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Abstract: In this paper, we study possible impacts of anthropogenic greenhouse gas (GHG) emissions on 
the 21st century climate on the continental USA using the MIT Integrated Global System Model (IGSM) 
framework. Climate change simulations use an emissions scenario developed with the IGSM’s Economic 
Projection and Policy Analysis (EPPA) Model. The scenario represents a global emission path consistent 
with the current view on the trajectories of technological and economic development. The estimates of 
possible changes in climate are based on an ensemble of 400 simulations with the IGSM’s MIT Earth System 
Model (MESM), a model of intermediate complexity. Regional changes over the USA were obtained using 
statistical downscaling that incorporates results from the simulations with the CMIP5 Atmosphere-Ocean 
General Circulation Models (AOGCMs). The results show that under the considered emissions scenario, 
surface air temperature averaged over the continental USA increases by 2.6 to 4.4K by the last decade of the 
21st century (90% probability interval) relative to pre-industrial temperatures, compare to 2.3 to 3.4K for the 
whole globe. Corresponding changes in precipitation are -0.65 to 0.34 mm/day and 0.13 to 0.22 mm/day, 
respectively. There is significant variation in the geographical distribution of those changes among the 
ensemble simulations. 
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1. Introduction
Uncertainties in projections of future climate are associ-
ated with uncertainties in the growth of the world econ-
omy and the resulting uncertainties in anthropogenic 
emissions of greenhouse gases as well as with uncertain-
ties in climate system response to those emissions. The 
MIT IGSM framework was developed to study possible 
changes in global and regional climate in a probabilis-
tic manner. Two major components of this framework 
are the MIT Economic Projection and Policy Analysis 
(EPPA, Paltsev et al., 2005; Chen et al., 2016) model and 
the MIT Earth System Model (MESM, Sokolov et al., 
2005 and 2017). A number of probabilistic studies on the 
future climate were carried out with previous versions of 
EPPA and MESM (e.g. Sokolov et al., 2009; Webster et al., 
2003 and 2012). However, our understanding of the un-
derlying economic processes represented in the EPPA 
model and our knowledge about past climate that is used 
to calibrate MESM has continued to change, making it 
useful to update estimates of both economic and climate 
uncertainties. 
For example, estimates of probability distributions for 
climate parameters defining climate system response to 
external forcing strongly depend on the length of obser-
vational records used to determine these distributions 
(e.g. Libardoni, 2017). In addition, estimates for the past 
natural and anthropogenic forcings are regularly updated 
which also affects climate parameter estimates (e.g. For-
est et al., 2006 and 2008; Libardoni, 2017). Projections 
of the future economic development of different regions 
also change (Webster et al., 2008; Reilly et al., 2015). 
In this paper, we focus on uncertainty in future climate 
associated with an uncertainty in earth system processes 
using our latest estimates of climate model parameters 
(Libardoni, 2017; Sokolov et al., 2017) and a single emis-
sion scenario (Reilly et al., 2015). In addition to the glob-
al estimates we also show projections for the continental 
USA obtained using a statistical downscaling approach 
described by Schlosser et al. (2013). 

2. Model Description and 
Simulation Setup

The MIT Economic Projection and Policy Analysis 
(EPPA) model provides a multi-sector representation 
of the global economy (Paltsev et al., 2005; Chen et al., 
2016). The EPPA model projects economic variables 
(GDP, consumption, sectoral output, trade etc.), energy 
flows (power generation mix, primary energy mix, in-
ternational energy trade, etc.), and emissions of GHGs 
from combustion of carbon-based fuels, industrial pro-
cesses, waste handling and agricultural activities through 
2100. The model includes representation of CO2 and 
non-CO2 (CH4, N2O, HFCs, PFCs and SF6) greenhouse 

gas emissions abatement, and calculates reductions from 
gas-specific control measures as well as those occurring 
as a byproduct of actions directed at CO2. The model 
also tracks several major air pollutants: sulfates (SOx), 
nitrogen oxides (NOx), black carbon (BC), organic car-
bon (OC), carbon monoxide (CO), ammonia (NH3), and 
non-methane volatile organic compounds (VOCs). 

The EPPA model explicitly represents interactions both 
among sectors, through inter-industry inputs, and 
among regions, via bilateral trade flows. The model sim-
ulates economy-wide production in each region at the 
sectoral level. Sectoral output is produced from primary 
factors including multiple categories of depletable and 
renewable natural capital, produced capital, and labor. 
Intermediate inputs to sectoral production are repre-
sented through a complete input-output structure. The 
economic scenario used in this study is described in Reil-
ly et al. (2015).

The MIT Earth System Model (MESM) is an earth system 
model of intermediate complexity that couples sub-mod-
els of all main components of the climate system. It in-
cludes a zonally averaged atmospheric model with fully 
interactive chemistry, a land model, a terrestrial ecosys-
tem model and a simplified ocean model with a carbon 
cycle. As a result, MESM is able to simulate the main 
interactions among these different components of the 
earth system. Values of model parameters defining cli-
mate sensitivity, rate of oceanic heat uptake and strength 
of the carbon cycle can be varied. A detailed description 
of the current version of MESM is given in Sokolov et al. 
(2017), together with the results that show its behavior in 
historical climate simulations. 

To estimate the uncertainty in future climate, we carried 
out an ensemble of climate simulations using 400 sam-
ples from the probability distributions of climate param-
eters described in Libardoni (2017). Climate simulations 
with MESM are carried out in two stages: historical sim-
ulations from 1861 to 2005 and forward climate simula-
tions from 2006 to 2100. During the first stage, MESM is 
run in a concentration-driven mode forced by observed 
changes in natural and anthropogenic forcing. In the sec-
ond stage, MESM is run in an emissions-driven mode 
and forced by anthropogenic greenhouse gases emissions 
produced by the EPPA model. 

Sokolov et al. (2017) compared the MESM performance 
with the results of the CMIP5 multi-model ensemble, 
using 400 simulations with 1% per year increase in CO2 

concentration. Table 1 shows 90% probability ranges 
for climate sensitivity, transient climate response (TCR) 
and the transient climate response to cumulative carbon 
emissions (TCRE). 
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Ranges of the different climate characteristics obtained 
in the ensemble of simulations with MESM agree well 
with the ranges obtained from the simulations with the 
CMIP5 models.1

3. Results and Discussion
In the Business As Usual (BAU) emissions scenario used 
in this study, CO2 emissions initially decrease slightly 
from about 9.6 GtC/y in 2015 to about 9.3 GtC/y in 2030, 
reflecting recent energy policy commitments of many 
countries (Figure 1). After 2030 they start to increase 
again, reaching 11.5 GtC/y in 2100 (19% increase relative 
to 2015). Equivalent CO2 emissions, after a small drop 

1 See Sokolov et al. (2017) for more detailed comparison.

between 2015 and 2020, rise from 13.9 GtC-eq/y in 2015 
to 18.6 GtC-eq/y in 2100 (33% increase), with a strong 
increase in methane emissions (by 75%) over this period 
contributing to the overall trend. A detailed description 
of the drivers for this scenario is given by Reilly et al. 
(2015). In spite of the initial decrease in CO2 emissions, 
concentrations are rising continually throughout the 
century (Figure 2). By the last decade of the 21st centu-
ry, simulated CO2 concentrations are 605–680 ppm (90% 
interval) with a median value of about 650 ppm. Since 
the anthropogenic emissions scenario is unchanged, 
these differences in CO2 concentrations among ensem-
ble members are explained by differences in the carbon 
uptake by the land and ocean (Figure 3) associated with 
uncertainty in the strength of the carbon cycle. Those un-

Figure 1. Co2 and equivalent Co2 emissions.
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Table 1. mean values and 5–95% probability intervals for climate sensitivity, tCr and tCre from the meSm ensemble and CmIp5 
multi-model ensemble. Data for CmIp5 climate sensitivity and tCr are from IpCC (2013) and for tCre from Gillett et al. (2013).
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Figure 2. Co2 concentrations.
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Figure 3. Carbon uptake by ocean (left) and terrestrial ecosystem (right).
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certainties are taken into account by using different val-
ues of the carbon mixing rates into the deep ocean and 
the of rates CO2 fertilization in terrestrial ecosystems.2 
Carbon uptake by both the ocean and terrestrial ecosys-
tems increase until around 2040 and then start to decline. 
Such behavior is consistent with the results produced 
by most of the CMIP5 earth system models (Friedling-
stein et al., 2014). Ensemble mean total radiative forc-
ing relative to 1860 rises from 2.5 w/m2 in 2006 to about 
6.4 w/m2 in 2100 (Figure 4). The spread in the forcing in 
2006 is related to uncertainty in the aerosol forcing.
Figures 5 and 6 show changes in global mean sur-
face air temperature and precipitation relative to their 
1861–1880 means caused by anthropogenic greenhouse 
gas emissions. Surface air temperature by the end of the 
century increases by 2.8K (2091–2100 mean) relative to 
pre-industrial, which is half as much as in “no policy” 
simulations described by Sokolov et al. (2009) and Web-
ster et al. (2012). Most of this difference is explained by 

2  See Sokolov et al. (2017) for more details.

differences in emissions: the BAU scenario in Reilly et al. 
(2015) includes mitigation measures, reflecting national 
commitments that were created after or excluded from 
the “no policy” scenario in Webster et al. (2008). How-
ever, the surface warming in the current simulations is 
also 0.6K lower than in the simulations with the “Level 3” 
emissions scenario (Webster et al., 2012) which has sim-
ilar cumulative CO2 and CO2-equvivalent emissions to 
the scenario used in this paper. The differences not ex-
plained by the emissions scenario are due to the new cli-
mate parameter distributions.3

As mentioned in the introduction, we used a statistical 
downscaling approach (Schlosser et al., 2013) to produce 
geographical distributions of changes in temperature 
and precipitation. Transformation coefficients used to 
create longitude-latitude fields from zonal values simu-
lated by MESM (see formula (3) in Schlosser et al., 2013) 
were calculated from simulations with 33 CMIP5 Atmo-

3  Compare climate parameters in Forest et al. (2008) to those in 
Sokolov et al. (2017).

 
Figure 4. total radiative forcing relative to 1860.
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Figure 5. Global surface air temperature relative to1861–1880. observations are an update of the data shown on Fig. 9a in 
Hansen et al. (2010).
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Figure 6. Global precipitation relative to 1861–1880 mean. observations are from Smith et al. (2012).

	
  
Figure 6. Global precipitation relative to 1861-1880 mean. Observation are from Smith et al. 
(2012) 
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sphere-Ocean General Circulation Models (AOGCMs). 
Using this approach, 33 different geographical patterns 
for each of 400 MESM simulations were produced. 
Figures 7 and 8 show distributions of changes in tem-
perature and precipitation relative to 1861–1880 aver-
aged over all geographical patterns and all MESM runs. 
Unsurprisingly, the distributions obtained bear signif-
icant resemblance to the results from simulations with 
the CMIP5 models (IPCC, 2013 and 2014). 

Using the time series of geographical distributions for 
temperature and precipitation thus created, we analyzed 
the possible climate changes over the contiguous USA. As 
mentioned above, uncertainty in the changes of globally 
averaged climate variables are defined by the uncertain-
ty in climate system parameters, defining its response to 
external forcing, such as climate sensitivity and the rate of 
oceanic heat uptake. In the case of regional changes, addi-
tional uncertainty is coming from differences in the geo-
graphical distributions produced by different models. To 

Figure 7. Surface air temperature (K) for 2091–2100 relative to 1861–1880.
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Figure 8. precipitation (mm/day) for 2091–2100 relative to 1861–1880.
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compare contributions from these sources to total uncer-
tainty, we first averaged data for temperature and precip-
itation over the 400 MESM runs for each model pattern, 
and then over all 33 patterns for each run, i.e., for each 
combination of climate parameters. The former represents 
uncertainty associated with differences among patterns 
from the CMIP5 models, while the latter represents uncer-
tainty associated with the climate parameters. As can be 
seen from Figures 9 and 10, uncertainty in surface tem-
perature associated with the two types of uncertainty are 

rather similar, while uncertainty in precipitation is defined 
almost exclusively by differences among CMIP5 models. 

As shown in Figure 10, inter-annual variability in pre-
cipitation over the USA is dramatically underestimated 
compared to observations. There are two reasons for this. 
First, the MESM underestimates variability in global pre-
cipitation (Figure 6), most likely due to use of a zonal-
ly averaged atmosphere and a simplified ocean model. 
Second, downscaling coefficients are calculated based on 
the decadal means values from observations and CMIP5 

Figure 10. precipitation over USA relative to 1861–1880 mean. Left – averaged over runs with different values of climate 
parameters. right – averaged over 33 different CmIp5 models. observations are from Higgins et al. (2000).
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Figure 9. Surface temperature over USA relative to 1861–1880 mean. Left – averaged over runs with different values of climate 
parameters. right – averaged over 33 different CmIp5 models. observations are from Harris and Jones (2017).
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model simulations. Variability in surface air temperature 
is also underestimated, though to a lesser extent. 
To quantify the contributions from different sources of 
uncertainty, we calculated global and continental USA 
frequency distributions for changes in surface tempera-
ture and precipitation. Distributions for the global values 
are calculated from the results of the 400 MESM runs. 
When calculating distributions for changes over the con-
tinental USA, we have eliminated the results from two 
outlier models. Distributions for the continental USA, 
shown in Figures 11 and 12, are based on the 400 MESM 
runs downscaled using patterns for 31 (33–2) CMIP5 
models, which were weighted equally. In addition, we 
estimated 90% probability intervals using either values 
from the 400 MESM runs averaged over 31 models or 
values for 31 models averaged over 400 MESM runs. 
These intervals (Figures 11 and 12, Tables 2 and 3) pro-
vide quantitative measures for uncertainty in the pre-
dicted changes associated with uncertainty in the climate 
system response and inter-model differences respective-

Table 2. percentiles for surface temperature increase relative to 
1861–1880.

5% 16.7% 50% 83.3% 95%

GLOBAL 2.30 2.52 2.82 3.14 3.40

USA ALL 2.62 2.90 3.38 3.98 4.43

USA CLIMATE 
PARAMETERS 2.80 3.05 3.44 3.79 4.10

USA MODELS 2.95 3.05 3.34 3.87 4.14

Table 3. percentiles for changes in precipitation relative to 
1861–1880 mean.

5% 16.7% 50% 83.3% 95%

GLOBAL 0.13 0.15 0.17 0.20 0.22

USA ALL -0.06 0.02 0.10 0.22 0.34

USA CLIMATE 
PARAMETERS 0.08 0.10 0.11 0.13 0.15

USA MODELS -0.04 0.03 0.10 0.19 0.33

Figure 11. Frequency distributions for surface temperature over globe (left) and over USA (right) relative to 1861–1880 mean.
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Figure 12. Frequency distributions for precipitations over globe (left) and over USA (right) relative to 1861–1880 mean.
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ly. The range of possible changes in precipitation over 
the USA is significantly wider than for the global aver-
age changes and, as noted above, it is primarily explained 
by the inter-model differences. Probability distributions 
for surface warming over the continental USA, not only 
shifted toward higher values when compared to distribu-
tions for the whole globe, but are also wider. While the 
lower bound of 90% probability interval for the USA is 
only 0.3K larger than for the global average, the upper 
bound is larger by more than 1K. As a result, the proba-
bility of surface warming staying below given a threshold 
is significantly smaller for the USA than for the globe as a 
whole (Figure 13). For example, while probability of the 
global temperature increase being less than 3oC relative 
to pre-industrial under the considered emission scenario 
is about 70%, it is only 25% for the average temperature 
of the USA. It is not surprising that precipitation is more 
uncertain for a relatively smaller geographic area than 
for the globe as a whole—warming will speed up the hy-
drological cycle and increase precipitation globally, but 
shifting patterns can mean that for particular regions it 
may increase or decrease. The enhanced warming over 
the continental USA reflects the general observation that 
land areas will warm faster than the ocean (and temper-

ate zone location, which in general is expected to warm 
faster than the tropics).

Geographical distributions of changes in temperature 
and precipitation over the continental USA obtained us-
ing downscaling coefficients derived from the different 
CIMP5 models differ dramatically (Figures 14 and 15). 
While the majority of the CMIP5 models show some-
what stronger warming in the northern USA and some-
what larger increase in precipitation over the eastern 
states, there are noticeable exceptions. Such a diversity 
of CMIP5 geographical patterns indicates even larger 
uncertainty in the changes in temperature and precipita-
tion on the smaller scales (e.g. states or counties). There 
is almost no correlation between changes in precipita-
tion and temperature calculated using different CMIP5 
model patterns (Figure 16 and Table 4). For example, 
the GFDL-ESM2G pattern produces the largest increas-
es in both temperature and precipitation. In contrast, for 
the inmcm4 pattern a significant increase in temperature 
is coupled with a very strong decrease in precipitation. 
Such differences will significantly complicate attempts to 
evaluate climate change impacts on society, especially in 
sectors such as agriculture where rainfall is important. 

Figure 13. probability of surface air temperature in the last decade of 21st century being below given value relative to 1861–1880 mean.
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Figure 14. Surface air temperature in the last decade of 21st century relative to 1861–1880 mean downscaled using patterns from 
33 CmIp5 models. bottom right is models mean.
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Figure 15. precipitation in the last decade of 21st century relative to 1861–1880 mean downscaled using patterns from 33 CmIp5 
models. bottom right is models mean.
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Figure 16. Changes in precipitation (as percent of 1861–1880 value) versus changes in surface air temperature averaged over USA, 
2091–2100 mean minus 1861–1880 mean.
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Model name dT2m
dPrec/

Prec

bcc-csm1-1-m 2.68 0.4

ACCESS1-3 2.82 14.5

CanESM2 2.95 7.1

GISS-E2-H 2.95 16.3

GFDL-CM3 2.97 9.2

FGOALS-s2 2.97 6.8

HadGEM2-ES 3.05 3.9

BNU-ESM 3.07 2.5

MIROC-ESM 3.12 2.2

CCSM4 3.14 8.6

CESM1-BGC 3.19 12.8

Model name dT2m
dPrec/

Prec

IPSL-CM5A-LR 3.21 6.3

FGOALS-g2 3.24 4.2

bcc-csm1-1 3.25 1.6

MPI-ESM-MR 3.29 -0.7

CMCC-CM 3.32 6.8

CSIRO-Mk3-6-0 3.34 5.7

GFDL-ESM2M 3.40 16.5

NorESM1-ME 3.41 1.9

IPSL-CM5B-LR 3.45 17.2

CESM1-CAM5 3.57 9.3

MIROC5 3.59 3.8

Model name dT2m
dPrec/

Prec

ACCESS1-0 3.63 1.7

CNRM-CM5 3.68 4.6

CNRM-CM5-2 3.75 4.8

IPSL-CM5A-MR 3.75 -2.7

MPI-ESM-P 3.87 -1.4

GISS-E2-R 3.95 8.9

MPI-ESM-LR 4.00 1.9

inmcm4 4.09 -26.9

NorESM1-M 4.18 -6.8

CESM1-CAM5-1-FV2 4.33 5.5

GFDL-ESM2G 4.55 23.1

Table 4. Changes in surface air temperature and precipitation (as percent of 1861–1880 value) averaged over USA, 2091–2100 
mean minus 1861–1880 mean. models listed in order of appearance in Figure 16.
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4. Conclusions
Under the considered emission scenario (described in 
Reilly et al., 2015), for the last decade of the 21st cen-
tury the global mean surface air temperature will in-
crease by 2.1–3.1K (90% probability interval) relative to 
pre-industrial, while the temperature averaged over the 
continental USA is projected to rise by 2.4–4.1K. The 
corresponding changes in precipitation are 0.12 to 0.21 
mm/day and -0.05 to 0.32 mm/day, respectively. The sur-
face temperature averaged over the USA will exceed 3, 
3.5 and 4K relative to pre-industrial with probability of 
about 75, 40 and 15% respectively. There is a 4% prob-
ability of exceeding 4.5K. It should be kept in mind that 
multi-model means for temperature and precipitation 
for the USA were calculated assuming with all 31 CMIP5 
models weighted equally. 

For a comparison with IPCC AR5 results, we calculat-
ed the difference in global mean surface air temperature 
between 2081–2100 and 1861–1900 periods. Under the 
considered emission scenario, the ensemble mean for 
this difference is 2.75K, which is very similar to warming 
under the RCP6.0 scenario (2.8K, Table 12.3 in IPCC, 
2013). The 90% probability range from the MESM en-
semble (2.3–3.3K) is significantly narrower than from 
the CMIP5 ensemble for RCP6.0 (2.0–3.7K). As noted by 
Sokolov et al. (2017), the narrower probability distribu-
tion obtained in the MESM ensemble, compared to the 

CMIP5 multi-model ensemble, is explained by the cor-
relation between climate parameters imposed by the ob-
served surface temperature changes. According to IPCC 
(2013), the global mean temperature, averaged over the 
last two decades of the 21st century, increases by more 
than 3K relative to preindustrial in the RCP6.0 simula-
tions for 36% of the CMIP5 models. This threshold is ex-
ceeded in only 20% of the MESM runs. At the same time, 
the 2K threshold is exceeded in 100% of simulations for 
both the CMIP5 and MESM ensembles.

Uncertainty in the magnitude of temperature changes 
over the USA associated with uncertainty in the global 
climate system response to external forcing is compa-
rable to the uncertainty associated with the use of the 
different CMIP5 model patterns. Uncertainty in precipi-
tation change comes almost entirely from the use of dif-
ferent CMIP5 model patterns. Significant differences in 
the spatial distributions of changes in temperature and 
precipitation reflect the larger uncertainties inherent in 
changes on the smaller spatial scales. 
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