenes) are converted upon emission into OC using

a simple yield coefficient suggested by Griffin et al. (1999). We assume that both pure

99



Aerosol Mode Geometric Mean
Particle

Diameter (µm)

Geometric Std
Deviation (𝜎𝑔)

Density
(g cm−3)

Hygroscopicity
(𝜅)

NUC 0 to 0.005 84 1.59 1.8 0.507
AIT 0.005 84 to 0.031 1.59 1.8 0.507

ACC >0.031 1.59 1.8 0.507
OC - 2.0 2.0 10−10

MOS - 2.0 † †
BC - 2.0 2.0 10−10

MBS - 2.0 2.0 0.507
DST01 0.16 1.4 - 0.14
DST02 0.406 1.4 - 0.14
DST03 0.867 1.4 - 0.14
DST04 1.656 1.4 - 0.14

SSLT01 0.5 1.59 - 1.16
SSLT02 2.0 1.37 - 1.16
SSLT03 5.0 1.41 - 1.16
SSLT04 15.0 1.22 - 1.16

Table 4.1: MARC aerosol mode size distribution and chemistry parameters. The
MOS mode (†) has a composition-dependent density and hygroscopicity which is
computed using the internal mixing state of organic carbon and sulfate present at a
given grid-cell and timestep.

carbonaceous modes are hydrophobic.

The sulfate particles grow and their size distribution evolves in response to the conden-

sation of sulfuric acid and coagulation between particles. Particles from all modes can be

lost through dry deposition, gravitational settling and impaction scavenging via precipita-

tion, and each mode undergoes these processes with different efficiencies related to their

size (Ekman et al., 2006) and hygroscopicity (Petters and Kreidenweis, 2007). Additionally,

nucleation scavenging occurs in both deep convective and stratiform clouds. In stratiform

cloud systems, nucleation scavenging is calculated through a prognostic droplet activation

scheme, taking into account both local meteorology (sub-grid scale updraft speeds) and the

total availability of ambient aerosol. In contrast, nucleation scavenging in deep convective

clouds is computed using a prescribed supersaturation max of 0.1%. Although several aerosol

species (sulfate and dust) play a role in heterogeneous ice formation in MARC (following

Liu et al., 2007), this process does not remove ambient aerosol.

MARC adopts the stratiform cloud microphysics scheme from CAM5.3 (Morrison and

Gettelman, 2008) and includes the updates to code structure and droplet activation tenden-
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cies referred to as MG1.5 by Gettelman and Morrison (2015). The contribution of droplet

nucleation to the cloud droplet number tendency, 𝜕𝑁𝑑
𝜕𝑡 , is computed following Ovtchinnikov

and Ghan (2005), and can be non-zero in both newly formed and pre-existing clouds. It is re-

stricted to cloud-base in pre-existing clouds but can occur at all levels of newly-formed clouds

where cloud water mass is predicted to develop. Additionally, 𝜕𝑁𝑑
𝜕𝑡 includes sink terms such

as accretion of cloud water, self-collection of hydrometeors, evaporation, autoconversion, ad-

vection, and inter-type scavenging of hydrometeors. Autoconversion is parameterized as a

function of cloud water content and droplet number, 𝑁𝑑 (Khairoutdinov and Kogan, 2000).

Ice and mixed-phase cloud microphysics are based on Liu et al. (2007) and Gettelman et al.

(2010).

4.2.2 Simulation Design and Setup

We perform a set of simulations with MARC using different activation schemes (see Ap-

pendix A for more details). For both the ARG (arg) and MBN (nenes) schemes, we run

a _comp and a _min_smax scheme, where the latter incorporates the minimum-𝑆max

heuristic. For the PCM schemes, we use both the main4 and gCCN3 schemes derived in

Chapter 3, and the 4th-order OLS scheme (ols4) of Chapter 2 for the supplemental heuris-

tic. We note that for the MBN scheme, we apply the 𝜅-Köhler theory formulation to handle

dust instead of the adsorption mechanics implemented by Kumar et al. (2009). Other than

the change in activation schemes, the simulations are identical and use the same emissions

scenarios.

For each scheme, we performed a pair of 6-year simulations using a horizontal grid

resolution of 1.9° × 2.5° and 30 vertical levels. Each simulation is run with prescribed sea

surface temperatures and ice cover running an annual cycle for the year 2000. To focus this

work on the indirect effect, we diagnose the aerosol direct radiative effect during runtime by

running repeated radiative transfer calls with each aerosol in isolation from one another, but

do not include these effects in the heating rates used to forward-integrate the model. The

pairs of simulations differ only in their use of emissions scenarios; here, we use a present day

(PD and pre-industrial (PI) corresponding scenario to the years 2005 and 1850, respectively.

Following Kim et al. (2008), we use constant monthly emissions derived using an offline

modeling process (Mayer et al., 2000; Wang, 2004) for BC, primary OC, and SO2; emissions

101



of DMS and VOC (isoprene and monoterpene) also vary on a monthly basis.

For all simulations, we output monthly mean fields and analyze the final 3 years of output

for both the PD and PI cases. Additionally, we output a suite of instantaneous cloud micro-

and macrophysical variables sampled at either cloud-top or one kilometer above the surface

and saved every three hours over the duration of the simulations. For consistency with the

radiative transfer calculations in the model, the maximum-random overlap hypothesis is

used to derive cloud-top quantities. To focus our study on warm, liquid-water clouds (which

should be the most susceptible to changes in activation dynamics), we restrict our analysis

of the instantaneous output to grid-points where the cloud-top temperature is greater than

−10 ∘C.

4.2.3 Other Data

Satellite Data

To assess MARC’s performance in simulating present-day cloud and radiation fields, we use

a climatology of observations derived from satellite-based sensors. Cloud micro- and macro-

physical fields were derived using six years of monthly-average data from the MODerate

Resolution Imaging Spectroradiometer (MODIS; Collection 5.1), an instrument on board the

Terra satellite. Cloud droplet number is derived from Level 1 data from the same instrument

using a technique employing an adiabatic cloud assumption (Bennartz, 2007, with updates

provided via personal communication); for this reason, it is only suitable for maritime cloud

regimes equator-ward of 60°. The global radiative budget at the top of the atmosphere is

estimated using data from the Clouds and Earth’s Radiant Energy System (CERES) sensor,

which also flies aboard Terra. All data is re-gridded to the MARC simulation grid before

time-averaging for analysis.

Cloud Droplet Number Observations

Because the MODIS-derived cloud droplet number concentration (CDNC) retrievals have

a high degree of uncertainty, we also evaluate simulated droplet numbers against a large

collection of in situ observations previously compiled by Karydis et al. (2011). We compare

these observations to instantaneous output of in-cloud droplet number from our present-

day simulations, first interpolated to 850mbar, and then averaged over the seasons and
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Polluted Marine Marine Continental

Figure 4-1: Locations of in situ observational data reported by Karydis et al. (2011).
Different colors correspond to classifications of different aerosol regimes.

observation areas for the final three years in each model run (Table 2 Karydis et al., 2011).

For observations from a specific location, we locate the model grid-cell containing that

location for analysis. As a reference, we include the modeled CDNC corresponding for each

observation produced by the chemical transport model simulations performed by Karydis

et al. (2011). Figure 4-1 plots the global distribution from where the observations are

sourced.

AeroCom Model Experiments

We supplement our investigation into the influence of droplet activation on the aerosol indi-

rect effect by analyzing an additional set of climate models which participated in the Aerosol

Comparisons between Observations and Models (AeroCom) Indirect Effects Experiment (as

used by Ghan et al., 2016; Zhang et al., 2016). Similar to the experiment conducted here,

pairs of integrations (using present-day and pre-industrial emissions scenarios) were per-

formed with each model, using the same IPCC emissions scenarios for primary aerosol and

precursors (Lamarque et al., 2011). Each simulation uses prescribed sea surface temper-

atures, sea-ice extent, and atmospheric greenhouse gas concentrations, and was run for a

length of five model years. Unlike the integrations performed here, though, these simulations

differ in two key ways.

First, all of these simulations were run using a Newtonian relaxation method in order

to constrain the evolution of the atmosphere in each model (Kooperman et al., 2012). To
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accomplish this, the prognostic model equations were nudged using re-analysis wind fields

corresponding the period 2006-2010. It has been previously shown that orchestrating en-

sembles of models in such a way tends to provide more robust estimates of the indirect effect

in shorter simulations, increasing the statistical significance of regional differences due to

the aerosol-induced perturbation (Kooperman et al., 2012). Furthermore, Kooperman et al.

(2012) demonstrate that compared to free-running simulations, nudged simulations yield a

slightly smaller estimate of the indirect effect. Some AeroCom models supplemented nudg-

ing of the wind fields by simultaneously nudging temperature fields towards re-analysis. The

simulations we perform with MARC are conducted with a free-running model configuration.

We therefore stress that the AeroCom simulations provide a robust multi-model reference

to evaluate the potential contribution of activation to uncertainty in the indirect effect; we

do not seek to identify a model configuration which provides a “best” estimate.

Second, the present-day carbonaceous aerosol emissions used in the AeroCom simulations

differ from those employed here. The offline-procedure used in Wang (2004) produces a larger

estimate of globally- and yearly-integrated BC and OC mass emissions by factors of 1.8 and

1.6, respectively. For both fields, the difference is approximately evenly distributed across

latitude bands from -30S to 50N, although OC emissions used in MARC are about 10% lower

than in the AeroCom simulations northward of 50N. MARC derives primary emissions in

terms of number concentration using these mass emissions and an assumed size distribution.

Thus, our simulations will tend to simulate a larger burden of OC and BC in terms of

particle number, particularly in regions where there is strong anthropogenic emission. The

simulations we perform here do not include atmospheric heating due to absorption by BC

and OC, which further are incapable of nucleating cloud droplets. However, both BC and

OC can exert an indirect effect through aging and mixing with sulfate.

Where possible, we have attempted to include output from as many participating Ae-

roCom models as possible in our analysis. We discriminate inclusions based on a quality-

control process. Not every model reported the full set of requested output, which limits our

ability to analyze some climatological fields. Also, some models reported inconsistent units,

particularly for cloud-top and in-cloud microphysical quantities. We have corrected these

where possible, or attempted to re-derive from hourly instantaneous output missing data.

For our analysis, we re-grid each model to the simulation grid used in our MARC runs. A

detailed summary of each model and its suite of parameterizations relevant for modeling the
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indirect effect can be found in Appendix A of (Zhang et al., 2016).

4.3 Results

4.3.1 Evaluating Cloud Droplet Number

Predicted cloud droplet number concentration (CDNC) from each variant of MARC are

compared against observations sourced from around the globe (Figure 4-1) in Figure 4-

2. MARC generally under-predicts CDNC in regimes where the highest concentrations

were observed, particularly over continents. This is partly a function of the activation

scheme; both of the nenes schemes and each of the min_smax schemes (relative to their

full-competition reference) captures some of the variability towards higher CDNC. The same

pattern of under-prediction in CDNC occurs in polluted marine regimes for each activation

scheme. In clean marine regimes, all of the MARC simulations produce little variance in

simulated CDNC, although most of the comparisons are within ±50% of the observations.

The detailed aerosol, chemistry, and activation treatment in the NASA GMI model utilized

by Karydis et al. (2011) produces much better agreement with observations, although their

model also tends to consistently predict much too-high CDNC over continental regions; over

half of their reported values are greater than their corresponding observed CDNC values by

50%.

Compared to the observations, MARC much more frequently simulates very low CDNC

less than 50 cm−3 than shown in observations (Karydis et al., 2011). In fact, observations

rarely probe cloud regimes with CDNC this low; the exceptions in the dataset compiled

by Karydis et al. (2011) are both extremely far removed from anthropogenic emissions,

either north of Alaska or near the Canary Islands. This does not necessarily mean that

droplet number is infrequently below this threshold, or that MARC is accurately simulating

aerosol-cloud interactions in these regimes. For instance, TKE-based diagnostics used to

assess subgrid-scale updraft speed variability tend to simulate extremely low updraft speeds

much too frequently, which can bias CDNC estimates low (West et al., 2014). Additionally,

techniques for estimating droplet number using satellite measurements (e.g. Bennartz, 2007)

rely on an adiabatic cloud approximation which can not account for entrainment and dilution

of droplet number in some marine dynamical regimes, further lending to over-estimates.
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Figure 4-2: One-to-one comparisons between observed and simulated cloud droplet
number concentrations from regions across the globe. Panels (a)-(g) show results
from the MARC simulations using the indicated droplet activation schemes; panel
(h) shows results from CDNC modeled by a chemical transport model with detailed
aerosol and activation treatments.

The potential for regionally-dependent biases in predicted CDNC are more apparent

when aggregating relative error, as in Figure 4-3. On average, MARC fares the worst in

continental regimes, regardless of activation scheme. In contrast, the average simulated

CDNC in clean marine regimes is well-calibrated, but has much higher variance. Polluted

regimes tend to have the least variance, and the model performs better in these regimes

than in purely continental ones. These biases obfuscate the fact that in the global average,

CDNC burden is relatively well-predicted in comparison with recent modeling estimates.

Estimates of global-average CDNC in the simulations performed here range from 60 cm−3

to 91 cm−3 (for the arg_comp and nenes_min_smax cases, respectively). This is mostly in

agreement with recent studies, albeit on the lower side of estimates (75 cm−3 to 135 cm−3 by

Penner et al. (2006) using a suite of models employing the Abdul-Razzak and Ghan (2000)

activation scheme; 83 cm−3 by Leibensperger et al. (2011) using an empirical relationship

between aerosol and droplet number; 96 cm−3 by Barahona et al. (2011) using an earlier

variant of the Morales Betancourt and Nenes (2014a) activation scheme).

For a more extensive assessment of simulated cloud droplet number, we turn to estimates

derived from MODIS observations (a recent update to Bennartz (2007) provided by the au-

thor). These estimates Figure 4-4 are based on a simple model of adiabatically-stratified

liquid clouds which is most appropriate for thin, stratiform clouds capping the maritime
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Figure 4-3: Distributions of relative error between observed and simulated CDNC
(𝑁𝑑) for each configuration of MARC, aggregated by region.

boundary layer, and thus we restrict our comparison to maritime regions between −60°S-

60°N. Enhancement in CDNC downwind and in the vicinity of continents and anthropogenic

emissions sources are clearly visible in the satellite dataset, particularly in the regions off-

shore of the United States and China. Averaged over the entire maritime region under

consideration, MARC under-predicts CDNC by 45% to 65% depending on which activation

scheme are used. However, CDNC is consistently too small in several regions regardless

of that scheme, particularly in both the north and south Atlantic, in the portion of the

Southern Ocean that lies south of the Indian Ocean, and in the north Pacific. The only

oceanic region where the model over-estimates CDNC is in the equatorial upwelling region

of the eastern Pacific. Enhancement of CDNC by anthropogenic aerosol in costal regions is

best-captured by the nenes and emulation schemes.

In interpreting these comparisons between observed and simulated CDNC, it is critical

to recognize that there is an important set of underlying parameters which is not con-

strained—the aerosol size distribution and local meteorology. Globally-sourced observations

of local variability in aerosol size distribution and composition are far more difficult to ob-
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tain than those of cloud microphysical properties. Without confirmation that a model is

faithfully simulating the aerosol size distribution at a given location, one cannot expect the

model to perfectly simulate cloud droplet number. For instance, Morales Betancourt and

Nenes (2014b) highlighted the importance of the number concentration of particles in the

accumulation mode aerosol as a critical factor in controlling cloud droplet number, a result

which Chapter 3 further illustrated, specifically applied to the MARC model employed in

this study. In cases such as this study, where we limit our focus to one global model and

do not modify the underlying aerosol module, we are at least evaluating the CDNC from

a consistent frame of reference. But in inter-model comparisons, differences in that aerosol

module are an important caveat.

Although the use of different activation schemes does not directly perturb the simulated

aerosol distributions in the model, the two-way coupling facilitated by nucleation scaveng-

ing can indirectly influence average aerosol number concentration. In these simulations,

the present-day accumulation mode number concentration over the oceans is 31% to 40%

smaller in the simulations using the nenes and pcm activation schemes versus the arg. This

is likely because those schemes tend to nucleate slightly more droplets for the same aerosol

population. The attendant increase in nucleation scavenging decreases accumulation mode

number, which then depresses potential cloud droplet number. As a result, the difference in

cloud droplet number concentration in the long-term average between the different schemes

is not as large as it otherwise might be, hence the similar distributions of error relative

to MODIS-derived CDNC. The region of too-high CDNC in the eastern equatorial pacific

coincides with a region of enhanced, persistent deep convection and precipitation in the

model.

4.3.2 Influence on Clouds and Radiation

Compared to original version of CESM/CAM5.3, the inclusion of an alternative aerosol for-

mulation does not substantially change the model’s simulated cloud and radiation fields, as

illustrated in Figure 4-5. To demonstrate the extent to which altering the activation scheme

can influence these fields on the large-scale, we have included in Figure 4-5 zonal averages

computed from an ensemble of aerosol-climate models, four of which are themselves vari-

ants on the CAM5.3 with alternative microphysics (Gettelman and Morrison, 2015) and/or
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moist turbulence scheme (Bogenschutz et al., 2013). Except in the northern hemisphere

sub-tropics, MARC tends to under-predict total aerosol optical depth (AOD )relative to

both observations and the reference models (Figure 4-5a). This is generally the case for all

of the reference models as well, and MODIS estimates of AOD are thought to be biased high

over oceanic regimes (Levy et al., 2013b). However, MARC consistently predicts smaller

AOD than the other models considered here. As discussed in Section 4.3.1, there are dif-

ferences in simulated accumulation-mode sulfate number concentration depending on the

activation scheme used with MARC, but the fact that these differences do not show up in

the zonal-average AOD suggests that MARC is instead consistently predict too-low coarse

mode aerosol.

Present-day zonal average cloud macrophysical quantities are summarized in Figure 4-5b-

d. MARC generally performs comparably with other models in re-producing zonal patterns

in cloud fraction, cloud optical depth, and liquid water path. Using different activation

schemes does not appreciably alter the models’ performance with regard to these fields, al-

though nenes and PCM schemes produce slightly higher cloud optical depth across latitudes

and particularly in the tropics. As with its parent model and other reference models, MARC

under-predicts cloud optical depth and liquid water path in polar regions. The preponder-

ance of mixed-phase clouds greatly complicates these regions, and MODIS retrievals can

become unreliable due to changing surface conditions (in particular, reflective surfaces such

as snow which increase in frequency towards the poles). Notably, all or most of the reference

models similarly under-predict cloud optical depth and liquid water path poleward of 60°,

and MARC is well within the inter-model spread in these quantities across latitudes.

Following the discussion in Section 4.3.1 the largest activation-induced differences be-

tween simulations arises in cloud-top cloud droplet number (CDNC, Figure 4-5e). Poleward

of 60°, CDNC using the nenes schemes can be twice that predicted by the arg ones. The

differences are most pronounced in latitudes with significant anthropogenic aerosol emis-

sions, particularly in the Northern Hemisphere. All the models shown here produce sharp

declines in CDNC in the extra-tropics, but MODIS-derived estimates are highly uncertain

in this region and provide a poor constraint on model performance. The combination of

these differences in cloud properties yields small differences in the model-estimated short-

wave cloud radiative effect (Figure 4-5f). Note that we apply the radiative decomposition of

Ghan (2013) to account for the influence of aerosol scattering above clouds when computing
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Figure 4-5: Zonal average aerosol, cloud, and radiation fields under present-day emis-
sions scenario. Colored lines correspond to configurations of MARC using different
activation schemes; black lines are derived from CERES-EBAF (Shortwave Cloud
Radiative Effect) and MODIS (all other panels) observations. The shaded gray area
corresponds to the inter-model spread for all available models participating in the
AeroCom Indirect Effects Experiment; dashed white lines are the zonal averages for
each participating model. Cloud droplet number is computed at cloud-top, using only
grid cells over the ocean.

cloud radiative effects in the shortwave.

Measured in absolute terms, the inter-model difference in present-day shortwave cloud

radiative effect is small. However, Figure 4-6 shows that the choice of activation scheme can

influence the details of these differences. The change in cloud radiative effect between the

pre-industrial and present day emissions simulations has a spread of nearly 2W m−2 across
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present-day emissions scenarios (a) and relative to the arg_comp simulation for
present-day emissions (b).

all latitudes. These differences can be much larger on local scales. Activation schemes which

produce the smallest cloud-top droplet number concentration generally produce largest

differences in cloud radiative effect between the two emissions schemes. Relative to the

arg_comp scheme, all other schemes produce a smaller cloud radiative effect in the present-

day emissions case (Figure 4-6b), and the magnitude of that difference is comparable to the

change versus the pre-industrial emissions. These largest differences arise in the tropics and

in the mid-latitudes of the northern hemisphere, both regions influenced by anthropogenic

aerosol emissions and where the largest differences in CDNC occur.

Figure 4-7 illustrates the change in aerosol and cloud microphysical fields between the

pre-industrial and present-day emissions scenarios. In order to focus the following discussion

on the influence of droplet activation, we opt to present differences in cloud condensation

nuclei (CCN) which more directly relate to potential droplet number than aerosol optical

depth, even though both fields are thought to be strongly correlated (Andreae, 2009). CCN

increases the most in the northern hemisphere, where aerosol emissions are the largest (Fig-

ure 4-7a). These increases are co-located with the largest increases in cloud droplet number

(Figure 4-7b), although there is a factor of 3-4 difference between activation schemes. At the

same latitudes, droplet effective radius decreases (Figure 4-7c), optical depth increases (Fig-

ure 4-7d), and liquid water path increases (Figure 4-7f). The change in liquid water path

differs the most between each simulation following cloud droplet number. Despite which

activation scheme is used, compared to Figure 4-5c-d, liquid water path and cloud optical

depth increase by up to 20% co-located where the largest increases in droplet number oc-
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Figure 4-7: Same as Figure 4-5, except illustrating differences in indicated fields
between pre-industrial (PI) and present-day (PD) emissions scenarios. CCN here is
computed at an altitude of 1 kilometer in the model.

cur. This indicates the important role that activation plays in influencing simulated cloud

properties.

4.3.3 Influence on the Global Aerosol Indirect Effect

We now turn our attention to global metrics for the aerosol indirect effect—those considered

by the IPCC and others (Boucher et al., 2013). Figure 4-8 shows differences in globally-

averaged aerosol direct and indirect effects computed from the pairs of pre-industrial and

present-day runs for each activation scheme. The particulars of droplet activation in these

simulations produce up to a 0.8W m−2 difference between simulations, or a 100% increase
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Figure 4-8: Global-average effective radiative forcing for aerosol direct radiative effects
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effect is computed as the sum of the direct and both indirect components.

Δ R Total CRE Δ SW CRE Δ LW CRE DRF Δ RF Res
Activation Scheme

arg_comp -1.66 -1.35 -1.79 0.43 -0.24 -1.6 0.07
arg_min_smax -1.62 -1.49 -2.15 0.66 -0.17 -1.66 -0.04
nenes_comp -1.35 -1.02 -1.49 0.47 -0.25 -1.27 0.07
nenes_min_smax -0.9 -0.70 -1.24 0.53 -0.20 -0.9 -0.001
pcm_gCCN3 -0.72 -0.63 -1.13 0.50 -0.22 -0.85 -0.13
pcm_main4 -0.85 -0.61 -1.05 0.45 -0.20 -0.8 0.05
pcm_ols4 -1.32 -1.12 -1.81 0.70 -0.18 -1.29 0.03

Table 4.2: Aerosol direct and indirect effects (in Wm−2) for the different activation
schemes considered in this study. In all cases, we consider the change in the top-of-
atmosphere radiative flux to compute these metrics (the net balance of which is given
by Δ R). Our decomposition of the shortwave indirect effect (SW CRE) follows Ghan
(2013) to account for above-cloud scattering and absorbing aerosol; similarly, the
direct effect is computed diagnostically within each simulation. Following Gettelman
(2015) we compute a residual between the top-of-atmosphere radiative imbalance and
the direct and indirect effects such that Res = Total CRE + DRF - Δ R

by the strongest over the weakest estimate. Differences in the total aerosol influence on

climate (ERFaci+ari) here are strongly modulated by perturbations to the shortwave cloud

radiative effect (ERFaci_shortwave), which is broadly consistent with the changes in cloud

microphysical properties noted in the previous section.

Each perturbed component in the top-of-atmosphere (TOA) radiative budget are decom-
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posed in Table 4.2. Consistent with expectations, there is relatively little variance in the

direct radiative forcing diagnosed for each activation case, even accounting for the feedback

of increased nucleation scavenging depressing aerosol number. Similarly, there is not much

difference in the longwave cloud radiative effect, which is dominated by glaciated clouds

not necessarily modified by tweaking activation. The longwave indirect effect in these mod-

els is net positive; dust and large sulfate particles in the model can nucleate ice crystals

(Liu et al., 2007), and the increase in aerosol between the two emissions scenarios yields

ice clouds with modestly higher crystal number concentration, higher ice water path, and

increased longwave influence relative shortwave. Using a similar modeling setup, Gettelman

et al. (2012) showed a similar influence of aerosol on ice cloud-longwave radiation interac-

tions. Furthermore, we note that the indirect effect in the longwave is critically sensitive

to the baseline ice crystal number burden simulated in the model. Additional tests using

an alternative, aerosol-coupled ice nucleation scheme (DeMott et al., 2010) decreased the

longwave cloud radiative effect in MARC in a manner that scaled nearly linearly with ice

crystal number. Using this alternative scheme produced much higher cloud-top ice crystal

concentrations and ice water path, as well as a larger change between the two fields in the

pre-industrial and present day simulations.

The majority of the difference in the indirect effect and net TOA radiative flux thus

arises from changes in cloud interactions with shortwave radiation via cloud brightness. For

the shortwave cloud radiative effect alone, the spread from the different activation schemes is

larger than the net effect at 1.1W m−2. Both the longwave cloud radiative effect and aerosol

direct effect act to minimize the net effect; in the simulations with the largest shortwave

contribution, both the direct and cloud longwave effects are smaller and larger, respectively.

The small spread in direct effect in these simulations correlates very strongly with the change

in global-average aerosol optical depth, but changes in that field are only loosely related to

changes in the available CCN.

4.3.4 Sensitivity of Indirect Effect to Aerosol-Cloud Perturba-

tion

In the previous sections, we demonstrated that differences in the treatment of droplet ac-

tivation have a large influence on model estimates of global cloud and radiation fields, as
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Figure 4-9: Relationship between regionally-averaged PD-PI change in shortwave
cloud radiative effect and aerosol optical depth (a) or CCN concentration (b). Colors
denote averages over all land area (red), ocean (blue), or whole globe (black). Glyphs
denote MARC simulations with different activation schemes; X denotes AeroCom
model. Linear regressions for MARC simulations are represented by solid lines, with
corresponding correlation coefficient indicated on plot; linear regressions for AeroCom
models are given by the dashed lines.

well as their perturbations to change. However, we seek to more rigorously connect these

differences in sensitivity to aerosol perturbation with variance in the indirect effect. To ac-

complish this, we have used our high-temporal frequency output to consider grid cells where

only liquid water clouds are present, between −60°S and 60°N. We then compute time and

spatial averages of cloud and radiation fields over these grid cells, both across the global

and by differentiating between oceanic and continental (land) regimes. The calculations

were also computed for the AeroCom models previously considered here, where data was

available. To quantify the aerosol-cloud perturbation/indirect effect (approximated as the

change in clean-sky, shortwave cloud radiative effect between pre-industrial and present day)

sensitivity, we regress differences in cloud and radiation fields obtained from the different

models and model configurations.

Figure 4-9 details this relationship for two metrics of the change in the global aerosol

burden. The increase in direct aerosol and precursor gas emissions in the present-day emis-

sions scenario should tend to increase both aerosol optical depth (AOD) and the availability
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of cloud condensation nuclei (CCN). Every model captures this change. However, the ex-

act magnitude of the increase is dependent on the formulation of the aerosol module in

each model, in particular assumptions about the size distribution. Inter-model diversity in

present-day AOD and sensitivity to perturbation from the pre-industrial climate has been

associated with up to a 0.5W m−2 spread in estimates of the direct effect (Shindell et al.,

2013), but it also has implications for the indirect effect following Figure 4-9-a. The largest

AOD increases occur over land, and these are also associated with larger perturbations to

the indirect effect. The MARC simulations and most of the AeroCom models do not sim-

ulate major differences in AOD over the ocean, even while there is considerable spread in

the sensitivity of cloud radiative forcing in that regime. One explanation for the small re-

sponse in AOD over these ocean regimes could be that AOD is dominated by large natural

aerosol such as sea salt in these regions, which would not directly increase in response to

anthropogenic emissions.

CCN also directly increases due to anthropogenic emissions. However, in contrast with

AOD, larger changes in CCN are associated with a larger indirect effect (Figure 4-9-b).

Different aerosol metrics have previously been shown to have different relationships with

model- and satellite-derived estimates of the indirect effect, but they usually at least have the

same sign (Penner et al., 2011). This suggests that each metric is capturing a different facet

of the aerosol size distribution which may or may not be relevant to changes in the indirect

effect, depending on how they strongly they influence potential cloud droplet number.

To assess this influence, we plot similar relationships between cloud-top droplet number

concentration (CDNC), liquid water path (LWP) and liquid cloud fraction in Figure 4-10.

The spread in the change in CDNC very weakly correlates with the strength of the indirect

effect (Figure 4-10-a). Within the AeroCom models, this is likely due to the diverse repre-

sentations of cloud microphysics and macrophysics utilized by the ensemble (Ghan et al.,

2016). Instead, a much better predictor of the indirect effect is the pre-industrial CDNC,

which is strongly positively correlated with the change in CDNC between pre-industrial and

present day. This is evident in Figure 4-10-b, which shows a negative relationship between

the pre-industrial CDNC and the indirect effect. The models which produce higher CDNC

for the same background or natural aerosol tend to have weaker indirect effects.

Liquid water path and cloud fraction exhibit a different relationship with the indirect

effect (Figure 4-10-c-f). Using different activation schemes in MARC directly influences the
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Figure 4-10: Similar to Figure 4-9; top row (a-c) denotes relationship between PD-PI
changes in shortwave cloud radiative effect and cloud properties, bottom row (d-f)
shows regression versus averages from PI emissions scenario.

sensitivity of LWP to aerosol perturbation, which strongly increases the indirect effect. The

same is true of the liquid cloud fraction, which is correlated with LWP in both MARC and

the ensemble of AeroCom models, particularly for oceanic regimes. The AeroCom models

simulate far more diversity in LWP and cloud fraction under pre-industrial emissions, but

tend to agree on the magnitude of change between pre-industrial and present day. The

same is true of MARC, even across oceanic and continental regimes. That the pre-industrial

average LWP and cloud fraction are similar regardless of the activation scheme used with

MARC suggests that the large-scale cloud properties are less insensitive to aerosol and

instead to the combination of aerosol and cloud macrophysics. This is somewhat striking,

given the relative lack of variance in the modeled perturbations in LWP and cloud fraction,

and points to the critical role of changes in droplet number due to aerosol to further influence

cloud macrophysics.
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Figure 4-11: Comparison between estimates of ERFari+aci derived here and a subset
of those previously reported by the IPCC AR5. Corresponding kernel density esti-
mates of the distribution of ERFari+aci are given on the right-hand panel; the solid
black curve shows the distribution accounting for all the estimates on the plot.

4.3.5 Summarizing the Influence of Droplet Activation

In order to contextualize the influence of droplet activation on the indirect effect in the

simulations presented here, we plot estimates of the indirect effect (ERFari+aci) reported

by Boucher et al. (2013) in Figure 4-11. These include a highlighted subset of models

and results combining satellite observations with model analysis (Figure 4-11, AR5 Table

7.4), results from a previous model inter-comparison using CMIP-class models (Figure 4-11,

AR5 Table 7.5 Shindell et al., 2013), and new estimates derived from the AeroCom models

considered here and the various configurations of MARC with different activation schemes.

The estimates presented here span a wide variety of potential model physics and aerosol

couplings, and therefore different aerosol indirect effects.

In our simulations with MARC, differences in droplet activation produce a spread in

estimates of the indirect effect similar in magnitude to the total inter-model diversity. Fur-

thermore, our estimates–especially for the configurations with lower cloud droplet number

concentration–tend to cluster in the higher-end of estimates compared to previous inter-

comparisons. The same is true for the AeroCom models considered here, although we note

that four of the AeroCom models are closely-related variants of the same parent model as

MARC (the NCAR CAM5.3) and therefore the estimates are not totally independent of one

another.

Our range of indirect effects induced by different activation treatments is much larger

than the few others reported in the literature. By re-ordering the droplet activation cal-
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culation in each model timestep, Gettelman (2015) induced a 0.43W m−2 decrease in the

magnitude of the indirect effect; Ghan et al. (2011) reduced it by just 0.16W m−2 when

switching between two different activation schemes. This range is much smaller than the

0.86W m−2 spread we report for the experiments conducted here. We note that both of those

previous estimates of the sensitivity of the indirect effect to activation used nearly identical

global models (early versions of the NCAR CAM5 with the same aerosol module). Our use

of a unique aerosol model could contribute to some of the difference in the range of estimates

of the indirect effect. This possibility can indirectly be tested using the suite of model results

presented in this work, since one included AeroCom model is the NCAR CAM5.3 in its de-

fault configuration, which should be nearly identical to the arg_comp MARC configuration

here save for the different aerosol module. The difference in ERFari+aci between these two

simulations is 0.45W m−2, which is half of the total range reported here for MARC with

different activation schemes.

4.4 Discussion and Conclusions

In this study, we have quantified the influence of the representation of droplet activation

in global models on the aerosol indirect effect. Using a suite of state-of-the-science acti-

vation parameterizations incorporated into our global aerosol-climate model, the MARC,

we performed simulations under both pre-industrial and present-day aerosol emissions to

estimate the indirect effect and relationship to changes in both cloud and radiation fields.

Previously, few studies exploring the indirect effect focused explicitly on the role of droplet

activation, instead concentrating on either the processes that load the ambient aerosol (emis-

sions and atmospheric chemistry) or the results of changes purely occurring in cloud droplet

number concentration (such as imposed minimum values for cloud droplet number or in

microphysical processes which modify this number). Beyond assessing three unique activa-

tion schemes, we supplement our analysis by considering three additional, idealized droplet

activation schemes which use a heuristic to simplify accounting for competition between

different aerosol modes for moisture during the nucleation process.

The relationship between cloud droplet number concentration and aerosol in MARC is

critically influenced by the representation of droplet activation. Estimates of CDNC in the

present-day climate are up to 40% higher in polluted regimes when using the most-sensitive
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activation scheme, and the increase from pre-industrial to present day is up to twice as

large. CDNC in regimes dominated by natural aerosol, especially remote marine regions

with prevalent sea salt, is also impacted by the activation scheme. Using the advanced

droplet activation schemes included here, which explicitly account for biases due to giant

CCN particles, helps reduce the under-prediction in maritime regimes compared to satellite

observations and in polluted regimes compared to in situ observations. However, MARC

systematically produces too few CDNC in most parts of the globe. While this could be

due to cloud processes, we emphasize that it could also be fundamentally related to the

simulated aerosol size distribution within MARC and how it apportions aerosol number and

mass in the ranges where likely-CCN are culled.

Compared to available satellite measurements and the models participating in the Aero-

Com inter-comparison, though, MARC does well at capturing the present-day climatology

of cloud and radiation fields, likely because its parent model, the NCAR CESM, itself is

well-tuned towards this end. However, the details of activation and how it influences cloud

microphysics plays a major role in setting the shortwave cloud radiative effect. Under

present-day emissions, the differences between that effect for each of the different activation

schemes is as large as the change from pre-industrial for each scheme. This leads to large

differences in the modeled indirect effect in each model, almost entirely occurring due to the

shortwave cloud radiative effect. The resulting spread in indirect effect estimates is twice

as large as that previously reported by studies considering activation, and about as large

as the inter-model spread from both historical and recent model inter-comparisons, which

consider models including a variety of different aerosol effects.

We note that the pre-industrial CDNC burden is a very strong predictor of the strength

of the indirect effect, but not necessarily the change between pre-industrial and present day;

this hints at the previously-hypothesized buffering effect of clouds on aerosol perturbations

(Stevens and Feingold, 2009). Our analysis strongly supports this notion; our case which

produces–by far–the largest change in CDNC yields nearly the smallest indirect effect, but

simultaneously produces the highest values for pre-industrial CDNC. While consistent with

the results of Hoose et al. (2009), this is exactly the opposite of those reported by Storelvmo

et al. (2009), although their model uses prescribed aerosol fields so there is no interaction

between cloud and aerosol processes. Changes in liquid water path and cloud fraction

correlate much more strongly with the magnitude of the indirect effect than changes in
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CDNC in our simulations. Both of these relationships hold for the broader sample of models

provided by the AeroCom inter-comparison.

The weight of these results suggests an important role for activation in setting the sensi-

tivity of the indirect effect. However, we caution that our approach is not able to disentangle

the influence of activation from that due to the underlying aerosol model and its implicit

aerosol size and CCN distributions. This is not meant to diminish the influence of cloud

microphysical treatments on the indirect effect; Gettelman (2015) illustrates the importance

of the implicit cloud lifetime effects arising from liquid water path changes associated with

aerosols in contributing to the indirect effect. But since these relationships are themselves

highly sensitive to simulated cloud droplet number, the influence of the aerosol size distri-

bution and activation is somewhat more fundamental and just as poorly constrained with

available observations. Furthermore, because of the chain of sensitivities initiating with the

aerosol size distribution and activation particulars, estimates of the indirect effect produced

from models with highly-simplified aerosol-CDNC relationships (such as explicitly prescribed

CDNC or empirical fits to aerosol mass or volume) are likely significantly biased.

To test this idea, it would be valuable to carry out a similar set of alternative-activation

simulations using a global climate model with a different underlying aerosol physics and

chemistry model. Such work should be broadened to include chemical influences on ac-

tivation where suitable. The influence of organic surfactants can enhance the sensitivity

of droplet activation to variability in updraft velocity (Lance et al., 2004); this effect is

compounded by the fact that co-condensation of organic vapors increases as particles grow

(Topping and McFiggans, 2012). The quantification of secondary organic aerosol formation

and its influence on climate is a major of focus of current modeling efforts (Jimenez et al.,

2009) and could have important implications on activation dynamics and the indirect effect

Probing the influence of organic vapors and aerosols on the indirect effect will likely require

the development and assessment of new activation schemes.

We suggest that future sensitivity analyses in the vein of Carslaw et al. (2013) include

perturbations to the fundamental activation or CCN-CDNC relationship to account for this

source of uncertainty. Constraining this uncertainty is a different matter altogether. Current

observations of aerosol-cloud interactions from satellite-based platforms are critically limited

since both fields cannot be measured simultaneously. But even if they could overcome

this issue, satellite observations can not currently constrain the aerosol size distribution—a
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lynchpin in setting the sensitivity of cloud droplet number to aerosol perturbations. New in

situ data from aircraft sampling clouds in regimes across the globe could play a key role in

addressing this limitation. In particular, future observation campaigns should continue to

focus on measuring CCN spectra around clouds, as well as sampling CDNC in both nascent

and mature cloud formations.

In order to better understand contemporary and account for future climate change,

the community must continue to seek constraints on the aerosol indirect effect. Although

epistemic uncertainty due to unknown pre-industrial emissions complicates this task, the

role of droplet activation illustrated in this work highlights an additional path that the

community may explore to provide indirect or emergent constraints on AIE via the basic

aerosol-CDNC relationship.
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Chapter 5

Aerosol-Cloud Interactions and the

Indirect Effect

5.1 Introduction

The physical processes which give rise to the aerosol indirect effect on climate (AIE) tangle

amongst themselves to produce a complex, inter-dependent network of pathways whereby

perturbations in the aerosol burden alter cloud radiative properties. A reductionist ap-

proach is often employed to tackle this problem by isolating individual pathways, subjecting

them to rigorous analysis via observations or measurements, and quantifying the uncertainty

that arises from unknown or poorly constrained processes or factors. Such an approach was

employed in the first two chapters of this dissertation, which focused explicitly on droplet ac-

tivation. It has also been employed more broadly to incorporate observational constraints on

the indirect effect by expanding a high-level expression of AIE into constituent components

which encode relationships between clouds and aerosols (Quaas et al., 2008, 2009). Each

of these relationships, or aerosol-cloud interactions (ACI), can then be related directly to

theoretical considerations or explored through available observational data. Over the past

decade, such an approach has provided an alternative, physically-based and empirically-

This chapter is being prepared (along with the previous chapter) for submission to Atmospheric
Chemistry and Physics
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constrained perspective on AIE wholly distinct from the endeavor to capture myriad, in-

tricate complexities of ACI in a consistent fashion within a global modeling framework.

However, it has not successfully provided persuasive or rigorous constraints on the magni-

tude of AIE (Boucher et al., 2013). Much has been written on why this is the case, and

it has been postulated that there exists a certain amount of epistemic uncertainty in such

an approach arising from our inability to directly measure aerosol emissions and chemistry

in the pre-industrial atmosphere (Carslaw et al., 2013), compounded by the idea that con-

straints we derive using the present day state of the atmosphere may not actually apply to

the pre-industrial one (Penner et al., 2011). Furthermore, the relationship between changes

in aerosol emissions and resulting indirect forcing are not necessarily linear. Instead, it may

be state-dependent, and the magnitude of the indirect effect is likely closely intertwined

with climatology of aerosol-cloud interactions in the pre-industrial climate (Carslaw et al.,

2013).

While observational or modeling constraints on ACI may not resolve the overarching

question of the magnitude of the aerosol indirect effect on climate, they still provide a pow-

erful way to understand which processes impose parametric uncertainty on AIE. Targeting

those uncertain processes with renewed efforts in observing the aerosol-cloud climate sys-

tem, then, could help reduce this parametric uncertainty. This effort would be extremely

relevant towards efforts to understand transient climate change, both in the recent and com-

ing decades. For instance, a re-distribution in the emissions of anthropogenic aerosols from

the United States and Europe to East and South Asia is potentially associated with strong,

regional imprints on surface temperature, an attendant relaxation of the meridional temper-

ature gradient and weakened and expanded circulation in the tropics (Wang et al., 2015).

This re-distribution is extremely likely to continue and enhance in the future, but swiftly

change character at some point in the future as global efforts to reduce aerosol emissions

take over from regionally-disparate prerogatives (Myhre et al., 2013). However, it could also

provide new constraints for the magnitude of the indirect effect, especially in light of its

non-linear nature. The re-distribution of aerosol emissions since the 1970’s coincide with

increased observational capacity to measure the climate system; presumably, the change in

cloud radiative forcing associated with these changes in aerosol emissions is captured by

this data, and could provide some form of global constraint on the indirect effect. However,

because of the potential state-dependence of the indirect effect, these constraints may not
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be applicable to the pre-industrial to present day change in aerosol emissions.

We may not be able to travel back in time to observe the pre-industrial atmosphere, but

we can certainly study the transient changes in clouds, radiation, circulation and precipi-

tation produced by simultaneous changes in the regional emissions of aerosols. Although it

does not eliminate the problem entirely (the observations of the atmosphere necessary to

constrain do not extend even a few decades into the past), it may be possible to more tightly

constrain atmospheric chemistry from the mid 20th-century, lending to improved estimates

of ACI and the indirect effect. Resolving the magnitude and diversity of ACI then, and

understanding its contribution to the success in global modeling of these transient changes

could then be a useful systems-level check on the performance of global models. Improving

said performance would undoubtedly yield insight into AIE over the 20th century.

This chapter considers topics pertinent towards this end. In Section 5.2 we review the

physical basis for measuring and evaluating ACI and relate it to measures of AIE. Following

this development, we assess the importance of the direct coupling between aerosol and

cloud droplet number in Sections 5.3 to 5.4, first by considering metrics for evaluating the

relationship and then by studying the influence of droplet activation on it and its attendant

impact on the indirect effect. We close with a short synopsis and outlook for how this work

may be extended, focusing on resolving the discrepancy between modeled and observed ACI.

5.2 Theory

5.2.1 Aerosol-Cloud Interactions in Warm Clouds

Of primary concern here is the problem of how the chain of microphysical changes initi-

ated by a perturbation to the ambient aerosol size distribution influences a cloud’s radiative

properties—particularly, cloud optical depth, 𝜏𝑑. For simplicity, we begin by restricting our

analysis to warm, stratiform boundary layer clouds. Air parcels entering the cloud at its

base will cool adiabatically, driving activation on any aerosol particles which grow, via con-

densation, larger than some critical radius. The activation process yields a nascent, narrow

cloud droplet distribution which continues to grow by quenching any excess water vapor,

approximately restricting the air parcels to saturation and following the moist adiabatic

lapse rate. This yields an idealized, adiabatic model for the vertical structure of boundary

127



layer clouds,

𝑤(ℎ) = 𝑐𝑤ℎ (5.1)

where 𝑤(ℎ) is the cloud liquid water content in kg m−3, ℎ is the altitude above the base

of the cloud (defined as the lifting condensation level or otherwise where activation first

initiates) and 𝑐𝑤 is the condensation rate in kg/m4, related to the change in the parcel’s

saturation vapor pressure by the Clausius-Clapeyron relationship. As a consequence, 𝑐𝑤

depends approximately on temperature, but in an adiabatic ascent over the typical depth of

a boundary-layer cloud, the change in temperature is small, so we assume it to be a constant.

Strictly speaking, no cloud follows exactly this idealized model, but observations have

shown that it closely approximates the structure of maritime boundary layer clouds such that

𝑤(𝑧top) is often about 80% of the purely-adiabatic value (Pawlowska and Brenguier, 2000;

Bennartz, 2007). Notably, entrainment of warm, dry air above the inversion capping many

boundary layer includes yields mixing which further depresses behavior from this adiabatic

model. However, integrating over a cloud depth 𝐻, we can write the total cloud liquid water

path 𝑊 in this model as

𝑊 =
1

2
𝑐𝑤𝐻

2 (5.2)

Within warm boundary layer clouds, the droplet number 𝑁 is approximately constant

throughout the depth of the cloud and closely related to the ambient aerosol number

(Pawlowska and Brenguier, 2000). This follows from the assumption that all cloud droplets

are formed at cloud base; condensation only slowly contributes to growth for droplets above

a few microns in size, and collision/coalescence is not efficient for hydrometeors that small

(Pruppacher and Klett, 1997).

In order to relate the cloud’s structure to its optical properties, we need some description

of the droplet size distribution (DSD). For an arbitrary DSD, we can compute a volume-

average droplet radius
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𝑟3𝑣 =
1

𝑁

∞∫︁
0

𝑟3𝑁(𝑟) 𝑑𝑟

=
3

4

𝑊

𝑁𝜋𝜌𝑙
(5.3)

Since 𝑊 = 𝑤(ℎ), This directly implies a vertical structure in 𝑟𝑣,

𝑟𝑣(ℎ) =

(︂
3

4

𝑤(ℎ)

𝑁𝜋𝜌𝑙

)︂1/3

=

(︂
3

4

𝑐𝑤
𝜋𝜌𝑙

)︂1/3

ℎ1/3𝑁−1/3 (5.4)

Precipitation processes such as the formation of drizzle lead to gross departures from

these idealized relationships by reducing both liquid water content and droplet number,

fundamentally altering the DSD and the dynamical lifecycle of the cloud. For a detailed

discussion of the influence of drizzle and its relationship to 𝐻 and 𝑁 , we refer the reader to

Bennartz (2007) and citations therein.

The vertical microstructure of the adiabatic cloud allows us to predict its optical prop-

erties. For instance, the cloud optical depth 𝜏𝑑 can be computed

𝜏𝑑 =

𝐻∫︁
0

∞∫︁
0

𝑄𝜋𝑟2𝑁(𝑟) 𝑑𝑟 𝑑𝑧 (5.5)

where 𝑄 is the extinction efficiency. Although 𝑄 = 𝑄(𝑟/𝜆) where 𝑟 is the size of a droplet

and 𝜆 is the wavelength of radiation interacting with the droplet, for solar radiation and the

range of droplet sizes we consider, 𝑄 = 2 is a good approximation (Twomey, 1977). Then,

integrating Equation (5.5) by assuming some vertically-weighted mean size distribution, 𝑟,

yields the simplified cloud extinction equation

𝜏𝑑 = 2𝜋𝑁𝑟3𝐻 (5.6)

which can be combined with a vertically-weighted mean version of Equation (5.3) to

relate liquid water path to the droplet size distribution
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𝑊 =
2

3
𝜌𝐿𝜏𝑑

𝑟3

𝑟2
=

2

3
𝜌𝐿𝜏𝑑𝑟eff (5.7)

where 𝑟eff is the droplet effective radius, defined as the ratio of the third and second

moments of the DSD:

𝑟eff =
𝑟3

𝑟2
(5.8)

Using the volume-mean radius previously derived, the droplet effective radius can alter-

natively be expressed as 𝑟eff = 𝑟𝑣𝑘
−1/3 for some droplet dispersion constant 𝑘, which is less

than unity. However, we can explicitly incorporate the vertically-varying microstructure of

our adiabatic cloud model from Equation (5.4) in the integral and show that

𝜏𝑑 =
3

5
𝜋𝑄

(︂
3

4

𝑐𝑤
𝜋𝜌𝐿

)︂2/3

𝑘1/3𝑁1/3𝐻5/3 (5.9)

From these equations, relationships between cloud microphysical and optical properties

are readily apparent, such as

𝜏𝑑 ∝ 𝑁1/3

and

𝑟eff ∝
𝑊

𝜏𝑑

Following Twomey (1977), Feingold et al. (2001) extended this analysis to account for the

direct influence of aerosol on droplet number by using a power-law relationship, 𝑁𝑑 ∝

𝑁𝑎1
𝑎 . Within this extended framework, we define “aerosol-cloud interactions” (ACI) as the

sensitivity of cloud microphysical or optical properties to perturbations in some given aerosol

metric, 𝛼:

ACI𝜏𝑑 =
𝜕 ln 𝜏𝑑
𝜕 ln𝛼

⃒⃒⃒⃒
𝑊

(5.10a)

ACI𝑟eff =
𝜕 ln 𝑟eff
𝜕 ln𝛼

⃒⃒⃒⃒
𝑊

(5.10b)

ACI𝑁 =
𝑑 ln𝑁

𝑑 ln𝛼
(5.10c)

Note that ACI𝑁 need not calculated for constant 𝑊 as we previously assumed that
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activation alone dictated 𝑁 and the boundary layer thickness set 𝑊 . Aerosol can be param-

eterized in the ACI formulation a number of different ways, for instance using the aerosol

optical depth (AOD; e.g. Feingold et al., 2001, 2003; Quaas et al., 2006; McComiskey and

Feingold, 2008; Quaas et al., 2009; Penner et al., 2011, among many others) or a direct

measure of the aerosol size distribution such as CCN at a given supersaturation. In the

adiabatic cloud model, it can be further shown that these ACI metrics are algebraically

related,

ACI𝜏𝑑 = −ACI𝑟eff =
1

3
ACI𝑁 (5.11)

The power-law relationship 𝑁𝑑 ∝ 𝑁𝑎1
𝑎 implies that 0 < ACI𝜏𝑑 < 1/3 since 𝑎1 must be no

greater than unity. However, observational analyses using a variety of different measurement

approaches produce a much larger range of estimates, including many values which exceed

the limits placed by the adiabatic cloud model (Table 1 McComiskey and Feingold, 2008).

Additionally, global modeling studies produce even larger diversity in estimates of ACI,

either due to inter-model variance (Quaas et al., 2009) or regional and seasonal variability

in aerosol and meteorology fields in a given model (Penner et al., 2011).

There are many explanations for the divergence between observational and model-derived

estimates of ACI, particularly ACI𝑁 . From the perspective of dynamics, the adiabatic cloud

model is only suitable for a small portion of the total diversity of cloud regimes encountered

in nature. As previously noted, precipitation processes quickly disrupt the assumptions

invoked about the vertical structure of the droplet size distribution function and act to sink

liquid water content. Importantly, droplet activation is not simply a function of the aerosol

number concentration, but also depends on the aerosol size distribution and the strength of

the updraft feeding a given cloud. Feingold et al. (2001) expanded the derivative in ACI𝑁

to account for the contribution of the size, location and shape parameters of an idealized,

single lognormal mode aerosol size distribution, but further advances in the modeling of

droplet activation can account for a much larger and more realistic aerosol parameter space.

There is also a critical scale problem in deriving these quantitative estimates of ACI

(McComiskey and Feingold, 2012). Equations (5.10a) to (5.10c) as written directly describe

a process-level relationship. Aggregations of the terms in the numerator or denominator

of each equation over large spatial scales, as done in satellite retrievals, may not be the
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most appropriate, particularly if they neglect to account for the heterogeneity of clouds

in a given region or scene, and could lead to strong bias in dampening the estimate of

ACI. Furthermore, at large spatial scales, the meaning of each term fundamentally changes;

considering larger scenes with diverse cloud types and regimes implicitly includes additional

microphysical processes which act to disrupt the idealized relationships derived here between

aerosol and cloud microphysical and radiative properties.

5.2.2 Relation with the Aerosol Indirect Effect

Throughout this discussion, we have explicitly avoiding using the phrase “aerosol indirect

effect” (AIE). In the literature, definitions of AIE and ACI are sometimes muddied or used

interchangeably. For instance, in the parlance of the IPCC, AIE is related to the effective

radiative forcing (ERF) arising from aerosol perturbations to cloud properties—the defini-

tion of ACI which we have adopted here. The analytical device recently employed by Ghan

et al. (2016) makes explicit this relationship:

𝑑 ln𝑅

𝑑 ln𝐸
=

𝑑 ln𝑅

𝑑 ln𝑁𝑑

𝑑 ln𝑁𝑑

𝑑 ln𝐶𝐶𝑁

𝑑 ln𝐶𝐶𝑁

𝑑 ln𝐸
(5.12)

where the overbar indicates a quantity time-averaged over a sufficiently long period that

clouds have adjusted to a perturbation in the aerosol. The lefthand side of Equation (5.12) is

a statement of AIE (given as a radiative forcing, 𝑅) normalized by the aerosol perturbation

(in emissions, 𝐸); the righthand side expresses a chain of interdependencies which exposes

how cloud macro and microphysical processes are influenced by the aerosol perturbation and

ultimately produce a radiative forcing. Although Ghan et al. (2016) evaluated each term

in Equation (5.12) by studying differences in its time- and spatial-averaged field between

present day and pre-industrial emissions scenarios, one might instead consider retaining the

equation’s differential form. In that case, we would ultimately apply an analysis which

closely parallels the framework for studying ACI that was developed at the beginning of this

section.

Critically, this is the underlying framework employed in deriving observational estimates

of the indirect effect. Quaas et al. (2008) explicitly wrote the short-wave radiative forcing

due to anthropogenic aerosols as
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Δ𝐹 = Δ𝜏𝑑 × 𝐹
↓ (5.13)

where Δ𝜏𝑑 ∝ ACI𝑁 from before, which is further expanded to include other ACI metrics

such as the influence of aerosol on 𝑁𝑑, 𝑊 , and cloud fraction. Each relationship of the form

𝑑 ln𝑥/𝑑 ln𝛼 involved in the resulting set of equations can be derived from suitable satellite

observations and used to construct, with uncertainty, a value for the (first) aerosol indirect

effect. Other secondary indirect effects, such as the cloud lifetime effect, can be further

derived in a similar manner (see Equations 9-11 of Quaas et al. (2008) for more details).

Both Equation (5.12) and Equation (5.13) encode the same idea, using different levels of

abstraction to tweak the involved differentials into forms which can be quantitatively eval-

uated using available observational or modeling data. Of course, therein lies the difficulty

in constraining the indirect effect: the many different terms in expansions following from

Equation (5.12) and Equation (5.13) yield a complex analysis requiring many different ob-

servations, potentially made using different instruments or techniques on different temporal

and spatial scales. One could seemingly add endless complexity to these relationships, rais-

ing the specter of interacting or compensating errors. To circumvent this problem, Feingold

et al. (2016) recently recommended taking a higher-level approach, focusing on cloud field

properties (such as albedo and cloud fraction) that may be closely related to cloud-radiative

effects but easier to measure. For instance, Feingold et al. (2016) developed an example

of using process modeling to study the relationship between the albedo of a given mixed

cloudy/clear-sky scene to the cloud fraction with that scene. Fundamental, ACI-like rela-

tionships are implicitly contained in such a problem formulation, but they are balanced with

other perspectives which may yield emergent phenomena which could provide additional,

indirect constraints on the aerosol-cloud-climate system amenable to simple modeling and

theoretical insight.

In the remaining sections of this chapter, we will eschew this emerging perspective on

the problem in favor of the traditional one. We will attempt to add detail on the factors

that can influence ACI, particularly focusing on droplet activation and its role in setting

ACI𝑁 . Through this effort, we will seek ways to constrain ACI𝑁 for regimes where it cannot

be directly measured, such as in the pre-industrial climate system. Ultimately, we will link

our assessment of ACI𝑁 back to uncertainty in AIE.
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5.3 Analysis of ACI𝑁

5.3.1 Choice of Aerosol Proxy on ACI𝑁 Constraints

Applying the previously discussed ACI formulas to either model- or satellite-derived data

requires a subjective choice about how to describe the presence of aerosol. In Figure 5-1 we

show scatterplots of the relationship between aerosol optical depth (AOD), cloud condensa-

tion nuclei concentration (CCN), and cloud droplet number concentration (CDNC). AOD

is commonly used in the literature, particularly in applications which employ comparisons

with satellite-based measurements since it is readily computable from these retrievals. But

according to Equation (5.5), AOD should not necessarily correlate with the key factors of

the aerosol size distribution relevant for influencing droplet nucleation.

Neglecting the influence of the vertical variation in aerosol (which could de-couple the

aerosol from the cloud formation process, for instance if there is an aerosol layer aloft, above

a boundary layer cloud), AOD is strongly influenced by the aerosol surface area distribution.

However, this influence is skewed, as particles much smaller than the wavelength of incident

solar radiation are inefficient scatterers and thus contribute little to estimates of AOD.

On the other hand, the contribution of particles much larger than these wavelengths is

weighted much more heavily via 𝑄, which tends to a value of 2 in the limit of geometric

optics. Although Andreae (2009) showed a correlation between AOD and CCN for in-situ

measurements, they note that in any given circumstance there could be up to a factor of 4

deviation between the relationship. At least one other work has called into doubt the use

of AOD as a predictor of CDNC altogether (Romakkaniemi et al., 2012), although it used a

very limited set of observations.

As Figure 5-1 illustrates, within MARC there are strong but highly uncertain rela-

tionships between AOD, CCN, and CDNC (ACI𝑁 ). Panels (a) and (d) show correlations

between AOD and CCN over both land and ocean regimes, respectively, with the land being

much stronger in both the present day (PD) and pre-industrial (PI) cases. The shift between

emissions cases leads to small shift in the distribution of AOD towards larger values, but a

much greater one in the CCN. This is not surprising; anthropogenic emissions lead to much

larger number burdens in the accumulation mode sulfate, which contains particles mostly

large enough to be captured by the CCN metric used here (diagnosed at a 𝑆 = 0.3%).

However, the variance in the AOD-CCN relationship is extremely large. Over land, CCN
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Figure 5-1: Relationship between AOD and CCN (a), AOD and CDNC (b) and
CCN and CDNC (c) for a reference MARC simulation, across geographical regions
and seasons. Yellow and blue markers correspond to present day and pre-industrial
emissions cases, respectively. Plotted regression is fit to the logarithm of the data in
each plot.

can vary by nearly an order of magnitude for a given AOD measurement. While the vari-

ance remains large in either emissions case, the overall AOD-CCN relationship does not

generalize between them. The AOD-CCN relationship derived for, say, the PD case would

systematically over-predict CCN. Other modeling studies have noted that AOD and CCN

are at best weakly correlated in the present-day climate, which raises concerns about the

possibility of deriving comprehensive estimates of the global CCN burden (Stier, 2016). The

relationships between AOD and CCN discussed here are broadly consistent with those other

results, despite using a wholly different aerosol-climate model.

As panel Figure 5-1b further shows, the AOD-CDNC relationship leads to a systematic

over-prediction of pre-industrial CDNC, at least over land. In ocean regimes, the problem is

not quite as bad. The bias of AOD weighting heavily towards the fewer coarse mode particles

captures a fundamental limitation of giant CCN on droplet activation in aerosol-starved

clouds, which is expected to occur in areas far removed from anthropogenic pollution, where

sea salt aerosol are prevalent (such as in Figure 5-1e). However, CCN is a much stronger

predictor of CDNC than AOD as highlighted in Figure 5-1c/f. The linear relationship
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between CCN and CDNC explains far more of the observed variance in CDNC, with 𝑟2

ranging from 0.61 to 0.72. The relationships are extremely similar in both the PD and PI

cases for either the land or ocean regime, although we caution that the regression slopes

are statistically significantly different (outside each other’s 95% confidence interval) owing

to the difference in domain of the CCN for each case. To first order, CCN sets the value

for CDNC, particularly in the clean ocean regime. Thus, it is reasonable to find that CCN

performs so much better at predicting CDNC than AOD, since AOD could be influenced by

structure in the aerosol size distribution which does not necessarily impose constraints on

activation, especially in polluted regimes or regimes with very strong updrafts.

The role of activation in setting CDNC raises an additional possibility, which is further

hinted at by the similarity in the PD and PI relationships between CCN-CDNC. Plotted in

Figure 5-2 are distributions of relative error in CDNC when using the PD-derived relation-

ships of AOD-CDNC and CCN-CDNC in land and ocean regimes to predict CDNC in the

PI case. In the cleaner ocean regimes, the distribution of relative errors are relatively simi-

lar, although there is a fatter tail to the AOD-CDNC errors, suggesting that under certain

cases, it will more significantly over-predict CDNC on average. But over land there is a stark

contrast. Here, and as seen in the scatter plot in Figure 5-1b, the AOD-CDNC relation-

ship breaks down and systematically predicts twice as many CDNC on average. Similar to

what Penner et al. (2011) showed, the AOD-CDNC relationship derived for the present-day

only poorly constrains the pre-industrial era, which complicates the use of satellite-derived

AOD-CDNC relationships in estimating the indirect effect. But oceanic regimes may not be

as heavily impacted by this issue, so such estimates focusing on maritime regimes may still

be useful.

The potential for using CCN as an aerosol proxy to improve constraints on ACI𝑁 is

further highlighted when assessing regional relationships, too, as in Figure 5-3, which depicts

relationships for the summer and winter in North America (left two columns) and the spring

season in Asia (far-right column). The AOD distributions in both regions and all seasons

are much narrower in both the PD and PI cases, and do not appreciably shift between

the two, even while CDNC is statistically significantly greater under PD emissions. As a

result, the AOD-derived relationship for the PD case would poorly constrain ACI𝑁 for the

PI, although such an exercise would be problematic due to the very low 𝑟2 values in each

region. Using CCN in deriving ACI𝑁 greatly improves both the statistical significance of the
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Figure 5-2: Relative error in CDNC predicted for PI case using PD regressions shown
in Figure 5-1 for land (blue) and (ocean), using either CCN (solid) or AOD (dashed)
as a predictor.

Figure 5-3: Following (Penner et al., 2011), regressions of cloud droplet number
against aerosol optical depth (top row) and CCN (bottom row; in lieu of aerosol in-
dex) for the pre-industrial (blue/blue) and present-day (yellow/red) simulations, with
corresponding slope and intercept overlaid. From left-to-right, the columns show re-
gressions for North America in JJA, North America in DJF, and Asia in MAM. The
regressions were fit to the natural logarithm of both the exogenous and endogenous
variables.

relationship and its consistency between the PD and PI cases. Even though the individual

CCN distributions in both the PD and PI cases do not explicitly overlap except for DJF in

North America, the regression slopes and offsets are similar for each.

To more thoroughly explore the role that droplet activation is playing in these diverse

estimates of ACI𝑁 , we consider our additional simulations with MARC, conducted using
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Figure 5-4: Similar to Figure 5-3, but showing uncertainty in the regression slopes
computed for each simulation for the PD and PI cases. Uncertainty bars correspond
to the 95% confidence interval surrounding the slope estimate.

alternative activation parameterizations. In particular, we supplement Figure 5-3 by repeat-

ing the same calculations for these other MARC simulations, and summarize the resulting

regression slopes and their uncertainty in Figure 5-4. Using alternative formulations for ac-

tivation, which modify the fundamental, underlying aerosol-CDNC relationship that ACI𝑁

encodes, adds diversity to our AOD-based regressions, but never offers an example where the

PD case agrees with the PI. However, in most cases, the CCN-based regressions still tend to

agree. The only cases where this is consistently not the case are the Morales Betancourt and

Nenes (2014a)-based schemes (nenes), which yields grossly different PD and PI estimates of

ACI𝑁 . This scheme is far more sensitive to aerosol perturbation than the others, though,

and these results point to a highly non-linear response in aerosol-CDNC relationships simu-

lated by it. Under the PD emissions scenario, ACI𝑁 derived with this scheme is nearly twice

as large when using the PI emissions scenario, something which none of the other schemes

exhibit. In fact, most of the other schemes do not produce a statistically-significant different

estimate ACI𝑁 given the two different emissions scenarios.

5.3.2 Regional and Seasonal Variation in ACI𝑁

Because of variations in the dominant sources of aerosol transport and meteorology and the

land-ocean contrast demonstrated in the previous section, the different regions depicted in

Figure 5-5 should show diversity in their relative ACI𝑁 . In congruence with this notion,
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Figure 5-5: Map of geographical regions considered in this study, adapted from Quaas
et al. (2009).

several studies have shown a strong regional and seasonal variation in ACI𝑁 (Quaas et al.,

2009; Penner et al., 2011; Ma et al., 2014). We add to this discussion with the computed

ACI𝑁 shown in Figure 5-6, which shows results using one of the emulator-based activation

schemes coupled with MARC. Using AOD as an aerosol proxy, we generally find estimates

of ACI𝑁 on the lower end of model-derived values, although these are generally better in

line with satellite-derived values. For instance, Quaas et al. (2009) found an average ACI𝑁

of 0.07-0.08 over land regions and of over ocean regions of 0.25 over ocean regions. We find

averages of 0.1 over land regions, but just 0.04 over ocean regions using annual data which

is significantly smaller than satellite data (Quaas et al., 2009; Ma et al., 2014). However,

we note that aggregating, instead, all the ocean and land grid cells (as in Figure 5-1) in

lieu of breaking them down into regions produces a result more consistent with satellite

observations, with ACI𝑁 s of 0.05 over land and 0.1 over the ocean. In some individual

regions, we actually compute a negative ACI𝑁 , suggesting that CDNC is decreasing as

the aerosol increase; this is the case in some of the ocean regions (although usually not

statistically significant), and over Africa in most seasons, which points to a role for giant CCN

particles such as dust or sea salt in this relationship, which may be activation-scheme specific.

However, the model may also be systematically under-sensitive to aerosol perturbation in

ocean regions, as satellite estimates of ACI𝑁 are expected to be damped relative to their real-

world values due to spatial co-variance which is not adequately captures in their calculation

depending on the resolution of the data used (McComiskey and Feingold, 2012).
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Figure 5-6: Regression slopes between CDNC and AOD (top) and CCN (bottom) for
all regions and seasons, computed for the pcm_gCCN3 simulation with present-day
emissions. Regressions were computed for the log-transform of each variable using
the spatial average timeseries computed for each region. Error-bars indicate the 95%
confidence interval on the regression slope.

There is also significant seasonal diversity in the estimates of ACI𝑁 using AOD, although

these differences are not systematic or consistent between regions. This is in agreement with

previous modeling and satellite studies. Inter-seasonal deviations in the strength of ACI𝑁

point strongly to localized factors which influence the strength of aerosol-cloud interactions,

such as regional modes of circulation or meteorology regimes which exhibit different sensitiv-

ities to aerosol perturbation. Congruent with this diversity would also be a strong sensitivity

to the particular aerosol composition in a given region and season. Regions where the dom-

inant aerosol modes shift from, say, anthropogenic sulfate to natural sea salt in different

seasons would be expected to produce a seasonal variation in ACI𝑁 which may strongly

co-vary with the seasonal changes in meteorology, complicating such an analysis.

The bottom panel of Figure 5-6 re-computes ACI𝑁 using CCN instead of AOD as a proxy

for aerosol. This dramatically changes the analysis, as there is far less regional and seasonal

diversity in these estimates. This is particularly the case for land regions, with the notable

exception of the boreal summer months in South America (SAM). In nearly all other cases,
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there is less variance in ACI𝑁 . Ocean regions generally have smaller ACI𝑁 when using CCN

than their land counterparts, and have larger inter-seasonal variability. In only one region

do we compute negative ACI𝑁 when using CCN—the northern Atlantic ocean (NAO) in

the boreal fall. Negative values of ACI𝑁 occur mostly in regions with a preponderance of a

giant CCN, such as desert dust in AFR and sea salt in TIO, NAO, and NPO. In particular,

there is a negative relationship between CDNC and CCN in NAO during the Fall which

arises from outlier scenarios with very low CCN number, and this causes the annual average

to be negative as well.

For reference, we have included the results of regressions applied to every region, sea-

son, and activation case coupled with MARC in Figures 5-14 to 5-15 for the PD emissions

case. Modifying the underlying aerosol-CDNC relationship by using an alternative activa-

tion scheme does not grossly change our assessment of ACI𝑁 , but we do note that there are

some regions where activation leads to significant variability. In a handful of regions (SAM,

OCE for the land and TIO, TAO, and SPO for the ocean), switching between activation

schemes changes the sign of the AOD-CDNC relationship (Figure 5-14). There is not a

particular reason why this should be the case, as the inter-scheme spread is not consistent

between the regions where the differences occur. The inter-scheme differences to tend to

occur consistently despite season, though, suggesting that there is a fundamental bias in

how some schemes handle the different aerosol and meteorological scenario in some regions.

The differences persist in Figure 5-15, but the sign of ACI𝑁 never changes from positive

to negative no matter what region, season, or activation scheme is considered. That said,

there can be very large diversity between schemes for given regions. For instance, in remote

marine conditions, the pcm_gCCN3 systematically produces smaller ACI𝑁 in ocean regimes

no matter the season. This is most dramatically the case for the TIO region. On the

other hand, the arg schemes tend to produce stronger ACI𝑁 in the Southern Ocean regions

(SAO, SPO, TIO), especially in the MAM and SON seasons. This suggests that they are

more sensitive to changes in smaller-size sulfate particles which may be arising from the

background emissions of sulfate predecessors such as DMS. The nenes schemes produce

much larger ACI𝑁 in heavily anthropogenic-polluted regions, particularly ASI and NPO, its

downwind oceanic region.
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Figure 5-7: Calculation of ACI𝑁 using AOD as the aerosol parameter, and timeseries
with hourly instantaneous data (a), daily averages (b), weekly averages (c), and
monthly averages (d). Regression formulae for both the PD and PI cases are overlaid
on each plot. Note that for the monthly averages, we used an additional two years of
simulation data, in order to increase the number of samples available.

5.3.3 Influence of Time Averaging

In the discourse initiated by Penner et al. (2011), Quaas et al. (2011) raised a concern

over the influence of the averaging of aerosol and meteorology fields. Satellite fields used in

diagnosing ACI usually reflect an instantaneous atmospheric state, and some works in the

literature have inconsistently employed time averaging in their comparisons. For instance,

time-averaging CDNC fields could substantially decrease variability and mute the signal in

ACI.

Figures 5-7 to 5-8 reproduce the analysis in previous sections, but taking progressively

coarser time averages over a given regionally-averaged timeseries of aerosol and CDNC.

Time-averaging does not change the mean of either AOD, CCN, or CDNC for a given

region and season, but it can have a large influence on the relationship between the fields.

This is not necessarily the case in Figure 5-7; AOD is relatively stable with respect to

averaging. However, the character of ACI𝑁 is heavily influenced by the time averaging when

CCN is the aerosol parameter, as in Figure 5-8. Coarser averaging progressively separates
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Figure 5-8: Like Figure 5-7, but using CCN as the aerosol parameter.

the distributions of CCN for the PD and PI cases, and also greatly reduces the variance.

At weekly and monthly scales, the sign of ACI𝑁 is actually flips, although the statistical

significance of the relationship becomes dubious and difficult to detect owing to the very

small sample sizes available (we include an additional two years of simulation data in order

to boost the statistical analysis). At sub-daily averaging, though, the relationship does not

statistically significantly change for the CCN case.

An overview of the influence of time averaging across regions for a given activation

scheme, region, and season is shown in Figure 5-9. AOD-derived estimates of ACI𝑁 are

highly unstable when averaging over the time-series. Here, monthly averaging dramatically

degrades the statistical significance of the regression slopes such that in most regions, they

are indistinguishable from zero. The same is true for many other regions. Additionally,

estimates using averaged time-series of different resolution are generally not statistically

distinguishable from one another. The alternative estimates of ACI𝑁 based on CCN are more

resilient to time-averaging. In most regions, daily and monthly values capture within their

uncertainty bounds the instantaneous relationship between CCN and CDNC, particularly

over land regions. Over the ocean, the monthly averages tend not to produce statistically-

significant trends.
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Figure 5-9: Regional comparison of the influence of time-averaging (colors) on the
strength of ACI𝑁 for winter DJF season in North America, using the arg_comp
MARC simulation. The top panel uses AOD as the independent aerosol parameter;
the bottom panel subsitutes CCN. For each bar, an error bar is superimposed which
indicates the 95% confidence interval on the regression slope. The monthly average
values use an additional two years of simulation data.

5.3.4 Global Variation in ACI𝑁

In addition to analyzing regionally-averaged timeseries of aerosol and cloud fields, we apply

the method of deriving ACI𝑁 on a global scale, to each column in our suite of MARC

simulations with differing activation schemes. This produces maps of global variation in

ACI𝑁 for both the pre-industrial and present day, from which we can estimate the change

in ACI𝑁 over the period of anthropogenic aerosol emissions. The results of these analyses

are summarized in Figure 5-16 and Figure 5-17 for ACI𝑁 computed with AOD and CCN,

respectively.

Under the influence of different activation schemes, the global spatial pattern of ACI𝑁

does not appreciably change. However, regional variation is greatly influenced by the aerosol

metric used to calculate ACI𝑁 . Using AOD, we note that ACI𝑁 is generally negative over

land areas. This is consistent between the PD and PI cases, but ACI𝑁 tends to become
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larger (more positive) under the influence of increased anthropogenic aerosol emissions in

the PD case, particularly in the United States and eastern Asia. The picture over the global

oceans is much more complex. Near the equator, particularly in regions where the ITCZ

is strongest, ACI𝑁 is more often negative than positive. However, this could be spurious;

these regions have very little local aerosol input and high precipitation frequency due to

active convection which acts to diminish AOD. The enhanced ACI𝑁 over these regions could

likely be due to higher CDNC associated with seeding of stratiform clouds with convectively

detraining water within the model. Straddling these regions of higher ACI𝑁 are ones with

anomalously large (in the global sense) positive ACI𝑁 . This is particularly the case in the

southern Atlantic and Indian Oceans.

However, negative values of ACI𝑁 are somewhat misleading. They do not necessarily

imply that CDNC robustly decreases with increasing aerosol loading. Instead, they indicate

the presence here of strong feedbacks to suppress cloud droplet number. This is particularly

the case over land regions, where the CDNC can become large, but is fundamentally limited

due to precipitation processes whereas the AOD increases nearly without bound as emis-

sions continue to add to the ambient aerosol number. Furthermore, computing ACI𝑁 using

single grid cells introduces far more variance into the statistic than the regionally-averaged

approach used in the previous section does, as that tends to damp out differences due to

alternative aerosol and cloud regimes.

The difference between the PD and PI cases is more strongly influenced by the choice

of activation scheme than either the PD or PI case itself. All the schemes show a consistent

increase in ACI𝑁 over the US and China, as well as decrease in southern Africa and South

America. They also show increases in ACI𝑁 over the northern Atlantic. Where they differ

the most is in the southern Atlantic and Indian Oceans. Some of the simulations indicate a

weakening of ACI𝑁 in these regions, whereas others show a more complex pattern similar to

a dipole off the coast of South America. This could be associated with circulation changes

arising from changes in the aerosol indirect effect in these regions between the two emissions

cases; a shift in the distribution of clouds could result in an apparent shift in ACI𝑁 .

Shifting to use CCN as the aerosol proxy in ACI𝑁 produces a similar picture, as in

Figure 5-17. The global distribution of ACI𝑁 is more muted in this case, with smaller

values in nearly all regions except for Africa. The region of very strong, positive ACI𝑁 in

the Atlantic and Indian Oceans is gone here, replaced instead with a zone of relative weaker
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or even negative ACI𝑁 . This could relate to the preponderance of sea salt in these regions

which might skew the AOD estimate and its relationship to the aerosol size distribution,

since it weights aerosol by their cross-sectional area rather than their number as CCN does.

There is a general decrease in ACI𝑁 over oceanic regions where it is moderately positive in

the pre-industrial case, relative to the present day.

Differences in ACI𝑁 when using CCN between the PD and PI cases are more difficult

to understand. Some regions show a very strong decrease (even flipping from positive to

negative), such as in the mid-Atlantic and over Eurasia. However, there is a robust increase

in ACI𝑁 over central Asia across all schemes, as well as potentially in the Southern Ocean.

This is also the case in the northwestern Pacific.

The large changes in ACI𝑁 are generally downwind for regions with either dust export

or anthropogenic aerosol emissions. This suggests that the increase in aerosol emissions

going towards the present day emissions scenario is influencing the relationship between

CDNC and CCN. In particularly, because these regions show a large decrease in ACI𝑁 , it

would suggest that the relationship is saturating as the background CDNC becomes larger.

However, as we previously noted, these calculations are intrinsically much noisier than the

regional averages previously discussed, and totally decouple individual grid cells from larger-

scale changes happening in the regions around them.

5.4 ACI and the Indirect Effect

Following the development in Section 5.2, ACI is closely related to the strength of the in-

direct effect (AIE) by setting the fundamental sensitivity of cloud microphysical fields and

consequently their optical properties to aerosol perturbation. Using the regional breakdown

from Figure 5-5, we compare the relationship between cloud droplet number and ACI using

both AOD and CCN under different activation schemes in Figure 5-10. In the pre-industrial

climate, there is a strong anti-correlation between droplet number and ACI over both land

and ocean regions. Put in more concrete terms, cloud with lower droplet number concentra-

tions are more sensitive to perturbations in aerosol number. The AOD-based relationships

for ACI capture this relationship over the oceans, but with far more uncertainty over land

regimes. This is related to the very different aerosol composition over the two regions; ex-

cept for one outlier, the CDNC-AOD relationship derived over land tends to show very little
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Figure 5-10: Regressions of area-weighted averages of ACI and CDNC computed over
land and ocean using regions from Figure 5-5, for each of the different MARC simula-
tions with different activation cases (different glyphs). A 95% confidence interval on
the computed regression slope is shown by the shaded area, with the best-fit depicted
as a solid line. The top row uses ACI and CDNC computed from the pre-industrial
simulations; the bottom roe from the present day.

variability compared to that over the oceans, which spans a range of a factor of four over

the smallest estimate.

However, the relationship ACI and CDNC is remarkably robust in the pre-industrial

climate simulated by MARC. What differs is the background CDNC levels, or the baseline set

by the different activation schemes. The ACI relationships plotted here relate the logarithms

of CDNC and either AOD or CCN in a linear fashion:

lnCDNC = 𝑎 lnCCN + 𝑏 (5.14)

where 𝑎 is the ACI metric considered here. But this can be re-written as
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CDNC = 𝑏′CCN𝑎 (5.15)

taking 𝑏′ = 𝑒𝑏. In the formulation of our linear regression, 𝑏 represents a constant offset

between CDNC and CCN. But considering the process of droplet activation alone, 𝑏 should

have to be strictly greater than 0 while 𝑎 should be less than 1, because there cannot be

more droplets than available CCN. If 𝑏 > 0, then for sufficiently small CCN concentrations

CCN < 𝑏′−1/(𝑎−1), CDNC will be greater than CCN, which is unphysical considering the

activation process alone. To have higher CDNC burdens than CCN, one would need droplet

multiplication or enhancement processes. Droplet multiplication could occur if the droplets

were large enough to become raindrops which can break apart due to hydrodynamic stresses;

alternatively, the CDNC number could increase due to mixing with cloud parcels that already

have a higher number concentration.

In the pre-industrial case, fitted estimates of 𝑏 range from about 0.5 to 3.5, and 𝑎 ranges

from 0.15 to 0.6. Within this range, a typical critical CCN value (below which predicted

CDNC is greater than CCN) is about 50 cm−3. The modeled average CCN is generally above

this value. However, for any given region or any given instantaneous estimate of CDNC,

these relationships may not be the most appropriate, because CCN can be vanishingly small

under certain meteorological conditions which may deplete and fail to replenish the ambient

aerosol number burden. Physically-based activation parameterizations obviate this problem

to some extent, but based on Figure 5-10 do not firmly constrain estimates of ACI arising

from simulations using them.

Additionally, estimates of 𝑏 are very strongly negatively correlated with 𝑎 with 𝑟 equal to

-0.97 and -1.0 over land and ocean, respectively. Unsurprisingly, 𝑏 is also strongly correlated

with pre-industrial average CDNC burden (𝑟 equal to 0.92 and 0.98 over land and ocean).

This relationship re-iterates the sensitivity of droplet burden to aerosol perturbation in the

pre-industrial atmosphere in way that is closely connected to activation; where activation sets

a higher average baseline droplet number concentration, it also yields a relative insensitivity

between CDNC and the ambient CCN.

The relationship between background CDNC and ACI is more complicated in the present

day climate (bottom panel, Figure 5-10). Using both the AOD and CCN proxies for aerosol,

CDNC tends to increase with ACI over the land, but decrease over the ocean. At least over
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Figure 5-11: Similar to Figure 5-10, but depicting the relationship between ACI and
cloud radiative forcing

the ocean, average CDNC does not change much between the pre-industrial and present day

simulations, hence the similar relationship with ACI. But this is not the case over the land

regions, which show very large increases in CDNC due to anthropogenic aerosols. This does

not necessarily mean that the land regions are becoming increasingly sensitive to aerosol

perturbations; instead, the increase in available CCN is so large that very high CDNC con-

centrations are being realized more often and the tail of the CDNC-CCN distribution (toward

smaller values for CCN) is not constraining the ensuing relationship very well. In fact, the

power-law formulation related CDNC and CCN implicit in this analysis grows unbounded.

Whether this can occur in the real atmosphere is a different story. While sufficiently strong

updrafts could presumably activate up to the entire aerosol population, this likely does not

occur outside of deep convection. Within MARC, the average updraft speed used to activate

aerosol in stratiform clouds is on the order tens of centimeters per second, but outside of

regimes where a few large particles suppress activation, this unbounded behavior can still

be recovered.

Despite this potential unbounded growth in CDNC as CCN rise, it is unlikely that cloud

radiative forcing (CRF) would become very large. Processes such as precipitation formation

reduce the droplet number concentration and fundamentally limit the maximum values that

CDNC can take integrated over the life-cycle of a given cloudy element. In Figure 5-11 we

plot the same metrics of ACI but now against the cloud radiative forcing computed as the
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difference between the average pre-industrial and present day simulated climates. Over land

there is very weak correlation between ACI and CRF due to the large variance in regional

CRF, but there is a much stronger direct correlation over ocean regions (the strength of the

indirect effect is taken as the absolute magnitude of CRF). Comparing between Figure 5-10

and Figure 5-11, activation cases which produce lower baseline CDNC values tend to have

strong indirect effects.

This is consistent with the development of ACI from Section 5.2, which can be extended

to relate cloud optical depth and albedo to changes in the droplet number concentration, and

ultimately produces a relationship which Platnick and Twomey (1994) named the “albedo

susceptibility”, or 𝑆. Critically, 𝑆 implies that the unit change in albedo for a given change

in droplet number concentration is greater for clouds with lower initial values of CDNC, and

furthermore saturates for clouds with an initial albedo close to 1 (purely reflective). Larger

changes in albedo could be associated with greater changes in cloud radiative forcing, a proxy

for the indirect effect. But the magnitude of those albedo changes depends on the initial

cloud droplet number concentration. Regions with higher background CDNC might have a

higher cloud albedo and saturate with respect to aerosol changes, but cleaner regimes may

yield large radiative forcing changes due to the same aerosol changes. This extends beyond

just regions; activation cases which bias the CDNC towards low or high background values

invoke the same effect, although they may not accurately reflect the relative sensitivity of

indirect effects in a given region. Additionally, this result is not dependent on ones choice

of aerosol proxy (AOD or CCN).

To disentangle the relationship between CDNC, radiative forcing, and ACI, Figure 5-12

and Figure 5-13 plot changes in cloud properties averaged over the studied regions versus

their corresponding, diagnosed ACI, using AOD and CCN. In neither case are there strong

relationships between changes in liquid cloud fraction or liquid water path and ACI; these

are driven by the larger scale meteorology in each model that dictate climatologies of clouds.

The relative insensitivity here suggests that activation-induced changes in droplet number

are not producing very large second aerosol indirect effects (e.g. increasing cloud lifetime).

Changes over the ocean are somewhat more strongly related to those over land, but the

magnitude of the average changes in the cloud fraction and liquid water path are very small.

This is robust to the choice of aerosol proxy in deriving ACI, although using AOD produces

a stronger relationship (measured in the unit change of either cloud property per unit change
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Figure 5-12: Similar to Figure 5-10, but depicting the relationships between ACI and
changes in cloud field (liquid cloud fraction, liquid water path, CDNC, and optical
depth) between the pre-industrial and present day. All of the ACI estimates in this
figure are derived using AOD.

in ACI) because of the reduced various in ACI it entails. There is also very little consistency

between the pre-industrial or present day cloud droplet number concentrations and changes

in these cloud fields. This is also true of the relationship between cloud optical depth and

ACI, although over ocean the two are much more strongly correlated when using CCN to

diagnose ACI.

Unsurprisingly, the change in CDNC itself is very strongly related to the metrics of

ACI, particularly over land. This is likely due to the previously-discussed potential for

unboundedness between CDNC and CCN. Highly elevated background CCN and attendant

increases in CDNC skew calculations of ACI over land very high by virtue of over-weighting

the large tail of the CDNC-CCN relationship. But activation schemes which enable the
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Figure 5-13: Similar to Figure 5-12, but using CCN to derive ACI.

model to explore these regimes are not necessarily subject to producing a very large indirect

effect, following Figure 5-11. In fact, there is not a statistically significant relationship

between the change in CDNC and the diagnosed change in CRF from those simulations.

What is occurring in the ocean regimes, then, is more illuminating. In the ocean regions,

the change in CDNC between pre-industrial and present day is both small and independent

of ACI. But, over these regions we see about 1W m−2 difference in diagnosed indirect effect.

5.5 Conclusions and Outlook

Here, we have considered a bottom-up approach to understanding the influence of activation

on simple models of aerosol-cloud interactions and the indirect effect. To do so, we considered

a part of the chain of microphysical processes which must respond to aerosol perturbations
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in order to ultimately modify cloud optical properties and yield a radiative forcing. For

suitably simple cloud systems, analytical expressions can be derived to show relationships

between the sensitivity of various cloud properties to aerosol perturbations. These measures

of aerosol-cloud interactions (ACI) can then be assessed using more sophisticated modeling

tools or with certain kinds of satellite data. Ultimately, they can be linked directly to the

magnitude of the indirect effect (AIE) and provide a toolkit for analyzing the sources of its

uncertainty and sensitivity.

Deploying satellite data to assess ACI and AIE is fraught with difficulty. In particular,

satellite retrievals do not wholly constrain the ambient aerosol size distribution, do not

resolve co-located aerosol and cloud properties. Satellite retrievals of aerosol properties

are limited to metrics related to the aerosol optical depth. As Equation (5.5) shows, optical

depth is related to the surface area distribution of a given aerosol population, which is heavily

weighted towards larger particles. However, droplet activation is much more strongly related

to total number concentration of particles and the number size distribution. Thus, AOD-

based metrics of ACI may provide a biased perspective of the potential activation dynamics

for a given aerosol population. Using metrics like aerosol index have been proposed to

account for this inconsistency between AOD and droplet activation potential, as they more

heavily weight the presence of smaller particles (Penner et al., 2011).

We demonstrated this using output from an aerosol-climate model run with aerosol emis-

sions scenarios for both the pre-industrial and present day. In most regions, the transition

between these two emissions scenarios produces a step change in the distribution of AOD. As

a result, even if the relationship between CDNC and AOD remains constant between the two

emissions scenarios, one would not be able to use the PD-derived relationship to constrain

CDNC in the pre-industrial era. Using CCN-based aerosol metrics alleviates this problem.

CCN is related to CDNC explicitly by a physics module (an activation parameterization)

in the global model used here, and CDNC shows similar sensitivity to CCN in both the

pre-industrial and present day simulations. The present day emissions scenario dramatically

increases the CCN burden, particularly in continental regimes, but in a smooth fashion that

overlaps with its pre-industrial distribution; there is no abrupt shift like we see in the AOD

distribution.

The activation scheme which fundamentally links CCN to CDNC in our global model

remains the same in both the pre-industrial and present day emissions scenarios, and thus
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it is not surprising that ACIN is similar when using CCN. However, we stress two impor-

tant caveats. First, the aerosol composition is significantly changing between the different

emissions scenarios. Each activation scheme considered here has its own idiosyncrasies, and

some schemes may have greater biases in either emissions scenario. The sensitivity of the

CDNC-CCN relationship can thus shift on a regional basis, as new aerosol sources begin

to dominate the total size distribution. But more importantly, activation alone does not

solely account for CDNC in the relationships modeled here. Other processes act to reduce

CDNC and modify other cloud microphysical properties, for instance precipitation. These

processes arise in the analysis of ACIN as the conditional distribution of CDNC for a given

level of AOD or CCN. The analysis here does not separate out meteorological versus aerosol

contributions to variation in CDNC, but other work has at least considered the context of

these relationships in different dynamical regimes and shown that aerosol perturbations in

regions with the most large-scale precipitation contribute the most to the indirect effect

(Zhang et al., 2016).

The consistency of the ACIN derived using CCN in both PD and PI emissions sce-

narios suggests an important role for in situ observations to constrain the indirect effect.

Present day observations of CDNC and CCN measured across regimes would help validate

the performance of present-day models. Unfortunately, CCN is not easy (if not impossi-

ble) to measure from satellite-based instrument packages using current methods, and in situ

measurements from, say, aircraft campaigns are expensive and scarce. Nevertheless, having

such data would provide powerful constraints on the behavior of the aerosol-clouds-climate

system in the present day, and potentially that of the pre-industrial. If satellite methods are

not viable for this purpose, then there may be a path forward using atmospheric composition

re-analysis (e.g. Inness et al., 2013) to produce highly detailed, accurate assessments of the

ambient aerosol size distribution for use in conjunction with satellite-derived estimates of

cloud properties.

Additionally, the strong correlation between ACI and the indirect effect under the influ-

ence of different activation schemes demonstrates the importance of critically evaluating the

climatologies of cloud properties simulated by global models. There is no a priori reason

to choose a particular set of physical parameterizations (such as activation) over another.

However, the interplay between the simulated aerosol size distribution (which may differ dra-

matically between different models even while they simulate similar bulk mass and number
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concentrations) and the activation scheme dictates both the baseline cloud microphysical

state and its sensitivity to aerosol perturbation. Although most modern models do not

place unphysical restrictions on cloud droplet number minima (as Hoose et al. (2009) in-

vestigated), the subjective choice of physics components and their linkage accomplishes the

same imposition. These implicit restrictions could explain much of the variance in modeled

indirect effects between models, and metrics including ACI might provide a way to sort

through and better compare them.

As a result, we recommend extending work such as Quaas et al. (2009) and Ma et al.

(2014) to rigorously quantify the sensitivity of aerosol-cloud interactions in global aerosol-

climate models. With the development of new, CCN-based constraints on ACI, such efforts

could provide novel ways to constrain global model estimates of the indirect effect.
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5.6 Appendix A: Activation-ACI Summary Figures

156



pc
m

_o
ls

4
pc

m
_m

ai
n4

pc
m

_g
C

C
N

3
ne

ne
s_

m
in

_s
m

ax
ne

ne
s_

co
m

p
ar

g_
m

in
_s

m
ax

ar
g_

co
m

p
D

JF
JJ

A

GLOBAL LND
AFR
ASI

EUR
NAM
OCE
SAM
OCN
NAO
NPO
TAO
TPO
TIO

SAO
SPO
SIO

pc
m

_o
ls

4
pc

m
_m

ai
n4

pc
m

_g
C

C
N

3
ne

ne
s_

m
in

_s
m

ax
ne

ne
s_

co
m

p
ar

g_
m

in
_s

m
ax

ar
g_

co
m

p
M

AM

GLOBAL LND
AFR
ASI

EUR
NAM
OCE
SAM
OCN
NAO
NPO
TAO
TPO
TIO

SAO
SPO
SIO

SO
N

0.
20

0.
15

0.
10

0.
05

0.
00

0.
05

0.
10

0.
15

0.
20

d lnICCDNC/d lnOD550AER

F
ig

ur
e

5-
14

:
H

ea
tm

ap
de

pi
ct

in
g

re
gr

es
si

on
sl

op
es

be
tw

ee
n

C
D

N
C

an
d

A
O

D
fo

r
al

l
re

gi
on

s
an

d
se

as
on

s
fo

r
al

l
si

m
ul

at
io

ns
.

R
eg

re
ss

io
n

sl
op

es
w

er
e

co
m

pu
te

d
us

in
g

th
e

lo
ga

ri
th

m
of

ea
ch

va
ri

ab
le

.

157



pcm
_ols4

pcm
_m

ain4
pcm

_gC
C

N
3

nenes_m
in_sm

ax
nenes_com

p
arg_m

in_sm
ax

arg_com
p

D
JF

JJA

GLOBALLND
AFR
ASI

EUR
NAM
OCE
SAM
OCN
NAO
NPO
TAO
TPO
TIO

SAO
SPO
SIO

pcm
_ols4

pcm
_m

ain4
pcm

_gC
C

N
3

nenes_m
in_sm

ax
nenes_com

p
arg_m

in_sm
ax

arg_com
p

M
AM

GLOBALLND
AFR
ASI

EUR
NAM
OCE
SAM
OCN
NAO
NPO
TAO
TPO
TIO

SAO
SPO
SIO

SO
N

0.16

0.24

0.32

0.40

0.48

0.56

0.64

0.72

d lnICCDNC/d lnCCN0P3BL

F
igure

5-15:
Sam

e
as

F
igure

5-14
but

show
ing

the
relationship

betw
een

C
D

N
C

and
C

C
N

.

158



ar
g_

co
m

p

60°S

30°S

0°

30°N

60°N

PD PI diff

ar
g_

m
in

_s
m

ax

60°S

30°S

0°

30°N

60°N

ne
ne

s_
co

m
p

60°S

30°S

0°

30°N

60°N

ne
ne

s_
m

in
_s

m
ax

60°S

30°S

0°

30°N

60°N

pc
m

_m
ai

n4

60°S

30°S

0°

30°N

60°N

pc
m

_g
C

C
N

3

60°S

30°S

0°

30°N

60°N

pc
m

_o
ls

4

60°S

30°S

0°

30°N

60°N

150°W 90°W 30°W 30°E 90°E 150°E 150°W 90°W 30°W 30°E 90°E 150°E 150°W 90°W 30°W 30°E 90°E 150°E

5 4 3 2 1 0 1 2 3 4 5 3.0 2.4 1.8 1.2 0.6 0.0 0.6 1.2 1.8 2.4 3.0

Figure 5-16: Global distributions of ACI𝑁 computed using aerosol optical depth
as a proxy for the aerosol concentration. Each rows corresponds to annual-average
relationships for the indicated activation case; each column indicates the emissions
scenario, where “diff” is the difference between the two. Regression coefficients which
were not statistically significant or used less than 𝑛 = 1000 samples were excluded
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Figure 5-17: Same as Figure 5-16, but looking at relationships computed using CCN
as the proxy for earosol concentration.
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Chapter 6

Conclusions

6.1 Summary

In this dissertation, we have considered climatic phenomena at scales of the opposite ex-

tremes in both time and space.

We began our study on the scale of small particles just a few microns in size, growing

via condensation over the course of seconds and minutes. Widening our perspective, we

considered how collections of particles interact during this process, competing for moisture

and limiting each other’s growth into cloud droplets. We immediately recognized an im-

portant consequence of this competition: changes in the ambient particle population could

change the concentration of droplets inside clouds. Initially, we limited our analysis of this

consequence to a simple aerosol case: a single, lognormal aerosol mode. We showed that

if the particles in such a mode had a homogeneous chemical composition, then assessing

the sensitivity of the activation process (which transforms particles into cloud droplets) was

straightforward; we showed that the average size of particles played an important, control-

ling role buffeted by the meteorology driving the process. Acknowledging that simplified

parameterizations must substitute for detailed activation cases in many applications, we

then analyzed the performance of several existing schemes with the idealized aerosol model,

and noted that they were relatively accurate, with a few caveats. Those caveats included

situations where there was heavy pollution (high aerosol number concentration) or weak

meteorological forcing (shallow convection driving stratiform clouds).

The simple aerosol population we considered at first is wholly insufficient to describe
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what happens in the real atmosphere, which features a staggering complexity of particles

of many different sizes and compositions. To connect our initial investigation into droplet

activation to the real world, we broadened our perspective to consider an aerosol population

with multiple size modes of different species and mixing between some of them. Using a

model of aerosol physics and chemistry built on such a description of the ambient aerosol, we

simulated distributions of aerosol across the globe, subject to both natural and anthropogenic

emissions sources of both particles and their gaseous precursors. We then asked a similar line

of questioning aimed at assessing which particles were the most influential in the activation

process. The ensuing results of this pursuit contained both familiar and surprising answers.

On the one hand, we showed that activation in the complex case was very similar to the

idealized one. However, in our formulation of the aerosol size distribution, one mode was

clearly the most important—the accumulation mode sulfate. This mode encompasses a size

range where particles have a low barrier to activation, and is often the most numerous by

number concentration. The inclusion of giant condensation nuclei such as dust or sea salt

did not appreciably change the importance of this mode, except in the cases where it was

depleted of mass and number. Most surprisingly, activation was so sensitive to the details

of the accumulation mode that in the majority of cases, one could neglect the other modes

entirely in prognostic activation calculations and still derive cloud droplet concentrations

within 10% of the expected value from more-detailed assessments.

While we studied the nuances of droplet activation, we began developing an alternative

approach to parameterizing the process for inclusion in global models. Modeling the process

of droplet activation itself, directly, is a relatively straightforward task involving the nu-

merical integration of a set of coupled ordinary differential equations; a modern laptop can

perform such a calculation in a dozen seconds at most. Including detail—like coupling the

simulated aerosol size distribution to physical and chemical processes which change it—is

not particularly difficult. But this is still too complex to directly include in global models,

and thus the physical linkage between aerosol, clouds, and climate in such models requires

parameterization. The first such parameterizations began appearing over two decades ago,

and have since been generalized for use in nearly any modern climate model.

But generalizability does not necessarily imply accuracy, in a global sense. Different

parameterizations have quirks or biases related to the input parameters supplied to them.

Whereas these idiosyncrasies may not matter much for one given formulation of the ambient
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aerosol and its attendant interfacial parameter space, they could be quite significant for

another. We observed this for two schemes from the literature in both our idealized and

complex aerosol cases. Particularly in the complex aerosol cases, different activation schemes

could lead to fundamentally different climatologies of cloud droplet number concentration

and its sensitivity to aerosol perturbations.

With this in mind, we sought to develop a framework for a new class of activation param-

eterizations based on statistical emulation of a detailed, process model. Such a framework

could have several significant advantages over traditional parameterizations. First, emu-

lators minimize the set of assumptions necessary to deploy a parameterization, since they

target the functionality of a full-complexity model. Second, emulators can be extremely

computationally efficient, both in terms of the number operations necessary to evaluate a

given formulation and in the amount of data necessary to reserve in cache for the evaluation.

But most importantly, by emulating a detailed model, they retain their generalizability. As

long as the reference model is suitable for a given problem, the emulator should produce

high-accuracy, reliable results.

Using a technique from the uncertainty quantification literature, we built emulators of a

detailed parcel model and showed their superiority at reproducing droplet activation statis-

tics in both idealized and complex aerosol scenarios. While not perfect in their application

to the complex aerosol formulation, they offered an important check on the performance of

the other parameterizations we considered. Furthermore, they offer a vehicle for important

future work (to be addressed later in this chapter).

With our suite of old and new droplet activation schemes in hand, we turned our at-

tention to a climate phenomenon at the opposite extreme of the time and space scales: the

aerosol indirect effect on climate. Incorporating our different activation schemes into the

same parent climate model, we simulated present day and pre-industrial climate states which

were very familiar, except in the details of their cloud microphysical climatology. Actually,

we stratified our models based on the average cloud droplet number concentration they sim-

ulated for identical emissions scenarios. Attendant with this stratification is a change in

the modeled shortwave cloud radiative effect in each climate state, and its sensitivity to the

pre-industrial-to-present-day increase in anthropogenic aerosol emissions. As a consequence,

the diagnosed indirect effect in each version of the model is different, and between the seven

activation schemes we considered here, the range of indirect effects is nearly as large as the
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ensemble of model-derived estimates previously reported in the literature.

This result immediately suggests that the relationship between aerosols and clouds in the

global models plays an important role in the indirect effect. To study this in more detail,

we studied metrics of aerosol-cloud interactions using our suite of models and activation

schemes. Historically, these metrics have been used to estimate and provide constraints for

the indirect effect based on satellite measurements, as well as provide a metric to evalu-

ate the performance of different global models. However, these metrics are often defined

using aerosol optical depth as a measure of the change in aerosol burden. We compared

this definition versus one using the cloud condensation nuclei concentration, which is more

directly related to the activation process which lies at the heart of aerosol-cloud interactions.

Such re-defined metrics provide a more consistent way to potentially develop constraints on

aerosol-cloud interactions in the pre-industrial climate. Furthermore, they correlate more

strongly with traditional, top-down estimates of the indirect effect derived using global

models. Unfortunately, cloud condensation nuclei concentration are extremely difficult to

measure from satellite observation platforms, limiting their application to in situ data from

aircraft and other intensive measurement campaigns.

6.2 Implications for Future Work

Throughout this dissertation, we have highlighted many questions of particular research

interest for future work. Here, we review some of them in an over-arching framework more

closely aligned with the fundamental questions initially pursued in this work.

6.2.1 Emergent and Novel Constraints on Aerosol-Cloud In-

teractions

In Chapter 5, we developed the notion that traditional metrics of aerosol-cloud interactions

(ACI) derived using a simplified, adiabatic cloud model in order to evaluate satellite re-

trievals could be problematic in a few ways. For instance, the adiabatic cloud model is really

only applicable to maritime boundary layer clouds, which entirely precludes studying pol-

luted, continental regimes. Even if we restrict our analysis to the cleanest regimes—which

should be the most sensitive to aerosol perturbations—the uncertainties involved in such
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satellite-based estimates of cloud properties could be very large. More importantly, satel-

lites cannot be used to infer CCN concentrations, which we argued were more closely related

to the physics of activation and could be used to place ACI in the pre-industrial climate, a

major improvement over AOD-based metrics.

Despite their intrinsic difficulties, ACI-based approaches to constraining the indirect

effect could still be powerful tools for probing the present-day climate. In particular, strati-

fication of model and observational data by meteorological regime afford a way to compare

the two one a more granular basis, where the underlying assumptions in the satellite re-

trievals may be better satisfied (Zhang et al., 2016). Alternatively, since we have far more

freedom in how we process and analyze model output, it is entirely reasonable to simulate

satellite-based retrievals online within a particular model run, creating an apples-to-apples

comparison between the two (Ban-Weiss et al., 2014).

The bigger problem, though, is that what aerosol data we can glean from satellites may

simply not provide a strong enough constraint on the physics of activation. As we showed

in Chapter 5, CCN-based metrics are far more consistent with physically-based approaches

for computing droplet activation. Unfortunately, data on the global distribution of CCN is

woefully incomplete. Satellite retrieval methods do not yet exist for CCN, and even if they

did, Stier (2016) suggests that available measurement techniques (e.g. observing aerosol

radiative properties) would provide very poor constraints on it. Although some in situ CCN

data is available, it is limited to a small selection of cloud regimes from a small portion of

the globe, under a small variety of meteorological conditions. Yet, because of their value in

addressing this problem, there should be a renewed focus on collating existing CCN-cloud

datasets and including provisions in future measurement campaigns to broaden this archive.

Stier (2016) recommends one such path forward, using space-borne lidars to feed a global

aerosol model assimilation program.

This particular approach to evaluating ACI is but one tact available to the research

community. Were it a cheap and easy path forward, one might be content to leave the

discussion here. But, the main reason we do not have such in situ datasets is because

acquiring this data is difficult, time-consuming, and costly, and the barriers to its collection

will not be easily overcome. As a result, it is worthwhile to postulate alternative approaches

and data sources which could help constrain ACI.

Feingold et al. (2016) offers one potential route which would require the research com-
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munity to shift its focus from fundamental measures of ACI—correlations between aerosol

and cloud droplet number or liquid water path—to other relationships more directly linked

to the cloud radiative effect. Specifically, Feingold et al. suggest considering the relationship

between the albedo and cloud fraction of a cloudy scene, which may be expressed as

𝐴 = 𝐴𝑐𝑓𝑐 +𝐴𝑠(1− 𝑓𝑐) (6.1)

where 𝐴𝑐 and 𝐴𝑠 are the cloud and surface albedo, respectively, and 𝐹𝑐 is the cloudy

fraction of the scene. 𝐴𝑐 is directly a function of cloud micro- and macro-physical proper-

ties, but is far simpler to measure from both space-borne and surface-based instruments.

Reproducing observed, complex patterns in time and space between 𝐴𝑐 and 𝑓𝑐 in a data-

driven, process modeling framework involving both aerosol and meteorology fields could

yield powerful insight into the co-variation of aerosols and clouds.

But this represents an advanced, high-level fusion of approaches tackling ACI. We should

also pursue the development of new, simple models of the aerosol indirect effect which can

take advantage of new observational data or refined historical data, as it becomes available.

Two such recent efforts taking similar (yet very distinct) approaches to this problem either

reproduced the behavior of more complex global models (Ghan, 2013) or provided grossly

revised and smaller estimates of the indirect effect (Stevens, 2015). Despite their differences,

what the simple modeling approach provides is a short-circuit on the extremely complex,

convoluted physics, which make studying indirect effects with global models so difficult.

Our conception of emergent constraints should not be limited to just explicit aerosol-

cloud interactions and related measurements. Ekman (2014) noted that CMIP5 models

which included detailed treatments of aerosol-cloud influences better resolved transient re-

gional warming trends over the 20th century. Another study by Wang (2015) suggests that

aerosols have dominated the distribution of precipitations changes in the tropics and north-

ern hemisphere extra-tropics with reference to the pre-industrial climate over the past few

decades; these precipitation changes are closely related to the gradients in surface temper-

ature anomaly due to aerosol-induced cooling in the northern hemisphere offsetting green-

house gas warming. Observations such as those provide a powerful way to link aerosol direct

and indirect effects to components of the climate system (temperature and precipitation)

which are far better observed than cloud microphysical properties or aerosol details. Cre-
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ative use of these observed climate-scale relationships, then, could offer a novel way to tune

models or evaluate ensembles and inter-comparisons.

6.2.2 Climate Response to Aerosol Perturbation

Studies of the aerosol indirect effect on climate heavily focus on quantifying the radiative

forcing associated with aerosol perturbations. As we have stressed many times in this

dissertation, that radiative forcing is a major component of uncertainty in present and future

climate change, and as a result is a high-profile research target. But a critical observer of the

zonal distribution of changes in cloud radiative effects presented in Chapter 4 would note

that aerosols impart a very large, regional forcing on the climate system. That forcing has

been associated with large, local impacts on the climate system, particularly with respect

to precipitation (Bollasina et al., 2011).

However, forcing in and of itself does not represent the complete picture of aerosol

impacts on climate. Missing from this framework is an assessment of the climate system

response to our diagnosed aerosol forcing. Unlike greenhouse gases, aerosol perturbations

can be very large, but heterogeneous in both time and space. Clouds must respond to these

perturbations on very fast timescales owing to the tight physical coupling between aerosols

and their underlying processes. As a result, the attendant forcing from the indirect effect

can be large, but spatiotemporally heterogeneous. One might expect, then, that the climate

system should respond on a spectrum of temporal and spatial scales to the forcing due to

aerosol indirect effects.

We might further expect these responses to manifest themselves most strongly in precip-

itation fields, which are sensitive to both the microphysical changes in clouds that aerosols

induce, but also to regional changes in the atmospheric energy balance. Some recent work

in the literature develops this notion in more detail, noting that fast responses scale very

strongly with changes in atmospheric absorption, while slow responses scale approximately

with surface temperature changes (Samset et al., 2016). However, this work has not explic-

itly looked at aerosol indirect effects.

Decomposing the fast and slow responses of the climate system to aerosol perturbations

could help elucidate the type of emergent constraints on aerosol-cloud interactions we dis-

cussed in the previous section. However, such an exercise could also yield insight on climate
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responses to forcings at a much more fundamental level. For instance, transient climate

responses in models correlate very strongly with their equilibrium response, but at the same

time, modeling of 20th century climate change suggests that the transient response climate

response to ozone and aerosols is much larger than that of carbon dioxide (Shindell, 2014).

This is in part due the asymmetric hemispheric distribution of ozone and aerosol forcing

over the past century, which is overwhelmingly in the northern hemisphere and as a result

incurs rapid land responses and initiates stronger feedback mechanisms, particularly in the

middle to high latitudes. The linkage between forcing agents, transient climate response and

equilibrium climate sensitivity provide a method for applying contemporary observations to

better constrain future climate change on very long timescales.

Responses on intermediate time scales also deserve careful consideration. Wang et al.

(2015) showed that the spatial re-distribution of anthropogenic aerosol emissions over just

the past few decades had large implications for the general circulation and regional warming

and precipitation trends. What is the relationship between changes on these decadal scales

to the spatial re-distribution of aerosol emissions and the global perspective we take when

studying fast and slow responses? Tackling questions like these could also help generate the

emergent constraints on the indirect effect which we outlined in the previous section, since

they provide connections to robust, long-observed aspects of the climate system (specifically

temperature, precipitation, and the top-of-atmosphere radiation balance).

6.2.3 Uncertainty in Future, Transient Climate Change

A little less than a year ago, the international political community negotiated an agree-

ment on a new approach to mitigating climate change. This “Paris Agreement” represents

an evolution of a mitigation principle first codified in the 1992 UN Framework Conven-

tion on Climate change, which asserted that each country should act “in accordance with

their common but differentiated responsibilities and respective capabilities.” This principle

serves two purposes. First, it provides a way for developing countries to take advantage

of cheap (but carbon-intensive) pathways for economic growth, and enables them to focus

on improving welfare and fighting poverty in the short-term. Second, it acknowledges the

trouble with one-size-fits-all mitigation policies such as universal benchmarks on emissions

reductions (such as a mandated decrease to 𝑋% of 2005 emissions levels by 2050). Instead,
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it offers countries the latitude and flexibility to adopt a plan best-adapted for their energy

and economic situation.

As a result, the Paris Agreement encodes a mechanism where each signatory country

commits to an “intended nationally determined contribution” (INDC). INDCs are mitigation

targets; for benchmarking, we can convert them to reductions in aggregate emissions or

emissions intensity, but most importantly, we can sum up the portfolio of INDCs at any

given point in time to quantitatively assess the likelihood that we will avoid certain warming

scenarios. To place this dissertation in the historical context of our civilization’s struggle to

grasp the challenges posed by climate change, while drafting this very chapter, the European

Union backed the ratification of the Agreement, providing the impetus necessary for it to

go into force on November 4, 2016.

Although comprehensive in its pursuit of mitigating catastrophic climate change, the

Paris Agreement has a glaring omission: any mention of aerosols or short-lived climate

pollutants.

A key implication of the work in this dissertation is that the specter of uncertainty

haunting our understanding of 20th climate change will persist with us in a perverse fashion

over the next few decades. The observed increase in atmospheric aerosol pollution since

the pre-industrial era has generally cooled the climate system. Since 1970, the sum total

of that aerosol influence, derived using observational constraints on Earth’s fundamental

energy balance, is likely −1.1 ± 0.4 W m−2 (Murphy et al., 2009). Other estimates place

the present-day, instantaneous negative forcing due to aerosols at between 0.5W m−2 to

1W m−2 (Westervelt et al., 2015). This constitutes a masking of climate change; the cooling

effects of aerosol emissions, even in their redistribution across the globe (Wang et al., 2015),

acts to offset warming which we would otherwise expect from increasing greenhouse gas

emissions.

Over the next few decades, as part of their published INDCs, many nations will continue

an aggressive pursuit to reduce their aerosol and precursor gas emissions. Such plans are a

sort of side-step around the politics of climate change; particulate emissions are implicated

with negative impacts on human health, so they can be justified on terms wholly distinct

from climate. But at the same time, these sorts of policies have climate co-benefits. Many

approaches taken to reduce particulate emissions would necessarily reduce carbon dioxide

emissions, thus producing a positive side-effect towards mitigating climate change. Under

169



this guise and others, aerosol emissions are expected to decrease in the global average over

the next several decades (Myhre et al., 2013).

Unfortunately, a rapid decline in global aerosol emissions in the future will necessarily

involve a “climate penalty” as greenhouse gas forcing is unmasked by a decreased aerosol

direct and indirect effect. A critical near-term research question is the rigorous quantification

of this climate penalty, both from first principles and within the context of the repository

of published INDCs and aerosol reduction commitments. Relatively few publications have

focused on quantifying this climate penalty, and much of the existing work focuses explicitly

on the emissions timelines assumed within the RCP projections (Westervelt et al., 2015).

But the impact of these emissions reductions on climate change over the next century can

be quite large. For instance, Levy et al. (2013a) noted that using one global model, relative

to holding aerosol emissions at their present day levels, the emissions reductions in RCP4.5

lead to an increase in global average temperature of about 1 ∘C and increase in global

average precipitation of about 0.1mm d−1 by 2100. The regional response to the reduction

in aerosol emissions could be much greater (Westervelt et al., 2015). Furthermore, the

estimated range of radiative forcing from aerosol direct and indirect effects alone calculated

using models evaluating the RCP projections ranges from 0.4W m−2 to 2W m−2 (Westervelt

et al., 2015). Few (if any) studies have re-assessed these estimates using up-to-date emissions

scenarios which more accurately reflect the global corpus of INDCs, and no simple integrated

assessment model used to quickly analyze the impact of a given climate policy adequately

accounts for aerosol indirect effects or their uncertainties.

As a result, these estimates are highly uncertain, and fundamentally rely on the mag-

nitude of the modeled indirect effect in whatever global model is used to compute them.

But this uncertainty implies an important and deeply uncomfortable question from both a

science policy perspective: if the world has already experienced about a degree of warming,

and reductions in aerosol emissions alone will inevitably unmask up to an additional degree

of warming, is a 1.5 ∘C warming target even remotely feasible, let alone a 2 ∘C one? If not,

then how do we reconcile this scientific reality with the entrenched rhetoric advocating for

climate policy calibrated to avoid a “disastrous” 2 ∘C threshold?

The previously enumerated lines of future research will hopefully reduce the uncertainty

surrounding the indirect effect, and greatly improve our ability to anticipation this future

source of climate change. But a dedicated effort should target these questions directly.

170



Owing to their complexity and the uncertainty in their attendant parameterizations, fully-

coupled atmosphere-climate models may not be the best way to study these questions. In-

stead, tools from the domain of simplified models may be a far better choice. One approach

could involve evaluating a wide swath of potential emissions scenarios using intermediate

complexity models like those of Ghan et al. (2013) or Stevens (2015). The computational

efficiency of these models would allow the application of Monte Carlo techniques (such as

the variance-based decomposition used in Chapters 2 and 3 of this dissertation) to rigorously

quantify the uncertainty in both the emissions scenarios and the construction of the simpli-

fied models themselves (e.g. the use of tuning parameters). Such tools would be efficient

enough to be developed into online or interactive policy evaluation tools, which could be

provided to policymakers studying and negotiating future iterations of the Paris Agreement.

But more importantly, they would provide an exhaustive, probabilistic perspective on future

climate change.

6.3 Closing Thoughts

We end this lengthy discussion with a reflection back to Twomey’s simple climate equa-

tion. Although it obeys fundamental relationships derived from natural laws, the climate

system as encoded in Equation (1.1) is incredibly complex and involves physics and chem-

istry interacting along a breathtakingly vast continuum of spatial and temporal scales. As

scientists practicing reductionism, we are tempted to break down such a complicated system

into smaller constituents, rigorously test them, and then iteratively re-construct it from its

parts.

This approach initially worked very well in understanding the aerosol indirect effect on

climate, as both Twomey (1977) and Albrecht (1989) showed in a qualitative sense. But in

a quantitative sense, it has yielded little progress in constraining the indirect effect. As a

result, we have resorted to reductionism in an extreme form, attempting to simultaneously

simplify the relationships between aerosol, clouds, and climate, but also to quantify the

contribution of many progressively detailed elements of the system to uncertainty in the

indirect effect itself. This dissertation is, in more ways than one, a culmination of this trend

in analysis, and its primary scientific result—that activation itself (by means of setting

the cloud droplet number concentration) contributes as much uncertainty as all the other
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components of the system—is an inevitable result of this line of pursuit.

However, the work in this dissertation belongs in a much larger context and is part

of a fundamental sea-change in the dialogue surrounding investigation into the indirect

effect (Feingold et al., 2016). Quantifying the sources of uncertainty in our climate models

will clearly only get us so far in solving this problem. Now, more than ever, we should

embrace a renewed focus on improving observations of the climate system, particularly

with regards to the details of the hydrological cycle and the microphysical properties of

clouds. These new observations, coupled with the dramatic advances made in computational

modeling of the atmosphere at all scales over the past decade, will provide an entirely new

framework for understanding the interaction of aerosols and clouds. Successfully levying

these developments into scientific understanding will require a liberal dose of creativity,

and a willingness to re-evaluate established notions. I hope that the work discussed in this

dissertation demonstrates the value of this outlook and approach, and positively contributes

to our understanding of the complexities of our planet’s climate.
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