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Abstract

Future climate change depends on properties of the climate system and the external
forcing factors that drive the global energy budget. Among those properties are climate
sensitivity, the rate at which heat is mixed into the deep ocean, and the aerosol forcing
on the planet. In this dissertation, we use the newly updated Massachusetts Institute of
Technology Earth System Model (MESM) to derive the joint probability distribution
function (PDF) for model parameters that represent the aforementioned climate system
properties. Climate sensitivity (ECS) in the model is set through an adjustment to the
cloud feedback parameter. The vertical diffusion coefficient, Kv, represents the mixing
of heat into the deep ocean by all mixing processes. The net anthropogenic aerosol
forcing parameter, Faer, estimates the contribution of aerosol cooling to the global energy
budget. Using an 1800-member ensemble of MESM runs where the model parameters
have been systematically varied, we derive PDFs for the model parameters by comparing
the model output against historical observations of surface temperature and global mean
ocean heat content. In particular, we answer four main research questions: (1) How are
the parameter PDFs derived using the MESM ensemble different from those using a
previous version of the model?, (2) How do the estimates change when recent surface
temperature and ocean heat content observations are included in the model diagnostics
used to evaluate model performance?, (3) How does internal climate variability lead to
uncertainty in the parameter estimates?, and (4) What impact do the changes in PDFs
have on estimates of future warming, namely estimates of transient climate response
(TCR)? We show that estimates of climate sensitivity increase and the aerosol forcing is
less negative when using MESM. These shifts are the result of a new forcing suite used to
drive the model. By extending the length of the model diagnostics one decade at a time,
we show that recent temperature patterns impact our estimates of the climate system
properties. The continued rise in surface temperature leads to higher values of ECS,
while the increased rate of heat storage in the ocean leads to lower estimates of ECS and
higher estimates of Kv. We show that the parameter distributions are sensitive to the
internal variability in the climate system and that using a single variability estimate can
lead to PDFs that are too narrow. Throughout the dissertation, we show that estimates
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of transient climate response are correlated with ECS and Kv. Namely, higher ECS
and weaker Kv lead to higher values of TCR. When considering all of these factors, we
arrive at our best estimate for the climate system properties. We estimate the 90-percent
confidence interval for climate sensitivity to be 2.7 to 5.4 ◦C with a mode of 3.5 ◦C. Our
estimate for Kv is 1.9 to 23.0 cm2s−1 with a mode of 4.41 cm2s−1. Faer is estimated to
be between -0.4 and -0.04 Wm−2 with a mode of -0.25 Wm−2. Lastly, we estimate TCR
to be between 1.4 and 2.1 ◦C with a mode of 1.8 ◦C.
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Chapter 1 |
Introduction

Reliable projections of future climate change strongly depend on models that accurately
represent the behavior of the climate system. In this dissertation, we aim to improve
our current understanding of the climate system by deriving probability distributions
for three properties key to the evolution of future climate: climate sensitivity, the rate
of ocean heat uptake, and the net anthropogenic aerosol forcing. Better estimates of
these properties will improve projections of future climate change and the associated
risks. In this introduction, we provide a broad overview of the topics relevant to the
dissertation. Each individual chapter has its own introduction that focuses on the specific
research topic being explored. Here, we first discuss the hierarchy of model complexity
and present where the model used in this dissertation fits within the hierarchy. We then
present a discussion of the energy balance of the climate system and how the climate
system properties we estimate in this study fit within that framework. A discussion
of the estimates of the climate system properties we explore follows. We conclude the
chapter with a discussion of the key questions and an outline for the remainder of the
dissertation.

1.1 Hierarchy of Climate Models
Climate models exhibit a wide range of complexities. Current models range from Earth
System Models (ESMs), to fully coupled, three-dimensional atmosphere-ocean general
circulation models (AOGCMs), to Earth system models of intermediate complexity
(EMICs), to simple climate models (Flato et al., 2013). Until recently, AOGCMs repre-
sented the most complete climate models in the field. In an effort to fully understand
the physical dynamics of the climate system, AOGCMs were developed to couple many
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components of the climate system into a single model capable of simulating the complex
interactions between the components as observed in the real world. ESMs have ex-
panded upon AOGCMs by adding biological and chemical components into the modeling
framework. Examples of added components include models of the carbon cycle, ocean
biogeochemistry, atmospheric chemistry, and land use/land cover change. Given their
complexity, ESMs and AOGCMs require significant computational resources for a single
model run.

EMICs include many of the same components as AOGCMs but substitute parame-
terizations for some climate system components and include additional processes (e.g.,
biogeochemistry) excluded from AOGCMs due to the computational cost. Simple climate
models include even more parameterized processes and are typically tuned to replicate
results from AOGCMs. Global energy balance models are one example of a simple climate
model (see Section 1.3). Given their simplifications of the climate system, EMICs and
simple climate models run much faster than AOGCMs and ESMs. For example, a single
multi-century run of an ESM or AOGCM may take months to complete, whereas simple
climate models and EMICs can yield hundreds to millions of runs in a single night using
fewer computational resources. A schematic of the trade-offs between model complexity
and computational requirements is shown in Figure 1.1. As a result of the fast run times,
multiple model runs over a wide range of parameter values can be run in the same time it
takes for one run of an AOGCM. This efficiency makes EMICs and simple climate models
ideal for probabilistic climate model studies and studies that require long simulations
(Flato et al., 2013).

1.2 The MIT Earth System Model
The Massachusetts Institute of Technology (MIT) Earth System Model (MESM) is the
Earth system component of the MIT Integrated Global Systems Model (IGSM, Sokolov
et al., 2005) and is the primary model used in this dissertation. In the past, the Earth
system component of IGSM has also been referred to as IGSM, and we will continue
with this convention throughout the dissertation. For our work, we use an improved and
updated version of the Earth System Model, which we will refer to as MESM hereafter.
In particular, we use a version of MESM that turns off sub-models for atmospheric
chemistry, ocean biogeochemistry, and the terrestrial ecosystem. The resulting model is
an EMIC of the climate system that couples models of the atmosphere, ocean, and land,

2



Model Complexity

N
um

be
r o

f R
un

s

Computational
Resources

Simple Climate
Models

EMICs

AOGCMs

Earth System
Models

Figure 1.1: Representation of the trade-off between model complexity and the number
of runs of a given model. Model complexity takes many different forms, ranging from
model resolution to the number of climate components coupled together. Approximate
locations of the types of models discussed in the text are indicated on the complexity
spectrum. Contours are theoretical lines of constant computational resources.

and allows us to study their evolution and interactions under different forcing scenarios
(Figure 1.2). The atmospheric model is a dynamical model derived from the Goddard
Institute for Space Studies two-dimensional climate model that was first described in Yao
and Stone (1987) and Stone and Yao (1987, 1990) and in final form in Sokolov and Stone
(1998). Temperatures over a given latitude band are averaged, leaving only latitude and
height as coordinates. The model is run at 4◦ latitudinal resolution for a total of 46
zonal bands and has a total of 11 vertical layers in the dynamic model and 14 vertical
layers in the radiation model. Each latitude band has its surface divided into fractions
of land, ocean, sea ice, and land ice, all with their own energy flux and temperature
calculations. Zonal values for surface conditions are calculated as the weighted average
of the four land surface types. The atmosphere is coupled to a mixed-layer ocean model
with the two systems interacting through the diffusion of heat anomalies across the
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Figure 1.2: Schematic of the components of the MIT Earth System Model used in this
dissertation. The coupled atmosphere, ocean, and land system is driven by natural and
anthropogenic forcings. Figure adapted from the full diagram of the Integrated Global
System Model accessed on the Joint Program on the Science and Policy of Global Change
website at https://globalchange.mit.edu/research/research-tools/global-framework.

interface. The mixed-layer ocean consists of an upper layer with horizontal resolution of
4◦ in latitude and 5◦ in longitude and a 3000 m deep anomaly diffusing ocean beneath
(Sokolov et al., 2007). Sokolov et al. (2007) show that for historical and short-term
future climate change scenarios, the mixed-layer ocean model matches the behavior of
a three-dimensional version of the model quite well. This coupled system is driven by
the natural and anthropogenic climate forcings first described in Forest et al. (2006).
Natural sources include solar irradiance changes and stratospheric aerosols from volcanic
eruptions. Anthropogenic sources include greenhouse gas concentrations, sulfate aerosol
loadings, and stratospheric and tropospheric ozone concentrations. While the forcing
suite remains the same, the forcing records have been updated and extended to allow for
model simulations that run to near present time.
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One benefit of the model is the ease with which three characteristics of the climate
system can be modified. These characteristics are climate sensitivity, the rate of ocean
heat uptake, and the net anthropogenic aerosol forcing. Climate sensitivity measures
the global mean surface temperature response to a change in forcing and is modified by
changing the strength of the cloud feedback at different levels in the model. In particular,
the cloud fraction predicted by the model, CMOD, is related to the cloud fraction used in
the radiation calculations, CRAD, by

CRAD = CMOD(1± κ∆Tsfc), (1.1)

where κ is the model cloud feedback parameter and ∆Tsfc is the difference between
the model global mean surface temperature and the global mean surface temperature
from a control run simulation. Sokolov (2006) showed that for the range of climate
sensitivities found in global climate models, adjusting the cloud feedback simulates well
the sensitivity to other forcings. Because high and low clouds have opposite effects on
global temperature (warming and cooling, respectively), the sign of the adjustment is
different for high (-) and low (+) clouds. A specific value of climate sensitivity is obtained
by choosing the appropriate value of κ in Eq. (1.1). By changing the fraction of high
and low clouds in opposite directions, a smaller value of κ is needed for a given value of
climate sensitivity, thus reducing the artificial change in cloud cover as a result of the
adjustment. The utility of the adjustment method is not restricted to MESM alone and
has been shown to be effective with a three-dimensional climate model as well (Sokolov
and Monier, 2012).

The rate of ocean heat uptake is controlled by the effective ocean diffusivity in the
model. In MESM, ocean diffusivity represents the vertical mixing of heat below the
mixed layer by all processes and varies as a function of latitude (Sokolov and Stone,
1998). The spatial distribution of the diffusion coefficient is based on measurements of
tritium mixing into the deep ocean reported in Hansen et al. (1984), with stronger mixing
in polar regions and weaker mixing in equatorial regions. To obtain a specified global
mean diffusivity, the pattern is uniformly scaled to preserve the spatial structure of the
mixing. Smaller diffusivities result in a slower mixing of heat into the deep ocean, whereas
larger diffusivities result in a more rapid mixing of heat into the deep ocean. Because all
mixing processes are approximated and aggregated by the diffusivity parameter, values
are larger than those for molecular diffusion found in subgrid-scale parameterizations of
other models (Sokolov et al., 2003).
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The anthropogenic aerosol forcing used in the model is prescribed spatially by a
latitude-dependent pattern that differs over land and the ocean. The pattern amplitude
varies with time based on the estimated anthropogenic emissions of sulfur dioxide, with
weaker amplitudes at the beginning of the simulation and increasingly larger amplitudes
as time progresses (Forest et al., 2001). Adjustment of the net anthropogenic aerosol
forcing parameter sets the pattern amplitude in the 1980s. As the only adjustable
forcing pattern in the model, the aerosol forcing also represents an estimate of all other
unmodeled forcings with a global pattern similar to the aerosol loading.

1.3 Global Energy Budget Equation
The first-order behavior of the global climate system can be explained with the aid of
the simple two-layer ocean model described in Gregory (2000). In this model, the ocean
is divided into two layers: an upper layer that interacts with the atmosphere and a deep
layer that interacts with the upper layer. Following the notation of Gregory et al. (2015),
the two-layer model is written as a coupled set of two equations,

Cu
dTu
dt = F − αTu − γ(Tu − Td) and (1.2)

Cd
dTd
dt = γ(Tu − Td), (1.3)

where Cu and Cd are the heat capacities of the upper and lower layers, respectively,
Tu and Td are the temperatures in the upper and lower layers relative to the initial
equilibrium state, respectively, F is the external forcing on the climate system, α is the
global feedback parameter, and γ is a transfer coefficient between the upper and lower
layers. In this model, heat stored in land and heat that goes into melting ice are ignored.
Adding Equations 1.2 and 1.3 yields the net global energy budget:

N = Cu
dTu
dt + Cd

dTd
dt = F − αTu (1.4)

where N is the rate of heat stored in the climate system per square meter. Taken as a
whole, the heat stored in the climate system is the difference between the net forcing, F,
and the energy required to warm the system above equilibrium.

The model parameters described in Section 1.2— climate sensitivity, ocean diffusivity,
and the anthropogenic aerosol forcing scaling factor —tie directly into Eqs. 1.2-1.4.
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Climate sensitivity in MESM is related to the inverse of α. In the energy balance model,
α is the net feedback of the climate system and represents the sum of all feedbacks in
the climate system. α also represents the change in forcing required to change the global
mean temperature by 1 ◦C. In MESM, α is also the sum of individual feedbacks, but
can only be adjusted through the value of κ in the cloud adjustment scheme. The ocean
diffusivity parameter sets the mixing rate of heat anomalies between the mixed layer
and the deep ocean. Thus, there is a direct relationship between the ocean diffusivity in
MESM and the transfer coefficient, γ, in the energy balance model. Any forcings that
are not explicitly modeled in MESM are approximated using the aerosol forcing, linking
this parameter to the net forcing, F, in Eq. 1.4.

1.3.1 Temperature Metrics from the Energy Balance Model

When F in Eqs. 1.2 and 1.4 is taken to be the additional forcing introduced by an instan-
taneous doubling of carbon dioxide (CO2) concentrations, the corresponding temperature
change when the system is brought into equilibrium is defined as the equilibrium climate
sensitivity. When the system is in equilibrium, the left-hand side of Eq. (1.4) is zero as
the net forcing introduced by the CO2 doubling exactly matches the outgoing radiation
due to the increase in global mean temperature. The temperature reached in this new
equilibrium state is the climate sensitivity of the system and calculated as Tu,eq = F2XCO2

αeq
.

Estimating climate sensitivity from the energy balance model is not limited to
equilibrium forcing scenarios or equilibrium conditions. Under any forcing scenario,
F, an effective climate sensitivity can be estimated from the model time series and is
indicative of the strength of the feedbacks currently active in the system. These transient
climate simulations allow feedbacks in the climate system to be active under idealized
or more realistic forcing scenarios, as opposed to equilibrium runs where the forcing
change is abrupt and held constant (Murphy, 1995). In such transient simulations, the
rate of heat storage in Eq. (1.4) is non-zero and the system is adjusting to the external
forcing. Eq (1.4) can be solved for α and estimated from the time series of N, F, and
T to calculate the effective net feedback, αeff . Inversion of the effective net feedback
yields the effective climate sensitivity, the non-equilibrium measure of the global mean
temperature response to a unit change in forcing in the current state.

An idealized forcing scenario is used to define a second temperature metric related to
a doubling of CO2 concentrations. In this transient climate simulation, F is taken to be
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the forcing when CO2 concentrations are increased at the rate of 1% per year instead of
instantaneously doubling the CO2 concentration. In this specific forcing scenario, the
transient climate response (TCR) is taken to be the temperature change at the time of
CO2 doubling, which occurs in year 70 of the simulation. Typically, the 20-year average
of global mean surface temperature centered on year 70 is taken as the transient climate
response. As a shorter time-scale measure of climate change, TCR has more of an impact
on climate change over the next century than does equilibrium climate sensitivity (Millar
et al., 2015). Because TCR is conducted under a more realistic forcing scenario and does
not rely on equilibrium conditions, it is a much more policy-relevant measure of climate
change.

1.4 Climate Sensitivity and Methods for Estimation
Climate sensitivity has been given a lot of attention due its impact on the climate system
and because it summarizes the impact of CO2 on climate change in a single number
(Charney, 1979; Mitchell et al., 1990; Kattenberg et al., 1996; Cubasch et al., 2001; Meehl
et al., 2007; Andronova et al., 2007; Knutti and Hegerl, 2008; Collins et al., 2013). Not
only has climate sensitivity played a role in the evolution of surface temperature patterns
in the past, it also plays a key role in determining future climate change (Andrews and
Allen, 2008). In particular, two climate change metrics, the aforementioned transient
climate response (Section 1.3.1) and sea level rise, have been shown to depend on climate
sensitivity (Webster et al., 2008; Sokolov et al., 2009; Sriver et al., 2012). These two
metrics are relevant because their impacts may require the implementation of adaptation
strategies or serve as drivers for policy change.

Estimates of climate sensitivity have been derived using a number of different methods.
We summarize four such methods here.

1.4.1 Inference from Feedback Analysis

One of the complexities of climate sensitivity is that it is a function of many feedbacks
and processes in the climate system (Flato et al., 2013). In particular, the lapse rate,
water vapor, snow-albedo, and cloud feedbacks play critical roles in determining climate
sensitivity (Bony et al., 2006). Although there is a general understanding of how each
feedback mechanism works, the overall impact of each on other feedbacks and overall
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climate sensitivity is uncertain. Uncertainties in the individual components lead to
uncertainty in the total global feedback and this feedback uncertainty contributes to
uncertainty in climate sensitivity estimates.

One method for estimating climate sensitivity is to estimate feedbacks individually
and combine them into a total feedback parameter. Climate sensitivity is calculated as
the inverse of the total feedback parameter. Methods for estimating feedback strengths
from the change in top-of-the-atmosphere radiative flux measurements are summarized in
Klocke et al. (2013). These methods include systematically varying individual variables
associated with specific feedbacks from a control run to isolate their impacts, calculating
radiative kernels for each variable, determining the change in cloud radiative forcing (cloud
feedback only), and regression of top-of-the-atmosphere radiative forcing versus surface
temperature change. All four methods calculate feedbacks using a linear approximation,
and therefore do not allow for non-linearities or interactions between different feedbacks.
Further strengths and weaknesses of the methods are more thoroughly discussed in Klocke
et al. (2013).

1.4.2 Inference from Perturbed Physics Ensembles

Another method for understanding climate sensitivity is to determine how microphysical
properties in a given model affect its behavior. Perturbed physics ensembles (PPEs) are
designed to test how climate sensitivity and other properties depend on the small-scale
behavior of the model. Parameters such as the fall speed of ice, ice particle size, the
critical relative humidity for cloud formation, and gravity wave drag, to name a few, are
systematically varied and the sensitivity of the model to these changes is evaluated to
determine their impacts on model behavior. Emergent properties of the model, including
climate sensitivity, can then be diagnosed for each configuration of the model. From
this evaluation, the range of possible climate sensitivity values in the model, and the
processes governing these properties, can be better understood.

Multiple studies have used PPEs to evaluate climate sensitivity for individual models.
Examples of PPE studies include the Quantifying Uncertainties in Model Predictions
project (Murphy et al., 2004; Webb et al., 2006), the climateprediction.net experiments
(Stainforth et al., 2005; Piani et al., 2005), the Japan Uncertainty Modeling Project
(Yokohata et al., 2010), and the National Center for Atmospheric Research CAMcube
ensemble (Sanderson, 2011). Each study uses a different model and the number of
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parameters that are perturbed differs amongst them. One drawback of the PPE approach
is that they are typically run using computationally expensive AOGCMs. With the
exception of the climateprediction.net studies which utilize idle computer time from
volunteers, the model complexity significantly limits the number of model runs that can
be performed (see Figure 1.1). The limitation on model runs in turn limits the number
of parameters that can be varied.

1.4.3 Inference from the Global Energy Budget

A number of studies have estimated climate sensitivity using the global energy budget
approach (Gregory et al., 2002; Forster and Gregory, 2006; Otto et al., 2013; Lewis and
Curry, 2014; Masters, 2014). When deriving estimates of climate sensitivity, these studies
estimate the terms in Eq. 1.4 as the difference between two time periods and solve for
climate sensitivity. While the same general method is applied in each of these studies,
groups take different approaches to estimating the terms in the energy balance equation.
All of the studies estimate global mean surface temperature from observations. The net
energy imbalance is estimated either from satellite observations (Forster and Gregory,
2006) or the time series of global mean ocean heat content (Gregory et al., 2002; Otto
et al., 2013; Lewis and Curry, 2014; Masters, 2014). Time series of the forcings are
typically taken directly from observations (Forster and Gregory, 2006), simulations of
fully-coupled AOGCMs (Otto et al., 2013; Masters, 2014), or radiative forcing estimates
from the Intergovernmental Panel on Climate Change (IPCC) reports (Gregory et al.,
2002; Lewis and Curry, 2014). A more in-depth summary of the state of energy budget
approaches to estimating climate sensitivity is presented in Forster (2016).

1.4.4 Inference from Models and Observations

Climate models allow for climate sensitivity to be estimated directly rather than calculat-
ing individual feedback strengths or varying sub-grid scale processes. Many model-driven
studies use simple models such as the EMICs and energy balance models described in
Section 1.1. The benefits of these models are that run times are significantly shorter and
model parameters, including climate sensitivity, can be changed easily. When combined,
the preceding factors allow for multiple parameters to be adjusted jointly over a wide
range values. By sampling different values of multiple parameters, a large number of
possible states of the climate system can be simulated. Climate parameters that are
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typically adjusted include climate sensitivity, an estimate of heat uptake in the ocean,
and an estimate of the net anthropogenic aerosol forcing. Observations are then used
to constrain the model parameters by evaluating how well model output matches the
observations.

Multiple studies have utilized this strategy for estimating climate sensitivity but
using different methodologies. One method is to systematically vary the parameters on a
grid of model runs and interpolate the results onto a finer grid to estimate parameter
distributions (Forest et al., 2002, 2006, 2008; Libardoni and Forest, 2011, 2013; Lewis,
2013; Johansson et al., 2015). A second approach is to build a statistical approximation
of the model based on a set of training runs at known parameter settings (Knutti et al.,
2003; Tomassini et al., 2007; Drignei et al., 2008; Sansó and Forest, 2009; Olson et al.,
2012). This emulator is then used to estimate model behavior at any setting of the
parameters, allowing for Markov Chain Monte Carlo methods to be used to estimate the
parameter distributions.

1.5 Estimates of Effective Climate Sensitivity and Tran-
sient Climate Response
In both Charney (1979) and the IPCC Fifth Assessment Report (IPCC AR5, Bindoff
et al., 2013), climate sensitivity was reported to fall between 1.5 and 4.5 ◦C with a central
estimate of 3 ◦C. Thus, despite the large number of studies aimed at estimating climate
sensitivity and an increased understanding of the climate system, the uncertainty in the
estimates has not changed. One of these reasons is the mismatch in climate sensitivity
estimates derived from energy budget constraints and estimates derived from models.
Estimates of climate sensitivity from studies using the global energy budget tend to be
lower than those from models. Unless otherwise noted, all ranges presented are 90%
confidence intervals. Otto et al. (2013) estimate climate sensitivity in the range 1.2-3.9 ◦C.
Using similar averaging periods to Otto et al. (2013) but including additional uncertainty
in the forcing time series, Lewis and Curry (2014) estimate climate sensitivity in the
range 1.05-4.05 ◦C. Masters (2014) found a best estimate of 1.98 ◦C with a range of
1.19-5.15 ◦C.

In contrast, climate sensitivity estimated from models tends to be higher. Diagnosing
climate sensitivity from the radiative forcing, surface temperature, and ocean heat
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content time series in the current generation of AOGCMs used in the Coupled Model
Intercomparison Project Phase 5 (CMIP5, Taylor et al., 2012) yields an estimate of
3.2 ± 1.3 ◦C (Forster et al., 2013). Inverse estimation studies using EMICs and other
simple models also tend to estimate higher climate sensitivity values and do not rule
out the possibility of high climate sensitivity. Using statistical emulators of different
EMICs, Sansó and Forest (2009) and Olson et al. (2012) estimate climate sensitivity in
the ranges 1.1-5.2 ◦C and 1.8-4.9 ◦C, respectively. Using an approach similar to what
is presented in this dissertation, Libardoni and Forest (2011, 2013) estimate climate
sensitivity in the range 1.2-5.2 ◦C. One study based on EMIC simulations that estimates
low climate sensitivity is Lewis (2013). Using the model simulations of Forest et al.
(2006), Lewis (2013) estimates climate sensitivity in the range 1.2-2.2 ◦C, rather than the
1.9-4.7 ◦C range published in Forest et al. (2006). The differences arise due to changes in
methodology implemented in Lewis (2013). These include a reduction in the number of
model diagnostics used to evaluate model performance, the observational dataset used
for surface temperature, the likelihood function used to relate model fit to a probability
distribution, and the choice of prior on the model parameters.

Unlike with climate sensitivity, there is little separation between CMIP5 models,
observationally based energy budget approaches, and model-based estimates of transient
climate response. The range from IPCC AR5 estimates TCR between 1.0 and 2.5
◦C (Bindoff et al., 2013). Estimates from global energy budget approaches estimate
TCR in the ranges 0.9-2.0 ◦C (Otto et al., 2013) and 0.9-2.5 ◦C (Lewis and Curry, 2014).
Forster et al. (2013) estimates TCR from the CMIP5 models to lie between 1.2 and 2.4
◦C. Using an EMIC, Libardoni and Forest (2011, 2013) estimate TCR between 0.9 and
2.3 ◦C.

1.6 Estimates of Vertical Ocean Diffusivity
Many processes contribute to the turbulent mixing of heat in the ocean. These include
wind-driven mixing, the propagation and breaking of internal waves, and flow over rough
topography (MacKinnon et al., 2013). The aggregated effect of these mixing process can
be summarized by the vertical diffusion coefficient, κv. Munk (1966) first estimated κv =
1 cm2s−1 for depths below 1 km. The estimate was later confirmed by Munk and Wunsch
(1998). Many studies have estimated κv by following the vertical motion of passive tracers
injected into the ocean. Due to the spatial distribution of mixing mechanisms, κv is a
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function of latitude and depth, with weaker mixing above the thermocline and stronger
mixing in deeper waters. Further, diffusivity in the thermocline is typically an order
of magnitude less than the Munk (1966) 1 cm2s−1 estimate (Ledwell et al., 1993, 1998;
Kunze et al., 2006). Gregg (1987) found large spatial variation with a best guess of κv ≤
0.1 cm2s−1 in the upper thermocline. Polzin et al. (1997), St. Laurent and Simmons
(2006), and Waterhouse et al. (2014) all show similar variation in vertical diffusivity
with depth. In particular, St. Laurent and Simmons (2006) find κv on the order of 0.1
cm2s−1 in the thermocline and 1-10 cm2s−1 in deep and bottom waters and Waterhouse
et al. (2014) estimate κv = 0.3 cm2s−1 above 1000 m, 4.3 cm2s−1 below 1000m and 3.3
cm2s−1 for the full depth of the ocean.

In addition to direct calculation from observations, κv can be estimated using models.
In particular, many EMICs have a parameter that sets the vertical diffusion coefficient. By
sampling over a large range of κv values in the model and comparing simulations to past
climate, probability distributions for κv are estimated. As noted in Olson et al. (2012),
κv is a model-specific parameter, making direct comparison between models difficult.
For similar reasons, comparisons between model parameterizations and observations
are non-trivial. Using a one-dimensional model, Hansen et al. (1984) found that a
global mean κv of 1 cm2s−1, the estimate from Munk (1966), matched well the average
mean perturbation of mixed-layer temperature. Kriegler (2005), Tomassini et al. (2007),
Forest et al. (2008), Lorenz et al. (2010), and Olson et al. (2012) all use models with
an adjustable vertical ocean diffusivity parameter. In general, the estimated values
are similar to those found in the thermocline, with estimates typically in the 0.1-0.5
cm2s−1 range. However, Kriegler (2005) and Forest et al. (2008) do not rule out κv >
1 cm2s−1 in their 95- and 90-percent confidence intervals, respectively. Using the same
model as Forest et al. (2008) but different observational constraints, Libardoni and Forest
(2011) does not rule out κv above 25 cm2s−1.

1.7 Estimates of Aerosol Forcing
Aerosols in the atmosphere reduce the net radiative forcing on the climate system
(Shindell et al., 2013; Boucher et al., 2013). Estimates of the forcing have been made
using AOGCMs, observations, and simpler climate models. Boucher et al. (2013) discusses
the difference between the radiative forcing and effective radiative forcing due to aerosols.
Radiative forcing (RF) is the instantaneous change in forcing due to the direct interaction
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between radiation and aerosols. The effective radiative forcing (ERF) is the change in
forcing after the atmosphere and clouds have adjusted to the presence of aerosols. RF
and ERF due to aerosols in AOGCMs are estimated as -0.35 ± 0.5 and -0.45 ± 0.5
Wm−2, respectively (Boucher et al., 2013). For models in the Atmospheric Chemistry
and Climate Model Intercomparison Project, Shindell et al. (2013) calculates the spread
in model aerosol RF and ERF to be -0.49 to -0.06 and -1.5 to -0.8 Wm−2, respectively.

Satellite measurements of aerosol optical depth typically inform observational esti-
mates of the aerosol radiative forcing. Bellouin et al. (2005) estimate an all sky direct
radiative forcing of -0.8 ± 0.1 Wm−2 and a clear sky direct radiative forcing of -1.9
± 0.3 Wm−2. They note that these values are typically greater than model estimates
of radiative forcing. In a synthesis of satellite-based estimates, Yu et al. (2009) found
the direct radiative effect of aerosols in the range -1.9 to -0.9 Wm−2. Su et al. (2013)
estimates all sky and clear sky global mean aerosol forcings of -0.51 or -0.17 Wm−2 and
-1.55 or -1.19 when combining different satellite aerosol optical depth datasets with cloud
observations. Using reanalysis datasets for aerosol optical depth, Bellouin et al. (2013)
estimates a global average aerosol radiative forcing of -0.7 ± 0.3 Wm−2 between 2003
and 2010. Murphy et al. (2009) use observed forcing patterns to estimate the aerosol
forcing as the residual of the observed net forcing and all other measured forcings. An
aerosol forcing of -1.1 ± 0.4 Wm−2 is estimated with this method.

Energy balance models and EMICs typically include a time series for the aerosol
forcing that is scaled by changing the amplitude of the pattern with time. Similar to
estimates of vertical ocean diffusivity, the aerosol forcing parameter in these models is
model-specific and does not lend itself to clear comparisons amongst models and with
observations. This is because the aerosol scaling pattern represents different forcings
and the amplitude of the pattern is set for different time periods. For example, while
Andronova and Schlesinger (2001) scale the natural and anthropogenic aerosol direct and
indirect forcings by adjusting the amplitude in 1990, the aerosol parameter in Knutti
et al. (2002) is scaled in 2000 and represents the indirect aerosol effect and any other
forcing not explicitly represented in the model. With these differences in mind, estimates
of aerosol forcing from energy balance models and EMICs fall in the ranges -1.3 to -0.54
Wm−2 (Andronova and Schlesinger, 2001), -1.2 to 0 Wm−2 (Knutti et al., 2002), -1.53
to -0.33 Wm−2 (Kriegler, 2005), -0.83 to -0.19 Wm−2 (Libardoni and Forest, 2011), and
-1.7 to -0.4 Wm−2 (Skeie et al., 2014). Despite the difficulty in comparing across models,
accounting for the uncertainty in the radiative forcing is vital, as under sampling the
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range can cut off the upper tail of climate sensitivity estimates (Tanaka et al., 2009).

1.8 Evaluation of Model Performance
Throughout the dissertation, we derive probability distribution functions for model
parameters. To derive these functions, model output for each run is evaluated against
time series of observed climate change. A given model run can be evaluated through the
use of a goodness-of-fit statistic

r2 = (x− y)TC−1
N (x− y), (1.5)

where x and y are n-length vectors of model output and observed data, respectively, and
C−1
N is the inverse of the noise-covariance matrix. In its simplest form, the r2 statistic is

the sum of n terms. Low values of r2 represent models that yield temperature patterns
that are more consistent with the observations than models that have higher r2 values. It
should be noted that this definition of r2 is different than the coefficient of determination
for the goodness-of-fit of a linear model. In a linear model, high values of r2 indicate
a good fit to the model. As will be made clear later in this section, low values of r2

indicate a good fit between the model output and the observations.
Model goodness-of-fit statistics in this study are calculated using the same optimal

fingerprint detection algorithm initially described in Forest et al. (2001) and used in
Forest et al. (2002, 2006, 2008). The methodology represents a variation on the methods
of Allen and Tett (1999). Given that the climate varies naturally with time due to
non-linear dynamics, both modeled and observed trends have these natural variability
patterns (also called internal variability) embedded in them. In an effort to estimate
this background internal variability, control run data are obtained by running a climate
model for thousands of years with no external forcings. Estimates of the unforced
temperature patterns used as model diagnostics are then estimated by extracting samples
of the patterns from the control simulation. Spatial and temporal correlations in the
temperature patterns from these samples are then used to estimate the noise-covariance
matrix, CN.

Through eigenvalue decomposition, CN is decomposed into a set of orthogonal
eigenfunctions that describe the internal climate variability. The eigenfunctions are also
called empirical orthogonal functions (EOFs) and are directly related to the singular
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value decomposition of the matrix. As the rank of the eigenfunction decreases, so too
does the magnitude of its eigenvalue, and thus the fraction of the total variance in the
overall pattern described by the individual pattern (Forest et al., 2001). To create an
orthonormal set of basis functions, each eigenfunction is normalized by its singular value
(i.e., square root of eigenvalue). To avoid rotating into a direction with infinite variance
(i.e., dividing by singular values near zero), the low-variance patterns are filtered out
of the pattern through a reduction in the number of eigenvalues and eigenfunctions
retained in the calculation. The small magnitude singular values associated with the
last temperature patterns result in division by a small number and cause the calculation
to approach infinity. The removal of these patterns is justified by noting that they
contribute minimally to the total variability. This process represents a truncation of the
EOF decomposition and reduces the number of terms in the goodness-of-fit sum.

With the internal variability patterns defined, the model and observed patterns are
rotated into the coordinate space defined by the basis functions. This rotation serves to
maximize the signal-to-noise ratio in each pattern by transforming temperature patterns
along the main components of internal variability into coordinates in the direction of
less internal variability. By maximizing the signal-to-noise ratio, small patterns observed
in the rotated trends are interpreted as a temperature variation and not erroneously
discarded as noise. Furthermore, the rotation and normalization ensure that each of
the elements in the x − y vector are independent and identically distributed random
variables from a normal distribution. This leads to each element of the x− y pattern in
the rotated space having equal weight in the goodness-of-fit calculation. Models that
match the observations well have small residuals in each term, resulting in low values of
r2. Thus, low r2 values indicate a good model fit and a high likelihood that the simulated
climate matches the climate system. Similarly, higher r2 values indicate poor model fits
and translate to low likelihoods that the model simulates the climate system.

1.9 Outline of the Dissertation
In this dissertation, we take a systematic and in depth look at each of the terms in
Equation 1.5 to address four main research questions and three sub questions:

1. What is the joint probability distribution function for climate sensitivity, effective
ocean diffusivity, and the net aerosol forcing when MESM is constrained by surface
temperature patterns and global mean ocean heat content?
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(a) How do new forcing time series and an updated land surface model change
the probability distributions?

(b) How does the emergent behavior of MESM compare to the emergent behavior
of IGSM? Namely, how do estimates of TCR and sea level rise differ between
the models?

2. How do the probability distributions change when recent temperature trends are
added to the model diagnostics?

(a) Do the distributions differ depending upon whether recent trends extend the
diagnostics or whether recent trends replace data at the beginning of the
diagnostics?

3. Are the results sensitive to the internal variability estimates used to calculate the
noise-covariance matrix?

(a) How can variability estimates from multiple sources be combined to yield
more robust probability distributions?

4. How do estimates of transient climate response change in response to changes in
the joint probability distributions?

Chapters 2-4 in the dissertation are intended to be stand-alone manuscripts and will
be submitted to peer-reviewed journals. The dissertation author, Alex Libardoni, will be
the lead author on all three papers, has contributed most of the ideas and experimental
designs, and prepared all of the original manuscripts. In Chapter 2, we perform a baseline
evaluation of the change in the probability distribution due to switching from IGSM
to MESM. We run a large ensemble using MESM and compare the joint probability
distribution derived from IGSM using the same model runs and model diagnostics. We
also run an ensemble of transient climate simulations to derive a response surface for
transient climate response using MESM. This response surface is used throughout the
dissertation.

In Chapter 3, we propose new methodology to improve the estimates of the model
parameters. In particular, we use radial basis functions to interpolate goodness-of-fit
statistics to regions of the parameter space where the model has not been run. Second, we
account for uncertainty in surface temperature observations by merging the probability
distributions derived from four different datasets into a single estimate. Using the new
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methods, we show how the distributions change when more recent temperature changes
are systematically added to the diagnostics. We show that the results are sensitive to
whether the model diagnostics are lengthened while including recent changes or whether
the length of the diagnostic is kept constant. Lastly, we assess the impact of including
spatial patterns of surface temperature change in the model diagnostics by deriving
distributions using global mean surface temperature, hemispheric mean temperatures,
and the temperature pattern in four equal-area zonal bands.

In Chapter 4, we show the sensitivity of the distributions to the natural variability
estimate used to derive the noise-covariance matrix. Using the pre-industrial control run
simulations of 25 different AOGCMs, we estimate many realizations of unforced climate
variability and use the noise-covariance matrices to derive new distributions. We merge
the variability estimates across models with similar characteristics to test whether more
stable distributions are derived when the sample size of variability estimates increases.

Throughout the dissertation, we derive TCR distributions from the joint probability
distributions estimated in each study using the functional fit derived in Chapter 2. In
Chapter 5, we summarize our findings and suggest avenues of future research.
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Chapter 2 |
Baseline Evaluation of Model Pa-
rameter Estimates in the Updated
MIT Earth Systems Model

2.1 Introduction
Equilibrium climate sensitivity (ECS), the equilibrium global-mean surface temperature
change due to a doubling of atmospheric carbon dioxide concentrations, is a climate
system property that has been widely studied and strongly influences future climate
projections. One of the complexities of ECS is that it is a function of many feedbacks
and processes that act on different spatial and temporal scales. In particular, the lapse
rate, water vapor, snow-albedo, and cloud feedbacks play especially critical roles (Bony
et al., 2006). Given its influence on future climate change, many studies using a range of
methods have attempted to estimate ECS.

One class of studies estimates ECS directly from observations using a global energy
budget approach (Gregory et al., 2002; Otto et al., 2013; Lewis and Curry, 2014; Masters,
2014). These studies calculate probability distributions of ECS from estimates of global
mean surface temperature change, heat stored in the ocean, and changes in radiative
forcing and the uncertainties in their measurements. A second class of studies uses
simplified climate models such as Earth System Models of Intermediate Complexity
(EMICs) or energy balance models (e.g., Forest et al., 2002, 2008; Libardoni and Forest,
2013; Olson et al., 2013). Taking advantage of the computational efficiency of the
simplified models, these studies run large ensembles with a range of climate sensitivity
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values in addition to other relevant factors, such as the ocean diffusivity and a measure
of the net aerosol forcing. By comparing model runs to observations and evaluating how
well individual model runs match the past, estimates of ECS and other parameters are
then presented as probability distributions.

Transient climate response (TCR) provides a second metric for future climate change
and is defined as the global mean surface temperature change at the time of CO2 doubling
in response to CO2 concentrations increasing at the rate of 1% per year. CO2 doubling
occurs in year 70 of this scenario, making TCR a shorter-term assessment of climate
change than ECS. Unlike ECS, which requires reaching an equilibrium state, TCR is
estimated while the climate system is still adjusting to a time-dependent forcing. There
is a constant evolution in the strength and activity of processes and feedbacks in both
the atmosphere and the ocean as the climate system adjusts to reach equilibrium. Due to
the long time scales required to reach equilibrium, Allen and Frame (2007) argue that we
should focus on estimating TCR, which is more policy-relevant than ECS. Estimates of
TCR can be made from current historical observations and are more meaningful on the
decadal time scale, whereas even if the equilibrium response is known, it may never be
reached. However, even if more focus is placed on TCR than ECS, the two are still closely
linked. Warming on time scales relevant to estimating TCR is related to the sensitivity
of the climate system to external forcings and the coupling between the atmosphere
and the ocean. When considering atmosphere-ocean interactions, we know that TCR
depends on both climate sensitivity and the rate at which heat is mixed into the deep
ocean (Sokolov et al., 2003; Andrews and Allen, 2008).

One EMIC that has been extensively used in studies estimating ECS and TCR is the
Earth system component of the Massachusetts Institute of Technology (MIT) Integrated
Global Systems Model (IGSM, Sokolov et al., 2005). Forest et al. (2002, 2006, 2008)
and Libardoni and Forest (2011, 2013) estimated the joint probability distribution for
climate sensitivity and other model parameters in IGSM. Each study used similar, but
not identical, versions of IGSM with changes both to key components of the model and to
the input data used to force the model. Climate change diagnostics were also modified in
the studies. The Earth system component of IGSM has undergone further development
and a new, updated version incorporated into the integrated framework. This study
serves as a baseline evaluation of how probability distributions for the model parameters
change as a result of updating the Earth system component. In the past, "IGSM" has
been used to reference both the fully integrated model as well as the standalone Earth
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system component. We follow this convention and refer to the older version of the Earth
system model as IGSM, and we refer to the updated version of the model as the MIT
Earth System Model (MESM). We derive a new joint probability distribution by closely
following the methods of Libardoni and Forest (2011) to show the impact that the new
version of the model has on the parameter estimates and find that the new version
of the model leads to higher climate sensitivity estimates in addition to shifts in the
distributions of the other model parameters. The effects on the parameter distributions
due to changing observations and temperature metrics are addressed in Chapter 3. We
also show here how the emergent behavior of MESM compares to the older IGSM by
running a new set of transient simulations and calculating how the response surfaces for
TCR and sea level rise depend on ECS and ocean diffusivity.

In Section 2.2, we give a brief description of the MIT modeling framework and
the differences between IGSM and MESM. We describe the process for deriving the
joint probability distribution function used in Libardoni and Forest (2011) and the
modifications implemented in this study in Section 2.3. Parameter distributions and
response surfaces are presented in Section 2.4, and conclusions in Section 2.5.

2.2 Model
The coupled atmosphere-ocean-land model of the updated MIT Earth System Model
replaces the version described in Sokolov et al. (2005). The first update to the model
was the incorporation of a new land surface model. The Community Land Model (CLM)
version 3.5 (Oleson et al., 2008) replaced CLM version 2.1 to improve estimates of the
surface heat balance in the model. Additionally, the forcings used to drive the model until
now (Forest et al., 2006) were extended and, in some cases, new data sources were used.
Greenhouse gas concentrations and stratospheric aerosols from volcanic eruptions were
obtained from the National Aeronautics and Space Administration Goddard Institute for
Space Studies modeling group forcing suite. The procedure for updating the greenhouse
gas emissions from Hansen et al. (2007) and the volcanic aerosol forcing from Sato et al.
(1993) was described in Miller et al. (2014). Updates included incorporating data from
more observational sources and extending the length of the datasets. Sulfate aerosol
loading from Smith et al. (2011) was extended to 2011 by Klimont et al. (2013). The
Kopp and Lean (2011) solar irradiance dataset replaced the Lean (2000) dataset. Lastly,
the ozone concentration database developed by the Atmospheric Chemistry and Climate
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initiative (AC&C) and Stratospheric Processes and their Role in Climate project (SPARC)
ozone concentration database (Cionni et al., 2011) that was developed in support of the
Coupled Model Intercomparison Project phase 5 (CMIP5) replaced the concentration
data used in Forest et al. (2006). The concentrations in the dataset, hereafter referred to
as AC&C/SPARC, drive the tropospheric and stratospheric ozone forcing in the radiation
code. In Section 2.4, we show the differences between the old and new datasets for those
forcings where the data sources have changed, namely solar and ozone.

Three model parameters that impact the climate system response are easily modified
in MESM. These parameters are the effective climate sensitivity (ECS), the effective
ocean diffusivitiy (Kv), and the net aerosol scaling factor (Faer). ECS is changed by
adjusting the strength of the cloud feedback at different levels in the model (Sokolov,
2006; Sokolov and Monier, 2012). Kv represents the vertical diffusion of heat anomalies
into the deep ocean by all mixing processes and tends to be larger than typical ocean
diffusivity values which represent the diffusion of heat alone (Sokolov et al., 2003). The
mixing pattern is prescribed spatially with stronger mixing in the polar regions and
weaker mixing near the equator. Kv represents the global mean diffusion rate and the
spatial pattern is scaled to obtain the desired value. The anthropogenic aerosol forcing
used in the model is prescribed by a latitude-dependent pattern that differs over land
and ocean and is used as an estimate of all unmodeled forcings in the simulations (Forest
et al., 2001). This pattern is held fixed spatially but scaled temporally by estimated
emissions of sulfur dioxide. Faer sets the amplitude of the pattern in the 1980s.

2.3 Methods
We follow closely the methods of Libardoni and Forest (2011) with two notable changes.
First, we run the model over a wider range of parameter values and on a more regular
grid. Climate sensitivity is sampled from 0.5 to 10.0 ◦C in increments of 0.5 ◦C through
the adjustment of the cloud feedback, the square root of ocean diffusivity is sampled
from 0 to 8 cm s−1/2 in increments of 1 cm s−1/2, and the aerosol forcing amplitude is
sampled from -1.75 to 0.5 Wm−2 in increments 0.25 Wm−2. By choosing this sampling
strategy, we have increased the number of runs from 640 with IGSM to 1800 runs with
MESM, widened the range of parameter values sampled, and increased the density of
model runs within the parameter space (Figure 2.1.).

As a second change, we reduce the number of diagnostics used to evaluate model
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Figure 2.1: Parameter pairings where the models have been run. Points in black are
common to both the IGSM and MESM ensembles. Blue points are unique to the IGSM
ensemble and red points are unique to the MESM ensemble.

performance. We omitted the upper-air temperature diagnostic because it is highly
correlated with the surface temperature diagnostic (Lewis, 2013). This leaves two
temperature diagnostics for evaluating model performance: (1) decadal mean surface
air temperature anomalies from 1946-1995 with respect to a 1906-1995 climatology in
four equal-area zonal bands, and (2) the linear trend in global mean ocean heat content
from 1955-1995 in the 0-3 km layer. As in Libardoni and Forest (2011), we use five
surface temperature datasets (Jones and Moberg, 2003; Brohan et al., 2006; Smith et al.,
2008; Hansen et al., 2010) and one ocean heat content dataset (Levitus et al., 2005) as
observations.
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2.4 Results
To identifty changes in the forcing time series used to drive the model, we compare the
input forcings for the two components for which we have changed datasets. In Figure 2.2,
we show the old and new solar forcing time series. We see that the biggest difference
observed in the solar irradiance time series is a bias towards lower values when using
the Kopp and Lean (2011) data. The bias is relatively constant at approximately 4.5
Wm−2 until 1920, then increases towards 5.0 Wm−2 moving forward in time. The mean
bias is accounted for in the Q-flux adjustment in the mixed-layer ocean model which
specifies the vertically-integrated horizontal heat transport in the mixed layer required to
maintain historical sea surface temperatures (Sokolov et al., 2005). However, because the
Q-flux is calculated offline from control simulations, the pattern is fixed throughout the
run. Any time-varying change to an input forcing cannot be accounted for in the Q-flux
calculation. Thus, the growth of the low bias means that the solar forcing weakens with
time beginning in 1920 in the new suite of forcings.
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Figure 2.2: Annual mean total solar irradiance. The bias between the Lean (2000) and
Kopp and Lean (2011) datasets leads to a reduction in radiative forcing in the new forcing
suite.
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We observe that the ozone concentrations estimated from the AC&C/SPARC dataset
differ in both space and time when compared to the previous concentrations used with
IGSM (Figure 2.3). One clear difference is that the AC&C/SPARC dataset introduces
more temporal variability in stratospheric ozone concentrations (which we approximate
as pressure levels above 200 mb) prior to 1950. Post-1950, AC&C/SPARC tends to have
lower ozone concentrations in the stratosphere and slightly greater concentrations in the
troposphere (levels below 200 mb). However, similar to with the solar forcing, we are
concerned with the temporal change in the forcing imposed by the ozone concentrations,
rather than the relative magnitude of the concentrations across datasets. Beginning
in 1900, tropospheric ozone concentrations increase less rapidly in the AC&C/SPARC
dataset when compared to the IGSM dataset. Differences in stratospheric ozone con-
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Figure 2.3: Ozone concentration in the old IGSM time series (red) and the Cionni et al.
(2011) AC&C/SPARC concentrations (black). (a-c) Annual mean ozone mixing ratio in
the total column in the global average (a), northern hemisphere (b), southern hemisphere
(c). (d-f) As in (a-c) but for the average above 200 mb. (g-i) As in (a-c) but for the
average below 200 mb.
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centrations remain relatively constant until 1950, but then decrease at a slower rate in
the AC&C/SPARC time series. These patterns are generally consistent in the global
and hemispheric means. When considered separately, increased tropospheric ozone
concentrations tend to increase radiative forcing (Stevenson et al., 2013) and decreased
stratospheric concentrations tend to increase radiative forcing (Conley et al., 2013). Thus,
the less rapid increase in tropospheric ozone concentration and less rapid decrease in
stratospheric ozone concentration in the AC&C/SPARC dataset both contribute to a
weaker radiative forcing over the historical period in the new suite of forcings.

With the input forcings documented, we focus on deriving probability distributions
for the model parameters. We first test the impact of omitting the upper-air diagnostic.
Starting from the distributions calculated in Libardoni and Forest (2011), we derive new
distributions based only on the surface temperature and ocean heat content diagnostics
presented in Section 2.3. We show that reducing the number of diagnostics from three to
two has little impact on the parameter estimates (Table 2.1). We only present comparisons
for ECS and Faer because distributions of Kv were poorly constrained in Libardoni and
Forest (2011) and no uncertainty bounds were given. In general, ECS estimates tend
to be slightly lower when using only two diagnostics and aerosol estimates are nearly
unchanged. Further, the relationships between the distributions with respect to surface
dataset are unchanged. Because the changes using only two diagnostics are minimal and
do not change any conclusions from the original study, we justify the removal of the
upper-air diagnostic.

We next evaluate the impacts that changing the model from IGSM to MESM and
updating the forcing suite have on the parameter distributions by comparing model output
from each ensemble member against the temperature diagnostics discussed in Section 2.3.
Following the methods outlined in Libardoni and Forest (2011), we calculate goodness-
of-fit statistics across all runs for each diagnostic and convert them to a joint probability
distribution function for the model parameters. Marginal probability distributions for
individual parameters are then calculated by integrating the joint distribution over the
other two parameters. We present the new distributions in Figure 2.4 and observe
significant differences between distributions derived using IGSM and those derived using
MESM with the updated forcings (Table 2.2). Across all datasets, climate sensitivity
distributions shift towards higher values and the uncertainty bounds encompass a wider
range. When considering the 90-percent confidence intervals from across the distributions
derived from each surface dataset, we find climate sensitivity now lies between 1.3 and
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Table 2.1: 90-percent confidence intervals for ECS and Faer. Distributions that include
the upper-air diagnostic are from Libardoni and Forest (2011) and distributions with
two diagnostics exclude the upper-air diagnostic.

Surface Temperature
Dataset # Diagnostics

ECS Faer
(◦C ) (Wm−2)

5% 95% 5% 95%

HadCRUT21 3 2.0 5.3 -0.19 -0.70
2 1.9 5.2 -0.19 -0.71

HadCRUT32 3 1.9 5.1 -0.22 -0.74
2 1.7 5.0 -0.38 -0.79

NCDC3 3 1.8 4.7 -0.37 -0.78
2 1.6 4.8 -0.38 -0.79

GISTEMP2504 3 1.3 3.6 -0.32 -0.83
2 1.1 4.0 -0.35 -0.83

GISTEMP12005 3 1.2 3.4 -0.33 -0.80
2 1.0 3.7 -0.35 -0.83

1Hadley Centre Climatic Research Unit Temperature version 2
2Hadley Centre Climatic Research Unit Temperature version 3
3National Climatic Data Center merged land-ocean dataset
4GISS Surface Temperature Analysis with 250 km smoothing
5GISS Surface Temperature Analysis with 1200 km smoothing

5.7 ◦C, as opposed to the estimated interval of 1.2 to 5.3 ◦C from Libardoni and Forest
(2011). While the uncertainty bounds are still wide compared to other parameters, we
observe that Kv is now better constrained with MESM. The distributions of Kv derived
using the GISTEMP datasets are still unconstrained with upper tails extending to the
edge of the parameter domain, but all other datasets now show an upper bound well
within the ensemble range. We also observe a marked shift in the aerosol estimates.
When MESM is used with the updated forcing suite, there is a sizeable shift towards
weaker aerosol forcing across all datasets. Whereas past estimates put net aerosol forcing
between -0.83 and -0.19 Wm−2, our new estimate of aerosol forcing is between -0.53 and
-0.03 Wm−2.

The shifts we observe in the parameter estimates are consistent with the changes in
the input forcings. Both the solar and ozone forcing patterns lead to a reduction in their
contribution to the global radiation budget and decrease the net radiatiave forcing on
the planet. Because the diagnostics do not change, model runs with a weaker external
forcing are compared against the same observed temperature patterns. Weaker increases
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Figure 2.4: Marginal probability distribution functions and TCR cumulative distribution
functions derived using the HadCRUT2, HadCRUT3, NCDC, GISTEMP 250, and
GISTEMP 1200 surface temperature datasets. (a) ECS, (b) Kv, and (c) Faer. Whisker
plots indicate boundaries for the 2.5-97.5 (dots), 5-95 (vertical bar ends), 25-75 (box
ends), and 50 (vertical bar in box) percentiles. Distribution means are represented by
diamonds and modes are represented by open circles. (d) TCR CDFs are derived from
1000 member Latin Hypercube samples from the joint parameter distributions and the
TCR(ECS,

√
Kv) functional fit.

in external forcing require higher climate sensitivity to match the same warming trend.
In the model, the aerosol forcing pattern is a negative term in the global energy budget.
It should follow that if, as noted previously, there is weaker net forcing due to the changes
in forcing datasets, our estimates of the aerosol amplitude should become less negative.
From these arguments, combinations of higher climate sensitivity and weaker aerosol
forcing offset the impact of a weaker external forcing. We observe these shifts in the
distributions when comparing the distributions derived from the old and new models
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Table 2.2: 90-percent confidence intervals and means for climate sensitivity (ECS), ocean
diffusivity (Kv), and net aerosol forcing (Faer). Surface temperature datasets are the
same as in Table 2.1.

Surface Temperature
Dataset Model and Runs

ECS
√
Kv Faer

(◦C ) (cm s−1/2) (Wm−2)
5% 95% Mean 5% 95% Mean 5% 95% Mean

HadCRUT2

Full IGSM 1.9 5.2 3.0 0.1 2.1 0.9 -0.19 -0.71 -0.46
Subsampled IGSM 1.9 5.2 3.0 0.1 2.1 0.9 -0.16 -0.71 -0.45
Full MESM 2.1 5.7 3.5 0.1 2.3 1.0 -0.03 -0.39 -0.22
Subsampled MESM 2.1 5.7 3.4 0.1 2.2 1.0 -0.03 -0.39 -0.22

HadCRUT3

Full IGSM 1.7 4.0 2.8 0.2 2.9 1.2 -0.22 -0.75 -0.50
Subsampled IGSM 1.7 4.0 2.8 0.2 2.9 1.2 -0.20 -0.75 -0.49
Full MESM 1.9 5.4 3.2 0.2 3.6 1.3 -0.05 -0.43 -0.24
Subsampled MESM 1.9 5.4 3.2 0.2 3.0 1.2 -0.05 -0.42 -0.24

NCDC

Full IGSM 1.6 4.8 2.7 0.3 3.7 1.6 -0.38 -0.79 -0.59
Subsampled IGSM 1.6 4.8 2.7 0.3 3.7 1.6 -0.36 -0.79 -0.58
Full MESM 2.0 5.4 3.2 0.3 3.7 1.6 -0.15 -0.45 -0.29
Subsampled MESM 2.0 5.3 3.2 0.3 3.2 1.5 -0.15 -0.45 -0.29

GISTEMP 250

Full IGSM 1.1 4.0 2.1 0.7 4.8 2.7 -0.35 -0.86 -0.61
Subsampled IGSM 1.1 4.0 2.1 0.6 4.8 2.7 -0.35 -0.86 -0.60
Full MESM 1.3 4.8 2.6 0.8 7.3 3.5 -0.13 -0.53 -0.34
Subsampled MESM 1.4 4.7 2.6 0.8 4.7 2.6 -0.13 -0.51 -0.33

GISTEMP 1200

Full IGSM 1.0 3.7 1.9 0.8 4.9 3.1 -0.35 -0.83 -0.56
Subsampled IGSM 1.0 3.7 1.9 0.7 4.9 3.1 -0.35 -0.82 -0.56
Full MESM 1.3 4.8 2.6 0.8 7.3 3.5 -0.14 -0.49 -0.33
Subsampled MESM 1.3 4.7 2.6 0.8 4.7 2.6 -0.14 -0.49 -0.32

(Table 2.2).
To test whether the differences observed in the parameter estimates were due to

the model update, rather than the increased density of model runs, we subsampled
each ensemble at the 480 parameter settings where they overlap (see Figure 2.1). We
summarize the distributions in Table 2.2 and see that there is very little sensitivity when
the ensembles are subsampled. Across all datasets, the distributions we derive using
the full 640-member IGSM ensemble and those we derive using the 480-member IGSM
ensemble are nearly identical for all three parameters. The same is true for the MESM
ensemble, except for the distributions we derive for Kv. We consistently estimate a
smaller upper bound for Kv in the subsampled MESM ensemble compared to when the
full MESM ensemble is used. This arises because the wider range of Kv sampled in the
MESM ensemble does not artificially cut off the distribution for values of

√
Kv greater

than 5 cm s−1/2. Thus, the differences we observe between the old and new ensembles are
due to the differences between the model and forcing themselves and not the increased
density of model runs.

To estimate TCR in MESM, we run a 372-member ensemble where all forcings are
held fixed and carbon dioxide concentrations are increased by 1% per year. We calculate
TCR by estimating the global mean temperature change from the beginning of the
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simulations at the time of CO2 doubling. Concentrations double in year 70 and we
estimate TCR as the average global mean temperature change in years 60-80 of the
simulation. Temperature changes are calculated with respect to a control simulation
with the same model parameters and all forcings held fixed. In a similar manner, we also
estimate thermosteric sea level rise (SLR) at the time of doubling. Because all forcings
except those attributed to CO2 are fixed, each ECS-

√
Kv pair yields a single TCR value

and a single SLR value, independent of Faer. We fit a third-order polynomial in ECS and
√
Kv to the TCR and SLR values calculated from each run to derive a functional fit for

all parameter pairs within the domain. From these fits, we derive response surfaces for
each of the transient properties (Figure 2.5). For comparison, we also show the fit derived
using the IGSM and its corresponding 1% per year runs, in addition to the differences
between the two. Outside of the region where ECS is greater than 4 ◦C and

√
Kv is less

than about 0.5 cm s−1/2, and away from the edges of the domain, TCR values from IGSM
and MESM agree quite well. There is a similar pattern of agreement in the SLR response
surface, with the biggest discrepancies occurring in the high ECS-high

√
Kv region and

near the edges of the parameter domain.
We use the response surface to derive probability distributions for TCR. From each

of the joint probability distributions derived from the subsampled MESM ensemble, we
draw a 1000-member Latin Hypercube Sample (McKay et al., 1979) of model parameters.
The subsampled distributions are chosen so that we restrict the domain to that of the
IGSM ensemble, allowing for a more direct comparison of the distributions. Otherwise,
high Kv values that are within the domain of the functional fit to the MESM runs would
be selected, for which there is no fit using the IGSM function. We map each of the
ECS-

√
Kv pairs onto the response surface to provide an estimate of TCR values. Binning

the responses in a histogram with bin size = 0.1 ◦C allows a PDF to be calculated, and
the resulting cumulative density functions are displayed in Figure 2.4d. Comparing TCR
distributions for the IGSM and MESM ensembles shows a shift towards higher TCR with
the latest results. When comparing the range of 90-percent confidence intervals derived
using MESM to those from Libardoni and Forest (2011), we find that TCR estimates
increase from 0.87-2.31 ◦C using IGSM to 0.90-2.72 ◦C using MESM. We have shown
previously that the marginal distributions of

√
Kv are similar between the two models,

indicating that this shift towards higher TCR is driven by the higher ECS estimates
derived from MESM.
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Figure 2.5: Model response surfaces for (a) TCR and (b) thermosteric sea level rise.
Contours for the MESM response surfaces are shown in black and contours for the IGSM
surfaces are shown in red. Differences between the fits are also shown (c and d).

2.5 Conclusions
By updating the model forcings and replacing CLM2.1 with CLM3.5, we identify the
impact that the switch from the MIT Integrated Global Systems Model to the MIT
Earth System Model has on the probability distributions of model parameters. The
decreases in radiative forcing due to the new solar radiation data and the new ozone
concentrations used to estimate the ozone forcing lead to a net energy deficit when
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compared to the replaced forcings. This drives an upward shift in our estimates of the
90-percent confidence interval for climate sensitivity from 1.2 to 5.3 ◦C to 1.3 and 5.7
◦C, a better constraint on ocean diffusivity, and a decrease in the 90-percent confidence
interval for the net anthropogenic aerosol forcing from between -0.83 and -0.19 Wm−2 to
between -0.53 and -0.03 Wm−2. One caveat of our analysis is that because we changed
the forcings and CLM simultaneously, we cannot fully attribute the parameter shifts to
the model forcings alone. We have shown the total effect of changing both the model
and forcings on the parameter distributions, not the effects of the changes individually

Because TCR is independent of the input forcings, the only difference between the
IGSM and MESM configurations in the transient simulations is the land surface model.
By showing that the transient climate response surfaces derived from the two models differ
only slightly, we provide evidence that the switch to CLM3.5 does not greatly impact
the temperature evolution in the model. We have drawn Latin Hypercube Samples from
the parameter distributions to provide estimates of TCR from the new response surface.
Due to the shift towards higher climate sensitivity and slightly weaker ocean diffusivity,
we observe an increase in our 90-percent confidence interval of transient climate response
from 0.87-2.31 ◦C to 0.85-2.73 ◦C. By investigating the impact that the new forcings
and a newer version of CLM have on the estimates of model parameters and TCR, we
provide the inherent differences that are present when comparing distributions derived
using IGSM and those derived from MESM.
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Chapter 3 |
Estimates of Climate System Prop-
erties Incorporating Recent Climate
Change

3.1 Introduction
Scientists, policy makers, and the general public are concerned with how surface tempera-
ture will change in the coming decades and further into the future. These changes depend
on many aspects of the climate system. Among them are climate sensitivity and the
rate at which heat is mixed into the deep ocean. Equilibrium climate sensitivity (ECS)
represents the global mean surface temperature change that would be realized due to a
doubling of CO2 concentrations after equilibrium is reached. A shorter-term measure of
climate sensitivity to greenhouse gas forcing is transient climate response (TCR), defined
as the global mean surface temperature change at the time of CO2 doubling in response
to CO2 concentrations increasing at the rate of 1% per year (Bindoff et al., 2013). Due
to the climate system not being in equilibrium, interactions between the surface and the
ocean lead to an exchange of energy. In such a scenario, TCR is a function of both the
climate sensitivity and ocean circulation and mixing (Sokolov et al., 2003; Andrews and
Allen, 2008).

The value of climate sensitivity is uncertain but the processes and feedbacks which
set it must be accurately modeled to reliably predict the future. To this end, a number of
studies have used Earth System Models of Intermediate Complexity (EMICs) to estimate
probability distribution functions (PDFs) for the values of these climate system properties,
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in particular ECS, ocean diffusivity, and an estimate of the anthropogenic aerosol forcing
(Forest et al., 2002; Knutti et al., 2003; Tomassini et al., 2007; Forest et al., 2008; Olson
et al., 2012; Aldrin et al., 2012; Libardoni and Forest, 2013, and others). In these studies,
EMICs are run for many combinations of the model parameters that set the climate
system properties. Model output is then compared to historical temperature change to
determine which states of the model climate best match the past.

Time series of surface temperature and ocean heat content are commonly used
temperature diagnostics in the evaluation of model performance because they rule out
different combinations of the parameters for being inconsistent with past climate (Urban
and Keller, 2009). This helps to narrow the estimate of the parameters because only
certain combinations lead to accurate representations of the past. Recent observations
have shown that the rate of increase of global mean surface temperature has slowed
despite the continued rise of global CO2 concentrations (Trenberth and Fasullo, 2013).
This warming hiatus has led some to claim that climate change is not a significant threat
and that mitigative action is unnecessary, but has also led scientists to search for the
reasons behind the slowdown. Cowtan and Way (2014) and Karl et al. (2015) argue that
the hiatus is merely an artifact of the global observing system and that the perceived
slowdown is due to incomplete coverage in the polar regions where temperatures have
increased most rapidly. The slowdown has also been attributed to changes in the radiative
forcing. In particular, its been argued that the forcing due to the sun, anthropogenic
aerosols, and volcanoes all contributed to reduce global mean temperature in the 2000s
(Huber and Knutti, 2014; Schmidt et al., 2014). Natural variability in the ocean has
also been noted as a potential cause for the slowdown (Meehl et al., 2011; Huber and
Knutti, 2014; Schmidt et al., 2014). In particular, Meehl et al. (2011) show that in a
fully-coupled, three-dimensional climate model, hiatus periods in surface temperature
are associated with enhanced mixing of heat below 300 m in the ocean. This finding is
supported by recent observations showing that heat is accumulating more rapidly in the
deep ocean (Levitus et al., 2012; Gleckler et al., 2016).

In this study, we first seek to improve the methods used in previous work (Forest
et al., 2008; Libardoni and Forest, 2013, Chapter 2). Until now, ensembles from different
versions of the MIT Integrated Global Systems Model (IGSM, Sokolov et al., 2005) have
been used to vary model parameters for ECS, ocean diffusivity, and the net anthropogenic
aerosol scaling factor using a gridded sampling strategy. To derive PDFs for the model
parameters, metrics of model performance at parameter settings in between those where
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the model was run are estimated using two-dimensional interpolation algorithms. These
algorithms are restricted to gridded samples and at times have led to PDFs that are not
smooth. We propose here replacing spline interpolations with a radial basis function
interpolation algorithm that leads to PDFs that are both true to the data and smooth.
We show this by using the 1800-member ensemble of the MIT Earth System Model
(MESM; Sokolov et al., in prep) described in Chapter 2 to derive PDFs for the three
model parameters.

Using the updated methodology and the 1800 MESM runs, we answer the following
questions: (1) how does the inclusion of more recent data change the PDFs of model
parameters? and (2) what do we learn by including spatial information in the surface
diagnostic? The inclusion of recent temperature trends can have a significant impact
on the estimates of climate system properties (Urban et al., 2014; Johansson et al.,
2015). The temperature pattern that the model output is compared against becomes
more detailed as data is added and leads to the rejection of more model runs as being
inconsistent with the observed records. This generally leads to both a shift in the
estimation of a given property and a reduction in the uncertainty in the estimate. Urban
et al. (2014) also showed that the ability to distinguish between different states of the
climate increases as the length of the model diagnostic increases. Similar to Johansson
et al. (2015), we identify the influence of including more recent data by systematically
adding data to the time series.

Second, we show how including spatial variability in the surface temperature diagnostic
can influence the parameter distributions. In almost all parameter estimation studies,
global mean ocean heat content is used as one metric to evaluate model performance
and is paired with a surface temperature diagnostic to further test the model runs.
Typically, groups use time series of either global mean surface temperature (Knutti
et al., 2002; Tomassini et al., 2007; Knutti and Tomassini, 2008; Urban and Keller,
2009; Olson et al., 2012) or hemispheric mean surface temperatures (Andronova and
Schlesinger, 2001; Meinshausen et al., 2009; Aldrin et al., 2012; Skeie et al., 2014) as the
surface diagnostic. Given the latitudinal resolution of MESM, we can estimate zonal
temperature patterns beyond global and hemispheric means. In particular, we use a
surface temperature diagnostic that consists of four equal-area zonal bands, allowing
the observed amplification of polar warming to be included in the evaluation of model
performance. We show the impact of the spatial structure of the surface diagnostic by
deriving PDFs using global mean, hemispheric mean, and four zonal mean temperature
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diagnostics.
In Section 3.2, we introduce the general method for estimating probability distributions

for the model parameters, describe the temperature diagnostics, and introduce an
interpolation method for the likelihood function using radial basis functions. We present
our main findings in Section 3.3 and finish with a summary and conclusions in Section 3.4.

3.2 Methods
As outlined in Section 3.1, we propose and implement a number of methodological
changes designed to improve our estimates of the probability distributions of the model
parameters. Here, we first provide a general overview of our method for deriving the
distributions, including a description of the model diagnostics and their derivation. We
follow with a discussion of the new methods used in this study and how they are applied
to deriving the new distributions.

Following a standard methodology (Forest et al., 2006, 2008; Libardoni and Forest,
2011; Olson et al., 2012), we derive probability distributions for the model parameters.
In this method, EMICs are used to run simulations of historical climate change. By
comparing model output to observations, the likelihood that a run with a given set of
parameters represents the climate system is determined by how well it simulates the past
climate. In this study, we use MESM, which includes three adjustable parameters that
set properties that strongly influence the behavior of the climate system. These model
parameters are the cloud feedback parameter, which sets the effective climate sensitivity
(ECS), the effective ocean diffusivity of heat anomalies by all mixing processes (Kv), and
the net anthropogenic aerosol forcing scaling factor (Faer). We identify each run by a
unique combination of the model parameters, θ, where θ = (ECS, Kv, Faer). In this
study, we take the 1800-member ensemble described in Chapter 2, spanning a wide range
of θ’s, as our model output.

We evaluate model performance by comparing each model run to two temperature
diagnostics. The first diagnostic is the time series of decadal mean surface temperature
anomalies in four equal-area zonal bands spanning from 0-30 and 30-90 degrees latitude
in each hemisphere. Temperature anomalies are calculated with respect to a chosen base
period. The second diagnostic is the linear trend in global mean ocean heat content in
the 0-2000 m layer. For each diagnostic, we now describe the data used for observations
and the methods to derive the diagnostics from the observations.
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For surface observations, we use datasets from four different research centers. The
datasets we use include the median of the 100-member HadCRUT4 ensemble from the
Hadley Centre Climatic Research Unit (Morice et al., 2012), the Merged Land-Ocean
Temperature (MLOST) dataset from NOAA (Vose et al., 2012), the Berkeley Earth
Surface Temperature (BEST) dataset (Rohde et al., 2013), and the GISTEMP dataset
with 250 km smoothing (GISTEMP250) from the NASA Goddard Institute for Space
Studies (Hansen et al., 2010). All datasets are given as monthly temperature anomalies
on a 5x5 degree latitude-longitude grid. The datasets use similar station data over land
but differ on which sea surface temperature (SST) dataset is used for the ocean. In
particular, the HadCRUT4 and BEST datasets use the Hadley Centre SST (HadSST)
dataset (Kennedy et al., 2011a,b) and the MLOST and GISTEMP250 datasets use the
Extended Reconstruction Sea Surface Temperature (ERSST) dataset (Huang et al., 2015).
Furthermore, the base period used to calculate temperature anomalies differs among the
datasets. A 1951-1980 base period is used for BEST and GISTEMP250, a 1961-1990
base period is used for HadCRUT4, and a 1971-2000 base period is used for MLOST.
Lastly, the research centers differ in how they fill in sparse data regions.

We derive the surface temperature diagnostic by temporally and spatially averaging
the gridded data. In the following calculation, we assume uncertainty in the observations
is zero, relying on using multiple datasets to account for uncertainty in the observed
record. Due to data scarcity and missing values in some regions, we set threshold criteria
for each spatial and temporal average in the derivation. First, the annual mean for each
5x5 degree grid box is calculated, provided that at least eight months of the year have
non-missing data. From these annual averages, decadal mean time series are calculated
for both the period being used in the diagnostic and the chosen climatology base period.
For these calculations, we require at least eight years of defined data for a decadal mean
to be defined. We also extract from the annual mean time series a data mask indicating
where observations are present or missing. We use this mask on the model output to
match the coverage of the observations.

Once the data mask and decadal mean time series are calculated, each time series
is zonally averaged on the five-degree grid. The zonal mean is marked as undefined if
there is less than 20 percent longitudinal coverage in a given latitude band. We calculate
temperature anomalies for each zonal band by subtracting the mean of the climatological
time series for the given band from each decade of the comparison period time series.
The resulting time series of decadal mean, five-degree resolution temperature anomalies
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are then averaged into the four equal-area zones. When aggregating to larger areas, the
mean is calculated as the area-weighted average of the zonal bands contained within the
larger zone.

For ocean heat content observations, we use the estimated global mean ocean heat
content in the 0-2000 m layer from Levitus et al. (2012). This dataset replaces the
Levitus et al. (2005) 0-3000 m global mean dataset because the latter ends in 1998 and
we aim to extend the diagnostic into the 21st century. Data are presented as heat content
anomalies in five-year running means, starting with the 1955-1959 pentad and ending in
the 2011-2015 pentad. Also included is a time series of the standard error of the pentadal
mean estimate for the global mean heat content. The procedure for deriving the standard
error estimates is described in the supplemental material of Levitus et al. (2012) and is
based on observational error estimates in 1-degree gridded data.

For a given diagnostic period, we calculate the linear trend in the global mean ocean
heat content as the slope of the best-fit linear regression line. In the calculation of the
regression line, all deviations from the mean are assigned a weight inversely proportional
to the square of the standard error at that point in the time series. For example, the
standard deviation of y from the mean,

σy =
√∑

i(yi − ȳ)2

n− 1 (3.1)

is modified by multiplying each term in the summation by its weight, giving the weighted
standard deviation of y from the mean of

σy,w =
√∑

iwi ∗ (yi − ȳ)2

n− 1 , (3.2)

where wi is the weight assigned to each point yi based off of the observational error
estimate. All summation terms in the regression are replaced by the corresponding
weighted version. By doing such, the regression is weighed more towards portions of the
time series for which the standard error of the observations is small. Because observational
errors decrease in latter years, more recent observations have a stronger influence on the
trend estimate.

Following Forest et al. (2006), we calculate a goodness-of-fit statistic, r2, for each model
run to determine how well it matches the diagnostics. The statistic is the weighted sum
of squared residuals between the observed diagnostic and the corresponding diagnostic
calculated from the model output. The weights applied to the model-to-observation
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residuals are estimated from the unforced climate variability in a fully coupled, three-
dimensional climate model and represent how we expect the diagnostics to behave in
the absence of external forcings. Prior to this study, separate models were used for
the surface and ocean diagnostics, potentially yielding inconsistent variability estimates.
We eliminate that problem by using the Community Climate System Model, version 4
(CCSM4, Gent et al., 2011) to estimate the natural variability for both the surface and
ocean diagnostics.

We convert goodness-of-fit statistics to probability distribution functions (PDFs) for
the model parameters using the likelihood function described in Libardoni and Forest
(2011) and modified by Lewis (2013). We calculate goodness-of-fit statistics for each
diagnostic, with the surface diagnostic based off of ∆r2, the difference between r2 and
the minimum r2 in the domain, and the ocean diagnostic based off of r2 itself. Through
an application of Bayes’ Theorem (Bayes, 1763), we combine the likelihoods to estimate
a joint PDF for the model parameters. We apply the expert prior derived in Webster
and Sokolov (2000) to ECS and uniform priors to Kv and Faer. Probability distributions
for individual parameters are calculating by integrating the joint PDF over the other
two parameter dimensions.

Prior to calculating the likelihood function, we interpolate the goodness-of-fit statistics
onto a finer grid in the parameter space. This interpolation fills in the gaps between θ’s
where the model was run and increases the density of points within the domain. Forest
et al. (2006) presented an interpolation method that was implemented in Libardoni
and Forest (2011). The interpolation is first carried out on ECS-

√
Kv planes via a

spline interpolation on all Faer levels to a finer mesh of points. A second set of spline
interpolations at every ECS-

√
Kv point on the fine mesh then fills in the fine grid in the

Faer dimension.
In this study, we implement an alternate interpolation method based off of radial

basis functions (RBFs, Powell, 1977). The RBF method approximates the value of a
function based off a set of node points where the functional value is known and is a
variation of kriging that does not allow the data to inform the internal parameters of the
algorithm. The function value at any point in the domain is calculated as the weighted
sum of the value at all nearby node points. The weight assigned to each node is related
to the radial distance between the location that is being interpolated to and the node.
We view this method as an improvement because it is a three-dimensional method and
does not require multiple steps. We will also show in Section 3.3.1 that this leads to a
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smoother interpolation surface.
For our implementation, we use the 1800 r2 values at the points θ where the model

has been run as nodes. We interpolate the r2 values onto the same fine grid from the
spline method with resolution 0.1 ◦C in ECS, 0.1 cm s−1/2 in

√
Kv and 0.05 Wm−2 in

Faer. For weights, we choose Gaussian basis functions, with the weight assigned to each
node given by:

φ(d) = e−(εd)2
, (3.3)

where φ is the weight, r is the radial distance between the two points, and ε is a scaling
parameter that determines how quickly the weight decreases with distance. As the value
of ε increases, the radius of influence of a given node point decreases. We calculate the
r2 value at any point in the domain as:

r2(θ) =
N∑
i

φir
2
i , (3.4)

where the sum is over all N = 1800 node values. Typically, RBFs are calculated in
physical space, where the distance between points, d, is well defined. However, in this
application, we need to apply the concept of distance in model parameter space. Because
the spacing between nodes in each dimension of the parameter space is different, we
normalize all distances by the range in a given parameter dimension. We recognize that
this choice of normalization constant is arbitrary and in the future should be determined
by a physical metric. After accounting for the normalization, we treat each parameter
dimension as isometric, so that the distance between two points is represented by:

|d| (θi, θn) =

√√√√(ECSi − ECSn
NORMECS

)2
+
(√

KVi −
√
KVn

NORMKV

)2

+
(
FAi − FAn
NORMFA

)2
, (3.5)

where subscript i refers to the interpolated point, subscript n refers to the node points,
and the normalization constants are 9.5 ◦C in ECS, 8 cm s−1/2 in

√
Kv, and 2.25 Wm−2 in

Faer.
In summary, we have made a number of changes and updates to the methodology. (i)

To account for a change in observational dataset, we have modified the ocean diagnostic
to be estimated from the 0-2000 m layer, as opposed to the 0-3000 m layer. (ii) We now
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estimate the natural variability from a common model, as opposed to using different
models for the surface and ocean diagnostics. (iii) We implement a new interpolation
scheme where radial basis functions are used to interpolate goodness-of-fit statistics
from the coarse grid of model runs to the fine grid used to derive the joint probability
distribution functions.

Using the updated methodology, we show how temporal and spatial information
impact the PDFs of the model parameters. We address the temporal component by
adding more recent temperature data to the model diagnostics in one of two ways. First,
we extend the diagnostics by fixing the starting date while shifting the end date forward
in time. To maximize the amount of data that we use in the surface diagnostic while also
assuring good observational data coverage, we take decadal mean temperature anomalies
with respect to the 1906-1995 base period starting in 1941. We then shift the end date
from 1990 to 2000 to 2010 to change the diagnostics from five to six to seven decades,
respectively. For the ocean diagnostic, we choose 1955 as the starting date of the first
pentad to correspond to the beginning of the observational dataset. Similar to the surface
diagnostic, we increase the length of the ocean diagnostic by changing the end date of
the last pentad from 1990 to 2000 to 2010.

In a second test, we fix the length of the diagnostics while shifting the end date
forward in time. This maintains a five decade diagnostic for the surface diagnostic
by shifting the 50-year window from 1941-1990 to 1951-2000 to 1961-2010 and a 35
year ocean diagnostic by shifting the period we use to estimate the linear trend from
1955-1990 to 1965-2000 to 1975-2010. By deriving PDFs with each pair of diagnostics
corresponding to a given end date, we determine the impact of recent temperature trends
on the parameter distributions in both the extension and sliding window cases.

In a third test, we derive PDFs with different structures for the surface diagnostic. In
these new diagnostics, we maintain the decadal mean temporal structure, but reduce
the dimensionality of the spatial structure by replacing the four zonal bands with global
mean or hemispheric mean temperatures. In the former case, we have a one-dimensional
spatial structure and the latter a two-dimensional structure.

3.3 Results
We present our findings as follows. In Section 3.3.1 we show (i) the difference in the
ocean diagnostic due to changing to the 0-2000 m data, (ii) provide justification for
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using the RBF interpolation method, and (iii) present the impact of the methodological
changes described in Section 3.2 on the parameter distributions. In Section 3.3.2, we (i)
analyze how the model diagnostics change due to the inclusion of more recent data and
(ii) assess how those changes impact the distributions. In Section 3.3.3, we show how
including spatial patterns of surface temperature change impact the distributions.

3.3.1 Methodological Changes

We first identify the difference in the ocean diagnostic derived from the 0-3000 m and
0-2000 m layers for the common period of 1955-1996 (Figure 3.1). This period is chosen
to coincide with the ocean diagnostic in Libardoni and Forest (2013) and allows for a
direct comparison of distributions presented later in this section. We observe a stronger
warming trend of 3.6 ± 0.50 ZJ/yr in the 0-2000 m layer compared to the estimate of 2.7
± 0.39 ZJ/yr in the 0-3000 m layer, suggesting that the rate of heat penetration into the
deep ocean decreases with depth.

Second, we present the switch to the radial basis function interpolation algorithm.
We note from Equation 3.3 that the weight assigned to each node point depends on
the radial distance between the points, d, and a scaling factor, ε. Because the distance
between any two points in the parameter space is always the same, the choice of ε plays
a critical role in determining the behavior of the algorithm. We demonstrate this impact
by running the RBF algorithm using six different choices of ε on a random surface
temperature diagnostic (see Appendix A for choices of ε). We show the resulting r2

patterns and compare them against the surface derived using the Forest et al. (2006)
spline interpolation method and the original pattern (Figure 3.2). We observe that the
old method is very successful at matching the r2 values at points where they were run
(Figure 3.2b). However, the surfaces are not always smooth and in some instances the
location of the minimum value of r2 shifts to a new, nearby location in the interpolated
space.

We aim to improve upon the shortcomings of the old interpolation method by
identifying ε so that not only is the spatial pattern of r2 maintained, but the resulting
response surface is smooth. We observe smoother interpolated surfaces for lower values
of ε because of the relationship between ε and the radius of influence of each node point
(Figure 3.2c-h). Because we do not require the interpolated values to pass exactly through
the node points, the smoothness comes at the expense of increasing the interpolation
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Figure 3.1: Global mean ocean heat content for the 0-3000 m layer (Levitus et al., 2005)
and 0-2000 m layer (Levitus et al., 2012). Shading indicates twice the standard error on
either side of the estimate. Dashed lines indicate the 95-percent confidence interval for
the point estimate for a given year based on the best fit line and its uncertainty.

error at the node points. Unlike the old interpolation method, the errors at node points
do not lead to a change in the rank order of r2 values at the node points, however. The
location of the minimum remains the same, as well as all subsequent comparisons.

We also observe a reduction in the range of r2 values within the domain. The reduction
occurs because regions where r2 is originally low are now influenced by areas further away
in the parameter space where r2 is high, and vice versa. This is true of the algorithm in
general, with the errors at each node point and the reduction of the range diminishing as
ε increases and the radii of influence of each node point decreases. However, as ε increases
and the radius of influence for a given node decreases, the response surface becomes less
smooth. Thus, there is a trade off, in that decreasing the interpolation error at node
points leads to a decrease in the smoothness of the surface. Small ε’s provide the desired
smoothness, while large ε’s provide the the truest fit to the actual values at the node
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Figure 3.2: Example of the differences between the algorithms to interpolate goodness-of-
fit statistics from the coarse grid of model runs to the finer grid used for the derivation of
parameter distributions. Calculated r2 values (a) are shown along with the interpolated
values using the algorithm from Libardoni and Forest (2011) (b) and the radial basis
function interpolation with six different values of ε (c-h).
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points. This indicates that intermediate values of ε (e.g., 10.8 or 14.4) are appropriate.
Thus far, we have only looked at the impact of ε on the fit of the interpolated r2

values to the raw values. In practice, our likelihood function for the surface diagnostic
is a function of the residual between r2 at a given point and the minimum value of r2

in the domain, a statistic we refer to as ∆r2. Plotting the ∆r2 field as a function of ε
confirms our assessment that intermediate values of ε lead to the best fit to the raw values
(Figure 3.3). Both ε = 10.8 and ε = 14.4 fit the raw ∆r2 values quite well as the inflation
of low r2 values is normalized out by the subtraction of the minimum value (which is
also interpolated to a greater value). However, for ε = 14.4, the region of best fit (∆r2

less than 10) is larger than the raw values and there are regions where the interpolated
surface is not as smooth as when ε = 10.8. In some situations, this lack of smoothness
leads to PDFs that are also not smooth and display bumps at values for the parameter
settings of the node points (not shown). For these reasons, we choose ε = 10.8 for our
analysis.

To further test our choice of ε, we perform an out-of-sample test on 300 runs of MESM
that were not included in the 1800 member ensemble used in this study. The parameter
settings for the out-of-sample runs were the result of two separate 150-member Latin
Hypercube Samples (McKay et al., 1979) and did not correspond to the settings of any of
the node points. For each run, we calculate ∆r2 for the surface diagnostic matching the
one used in Figures 3.2 and 3.3 and compare those against the values calculated using
the RBF interpolation method with ε = 10.8 and the 1800 runs as nodes (Figure 3.4).

With a few exceptions, we see good agreement between ∆r2 calculated from model
output and ∆r2 estimated from the RBF algorithm. The biggest discrepancies are
typically found for ∆r2 values greater than 50, where the likelihood function for the
diagnostic approaches 0. We also note that the differences are small in regions of the
parameter space where the likelihood function approaches its maximum, namely for small
∆r2. Lastly, we find an almost equal number of runs where the difference between the
value calculated from the model output and the value estimated from the RBF method
is greater than zero and where the difference is less than zero, indicating no substantial
bias in the RBF algorithm. Because we see good agreement of the RBF interpolated
surface with the out-of-sample test runs and observe a smooth response surface with a
good fit to the data (Figures 3.2 and 3.3), we argue that choosing ε = 10.8 is appropriate.

To test the impact of the methodological changes just described, we start from a
previously published probability distribution and apply the changes one at a time. For a
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Figure 3.3: As in Figure 3.2, except for ∆r2, the difference between r2 and the minimum
r2 value in the domain.
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Figure 3.4: Comparison of ∆r2 values calculated from out-of-sample model runs and
those calculated using the RBF interpolation method. (a) All 300 runs. (b) All runs
with ∆r2 less than 200. The one-to-one line is plotted for reference (red, dashed line).
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reference point, we start with the PDF from Chapter 2 derived using the HadCRUT3
surface dataset (Brohan et al., 2006) and the likelihood function presented earlier in
Section 3.2. The changes we implement are: (i) change the ocean diagnostic from the
0-3000 m layer to the 0-2000 m layer, (ii) replace the interpolation method of Forest et al.
(2006) with the RBF interpolation method, and (iii) change from using natural variability
estimates from different control run models for the surface and ocean diagnostics to
a common model for both estimates. To better illuminate the changes, we derive an
additional PDF changing both the control run model and the interpolation method
simultaneously. We summarize the resulting distributions in Figure 3.5.

When changing the ocean diagnostic from the 0-3000 m layer to the 0-2000 m layer, we
observe the largest change as a shift towards higher Kv. As measured by the 90-percent
confidence interval for the marginal distribution of

√
Kv, our estimate increases from

0.29-1.90 to 0.81-3.22 cm s−1/2. We also note that the wider interval indicates a weaker
constraint on the estimate of Kv. In MESM, Kv controls how fast heat is mixed into the
the deep ocean. Thus, we trace the shift towards higher Kv to the stronger heating rate
in the ocean diagnostic due to estimating the trend from the 0-2000 m data (Figure 3.1).
We observe a small shift towards higher ECS and almost no change in estimates of Faer.

For the second change, we explore the implementation of the RBF interpolation
algorithm. In Figure 3.5, we observe that the parameter distributions are indeed smoother
when the RBF method is used. This is particularly evident in the climate sensitivity
distributions. We also note changes to the constraints on model parameters. In general,
we see a flattening of the of center of the distributions, as measured by the interquartile
range (IQR). In particular, the IQR for

√
Kv increases from 0.59 to 0.71 cm s−1/2 (ranges

of 0.71-1.3 to 0.86-1.57 cm s−1/2) and for Faer from 0.07 to 0.11 Wm−2 (-0.25 - -0.18
to -0.32 - -0.21 Wm−2) when comparing the reference PDF using the old interpolation
method to the PDF estimated using the RBF method. This increase is consistent with
our previous discussion that the RBF method tends to adjust low r2 values upwards and
high r2 values downwards. In this situation, the maximum likelihood region of the joint
PDF, where r2 is a minimum, impacts all points within its radius of influence.

In general, we observe tighter constraints on all of the distributions when a common
control run model is used for the surface and ocean diagnostics. For all three parameters,
the width of the 90-percent confidence interval decreases. However, in the climate
sensitivity distribution, we see multiple minima and maxima in the distribution. All of
the local extrema occur at values of ECS where the model has been run. We attribute
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Figure 3.5: Marginal probability distribution functions for ECS (a),
√
Kv (b), and

Faer (c) derived with changes in methodology. A comparison between the HadCRUT3
distribution derived in Libardoni and Forest (2013) (black) with those derived using all
changes outlined in the text (red) and individual changes to the control run used to
estimate natural variability (blue), the ocean diagnostic (green), and the interpolation
method (orange). Also shown is the case where the natural variability estimate and
interpolation method are changed together (purple). Whisker plots indicate boundaries
for the 2.5-97.5 (dots), 5-95 (vertical bar ends), 25-75 (box ends), and 50 (vertical bar
in box) percentiles. Distribution means are represented by diamonds and modes are
represented by open circles.
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these oscillations to the spline interpolation method attempting to pass through r2 exactly
at all of the points and observe them in plots similar to Figure 3.2 for different aerosol
levels (not shown). Because the assumed impact of the old interpolation method leads to
the spurious ECS marginal distribution, we also show the case where both the control
run and interpolation method are changed together (purple curve in Figure 3.5). This
test also separates the impacts of changing datasets and diagnostics (ocean dataset) from
the technical details of the derivation (interpolation method and variability estimate).

We summarize the net impact of the changes by implementing all three simultaneously
(red curve in Figure 3.5). When comparing the ECS and Faer distributions, we observe
very little change in the estimates of central tendency and stronger constraints on the
parameters. Here, we measure central tendency by the median of the distribution and the
constraint by the width of the 90-percent confidence interval. Before implementing the
changes, we estimate the median ECS to be 3.44 ◦C with a 90-percent confidence interval
of 2.24-5.48 ◦C. After the changes, we estimate a median of 3.45 ◦C and a 90-percent
confidence interval of 2.54-4.96 ◦C. Similarly, for Faer we estimate a median of -0.22
Wm−2 and 90-percent confidence interval of -0.38 - -0.11 Wm−2 before and a median of
-0.23 Wm−2 and 90-percent confidence interval of -0.38 - -0.11 Wm−2 after the changes.
This pattern does not hold for the Kv distribution. In

√
Kv, we estimate the median to

increase from 1.00 to 1.77 cm s−1/2 and the 90-percent confidence interval to change from
0.29-1.90 to 1.03-3.32 cm s−1/2 when implementing the new methodology. We previously
showed that the change in ocean dataset led to higher Kv estimates without changing
the central estimates of the other two parameters. Combining this with the findings
from the ECS and Faer distributions leads us to conclude that the central estimates of
the distributions change with the diagnostics, and that the technical changes, namely
the unforced variability estimate and the interpolation method, impact the uncertainty
estimates.

3.3.2 Temporal Changes to Model Diagnostics

Before presenting new PDFs using the methods analyzed in the previous section, we
present the model diagnostics used to derive them. We show the time series of decadal
mean temperature anomalies with respect to the 1906-1995 climatology in the four
equal-area zonal bands of the surface temperature diagnostic (Figure 3.6). We plot the
time series from 1941-2010 with the decadal mean plotted at the midpoint of the decade
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Figure 3.6: Decadal mean temperature anomaly time series derived from the HadCRUT4,
NOAA MLOST, BEST, and GISTEMP 250 datasets. Time series are for the four
equal-area zonal bands spanning 30-90 ◦N (a), 0-30 ◦N (b), 0-30 ◦S (c), and 30-90 ◦S (d).
Temperatures are plotted as anomalies with respect to the 1906-1995 base period at the
midpoint of each decade.

it represents. In tests where we extend the model diagnostics by holding the start date
fixed and add additional data, we add an additional data point to the end of each time
series. In tests where we hold the length of the diagnostics fixed while adding recent
data, we change which five data points are used.

From the time series, we see that while general similarities exist, the model diagnostic
depends on which surface observations are used. Across all datasets, we observe the
largest signal in the 30-90 ◦N zonal band, consistent with the polar amplification of
warming. We also note that the highest agreement across the datasets is observed in
this band. We find that there is a separation between the time series in the 0-30 ◦N and
0-30 ◦S zonal bands based on which SST dataset a group used for the temperatures over
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the ocean. When considering this split, we see similar patterns in the tropical bands
between datasets using HadSST (HadCRUT4 and BEST) and datasets using ERSST
(MLOST and GISTEMP250). Although not shown, we observe similar patterns in the
hemispheric and global mean time series, with a stronger warming signal in the northern
hemisphere and the time series showing sensitivity to the dataset.

We illustrate how additional data impact the estimate of the linear increase in ocean
heat content (Figures 3.7 and 3.8). In both figures, we plot the time series from Levitus
et al. (2012) with the pentadal mean plotted at the midpoint of the five-year period
defining the pentad. In Figure 3.7, we fix the starting date in 1955 and shift the end
date further ahead. In Figure 3.8, we fix the length of time over which the linear trend is
calculated and shift the end of the period forward.
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Figure 3.7: Global mean ocean heat content for the 0-2000 m layer. Shading indicates
twice the standard error on either side of the estimate. Also shown are the best fit
linear trend lines for the trend beginning in 1955 and ending in 1990 (black), 2000 (red),
and 2010 (blue). Dashed lines indicate the 95-percent confidence interval for the point
estimate for a given year based on the best fit line and its uncertainty.
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Figure 3.8: As in Figure 3.8, except the diagnostic length is held fixed. Linear trend
estimates are for the 1955-1990 (black), 1965-2000 (red), and 1975-2010 periods.

The recent acceleration of heat stored in the deep ocean is well documented (Levitus
et al., 2012; Gleckler et al., 2016), and as expected, we find that the trend estimate
depends on both the end points of the period used for estimation and the length of the
period used for estimation. As previously stated, more recent observations have a stronger
influence on the trend estimate because the standard error of the observations decreases
with time. We calculate higher trend estimates when holding the period length fixed
while including more recent data compared to when the period is extended to include
more recent data. We estimate a trend of 3.4 ± 0.28 ZJ/yr when considering the period
from 1955 to 1990. For diagnostics ending in 2000, we estimate a trend of 4.0 ± 0.19
ZJ/yr if the starting date is shifted to 1965 and a trend of 3.7 ± 0.15 ZJ/yr if the starting
date is held at 1955. Trends of 6.0 ± 0.18 ZJ/yr and 5.2 ± 0.12 ZJ/yr are estimated
when using data up to 2010 and holding the diagnostic length fixed and extending the
diagnostic length, respectively. By shifting the diagnostic rather than extending it, the
accelerated warming signal is stronger because periods of slower warming earlier in the
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time series are replaced by periods of faster warming later in the time series.
For each surface and ocean diagnostic set, we derive joint probability distributions

according the experiments laid out in Section 3.2. When calculating the surface diagnostic
for a given period, we derive a PDF using each of the four datasets as observations. We
combine the four PDFs into a single estimate by taking the average likelihood at each
point in the joint PDF. In offline calculations, we confirmed that the marginal PDFs for
each parameter using the average joint PDF were nearly identical to the marginal PDFs
resulting from the merging method used to submit the distributions from Libardoni and
Forest (2013) for inclusion in the Intergovernmental Panel on Climate Change Fifth
Assessment Report (IPCC AR5, Collins et al., 2013). For the IPCC AR5 estimates, we
drew a 1000-member Latin Hypercube Sample from each distribution and calculated
marginal distributions for each parameter from the histogram of the drawn values. By
including an equal number of samples from each distribution, we assign equal weight to
each surface temperature dataset. Taking the average of the four PDFs is the limit of
this method as the number of draws approaches infinity. We justify using the average of
the four PDFs by noting that the same general conclusions are drawn from the combined
PDF as would be drawn from the PDFs derived from individual datasets.

We show that incorporating more recent data in the temperature diagnostics has a
significant impact on the parameter estimates (Figure 3.9). Unless otherwise noted, we
again approximate the central estimate of the distributions as the median and use the
90-percent confidence intervals to estimate the uncertainty. Across all three parameters,
we generally observe sharper PDFs as more recent data are added. Furthermore, the
constraints are stronger when the data are used to extend the diagnostics as opposed
to when the diagnostic lengths are fixed. We attribute the general tightening of the
distributions with recent data to the strong climate signals that have emerged in the
observations. Further, we argue that the uncertainty bounds tend to be tighter when the
diagnostic lengths are increased because the model output is being compared against
more detailed temperature patterns with additional data points to match. Runs that do
not match the added points are rejected for being inconsistent with the observations.

For climate sensitivity, we find that extending the data beyond 1990 leads to higher
climate sensitivity estimates when compared to the estimate shown in Figure 3.5 that
incorporates all of the methodological changes. However, we find that the inclusion of
more recent data does not always lead to an increase in the estimate of ECS. Our estimate
of ECS for diagnostics ending in 2000 is greater than the estimate for the diagnostics
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ending in 2010, regardless of whether the diagnostic length is extended or fixed. For
the case where the diagnostics are extended, we estimate a median climate sensitivity
of 4.04 ◦C with data ending in 2000 and 3.73 ◦C with data ending in 2010. When
the diagnostic length is fixed, we estimate median climate sensitivities of 4.08 ◦C and
3.72 ◦C for diagnostics ending in 2000 and 2010, respectively. We hypothesize that the
lowering of the estimate for ECS with diagnostics ending in 2010 can be attributed to the
global warming hiatus, which led to slower warming trends in surface air temperature in
the 2000s as more heat was stored in the deep ocean. We also note the uncertainty in
the estimate of ECS decreases as more recent data are added and the tighter uncertainty
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Figure 3.9: Marginal probability distribution functions for ECS (a),
√
Kv (b), and Faer (c)

and cumulative distribution function for TCR (d) when changing the end date of model
diagnostics. Distributions with diagnostics ending in 1990 (black), 2000 (red), and 2010
(blue) are shown. Solid lines indicate an extension of the diagnostic and dashed lines
indicate that the length of the diagnostics remain fixed when incorporating more recent
data.
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bounds come predominantly from a reduction in the upper tail of the distribution. There
is also a slight increase in the estimate of the lower bound, however.

Our estimates of Kv show large shifts in response to changes in the diagnostics. When
the diagnostics end in 1990, we find very weak constraint on Kv, with a non-zero tail
throughout the domain. As more recent data are included, we see a large reduction
in the upper tail of the distributions. We also see shifts towards higher Kv with the
inclusion of data from 2001-2010. When including these data, we estimate

√
Kv to

increase from 1.45 to 2.08 cm s−1/2 when the diagnostic lengths increase and from 1.16
to 1.62 cm s−1/2 when the diagnostic lengths are fixed. Because Kv sets how fast heat is
mixed into the deep ocean in the model, we attribute the higher estimates to the recent
acceleration of heat storage in 0-2000 m layer (see Figures 3.7 and 3.8).

We also see shifts in the Faer distribution in response to the changes in model
diagnostics. We reiterate that in MESM, Faer sets the amplitude of the net anthropogenic
aerosol forcing and represents the sum of all unmodeled forcings. We observe shifts
towards stronger cooling (more negative values of Faer) when diagnostics end in 2000
and shifts back towards weaker values (less negative) when the diagnostics end in 2010.
When the diagnostics are extended, Faer estimates shift from -0.28 Wm−2 when data
up to 1990 are used to -0.32 Wm−2 and -0.23 Wm−2 when data up to 2000 and 2010
are used, respectively. Similarly, we observe shifts to -0.32 Wm−2 and -0.28 Wm−2 when
the diagnostic lengths are held fixed and include data up to 2000 and 2010, respectively.
Thus, the observed change from the 2000 to 2010 estimate is larger in the case where the
diagnostics are extended rather than of fixed length.

Although not shown, we observe these shifts in the Faer distributions for each of
the PDFs derived using the different datasets individually, but note that we see smaller
changes with the merged PDF. Also, from the individual PDFs, we see a grouping of
the Faer distributions based on the SST dataset used by the research center. We find
the HadCRUT4 and MLOST distributions (HadSST) and the BEST and GISTEMP250
distributions (ERSST) to be similar.

We attribute the shift towards stronger cooling for the 1991-2000 decade to the cut-off
of the high Kv tail. When Kv decreases, excess heat in the Earth system is stored in
the ocean less efficiently. In response to this excess heating, surface and atmospheric
temperatures would rise unless an external factor is active and opposes the heating. In
MESM, negative values of Faer reduce the net forcing and contribute to balancing the
global energy budget. The spatial pattern of the net aerosol forcing in MESM leads to
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the forcing being stronger in the northern hemisphere than the southern hemisphere.
With this pattern, we observe stronger temperature responses in the northern hemisphere
when we adjust Faer than we do in the southern hemisphere. We attribute the shift
back towards weaker aerosol cooling when adding the 2001-2010 trends to the northern
hemispheric polar amplification signal noted earlier in this section.

For each pair of model parameters, we calculate the two-dimensional marginal distri-
bution by integrating over the third parameter (Figure 3.10). From these distributions,
we observe correlations between the the pairs of parameters, independent of the diag-
nostic length and end date. We show ECS and Kv to be positively correlated, ECS
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Figure 3.10: 2D joint probability distribution functions for each pair of parameters: (a)
ECS-

√
Kv, (b) Faer-

√
Kv, (c) Faer-CS. Distributions with diagnostics ending in 1990

(black), 2000 (red), and 2010 (blue) are shown. Solid contours indicate an extension of the
diagnostic and dashed contours indicate that the length of the diagnostics remain fixed
when incorporating more recent data. Contours show the 90- and 50-percent confidence
intervals and symbols indicate the distribution modes.
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and Faer to be negatively correlated, and Kv and and Faer to be positively correlated.
These correlations are similar to the shifts we observed when considering the parameters
individually in the marginal distributions.

We also derive estimates of transient climate response from the PDFs discussed
above (Figure 3.9d). From each PDF, we draw a 1000-member Latin Hypercube Sample
and calculate TCR for each of the ECS-

√
Kv pairs using the model response surface

derived in Chapter 2. The PDFs of TCR are estimated from the histogram of TCR
values with bin size = 0.1 ◦C. We show that the TCR estimates reflect changes in
the parameter distributions. In particular, TCR and climate sensitivity are positively
correlated and TCR and Kv are negatively correlated. Furthermore, the uncertainty in
the TCR distribution is correlated with the uncertainty in ECS and Kv. Thus, we find
that TCR estimates are greater when more recent data are added due the higher climate
sensitivity estimates, but are smaller in 2010 than in 2000 due to the shift towards
higher Kv. Furthermore, TCR estimates are higher when the diagnostic lengths are fixed
compared to when they are extended.

3.3.3 Spatial Changes to Model Diagnostics

Until now, we have only considered how the temporal component of the diagnostics
impacts the parameter estimates. As the last case study, we reduce the spatial dimension
of the surface temperature diagnostic by replacing the four zonal band diagnostic with
either global mean surface temperature or hemispheric mean temperatures using the
1941-2010 diagnostic period (Figure 3.11). Similar to the PDFs shown when changing
the temporal structure of the diagnostic, we present the distributions calculated from
the average of the four individual PDFs derived using the different surface temperature
datasets.

We find little sensitivity in the central estimates of the ECS and Kv distributions
to the spatial structure of the surface diagnostic using data up to 2010. For ECS,
the median estimate for when global mean temperatures, hemispheric means, and four
zonal bands are used are 3.81 ◦C, 3.75 ◦C, and 3.72 ◦C, respectively. Similarly, median
estimates for

√
Kv are 2.06 cm s−1/2, 1.94 cm s−1/2, and 2.08 cm s−1/2 when global mean,

hemispheric mean, and four zonal mean temperatures are used. However, we observe a
tightening of the distributions as the spatial resolution of the surface diagnostic increases.
The narrowest distributions are derived using the four zonal band diagnostic and the
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Figure 3.11: Marginal probability distribution functions for ECS (a),
√
Kv (b), and

Faer (c) and cumulative distribution function for TCR (d) derived from different spatial
diagnostics. Diagnostics end in 2010 and data is added by extending the diagnostics.

widest distributions are derived using global mean temperatures. We note that the TCR
distributions follow the shifts in ECS and Kv. Thus, the central estimates do not change
significantly, but the width of the distribution shrinks as spatial information is added to
the surface diagnostic.

Unlike with the ECS and Kv distributions, we observe a sensitivity to the surface
diagnostic structure in the Faer distributions. In particular, we observe that the estimate
derived using global mean temperature leads to the strongest (most negative) aerosol
forcing and the estimate derived using the four zonal bands leads to the weakest aerosol
forcing. When considering only global mean temperature, we remove the polar ampli-
fication signal from the temperature diagnostic. Removing this signal means that we
ignore the spatial dependence of the aerosol distribution and only consider the net effect
on the global energy budget. However, as we include variations of temperature with
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latitude, the spatial pattern of the aerosol forcing pattern matters. As a result, the
median estimate of Faer shifts from -0.31 Wm−2 to -0.28 Wm−2 to -0.23 Wm−2 when
global mean, hemispheric mean, and four zonal bands are used. Thus, while the spatial
structure has only a small influence on ECS and Kv, it has a strong influence on Faer.

3.4 Conclusions
We implement a number of methodological changes to improve probability estimates of
climate system properties. Changes include switching to an interpolation based on radial
basis functions, estimating natural variability from a common model across diagnostics,
using new observational datasets, and incorporating recent temperature changes in model
diagnostics. We show that the parameter estimates follow signals in the data and depend
on the model diagnostics. Furthermore, we show that the technical changes, namely the
interpolation method and the natural variability estimate, do not considerably change
the central estimate of the parameters but do impact the uncertainty estimates of the
distributions.

We have shown that the RBF interpolation method is successful in smoothing the
distributions while not changing the central estimate. The success of the RBF method
is an encouraging sign for future research. Due to the two-dimensional interpolation
method previously used, our work until now has been restricted to running ensembles on a
uniform grid of points in the parameter space. The RBF method is three-dimensional and
can be applied to any collection of node points. We can thus run the full model at any set
of non-gridded nodes and interpolate the goodness-of-fit statistics to estimate the values
at intermediate points. Other studies (Sansó and Forest, 2009; Olson et al., 2012) have
built statistical emulators to approximate model output at non-node parameter settings
for each point in the diagnostic time series and then calculate the likelihood function
by comparing the emulator output to observations. We argue that by interpolating the
metrics, rather than model output at individual points in the time series, we approximate
the impact of all feedbacks on the diagnostic together, rather than individually at different
spatial and temporal scales.

Our results suggest that the spatial structure of model diagnostics plays a key role
in the estimation of parameters with spatial variation. When adding spatial structure
to the diagnostics, we observed little change in parameters representing global mean
quantities (ECS and Kv), but the distributions of Faer differed depending on whether
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global mean temperature, hemispheric mean temperatures, or temperatures in four
equal-area zonal bands were used. When global diagnostics are used, we ignore the
spatial variation of forcing patterns and fail to account for regional influences on climate
change. Our estimates provide an assessment of the importance of these spatial patterns
when estimating probability distributions for model parameters.

Overall, our work highlights that recent temperature trends have a strong influence on
the parameter distributions. In particular, we observe a shift in the distributions towards
higher climate sensitivity due to the addition of recent surface temperature warming
trends relative to 1990, but with a reduction in the estimate when using data up to 2010
as opposed to 2000. We also observe that the distributions of Kv shift towards higher
values. The uncertainty in our estimates decreases as more recent data are used in the
temperature diagnostics. Our estimates of transient climate response reflect the changes
in ECS andKv and are correlated with ECS and anticorrelated withKv. By incorporating
more recent data, which are of higher quality, and using improved methodology, we are
more confident in our estimates of the model parameters and transient climate response.
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Chapter 4 |
Underestimating Internal Variabil-
ity Leads to Narrow Estimates of
Climate Sensitivity

4.1 Introduction
Despite improvements to climate models, observational systems, and methodologies, the
estimated likely range of equilibrium climate sensitivity has remained relatively unchanged
from the Charney Report (Charney, 1979) to the most recent Intergovernmental Panel
on Climate Change Fifth Assessment Report (IPCC AR5, Collins et al., 2013). In both
reports, the central estimate for climate sensitivity is 3 ◦C with a likely range of 1.5 to 4.5
◦C. The lack of convergence towards a single value does not imply a lack of knowledge,
however, but rather the inherent difficulty of the problem. Estimates of climate sensitivity
remain uncertain for a number of reasons, some of which are outlined in Hegerl et al.
(2000) and remain relevant today. The first reason is uncertainty in observations. Many
studies estimate climate sensitivity using historical observations of climate change. Due
to instrumental errors, coverage gaps, and inhomogeneity in measurement practices,
there is irreducible error in the time series of climate variables. The second reason
is systematic/structural errors in models. Many studies derive estimates of climate
sensitivity by comparing model output to observations (e.g., Knutti et al., 2003; Forest
et al., 2008; Libardoni and Forest, 2013; Olson et al., 2013). All models are approximations
of reality, and thus do not exactly match the climate system. The last reason is chaotic or
internal variability in the climate system. In the absence of external forcing, fluctuations
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in the atmosphere and ocean still occur due to processes and feedbacks active in the
climate system. This unforced internal variability is embedded in any climate signal, and
due to its chaotic nature, represents an irreducible uncertainty.

In this study, we show how estimates of climate sensitivity are affected by different
estimates of natural variability. In previous work (Chapters 2 and 3), the goodness-of-fit
statistic used to evaluate model performance weighs model-to-observation residuals in
temperature diagnostics by the internal variability of the climate system (Eq. 4.1). In
many methods (Sansó and Forest, 2009; Aldrin et al., 2012; Olson et al., 2013), internal
variability is estimated from the pre-industrial control runs of atmosphere-ocean general
circulation models (AOGCMs). In these runs, forcing patterns are fixed over long
simulations and the coupled atmosphere and ocean system interacts in the absence of
changes in external forcings. Thus far, we have only used one model to estimate the
internal variability. Over 20 AOGCMs submitted pre-industrial controls runs to the
Coupled Model Intercomparison Project Phase 5 (CMIP5, Taylor et al., 2012). Due to
structural differences, the natural variability is not the same across all models and a
single model does not span the full range of variability. Here we show that this has a
significant impact on the calculation of probability distributions for climate sensitivity
and leads to estimates of climate sensitivity and other climate system properties that
have uncertainty bounds that are too narrow.

We present the study as follows. In Section 4.2, we identify the models that are
used and how estimates of the internal variability are derived from long control runs.
Section 4.3 presents probability distributions derived from each of the variability estimates
and proposes a method for combining estimates across multiple models. We conclude
the study in Section 4.4.

4.2 Methods
Using the 1800-member ensemble of the Massachusetts Institute of Technology Earth
System Model (MESM) described in Chapter 2, we derive estimates of the joint probability
distribution (PDF) of effective climate sensitivity (ECS), effective ocean diffusivity (Kv),
and net anthropogenic aerosol forcing (Faer). Each model simulation is run for a set of
the three parameters, θ = (ECS,Kv, Faer), and simulates past climate when driven by
historical forcings. We evaluate the likelihood of a given model run by comparing the
model output to time series of observed climate change. In particular, we use the decadal

63



mean time series of surface temperature anomalies in four equal-area zonal bands from
1941 to 2010 with respect to a 1906-1995 climatology and the linear trend in the 0-2000
m global mean ocean heat content change between 1955 and 2010 as diagnostics.

For each diagnostic, we calculate a goodness-of-fit statistic, r2, as the weighted
sum-of-squares residuals between model output and observations. Mathematically, r2 is
expressed as

r2 = (x(θ)− y)TC−1
N (x(θ)− y), (4.1)

where x(θ) is the vector of model output for a set of model parameters, y is the vector
of observed data, and C−1

N is the inverse of the noise-covariance matrix. In our method,
the noise-covariance matrix represents the temperature patterns we would expect in
the model diagnostics in the absence of external forcing and observational noise. The
observations and model output are projected onto the natural variability patterns, with
the weight assigned to each element of the residual vector inversely proportional to the
size of the deviations expected in the unforced climate. A more thorough discussion
of the goodness-of-fit statistic calculation and its properties is provided in Forest et al.
(2001). From this statistic, the likelihood of a given model run representing past climate
change is calculated and used to derive a joint PDF for the model parameters (Libardoni
and Forest, 2011; Lewis, 2013).

We estimate the unforced variability patterns from the pre-industrial control runs of
AOGCMs submitted to the CMIP5 archive. We choose to use pre-industrial control runs
for two reasons. First, all forcings are fixed at pre-industrial levels, allowing the climate
system to evolve without influence from external forcings. Second, control runs tend to
be long, allowing for many samples of the model diagnostics to be extracted. From these
samples, we are able to calculate a large statistical sample of the internal variability.

In recent work (Chapters 2 and 3), our estimates have used the variability from only
one model, the Community Climate System Model, version 4 (CCSM4, Gent et al., 2011),
in the derivation of parameter distributions. All models are approximations of reality,
and thus have internal variability inconsistent with that of the true climate system. We
test the sensitivity of the parameter distributions to the internal variability of the climate
system by deriving PDFs using natural variability estimates from many different models.
To reflect the current state of models across multiple research groups, we choose to use
the pre-industrial control runs from 25 models from the CMIP5 archive. In Table 4.1, we
present the 25 models used in this study, in addition to the length of the pre-industrial
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Table 4.1: CMIP5 models used for internal variability estimates

CMIP5 Institute ID* Model Name** Length (years) Color (Fig 4.1)
BCC bcc-csm1-1 500 Blue
BCC bcc-csm1-1-m 400 Green

CCCMA CanESM2 996 Blue
NCAR CCSM4 1051 Black

NSF-DOE-NCAR CESM1-BGC 500 Black
NSF-DOE-NCAR CESM1-FASTCHEM 222 Green
NSF-DOE-NCAR CESM1-WACCM 200 Green
CNRM-CERFACS CNRM-CM5 850 Purple

LASG-CESS FGOALS-s2 501 Black
NOAA GFDL GFDL-CM3 500 Blue
NOAA GFDL GFDL-ESM2G 500 Blue
NOAA GFDL GFDL-ESM2M 500 Black
NASA GISS GISS-E2-H 780 Black
NASA GISS GISS-E2-H-CC 251 Red
NASA GISS GISS-E2-R 2113 Blue
NASA GISS GISS-E2-R-CC 251 Green

IPSL IPSL-CM5A-LR 1000 Blue
IPSL IPSL-CM5A-MR 300 Red
IPSL IPSL-CM5B-LR 300 Red
MPI-M MPI-ESM-LR 1000 Blue
MPI-M MPI-ESM-MR 1000 Black
MPI-M MPI-ESM-P 1156 Blue
MRI MRI-CGCM3 500 Blue
NCC NorESM1-M 501 Blue
NCC NorESM1-ME 252 Orange

*See Table B.1 for participating institutions
**See Table B.2 for full model names

control run.
From each model, we extract multiple surrogate estimates of the temperature diagnos-

tics to determine the patterns of unforced variability. To treat the monthly mean surface
temperature data from the models as if they were observations, we first regrid the model
output from its native grid to the 5x5 degree grid of the observations (Hansen et al.,
2010; Vose et al., 2012; Morice et al., 2012; Rohde et al., 2013). In the regridding process,
we take the area-weighted average of all grid boxes in the model grid that fall partially
or completely within the 5x5 degree grid box of the observations. From the 5-degree
resolution data, we extract 105-year segments to correspond to the 1906-2010 period used
in the surface temperature diagnostic. To maximize the number of segments extracted
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from each control run, we shifted the start year of each segment forward four years in
the simlation. We choose four years as a compromise between wanting to maximize the
number of samples and maintaining a degree of independence between the samples.

After the output is regridded and the segments extracted, we mask the model output
using the missing data mask from each of the observational datasets. For each control
run segment, the output is masked so that the coverage matches that of the observational
dataset for the length of the time series. We then treat individual segments as if they
are observations and calculate the decadal mean temperature anomaly time series as in
Section 3.2. The noise-covariance matrix used in the goodness-of-fit statistic calculation
is estimated by calculating the spatial and temporal correlations across all segments from
an individual model. Thus, each model has its own noise-covariance estimated from its
internal variability patterns.

We extract noise estimates of the ocean diagnostic following methods similar to
those for the surface data. From the gridded data and depth field provided in the
model documentation, we calculate the average global mean potential temperature in
the 0-2000 m layer. We ignore the small differences between potential temperature and
temperature observed at these depths. From the global mean average time series, we
extract 55-year segments corresponding to the 1955-2010 ocean diagnostic. We again
separate the starting date of the samples by four years. Before calculating the trend, we
convert the mean temperature in the layer to ocean heat content using the conversion
factor 900/0.09 EJ/◦C from Levitus et al. (2012). Because the ocean diagnostic is a single
point, namely the linear trend in global mean ocean heat content, the noise-covariance
matrix simplifies to the standard deviation in the estimate of the slope.

Once the PDFs are calculated using the variability estimates derived from each CMIP5
model, we extract the median value of each parameter from its marginal distribution.
We run simulations of MESM using these parameter sets to further test the distributions
a postiori. Namely, we distinguish models by whether the MESM runs with the median
estimates are consistent with observed changes in global mean temperature change and/or
ocean heat content by comparing long-term temperature changes simulated by the model
with the changes observed in the historical records.
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4.3 Results
We present probability distributions for the model parameters using the variability
estimates from each of the CMIP5 models in Table 4.1 (Figure 4.1). As in Chapter 3, we
estimate the joint PDF using each of the four surface temperature datasets individually
and merge the estimates by taking the average of the four PDFs. Although presented
without medians or 90-percent confidence intervals, it is clear that the PDFs are sensitive
to which CMIP5 model is used to estimate the variability. The sensitivities arise because
the patterns of internal variability estimated from each CMIP5 model are different, and
the elements of the x(θ) − y vector project differently onto these patterns. Thus, a
difference between the observations and model output that is assigned little weight with
the pattern from one model may be assigned a large weight with the pattern from a
second model.

We assume that the internal variability of each CMIP5 model is an equally-likely
representation the climate system. We thus assign equal weight to each estimate and
do not judge one model as better than any other. For this reason, we have chosen to
not label the individual distributions. However, we have color-coded the distributions
(see Table 4.1) based on three selection criteria as described next and summarized in
Table 4.2. For criterion one, we identify models based on their control run length being
longer or shorter than 500 years. As the length of the control run increases, the number
of estimates of the diagnostics to determine the noise-covariance matrix increases. For
the second and third criteria, we use the MESM simulations with parameters set to
the median values from each of the marginal distributions shown in Figure 4.1. We
calculate the difference between the global mean surface temperature in the last decade
of the simulation (2001-2010) and the first 20 years of the simulation (1861-1880) and
compare the difference to the observed climate record (Morice et al., 2012). We have
identified models where the absolute value of the difference between the temperature
change estimated from the model and calculated from the observations is less than 0.05
◦C. The overall range of 0.1 ◦C is slightly wider than the spread in the estimates (0.08 ◦C)
when the temperature change is calculated using different surface temperature datasets
for a common period (Hansen et al., 2010; Morice et al., 2012; Vose et al., 2012; Rohde
et al., 2013). Similarly, we have identified models by whether the simulated change in
global mean ocean heat content matches the observed change.

For most of the models, we find climate sensitivity to be centered between 3.3 and
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Figure 4.1: Marginal probability distribution functions for (a) ECS, (b) Kv, and (c)
Faer derived using variability estimates from each of the 25 CMIP5 models. Distributions
are colored based on the selection criteria in Table 4.2.
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Table 4.2: Selection criteria for CMIP5 models. A 1 indicates that a model does and a 0
indicates that a model does not pass a given test.

Model Name Color Length Surface Ocean
bcc-csm1-1 Blue 1 0 0

bcc-csm1-1-m Green 0 0 0
CanESM2 Blue 1 0 0
CCSM4 Black 1 1 1

CESM1-BGC Black 1 1 1
CESM1-FASTCHEM Green 0 0 0
CESM1-WACCM Green 0 0 0

CNRM-CM5 Purple 1 1 0
FGOALS-s2 Black 1 1 1
GFDL-CM3 Blue 1 0 0

GFDL-ESM2G Blue 1 0 0
GFDL-ESM2M Black 1 1 1
GISS-E2-H Black 1 1 1

GISS-E2-H-CC Red 0 1 0
GISS-E2-R Blue 1 0 0

GISS-E2-R-CC Green 0 0 0
IPSL-CM5A-LR Blue 1 0 0
IPSL-CM5A-MR Red 0 1 0
IPSL-CM5B-LR Red 0 1 0
MPI-ESM-LR Blue 1 0 0
MPI-ESM-MR Black 1 1 1
MPI-ESM-P Blue 1 0 0
MRI-CGCM3 Blue 1 0 0
NorESM1-M Blue 1 0 0
NorESM1-ME Orange 0 1 1

4.3 ◦C (Figure 4.2). However, we do observe variation between the individual estimates
and outliers above 5 ◦C and as high as 8 ◦C. We see a similar spread in the marginal
distributions of

√
Kv. While the distributions tend to cluster towards lower values

between 1.8 and 2.8 cm s−1/2, there are a few estimates with much higher
√
Kv. We

note that all of the outlier distributions are derived from models with less than 500
years of control run data. For these models, there are not enough control run segments
to accurately estimate the noise-covariance matrix. We see the most agreement in the
Faer distributions. There are no extreme outliers and the distributions all tend to center
between -0.3 and -0.1 Wm−2. However, the range in the estimates is greater than those
found when considering other factors such as the end date of the diagnostic and the
surface temperature dataset used (see Chapters 2 and 3).
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Figure 4.2: Median parameter values extracted from each distribution in Figure 4.1 for
each combination of parameters. Colors are as described in Tables 4.1 and 4.2.

For each of the separation criteria— length of the control simulation, MESM simula-
tion with median parameters matching global mean temperature change, and MESM
simulation matching global mean ocean heat content change —we group the diagnostic
segments from all models that pass the test into a single, merged pool of estimates. In
doing so, we combine variability estimates for models with similar length and variability
characteristics, thus increasing the number of segments available to calculate the covari-
ance matrix. From the increased collection of segments, we estimate a noise-covariance
matrix and derive an additional PDF using the estimate. In total, four groupings are
evaluated: (1) all models, (2) all models with a 500 year or greater control run, (3) all
models where the median distribution values lead to a MESM simulation consistent with
the observed global mean temperature change, and (4) all models where the median
parameter simulation is consistent with both the global mean surface temperature and
ocean heat content changes. The models that are in each grouping are given in Table 4.3
and the resulting distributions are shown in Figure 4.3.

We observe a much smaller spread in the parameter estimates when the merged
variability estimates are used to calculate the noise-covariance matrix compared to when
individual CMIP5 models are used. Climate sensitivity estimates are nearly independent
of the criteria used to pool the variability estimates. Across the four options, the 5th
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Table 4.3: Model groupings by selection criteria

Parsing Method Models Used # of Models Colors (Table 4.1)

Simulation
Length

bcc-csm1-1, CanESM2, CCSM4,
CESM1-BGC, CNRM-CM5, FGOALS-s2,

GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M,
GISS-E2-H, GISS-E2-R, IPSL-CM5A-LR,

MPI-ESM-LR, MPI-ESM-MR, MPI-ESM-P,
MRI-CGCM3, NorESM1-M

17 Black, Blue, Purple

Surface
Test

CCSM4, CESM1-BGC, CNRM-CM5,
FGOALS-s2, GFDL-ESM2M, GISS-E2-H,

GISS-E2-H-CC, IPSL-CM5A-MR, IPSL-CM5B-LR,
MPI-ESM-MR, NorESM1-ME

11 Black, Purple, Red, Orange

Surface and
Ocean Tests

CCSM4, CESM1-BGC, FGOALS-s2,
GFDL-ESM2M, GISS-E2-H, MPI-ESM-MR,

NorESM1-ME
7 Black, Orange
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Figure 4.3: Marginal probability distribution functions for ECS (a), Kv (b), and Faer (c)
and cumulative distribution function for TCR (d) resulting from merging the variability
estimates from the model groupings in Table 4.3. Groupings are for all models, all models
with length greater than 500 years, all models with median parameters consistent with
global mean temperature change, and all models with median parameters consistent
with global mean temperature change and ocean heat content change. Colors for the
merged groups are chosen so that the color of the last test passed before failure matches
that from Figure 4.1 (e.g., models that fail all tests are plotted green in Figure 4.1 and
therefore only fit in the "all models" group).
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and 95th percentiles of the distributions vary between 2.7 and 2.8 and 5.2 and 5.6
◦C, respectively. When compared to the 90-percent confidence interval of 3.1 to 4.9
◦C estimated from the distribution using only the CCSM4 internal variability derived in
Chapter 3, this represents a widening of the distribution. We note that similar to the
climate sensitivity distributions, the Faer distributions show strong agreement regardless
of which tests are used to group variability estimates. Unlike with the climate sensitivity
and aerosol distributions, we do not observe the Kv distributions collapsing towards a
single distribution with the different merged variability estimates. We estimate 90-percent
confidence intervals of 1.4-4.8, 1.4-4.2, 1.6-5.4, and 1.5-4.2 cm s−1/2 when variability from
all models, models longer than 500 years, models that pass the surface temperature
test, and models that pass both the surface temperature and ocean heat content tests
are used to estimate the noise-covariance matrix, respectively. We also note a much
longer upper tail in distributions when merged variability estimates are used compared
to the distribution in Chapter 3 which used variability from CCSM4 alone (1.5-3.0
cm s−1/2 90-percent confidence interval).

Following the methods of Chapter 2, we draw 1000-member Latin Hypercube Samples

1.0 1.5 2.0 2.5
Transient Climate Response (oC)

Figure 4.4: 90-percent confidence interval (horizontal line) and median (dots) from the
probability distribution functions of transient climate response derived from 1000-member
Latin Hypercube Samples drawn from the joint PDFs derived from the internal variability
estimates of individual models. Colors are as in Tables 4.1 and 4.3. Also shown is the
estimate from the PDF derived using the merged variability segments from all models
(bottom bold black line).
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(McKay et al., 1979) from the joint PDF derived using the variability estimate from each
model individually. We convert each ECS-

√
Kv pair to transient climate repsonse using

the functional fit derived in Chapter 2. We show the median and 90-percent confidence
intervals for the TCR distributions derived from the variability estimates from each
individual model along with the TCR distribution derived using the merged variability
estimate including all models in Figure 4.4. Similar to the ECS and Kv distributions,
the estimates of TCR are sensitive to the model used to estimate the internal variability.
When compared to the transient climate response PDF using only CCSM4 (Chapter 3),
using the merged variability across all models broadens the 90-percent confidence interval
from 1.6-2.0 ◦C to 1.4-2.1 ◦C. This wider distribution suggests that using a single model
can under sample the range of natural variability and lead to TCR estimates that are
too narrow.

4.4 Conclusions
In this study, we show that the natural variability estimate used in the likelihood function
to weigh the residuals between model output and observations has a strong impact on
parameter estimation. By estimating parameters using natural variability from a single
model, we observe that the posterior distributions are highly sensitive to the control run
data. We have explored several criteria to account for these differences. In particular,
some models have control runs that are too short to extract enough samples of variability
to provide a good estimate of the noise-covariance matrix. Combining the variability
from multiple models provides enough samples for a stable covariance estimate and
leads to a convergence of the distributions. Furthermore, if a single model is used, the
range of natural variability is under-sampled, leading to narrower estimates of model
parameters and projections. In particular, the constraints on all model parameters and
transient climate response were tighter when using the CCSM4 model alone, as opposed
to when the variability estimates from 25 CMIP5 models are merged to estimate the
noise-covariance matrix.
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Chapter 5 |
Summary and Conclusions

In this dissertation, we derived joint probability distributions for three model parameters—
effective climate sensitivity (ECS), effective ocean diffusivity (Kv) and the net anthro-
pogenic aerosol forcing (Faer) —representing key climate system properties by comparing
model output to historical observations. In Equation 1.5, we presented the goodness-of-fit
statistic, r2, that is used to evaluate model performance for a given set of the model
parameters. This statistic depends on three components:

1. Climate model output

2. Observations of past climate change

3. An estimate of the internal chaotic variability of the climate system

We have improved our estimates of the distributions by systematically changing and
improving each component in the evaluation procedure. The dissertation is structured
as a set of three stand-alone papers, each focusing on an individual component of the
goodness-of-fit statistic: the climate model (Chapter 2), the observations used to compare
the model against (Chapter 3), and the estimate of internal variability in the climate
system (Chapter 4). By taking this systematic approach, we are able to identify the
causes of the shifts we observe in the distributions of the climate model parameters.

Chapter 2 is the foundation of this dissertation. In Chapter 2, we tested how the
probability distributions for climate system properties changed due to updating the
climate component of the MIT Integrated Systems Model (IGSM, Sokolov et al., 2005)
to the MIT Earth System Model (MESM, Sokolov et al, in prep). Updating the model
involved changing the land surface component from CLM 2.1 to CLM 3.5 and extending
the historical forcing records so that model runs can simulate the climate up to 2010.
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Due to the discontinuation of the solar and ozone datasets used to force IGSM, new
time series of solar and ozone forcing were used in MESM. Two separate ensembles were
run with the fully updated model. The first was an 1800-member ensemble of historical
simulations from 1860 to 2010. Model runs were chosen to sample the parameter space
densely and uniformly over a wide range of the parameter values. The second was a
372-member ensemble of transient simulations where all forcings were held fixed and
CO2 concentrations were increased at the rate of 1 %/yr. From the transient simulations,
we derived a response surface for transient climate response as a function of ECS and
√
Kv. Chapters 3 and 4 use the historical runs and the TCR response surface.
Using the 1800-member ensemble, we tested how the parameter distributions change

as a result of the switch from IGSM to MESM. By using identical model diagnostics
to evaluate model performance and subsampling the model runs to a common set of
parameter values, we made a direct comparison between the models. Because of the
weaker forcing trends over the historical period from the new solar and ozone datasets,
estimates of the 90-percent confidence interval for Faer shifted from -0.83 to -0.19 Wm−2 in
IGSM (Libardoni and Forest, 2011) to -0.53 to -0.03 Wm−2 in MESM. Faer represents
the negative radiative forcing due to aerosols, and because the solar and ozone forcing
components are reduced with the new datasets, the aerosol cooling does not need to be as
strong to achieve the same total net forcing. The decrease in historical forcing also led to
a shift towards higher ECS because the same temperature patterns needed to be matched
with a weakened forcing signal. This requires an increase in the temperature response
to a unit change in forcing. Estimates increased from 1.2 to 5.3 ◦C in IGSM to 1.5 to
5.7 ◦C in MESM. Estimates of Kv went from unconstrained with an unbounded upper
tail using IGSM (Libardoni and Forest, 2011) to being bounded within the ensemble
domain for three of the surface temperature datasets in MESM (Figure 2.4). These
findings not only give us insight into the impact that the change in model has on the
parameter distributions, but also gives a reference point from which to assess the impact
of adding more recent data to the model diagnostics (Chapter 3) or changing the unforced
variability estimate (Chapter 4).

In Chapter 3, we applied a number of methodological changes to improve the parameter
estimates. First, we implemented a radial basis function interpolation algorithm to
produce smooth distributions and eliminate the need for ensembles to be run on a
uniform grid. Through a case study with a sample distribution of goodness-of-fit r2

values, we tuned the algorithm to find a balance between smoothing the values throughout
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the parameter space and making sure the values at the node points do not significantly
change. We showed that the RBF algorithm does indeed produce smooth surfaces and
does not change the central estimate of the distribution (Section 3.3.1). A second change
we implemented was an averaging of the distributions derived using individual surface
temperature datasets. In offline calculations, we found the average distribution to be
very similar to distributions drawn by sub-sampling individual distributions and merging
the sample. We take the average to account for uncertainty in the estimates due to the
observations.

Using the new methods, we showed that the incorporation of recent temperature
changes in the surface temperature and ocean heat content diagnostics significantly
impact the parameter distributions. When considering the diagnostics separately, the
rise in surface temperatures observed over the last two decades led to higher climate
sensitivity estimates than when the warming signals were not included. The steady rise
in global mean ocean heat content led to higher estimates of ocean diffusivity and lower
estimates of climate sensitivity. Estimates of Faer tended to follow shifts in the other
two parameters. When climate sensitivity increased or ocean diffusivity decreased, our
estimate of the magnitude of Faer increased, corresponding to a stronger aerosol cooling.
Overall, we found the estimated distributions are less uncertain as recent temperature
changes are included.

In Chapter 4, we tested the sensitivity of the distributions to changes in the estimates
of unforced variability in the climate system. Because the observational record is too short
and confounded by forced climate signals, we estimated the variability from pre-industrial
control runs of CMIP5 models. We showed that the distributions can change considerably
when different estimates are used. By applying a series of tests related to the length of the
control run and the agreement between model runs at the median parameter settings from
each distribution and long-term temperature changes, we pooled variability estimates
across models with similar behavior. We showed that the parameter distributions were
much less sensitive to the pooled variability estimates than to the variability estimate from
individual models. Furthermore, the uncertainty in our parameter estimates increased
when the pooled variability estimates were used compared to when the variability from
a single model was used. This indicates that estimating the natural variability from a
single model under-samples the natural variability and leads to parameter distributions
that are too narrow.

Throughout the dissertation, we have shown that distributions of transient climate
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response follow changes in climate sensitivity and ocean diffusivity. All estimates of TCR
are derived from the functional fit derived in Chapter 2. We observe higher TCR when
climate sensitivity increases or ocean diffusivity decreases and lower TCR when climate
sensitivity decreases or ocean diffusivity increases. Furthermore, as the uncertainty in
either parameter increases, the uncertainty in the TCR distribution also increases.

Given what we have learned in this dissertation, our best estimate of the climate
system properties derived from the MIT Earth System Model is with model diagnostics
that are extended to include data up to 2010 (Figure 5.1). For the estimate of the noise-
covariance matrix, we take the merged unforced variability estimates across all 25 models
considered in Chapter 4. Lastly, we merge the distributions derived from each of the four
surface temperature datasets. In choosing to extend the diagnostics, we use more detailed
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Figure 5.1: Marginal probability distribution functions for ECS (a), Kv (b), and Faer (c)
and cumulative distribution function for TCR (d) for our best estimate of the model
parameters. Distributions are derived by extending the model diagnostics to include data
up to 2010 and are merged across all surface datasets. The pooled variability estimate
of natural variability across all CMIP5 models is used to estimate the noise-covariance
matrix. Horizontal lines show the 90-percent confidence interval and circles are plotted
at the distribution medians.
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temperature patterns to evaluate model performance, leading to better constraints on the
parameter distributions. By using all of the natural variability estimates and information
across all surface datasets, we account for structural uncertainty in the variability estimate
and observational uncertainty in the surface temperature record.

Our final estimates of the model parameters and TCR have changed substantially
from the distributions in Libardoni and Forest (2011, 2013). Our estimate of climate
sensitivity has shifted from 1.2 to 5.3 ◦C (90-percent confidence interval) with median
values ranging from 1.6 to 2.6 ◦C depending on the surface temperature dataset in
Libardoni and Forest (2011) to 2.7 to 5.4 ◦C with a median value of 3.6 ◦C and mode of
3.5 ◦C. In Libardoni and Forest (2011, 2013), ocean diffusivity was poorly constrained
with no upper bound to the distribution. Due to this lack of constraint, no numerical
estimate was provided. Our analyses have improved the constraint on ocean diffusivity
considerably. We estimate the square root of ocean diffusivity to lie between 1.4 and 4.8
cm s−1/2 with a median value of 2.4 cm s−1/2 and mode of 2.1 cm s−1/2. Libardoni and
Forest (2011, 2013) estimated the amplitude of the net aerosol forcing in the 1980s to be
-0.83 to -0.19 Wm−2 with medians ranging between -0.69 and -0.47 Wm−2. We estimate
a weaker amplitude of -0.40 to -0.04 Wm−2 with a median of -0.22 Wm−2 and mode of
-0.25 Wm−2. This reduction is partially attributable to the decrease in the strength of
the solar and ozone forcings. Lastly, TCR estimates have changed from 0.87 to 2.31
◦C with medians ranging between 1.2 and 1.8 ◦C to 1.4 to 2.1 ◦C with a median of 1.7
◦C and mode of 1.8 ◦C.

5.1 Commentary and Future Work
Although comprehensive in many aspects, this work has also left open several questions
that merit further research. Thus far, we have considered only one ocean heat content
dataset in the ocean diagnostic (Levitus et al., 2012). While Levitus et al. (2012) is the
only dataset with an estimate of global mean ocean heat content that both starts in
1955 and extends below 700 m, there are a number of global mean ocean heat content
datasets for the 0-700 m layer (Gleckler et al., 2016). Analogous to the change in ocean
heat content diagnostic presented in Chapter 3, future research could consider replacing
the global mean ocean heat content in the 0-2000 m layer with the heat content in the
0-700 m layer. Deriving distributions using each of the datasets and merging them as
was done with the surface temperature datasets in Chapters 3 and 4 would allow for an
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accounting of observational uncertainty in the ocean diagnostic. This could replace or
work in conjunction with the methods presented here that use the observational errors
as weights in calculating residuals in the regression slope.

The development of the RBF interpolation algorithm opens the door to a vast array
of future research. For our work, we are no longer confined to a gridded sampling of the
parameter space. This allows for additional flexibility in future ensemble design choices.
In our 1800-member ensemble, many runs are in regions of the parameter space where
the likelihood function evaluates to zero. While this is helpful in evaluating the tails of
the distributions, it also inefficiently allocates computational resources by over-sampling
low probability regions. If fewer runs are dedicated to these regions, more runs can be
run in regions where the likelihood function changes rapidly. With the ability to sample
from anywhere in the domain without being restricted by the gridded design, different
strategies can be tested to develop a more efficient means of sampling the parameter
space. One such strategy would be to use a Latin Hypercube Sample of the parameter
space. Urban and Fricker (2010) showed that such a sampling performs better for an
ensemble of size n when compared to a gridded design of the same size. The Latin
Hypercube Sampling strategy is just one of many non-gridded strategies and may not be
the most efficient. Developing, testing, and implementing new strategies to reduce the
number of runs to achieve the same result is an exciting problem and one that would be
of great benefit to the scientific community. By using fewer runs, researchers can move
down a contour of constant computational resources in Figure 1.1 into regions of greater
model complexity. Thus, with efficient sampling strategies, models of higher complexity
with more components can be used in probabilistic studies, much like the MESM is used
in this work.

A surprising result was the lack of sensitivity in the climate sensitivity and ocean
diffusivity distributions to the spatial structure of the surface diagnostic for the period
ending in 2010. Before starting this dissertation, we expected there to be more spread
among the results derived using the global mean, hemispheric mean, and four zonal mean
surface temperature patterns. Initial tests using the 1990 and 2000 end dates showed
sensitivity to the diagnostic structure, making the convergence of the distributions in
2010 quite surprising. Whether this convergence is just a coincidence or that global mean
parameters in fact show no sensitivity with the longer and more recent temperature
patterns is an interesting question that merits a deeper analysis. If it is found that zonal
structure does matter, the scientific community may have to rethink the merit of using
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energy balance models that predict only global mean surface temperature, or else risk
averaging over signals crucial to improving estimates of climate system properties.
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Appendix A|
Radial Basis Functions in Model
Parameter Space

A.1 Grid Spacing in Normalized Model Parameter Space
As discussed in Section 3.2, when estimating the r2 value at intermediate points, the
weight assigned to values at node points in the radial basis function interpolation is
a function of the distance between the two points. We have chosen to normalize the
parameter space for each parameter by the range sampled by the 1800-member ensemble
of MESM runs so that each dimension is isometric in the distance calculation. In this
normalized space, the grid spacing for each model parameter is:

∆ECS = 0.5 ◦C
10 ◦C = 0.05 (A.1)

∆Kv = 1 cm s−1/2

8 cm s−1/2 = 0.125 (A.2)

∆Faer = 0.25 Wm−2

2.25 Wm−2 = 0.111 (A.3)

A.2 Interpretation of ε Values in Model Parameter Space
The weight of any node point in the calculation of r2 at an interpolated point was given
in Eq. 3.3 and is a function of the distance between the points and the scaling parameter
ε. When first developing the algorithm, we hypothesized that having each node point
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influence the r2 value at an interpolated point within three grid points in model parameter
space would achieve the fit and smoothness we sought from the interpolation. Because
the grid spacing in normalized space is not equal for the three parameters, we chose an
average of the three individual spacings and used 0.1 as the approximate distance of one
grid space. Setting d = 0.3 and φ = 0.01 to account for the distance between three nodes
and the weight approaching zero at that distance, respectively, we solve for ε = 7.2.

To test other ε values, we scaled the original choice by factors of 0.5, 1.5, and 2.
For ε = 3.6, we calculate an e-folding distance of 0.27. This implies a large sphere of
influence, as the weight decays to 0.37 at a distance of approximately three grid points
away in normalized parameter space. Thus, rather than decay to zero as for the original
estimate, there is still significant influence from the node point at d = 0.3. This leads
to the over smoothing of the r2 pattern observed in Figure 3.2. In similar calculations,
we determine e-folding distances in normalized parameter space of 0.09 and 0.07 for
ε = 10.8 and ε = 14.4, respectively. For ε = 10.8, this implies an e-folding distance of
approximately one grid space in the

√
Kv and Faer dimensions, while for ε = 14.4, the

weight has decayed to 0.13 at a distance of one grid space in those dimensions. Using
larger values of ε leads to further decay of the weighting function one normalized grid
point away from the nodes.
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Appendix B|
Selected Coupled Model Intercom-
parison Project Phase 5 Models

Table B.1: CMIP5 Participant Identification Codes

CMIP5 Institute ID Modeling Center or Group
BCC Beijing Climate Center, China Meteorological Admin-

istration
CCCMA Canadian Centre for Climate Modelling and Analysis
NCAR National Center for Atmospheric Research
NSF-DOE-NCAR Community Earth System Model Contributors
CNRM-CERFACS Centre National de Recherches Météorologiques / Cen-

tre Européen de Recherche et Formation Avancée en
Calcul Scientifique

LASG-CESS State Key Laboratory of Numerical Modeling for At-
mospheric Sciences and Geophysical Fluid Dynamics
(LASG), Institute of Atmospheric Physics, Chinese
Academy of Sciences, and Center for Earth System
Science, Tsinghua University

NOAA GFDL National Oceanic and Atmospheric Administration
Geophysical Fluid Dynamics Laboratory

NASA GISS National Aeronautics and Space Administration God-
dard Institute for Space Studies

IPSL Institut Pierre-Simon Laplace
MPI-M Max-Planck-Institut für Meteorologie (Max Planck

Institute for Meteorology)
MRI Meteorological Research Institute
NCC Norwegian Climate Centre
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Table B.2: CMIP5 Models

Model Abbreviation Full Model Name
bcc-csm1-1 Beijing Climate Center, Climate System Model, version 1.1
bcc-csm1-1-m Beijing Climate Center, Climate System Model, version 1.1

(moderate resolution)
CanESM2 Second Generation Canadian Earth System Model
CCSM4 Community Climate System Model, version 4
CESM1-BGC Community Earth System Model, version 1 (Biogeochem-

istry)
CESM1-FASTCHEM Community Earth System Model, version 1 [Community

Atmosphere Model with Chemistry (CAM-chem)]
CESM1-WACCM Community Earth System Model, version 1 (Whole Atmo-

sphere Community Climate Model)
CNRM-CM5 Centre National de Recherches Météorologiques Coupled

Global Climate Model, version 5
FGOALS-s2 Flexible Global OceanÐAtmosphere-Land System Model,

second spectral version
GFDL-CM3 Geophysical Fluid Dynamics Laboratory Climate Model,

version 3
GFDL-ESM2G Geophysical Fluid Dynamics Laboratory Earth System

Model with GOLD component
GFDL-ESM2M Geophysical Fluid Dynamics Laboratory Earth System

Model with MOM, version 4 component
GISS-E2-H Goddard Institute for Space Studies Model E2, coupled with

Hybrid Coordinate Ocean Model
GISS-E2-H-CC Goddard Institute for Space Studies Model E2, coupled with

Hybrid Coordinate Ocean Model and interactive terrestrial
carbon cycle (and oceanic biogeochemistry)

GISS-E2-R Goddard Institute for Space Studies Model E2, coupled with
the Russell ocean model

GISS-E2-R-CC Goddard Institute for Space Studies Model E2, coupled with
the Russell ocean model and interactive terrestrial carbon
cycle (and oceanic biogeochemistry)

IPSL-CM5A-LR L’Institut Pierre-Simon Laplace Coupled Model, version 5A,
low resolution

IPSL-CM5A-MR L’Institut Pierre-Simon Laplace Coupled Model, version 5A,
mid resolution

IPSL-CM5B-LR L’Institut Pierre-Simon Laplace Coupled Model, version 5B,
low resolution

MPI-ESM-LR Max Planck Institute Earth System Model, low resolution
MPI-ESM-MR Max Planck Institute Earth System Model, medium resolu-

tion
MPI-ESM-P Max Planck Institute Earth System Model, paleoclimate
MRI-CGCM3 Meteorological Research Institute Coupled Atmosphere-

Ocean General Circulation Model, version 3
NorESM1-M Norwegian Earth System Model, version 1 (intermediate

resolution)
NorESM1-ME NorESM1-M with carbon cycling and biogeochemistry

84



Bibliography

Aldrin, M., M. Holden, P. Guttorp, R. B. Skeie, G. Myhre, and T. K. Bernstein,
2012: Bayesian estimation of climate sensitivity based on a simple climate model
fitted to observations of hemispheric temperatures and global ocean heat content.
Environmetrics, 23, 253–271.

Allen, M. R. and D. J. Frame, 2007: Call off the quest. Science, 318, 582–583.

Allen, M. R. and S. F. B. Tett, 1999: Checking for model consistency in optimal
fingerprinting. Clim. Dyn., 15, 419–434.

Andrews, D. G. and M. R. Allen, 2008: Diagnosis of climate models in terms of transient
climate response and feedback response time. Atm. Sci. Letters, 9, 7–12.

Andronova, N., M. Schlesinger, S. Dessai, M. Hulme, and B. Li, 2007: The concept of
climate sensitivity: History and development. Human–induced climate change: An
interdisciplinary assessment, M. E. Schlesinger, H. S. Kheshqi, J. Smith, F. C. de la
Caesnaye, J. M. Reilly, T. Wilson, and C. Kolstad, Eds., Cambridge University Press,
Cambridge, UK, 5–17.

Andronova, N. G. and M. E. Schlesinger, 2001: Objective estimation of the probability
density function for climate sensitivity. J. Geophys. Res., 106 (D19), 22,605–22,612.

Bayes, T., 1763: An essay towards solving a problem in the doctrine of chances. Philo-
sophical Transactions of the Royal Society, 53, 370–418.

Bellouin, N., O. Boucher, J. Haywood, and M. Reddy, 2005: Global estimate of aerosol
direct radiative forcing from satellite measurements. Nature, 438 (22), 1138–1141.

Bellouin, N., J. Quaas, J.-J. Morcrette, and O. Boucher, 2013: Estimates of aerosol
radiative forcing from the MACC re-analysis. Atmos. Chem. Phys., 13, 2045–2062.

Bindoff, N. L., et al., 2013: Detection and attribution of climate change: From global to
regional. Climate Change 2013: The Physical Science Basis. Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate
Change, T. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. Allen, J. Boschung, A. Nauels,

85



Y. Xia, V. Bex, and P. Midgley, Eds., Cambridge University Press, Cambridge, UK
and New York, NY, USA, 867–952.

Bony, S., et al., 2006: How well do we understand and evaluate climate change feedback
processes? J. Clim., 19, 3445–3482.

Boucher, O., et al., 2013: Clouds and aerosols. Climate Change 2013: The Physical
Science Basis. Contribution of Working Group I to the Fifth Assessment Report of
the Intergovernmental Panel on Climate Change, T. Stocker, D. Quin, G.-K. Plattner,
M. Tignor, S. Allen, J. Boschung, A. Nauels, Y. Zia, V. Bext, and P. Midgley, Eds.,
Cambridge University Press, Cambridge, UK and New York, NY, USA, 571–658.

Brohan, P., J. J. Kennedy, I. Harris, S. F. B. Tett, and P. D. Jones, 2006: Unceratainty
estimates in regional and global observed temperature changes: A new data set from
1850. J. Geophys. Res., 111 (D12106), doi:10.1029/2005JD006 548.

Charney, J., 1979: Carbon dioxide: A scientific assessment. National Academy of Sciences
Press, Washington, D.C., 33 pp.

Cionni, I., et al., 2011: Ozone database in support of CMIP5 simulations: Results and
corresponding radiative forcing. Atmos. Chem. Phys., 11, 11 267–11 292.

Collins, M., et al., 2013: Long-term climate change: Projections, commitments and irre-
versibility. Climate Change 2013: The Physical Science Basis. Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate
Change, T. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. Allen, J. Boschung, A. Nauels,
Y. Xia, V. Bex, and P. Midgley, Eds., Cambridge University Press, Cambridge, UK
and New York, NY, USA, 1029–1136.

Conley, A. J., J.-F. Lamarque, F. Vitt, W. D. Collins, and J. Kiehl, 2013: PORT, a
CESM tool for the diagnosis of radiative forcing. Geosci. Model Dev., 6, 469–476.

Cowtan, K. and R. G. Way, 2014: Coverage bias in the HadCRUT4 temperature series
and its impact on recent temperature trends. Q.J.R. Meterol. Soc., 140, 1935–1944.

Cubasch, U., et al., 2001: Projections of future climate change. Climate Change 2001:
The Physical Science Basis. Contribution of Working Group I to the Second Assessment
Report of the Intergovernmental Panel on Climate Change, J. Houghton, Y. Ding,
D. Griggs, M. Noguer, P. van der Linden, X. Dai, K. Maskell, and C. Johnson, Eds.,
Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,
526–582.

Drignei, D., C. E. Forest, and D. Nychka, 2008: Parameter estimation for computationally
intensive nonlinear regression with an application to climate modeling. Ann. Appl.
Stat., 2 (4), 1217–1230.

86



Flato, G., et al., 2013: Evaluation of climate models. Climate Change 2013: The Physical
Science Basis. Contribution of Working Group I to the Fifth Assessment Report of
the Intergovernmental Panel on Climate Change, T. Stocker, D. Qin, G.-K. Plattner,
M. Tignor, S. Allen, J. Doschung, A. Nauels, Y. Xia, V. Bex, and P. Midgley, Eds.,
Cambridge University Press, Cambridge, UK and New York, NY, USA, 741–866.

Forest, C. E., M. R. Allen, A. P. Sokolov, and P. H. Stone, 2001: Constraining climate
model properties using optimal fingerprint detection methods. Clim. Dyn., 18, 277–295.

Forest, C. E., P. H. Stone, and A. P. Sokolov, 2006: Estimated PDFs of climate sys-
tem properties including natural and anthropogenic forcings. Geophys. Res. Let.,
33 (L01705), doi:10.1029/2005GL023 977.

Forest, C. E., P. H. Stone, and A. P. Sokolov, 2008: Constraining climate model
parameters from observed 20th century changes. Tellus, 60A (5), 911–920.

Forest, C. E., P. H. Stone, A. P. Sokolov, M. R. Allen, and M. D. Webster, 2002:
Quantifying uncertainties in climate system properties with the use of recent climate
observations. Science, 295, 113–117.

Forster, P. M., 2016: Inference of climate sensitivity from analysis of earth’s energy
budget. Ann. Rev. of Earth and Planetary Sciences, 44 (1), 85–106.

Forster, P. M., T. Andrews, P. Good, J. M. Gregory, L. S. Jackson, and M. Zelinka, 2013:
Evaluating adjusted forcing and model spread for historical and future scenarios in the
CMIP5 generation of climate models. J. Geophys. Res.: Atmos., 118, 1139–1150.

Forster, P. M. F. and J. Gregory, 2006: The climate sensitivity and its components
diagnosed from Earth Radiation Budget data. J. Clim., 19, 39–52.

Gent, P. R., et al., 2011: The Community Climate System Model version 4. J. Climate,
24, doi:10.1175/2011JCLI4083.1.

Gleckler, P. J., P. J. Durack, R. J. Stouffer, G. C. Johnson, and C. E. Forest, 2016:
Industrial-era global ocean heat uptake doubles in recent decades. Nature Clim. Change,
6, 394–398.

Gregg, M., 1987: Diapycnal mixing in the thermocline. J. Geophys. Res., 92 (C5),
5249–5286.

Gregory, J. M., 2000: Vertical heat transports in the ocean and their effect on time-
dependent climate change. Clim. Dyn., 16, 501–515.

Gregory, J. M., T. Andrews, and P. Good, 2015: The inconstancy of the transient climate
response parameter under increasing CO2. Phil. Trans. of the R. Soc. of London,
373 (2054), doi:10.1098/rsta.2014.0417.

87



Gregory, J. M., R. J. Stouffer, S. C. B. Raper, P. A. Stott, and N. A. Rayner, 2002: An
observationally based estimate of the climate sensitivity. J. Clim., 15 (22), 3117–3121.

Hansen, J., A. Lacis, D. Rind, G. Russell, P. Stone, I. Fung, R. Ruedy, and J. Lerner,
1984: Climate sensitivity: Analysis of feedback mechanisms. Climate Processes and
Climate Sensitivity, Geophysical Monograph, J. E. Hansen and T. Takahashi, Eds.,
American Geophysical Union, Washington, D.C., Vol. 29, 130–163.

Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface temperature change.
Rev. Geophys., 48 (RG4004), doi:10.1029/2010RG000 345.

Hansen, J., et al., 2007: Climate simulations for 1880–2003 with GISS modelE. Clim.
Dyn., 29, doi:10.1007/s00 382–007–0255–8.

Hegerl, G. C., P. A. Stott, M. R. Allen, J. F. B. Mitchell, S. F. B. Tett, and U. Cubasch,
2000: Optimal detection and attribution of climate change: Sensitivity of results to
climate model differences. Clim. Dyn., 16, 737–754.

Huang, B., et al., 2015: Extended Reconstructed Sea Surface Temperature version 4
(ERSST.v4). Part I: Upgrades and intercomparisons. J. Clim., 28, 911–930.

Huber, M. and R. Knutti, 2014: Natural variability, radiative forcing and climate response
in the recent hiatus reconciled. Nature Geosci., 7, 651–656.

Johansson, D. J. A., B. C. O’Neill, C. Tebaldi, and O. Haggstrom, 2015: Equilibrium
climate sensitivity in light of observations over the warming hiatus. Nature Clim.
Change, 5, 449–453.

Jones, P. and A. Moberg, 2003: Hemispheric and large-scale surface air temperature
variations: An extensive revision and an update to 2001. J. Clim., 16, 206–223.

Karl, T., et al., 2015: Possible artifacts of data biases in the recent global surface warming
hiatus. Science, 348, 1469–1472.

Kattenberg, A., et al., 1996: Climate models – projections of future climate. Climate
Change 1995: The Science of Climate Change. Contribution of Working Group I to
the Second Assessment Report of the Intergovernmental Panel on Climate Change,
J. Houghton, L. M. Filho, B. Callander, N. Harris, A. Kattenberg, and K. Maskell,
Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY,
USA, 285–357.

Kennedy, J. J., N. A. Rayner, R. O. Smith, D. E. Parker, and M. Saunby, 2011a:
Reassessing biases and other uncertainties in sea surface temperature observations
measured in situ since 1850: 1. Measurement and sampling uncertainties. J. Geophys.
Res.: Atmospheres, 116 (D14103), doi:10.1029/2010JD015 218.

88



Kennedy, J. J., N. A. Rayner, R. O. Smith, D. E. Parker, and M. Saunby, 2011b: Reassess-
ing biases and other uncertainties in sea surface temperature observations measured
in situ since 1850: 2. Biases and homogenization. J. Geophys. Res.: Atmospheres,
116 (D14104), doi:10.1029/2010JD015 220.

Klimont, Z., S. J. Smith, and J. Cofala, 2013: The last decade of global anthro-
pogenic sulfur dioxide: 2000–2011 emissions. Environ. Res. Lett., 8, doi:10.1088/1748–
9326/8/1/014 003.

Klocke, D., J. Quaas, and B. Stevens, 2013: Assessment of different metrics for physical
climate feedbacks. Clim. Dyn., doi:10.1007/s00 382–013–1757–1.

Knutti, R. and G. C. Hegerl, 2008: The equilibrium sensitivity of the Earth’s temperature
to radiation changes. Nature Geosci., 1, 735–743.

Knutti, R., T. F. Stocker, F. Joos, and G. Plattner, 2003: Probabilistic climate change
projections using neural networks. Clim. Dyn., 21, 257–272.

Knutti, R., T. F. Stocker, F. Joos, and G.-K. Plattner, 2002: Constraints on radiative
forcing and future climate change from observations and climate model ensembles.
Nature, 416, 719–723.

Knutti, R. and L. Tomassini, 2008: Constraints on the transient climate response from
observed global temperature and ocean heat uptake. Geophys. Res. Let., 35 (L09701),
doi:10.1029/2007GL032 904.

Kopp, G. and J. L. Lean, 2011: A new, lower value of total solar irradiance: Evidence and
climate significance. Geophys. Res. Let., 38 (L01706), doi:10.1029/2010GL045 777.

Kriegler, E., 2005: Imprecise probability analysis for integrated assessment of climate
change. Ph.D. thesis, University of Potsdam, Potsdam, Germany.

Kunze, E., E. Firing, J. M. Hummon, T. K. Chereskin, and A. M. Thurnherr, 2006:
Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. J.
Phys. Oceanogr., 36 (8), 1553–1576.

Lean, J. L., 2000: Evolution of the sun’s spectral irradiance since the Maunder Minimum.
Geophys. Res. Let., 27 (16), 2425–2428.

Ledwell, J., A. Watson, and C. Law, 1993: Evidence for slow mixing across the pycnocline
from an open-ocean tracer-release experiment. Nature, 364, 701–703.

Ledwell, J., A. J. Watson, and C. S. Law, 1998: Mixing of a tracer in the pycnocline. J.
Geophys. Res., 103 (C10), 21,499–21,529.

Levitus, S., J. Antonov, and T. Boyer, 2005: Warming of the world ocean, 1955–2003.
Geophys. Res. Let., 32 (L02604), doi:10.1029/2004GL021 592.

89



Levitus, S., et al., 2012: World ocean heat content and thermosteric sea level change
(0–2000 m), 1955–2010. Geophys. Res. Let., 39 (L10603), doi:10.1029/2012GL051 106.

Lewis, N., 2013: An objective Bayesian improved approach for applying optimal finger-
print techniques to climate sensitivity. J. Clim., 26, doi:10.1175/JCLI–D–12–00 473.1.

Lewis, N. and J. A. Curry, 2014: The implications for climate sensitivity of AR5 forcing
and heat uptake estimates. Clim. Dyn., 45 (1009), doi:10.1007/s00 382–014–2342–y.

Libardoni, A. G. and C. E. Forest, 2011: Sensitivity of distributions of climate system
properties to the surface temperature dataset. Geophys. Res. Let., 38 (L22705),
doi:10.1029/2011GL049 431.

Libardoni, A. G. and C. E. Forest, 2013: Correction to "Sensitivity of distributions of
climate system properties to the surface temperature data set". Geophys. Res. Let.,
40, doi:10.1002/grl.50 480.

Lorenz, A., H. Held, E. Bauer, and T. S. von Deimling, 2010: Constraining ocean
diffusivity from the 8.2 ka event. Clim. Dyn., 34, 719–734.

MacKinnon, J., L. St. Laurent, and A. Naveria Garabato, 2013: Diapycnal mixing
processes in the ocean interior. Ocean Circulation and Climate.

Masters, T., 2014: Observational estimate of climate sensitivity from changes in the rate of
ocean heat uptake and comparison to CMIP5 models. Clim. Dyn., doi:10.1007/s00 382–
013–1770–4.

McKay, M. D., R. J. Beckman, and W. J. Conover, 1979: A comparison of three methods
for selecting values of input variables in the analysis of output from a computer code.
Technometrics, 21, 239–245.

Meehl, G., et al., 2007: Global climate projections. Climate Change 2007: The Physical
Science Basis. Contribution of Working Group I to the Fourth Assessment Report of
the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning,
Z. Chen, M. Marquis, K. Averyt, M. Tignor, and H. Miller, Eds., Cambridge University
Press, Cambridge, United Kingdom and New York, NY, USA, 747–846.

Meehl, G. A., J. M. Arblaster, J. T. Fasullo, A. Hu, and K. E. Trenberth, 2011: Model-
based evidence of deep-ocean heat uptake during surface-temperature hiatus periods.
Nature Clim. Change, 1, 360–364.

Meinshausen, M., N. Meinshausen, W. Hare, S. Raper, K. Frieler, R. Knutti, D. Frame,
and M. Allen, 2009: Greenhouse-gas emission targets for limiting global warming to 2
degrees C. Nature, 458 (7242), 1158–1162.

90



Millar, R. J., A. Otto, P. M. Forster, J. A. Lowe, W. J. Ingram, and M. R. Allen,
2015: Model structure in observational constraints on transient climate response. Clim.
Change, 131, 199–211.

Miller, R. L., et al., 2014: CMIP5 historical simulations (1850–2012) with GISS ModelE2.
J. Adv. Model. Earth Syst., 6, 441–477.

Mitchell, J., S. Manabe, V. Meleshko, and T. Tokioka, 1990: Equilibrium climate
change – and its implications for the future. Climate Change. The IPCC Scientific
Assessment. Contribution of Working Group 1 to the First Assessment Report of the
Intergovernmental Panel on Climate Change, J. T. Houghton, G. J. Jenkins, and J. J.
Ephraums, Eds., Cambridge University Press, Cambridge, United Kingdom and New
York, NY, USA, 137–164.

Morice, C. P., J. J. Kennedy, N. A. Rayner, and P. D. Jones, 2012: Quantifying uncertain-
ties in global and regional temperature change using an ensemble of observational esti-
mates: The HadCRUT4 data set. J. Geohpys. Res., 117, doi:10.1029/2011JD017 187.

Munk, W., 1966: Abyssal recipes. Deep-Sea Res., 13, 707–730.

Munk, W. and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing.
Deep-Sea Res., 45, 1977–2010.

Murphy, D. M., S. Solomon, R. W. Portmann, K. H. Rosenlof, P. M. Forster, and
T. Wong, 2009: An observationally based energy balance for the Earth since 1950. J.
Geophys. Res., 114 (D17107), doi:10.1029/2009JD012 105.

Murphy, J., 1995: Transient response of the Hadley Centre coupled ocean-atmosphere
model to increasing carbon dioxide. Part III: Analysis of global-mean response using
simple models. J. Clim., 8, 496–514.

Murphy, J. M., D. M. H. Sexton, D. N. Barnett, G. S. Jones, M. J. Webb, M. Collins, and
D. A. Stainforth, 2004: Quantification of modeling uncertainties in a large ensemble of
climate change simulations. Nature, 430, 768–722.

Oleson, K. W., et al., 2008: Improvements to the Community Land Model
and their impact on the hydrological cycle. J. Geophys. Res., 113 (G01021),
doi:10.1029/2007JG000 563.

Olson, R., R. Sriver, W. Chang, M. Haran, N. M. Urban, and K. Keller, 2013: What is
the effect of unresolved internal climate variability on climate sensitivity estimates? J.
Geophys. Res.: Atmos., 118, 1–11.

Olson, R., R. Sriver, M. Goes, N. M. Urban, H. D. Matthews, M. Haran, and
K. Keller, 2012: A climate sensitivity estimate using Bayesian fusion of instrumen-
tal observations and an Earth System model. J. Geophys. Res., 117 (D04103),
doi:10.1029/2001JD016 620.

91



Otto, A., et al., 2013: Energy budget constraints on climate response. Nature Geosci., 6,
415–416.

Piani, C., D. J. Frame, D. A. Stainforth, and M. R. Allen, 2005: Constraints on climate
change from a multi-thousand member ensemble of simulations. Geophys. Res. Let.,
32 (L23825), doi:10.1029/2005GL024 452.

Polzin, K. L., J. M. Toole, J. R. Ledwell, and R. W. Schmitt, 1997: Spatial variability of
turbulent mixing in the abyssal ocean. Science, 276, 93–96.

Powell, M. J. D., 1977: Restart procedures for the conjugate gradient method. Math.
Prog., 12 (1), 241–254.

Rohde, R., et al., 2013: A new estimate of the average Earth surface and land temperature
spanning 1753 to 2011. Geoinfor. Geostat: An Overview, 1:1, doi:10.4172/gigs.1000 101.

Sanderson, B. M., 2011: A multimodel study of parametric uncertainty in predictions of
climate response to rising greenhouse gas concentrations. J. Clim., 24, 1362–1377.

Sansó, B. and C. Forest, 2009: Statistical calibration of climate system properties. Appl.
Statist., 58, 485–503.

Sato, M., J. E. Hansen, M. P. McCormick, and J. B. Pollack, 1993: Stratospheric aerosol
optical depths. J. Geophys. Res., 98 (D12), 22 987–22 944.

Schmidt, G., D. T. Shindell, and K. Tsigaridis, 2014: Reconciling warming trends. Nature
Geosci., 7, 158–160.

Shindell, D. T., et al., 2013: Radiative forcing in the ACCMIP historical and future
climate simulations. Atmos. Chem. Phys., 13, 2939–2974.

Skeie, R., T. Bernsten, M. Aldrin, M. Holden, and G. Myhre, 2014: A lower and more
constrained estimate of climate sensitivity using updated observations and detailed
radiative forcing time series. Earth System Dynamics, 5 (1), 139–175.

Smith, S. J., J. van Aardenne, Z. Klimont, R. J. Andres, A. Volke, and S. D. Arias,
2011: Anthropogenic sulfur dioxide emissions: 1850–2005. Atmos. Chem. Phys., 11,
1101–1116.

Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements
to NOAA’s historical merged land-ocean surface temperature analysis (1880-2006). J.
Clim., 21, 2283–2296.

Sokolov, A., S. Dutkiewicz, P. Stone, and J. Scott, 2007: Evaluating the use of ocean
models of different complexity in climate change studies, MIT JP Report 128. Joint
Program Report Series, Report 128, 23 pages.

92



Sokolov, A., et al., 2005: The MIT Integrated Global System Model (IGSM) version 2:
Model description and baseline evaluation. Joint Program Report Series, Report 124,
40 pages.

Sokolov, A. P., 2006: Does model sensitivity to changes in CO2 provide a measure of
sensitivity to other forcings? J. Clim., 19, 3294–3306.

Sokolov, A. P., C. E. Forest, and P. H. Stone, 2003: Comparing oceanic heat uptake in
AOGCM transient climate change experiments. J. Clim., 16, 1573–1582.

Sokolov, A. P. and E. Monier, 2012: Changing the climate sensitivity of an atmospheric
general circulation model through cloud radiative adjustment. J. Clim., 25, 6567–6584.

Sokolov, A. P. and P. H. Stone, 1998: A flexible climate model for use in integrated
assessments. Clim. Dyn., 14, 291–303.

Sokolov, A. P., et al., 2009: Probabilistic forecast for twenty-first century climate based
on uncertainties in emissions (without policy) and climate parameters. J. Clim., 22,
5175–5204.

Sriver, R. L., N. M. Urban, R. Olson, and K. Keller, 2012: Toward a physically plausible
upper bound of sea-level rise projections. Clim. Change, 115, 893–902.

St. Laurent, L. and H. Simmons, 2006: Estimates of power consumed by mixing in the
ocean interior. J. Climate, 19, 4877–4890.

Stainforth, D. A., et al., 2005: Uncertainty in predictions of the climate response to
rising levels of greenhouse gases. Nature, 433, 403–406.

Stevenson, D. S., et al., 2013: Tropospheric ozone changes, radiative forcing and attribu-
tion to emissions in the Atmospheric Chemistry and Climate Model Intercomparison
Project (ACCMIP). Atmos. Chem. Phys., 13, 3063–3085.

Stone, P. H. and M.-S. Yao, 1987: Development of a two–dimensional zonally averaged
statistical–dynamical model. Part II: The role of eddy momentum fluxes in the general
circulation and their parameterization. J. Atmos. Sci, 44 (24), 3769–3786.

Stone, P. H. and M.-S. Yao, 1990: Development of a two–dimensional zonally averaged
statistical–dynamical model. Part III: The parameterization of the eddy fluxes of heat
and moisture. J. Clim., 3, 726–740.

Su, W., N. Loeb, G. Schuster, M. Chin, and F. Rose, 2013: Global all-sky shortwave
direct radiative forcing of anthropogenic aerosols from combined satellite observations
and GOCART simulations. J. Geophys. Res.: Atmos., 118, 655–66 905.

93



Tanaka, K., T. Raddatz, B. O’Niell, and C. Reick, 2009: Insufficient forcing uncertainty
underestimates the risk of high climate sensitivity. Geophys. Res. Let., 36 (L16709),
doi:10.1029/2009GL039 642.

Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the
experimental design. Bull. Am. Meteorol. Soc., 93, 485–498.

Tomassini, L., P. Reichert, R. Knutti, T. F. Stocker, and M. E. Borsuk, 2007: Robust
Bayesian uncertainty analysis of climate system properties using Markov Chain Monte
Carlo estimates. J. Clim., 20, 1239–1254.

Trenberth, K. E. and J. T. Fasullo, 2013: An apparent hiatus in global warming? Earth’s
Future, 1, 19–32.

Urban, N. M. and T. E. Fricker, 2010: A comparison of Latin Hypercube and grid
ensemble designs for the multivariate emulation of an Earth system model. Comp. and
Geosci., 36 (6), 746–755.

Urban, N. M., P. B. Holden, N. R. Edwards, R. L. Sriver, and K. Keller, 2014: Historical
and future learning about climate sensitivity. Geophys. Res. Let., 41, 2543–2552.

Urban, N. M. and K. Keller, 2009: Complementary observational constraints on climate
sensitivity. Geophys. Res. Let., 36 (L04708), doi:10.1029/2008GL036 457.

Vose, R. S., et al., 2012: NOAA’s merged land–ocean surface temperature analysis. Bull.
Am. Meteorol. Soc., 93, 1677–1685.

Waterhouse, A., et al., 2014: Global patterns of diapycnal mixing from measurements of
the turbulent dissipation rate. J. Phys. Oceanogr., 44, 1854–1872.

Webb, M. J., et al., 2006: On the contribution of local feedback mechanisms to the range
of climate sensitivity in two GCM ensembles. Clim. Dyn., 27 (1), 17–38.

Webster, M., L. Jakobovits, and J. Norton, 2008: Learning about climate change and
implications for near-term policy. Clim. Change, 89, 67–85.

Webster, M. and A. Sokolov, 2000: A methodology for quantifying uncertainty in climate
projections. Clim. Change, 46, 417–446.

Yao, M.-S. and P. H. Stone, 1987: Development of a two–dimensional zonally averaged
statistical–dynamical model. Part I: The parameterization of moist convection and its
role in the general circulation. J. Atmos. Sci., 44 (1), 65–82.

Yokohata, T., M. J. Webb, M. Collins, K. D. Williams, M. Yoshimori, J. C. Hargreaves,
and J. Annan, 2010: Structural similarities and differences between climate responses
to CO2 increase between two perturbed physics ensembles. J. Clim., 23, 1392–1410.

94



Yu, H., P. K. Quinn, G. Feingold, L. A. Remer, R. A. Kahn, M. Chin, and S. E. Schwartz,
2009: Remote sensing and in situ measurements of aerosol properties, burdens, and
radiative forcing. Atmospheric Aerosol Properties and Climate Impacts: A Report by
the U.S. Climate Change Science Program and the Subcommittee on Global Change
Research., M. Chin, R. Kahn, and S. Schwartz, Eds., National Aeronautics and Space
Administration, Washington, D.C., USA.

95



Vita
Alex Gordon Libardoni

Education
Ph.D. in Meteorology, 2017 (Expected), The Pennsylvania State University, PA

Dissertation title: Improving estimates of climate system properties with additional
data and new methods

M.S. in Meteorology, 2011, The Pennsylvania State University, PA
Thesis title: Sensitivity of distributions of climate system properties to surface
temperature datasets

B.S. in Physics, 2009, The University of Vermont, VT
Minors: Applied Mathematics and Geography

Assistantships
2009-2010, 2015: Teaching Assistant, The Pennsylvania State University

• METEO 436, Atmospheric Physics I (Radiation and Climate)
• METEO 440W, Principles of Atmospheric Measurements
• METEO 421, Atmospheric Dynamics

2010-present: Research Assistant, The Pennsylvania State University
• Research under the guidance of and in collaboration with Prof. Chris E. Forest

Publications and Presentations

1. Libardoni, A. G., and C. E. Forest (2011), Sensitivity of distributions of climate
system properties to the surface temperature dataset, Geophys. Res. Lett., 38,
L22705, doi:10.1029/2011GL049431.

2. Libardoni, A. G. and C. E. Forest (2011), Sensitivity of distributions of climate sys-
tem properties to the surface temperature dataset, Abstract GC11B-0915 presented
at 2011 Fall Meeting, AGU, San Francisco, Calif., 5-9 Dec.

3. Libardoni, A. G. and C. E. Forest (2012), Assessment of the sensitivity of distribu-
tions of climate system properties to methodology and model diagnostics, Abstract
GC43E-1083 presented at 2012 Fall Meeting, AGU, San Francisco, Calif., 3-7 Dec.

4. Libardoni, A. G., and C. E. Forest (2013), Correction to "Sensitivity of distributions
of climate system properties to the surface temperature data set", Geophys. Res.
Lett., 40, 2309–2311, doi:10.1002/grl.50480.

5. Libardoni, A. G., C. E. Forest, and A. P. Sokolov (2014), Estimates of climate
system properties based on recent climate records up to 2010, Abstract GC41F-0655
presented at 2014 Fall Meeting, AGU, San Francisco, Calif, 15-19 Dec.


