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Assessing Evapotranspiration Estimates from the Global Soil Wetness Project Phase 2 
(GSWP-2) Simulations 

C. Adam Schlosser* and Xiang Gao 

Abstract 
We assess the simulations of global-scale evapotranspiration from the Global Soil Wetness Project Phase 2 
(GSWP-2) within a global water-budget framework. The scatter in the GSWP-2 global evapotranspiration 
estimates from various land surface models can constrain the global, annual water budget fluxes to within 
±2.5%, and by using estimates of global precipitation, the residual ocean evaporation estimate falls within the 
range of other independently derived bulk estimates. However, the GSWP-2 scatter cannot entirely explain the 
imbalance of the annual fluxes from a modern-era, observationally-based global water budget assessment, and 
inconsistencies in the magnitude and timing of seasonal variations between the global water budget terms are 
found. Inter-model inconsistencies in evapotranspiration are largest for high latitude inter-annual variability as 
well as for inter-seasonal variations in the tropics, and analyses with field-scale data also highlights model 
disparity at estimating evapotranspiration in high latitude regions. Analyses of the sensitivity simulations that 
replace uncertain forcings (i.e. radiation, precipitation, and meteorological variables) indicate that global 
(land) evapotranspiration is slightly more sensitive to precipitation than net radiation perturbations, and the 
majority of the GSWP-2 models, at a global scale, fall in a marginally moisture-limited evaporative condition. 
Finally, the range of global evapotranspiration estimates among the models is larger than any bias caused by 
uncertainties in the GSWP-2 atmospheric forcing, indicating that model structure plays a more important role 
toward improving global land evaporation estimates (as opposed to improved atmospheric forcing).  
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1. INTRODUCTION 

In the quest to accurately portray global hydro-climate conditions as well as predict 

variations, potential changes, and impacts of the climate system, evapotranspiration is regarded 

as one of the critical fluxes that links the energy, water, and biogeochemical cycles of the 

terrestrial eco-hydrological systems. However, with respect to our ability of direct measurement, 

evapotranspiration is a key, missing variable in global water-balance assessments (Swenson and 
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Wahr, 2006) as well as for regional assessments of hydro-climatologic variability and change 

(Werth and Avissar, 2004). At large spatial scales for climate studies, it is an inherently difficult 

flux to measure directly, and a variety of other methods have been aimed to estimate and assess 

its mean state and variability. More recent observationally based residual estimates of 

evapotranspiration have been provided at basin (Rodell et al., 2004a) to continental scales 

(Karam and Bras, 2008 and Walter et al., 2004), and show promise in the ability of these 

methods to estimate mean fluxes as well as their variability and possible trends. Other techniques 

for evapotranspiration estimation using remotely sensed data (Wang et al., 2007 and Song et al., 

2000) have been undergoing refinement and have been provisionally analyzed at a global scale 

(Wang and Liang, 2008). However, data availability and sensitivity to retrieval and interpolation 

errors (in temperature and vegetation properties) continue to be significant issues with these sorts 

of techniques.  As such, reliable and comprehensive direct and/or derived measurements of 

global or large-scale evapotranspiration remain elusive.  

In light of this, the climate-research community has placed a heavy reliance upon modeling 

and assimilation techniques to estimate land evapotranspiration (as well as other land flux and 

state variables).  Many such models are actively in use within the climate-research community 

(Rodell et al., 2004b) and represent a variety of parameterization recipes to represent key 

biogeophysical and biogeochemical processes. Evaluation of these model simulations, wherever 

possible, is of considerable interest in order to document their reliability and consistency.  

Further, with the multiple model-based estimates comes a degree of uncertainty that must also be 

quantified, and done so preferably within the context of complementary, and wherever possible, 

directly comparable measurements of other water cycle storages and fluxes. 

In previous studies, direct comparisons of models used to estimate evapotranspiration have 

proven quite useful in this regard (Chen et al., 1997; Werth and Avissar, 2004; and Su et al., 

2005), yet most of these analyses were of limited spatial and/or temporal coverage. Recently, the 

Global Soil Wetness Project Phase 2 (GSWP-2, IGPO 2002) has provided an unprecedented 

collection of global simulations spanning the 1986-1995 period of land states and fluxes 

calculated from 13 participating biogeophysical models used in climate research and weather 

prediction. The simulations provide a baseline set of runs as well as additional subsets of 

sensitivity runs that consider sources of uncertainty in the required atmospheric inputs and land 

cover fields. The GSWP-2 simulation period also falls within the time domain of a recent 
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modern-era assessment of the global water cycle (Schlosser and Houser, 2007 – hereafter 

referred to as SH07), in which an absence of uncertainty estimates for global land 

evapotranspiration was highlighted. In view of these issues, we have analyzed the outputs of 

evapotranspiration from the GSWP-2 model simulations to serve a few key purposes: 1) to 

provide global estimates of land evapotranspiration rates to complement a modern-era, 

observationally based global water cycle assessment; 2) to quantify the uncertainty in these 

evapotranspiration estimates and; 3) determine the primary sources of these uncertainties (i.e. 

from models or inputs) as well as areas where evapotranspiration estimates are in most need for 

improvement. In the section that follows, we describe the GSWP-2 model experiments that 

include outputs of a baseline and sensitivity runs used for this study. In addition, we also 

describe the data taken from a global water budget assessment employed for our analysis as well 

as field data used for a complementary evaluation of the GSWP-2 simulations. Section 3 

describes the results of our analysis, and finally, in section 4 we present our conclusions and 

closing remarks for continued research. 

2. DATA 

2.1 Global Soil Wetness Project Phase 2 (GSWP-2) 
The Global Soil Wetness project (GSWP) is an element of the Global Land-Atmosphere 

System Study (GLASS) and a study of the GEWEX Modeling and Prediction Panel (GMPP), 

both contributing projects of the Global Energy and Water Cycle Experiment (GEWEX). GSWP 

is charged with producing large-scale data sets of soil moisture, temperature, runoff, and surface 

fluxes by integrating one-way offline land surface schemes (LSSs) using externally specified 

surface forcing and standardized soil and vegetation distributions. The GSWP-2 (see Dirmeyer et 

al., 2006 for details) produced a 10-year daily global gridded data set of land surface state 

variables and fluxes - excluding Antarctica. To gauge the impact of this omission in this global-

scale modeling effort, we have also obtained an estimate of annual evaporation over Antarctica 

using the technique described by Loewe (1957). GSWP-2 is closely linked to the ISLSCP 

Initiative II data effort (Hall et al., 2006), and the LSSs simulations in GSWP-2 encompass the 

same 10-year core period (1986 – 1995).  The model simulations are conducted on a 1°x 1° grid, 

and each model is driven by identical meteorological forcings. The 3-hourly near-surface 

meteorological forcing data sets are derived from the regridding of the National Centers for 

Environmental Prediction (NCEP)/Department of Energy (DOE) reanalyses (Kanamitsu et al., 
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2002), with corrections to the systematic biases in the reanalysis fields made by hybridization 

with global observationally-based gridded data sets (Zhao and Dirmeyer, 2003). This provides 

the land models with some of the most accurate forcing data available.   

Thirteen LSSs in use today within the climate modeling community have participated in the 

baseline (B0) simulation for GSWP-2 (Table 1), and constitute a broad cross-section of 

numerical recipes to parameterize biogeophysical land processes.  All the participating models 

adhere to the same land mask, and as closely as possible to the supplied data sets of vegetation 

distribution and properties, soil properties, surface albedos, etc.  They also follow the same 

procedure for spin-up process with the same initial condition (soil temperature, soil moisture, 

and snow cover) and report a standard set of output data for the 10-year core period 1986-1995. 

The results from the land surface models were checked for quality, consistency and conservation 

of mass and energy, corrected when problems were detected, and then combined to produce a 

multi-model land-surface analysis (Dirmeyer et al., 2006).  This analysis has been validated and 

shown to be superior to any individual model in terms of its representation of soil moisture 

variations (Guo et al., 2007 and Gao and Dirmeyer, 2006). However, an explicit evaluation of 

the evapotranspiration against direct or complementary observations has not been performed. 

The bulk of the GSWP-2 output data, including baseline simulations, multi-model analyses, and 

sensitivity studies, are reported at a daily interval. There exist also sub-diurnal outputs at 3-hour 

intervals from the models, which were logged (as instructed by the GSWP-2 exercise) during the 

last year (1995) for all the baseline simulations.  
Table 1. List of model acronyms used in this study. Refer to Dirmeyer et al. (2006) for 
further model details. 

Acronym 
(for this study) 

GSWP-2 Model Information 

 CLM2-TOP CLM2-TOP: University of Texax, USA 
 HYSSIB HY-SSiB: NASA/GSFC, USA 
 ISBA ISBA: Météo-France/CNRM, France 
 LaD LaD: NOAA/GFDL, USA 
 MOSAIC Mosaic: NASA GSFC/HSB, USA 
 MOSES2 MOSES2: Met Office, United Kingdom 
 NOAH Noah: NOAA/NCEP/EMC, USA 
 NSIPP NSIPP-Catchment: NASA GSFC/GMAO, USA 
 ORCHIDEE ORCHIDEE: ISPL, France 
 SiBUC SiBUC: Kyoto University, Japan 
 SSiBCOLA SSiBCOLA: IGES/COLA, USA 
 SWAP SWAP: Russian Academy of Sciences/IWP, Russia 
 VISA VISA: University of Texas, USA 
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Another essential component of GSWP-2 involves a suite of sensitivity studies (Table 2) by 

the participating LSSs where forcing data or boundary conditions are altered to examine the 

response of the models to uncertainties in those parameters.  GSWP-2 provides various alternates 

of meteorological forcing variables and land surface parameters for designated sensitivities 

studies (IGPO, 2002). Participation in the sensitivity studies by each modeling group was 

optional.  Table 3 lists all the sensitivity simulations that the models performed and outputs 

collected.  These simulations include substitutions to precipitation, radiation, all meteorological 

forcing, and vegetation properties. The sensitivities of different LSSs to uncertainties in the 

precipitation data (i.e. runs P1, P2, P3, P4, and PE) specifically address the impacts of bias 

correction by hybridization, choice of different reanalysis products, the range in observational 

Table 2.  Description of various GSWP-2 sensitivity experiments (meteorological forcing and 
vegetation data sets used in the sensitivity experiments are the same as the B0 baseline 
integration unless otherwise specified below). 

Sensitivity 
Experiment Description of meteorological forcing and vegetation data sets 

B0 

Tair and Qair: NCEP/DOE hybridized with CRU; 
Wind: NCEP/DOE; 
SWdown and LWdown: SRB; 
PSurf: NCEP/DOE with altitude (EDC topography) correction; 
Rainf, Rainf_C, and Snowf: NCEP/DOE hybridized with GPCC gridded gauge 
analysis, corrected for wind-caused gauge undercatch, and blended with 
GPCP where the gauge density is low; 
Vegetation: observed inter-annually varying monthly vegetation 
parameters; 

M1 All original NCEP/DOE meteorological data (no hybridization with 
observational data) 

M2 All original ECMWF (ERA-40) meteorological data (no hybridization with 
observational data) 

P1 Original ERA-40 precipitation (no hybridization with observational data) 

PE 
ERA-40 precipitation hybridized with GPCC gridded gauge analysis, 
corrected for wind-caused gauge undercatch, and blended with GPCP where 
the gauge density is low; 

P2 NCEP/DOE precipitation hybridized with GPCC gauge analysis and corrected 
for wind-caused gauge undercatch 

P3 NCEP/DOE precipitation hybridized with GPCC gauge analysis only 

P4 Original NCEP/DOE precipitation (no hybridization with observational data) 

R1 Radiation from NCEP/DOE reanalysis 

R2 Radiation from ERA-40 reanalysis 

R3 Radiation from ISCCP [Rossow and Zhang, 1995] 

I1 Climatological annual cycle of vegetation parameters 
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estimates, and rain-gauge under-catch.  The radiation series (i.e. runs R1, R2, and R3) provide a 

similar evaluation for the impact of the systematic differences between the reanalyses’ and 

ISCCP radiation.  The all-meteorological study (i.e. runs M1 and M2) gives the broadest 

assessment as to the impact of differences between the two reanalyses.  The sensitivity with 

vegetation properties (run I1) examines the impact of the interannual variability versus mean 

seasonal cycle of vegetation phenology.  Since reanalysis products are widely used as a proxy for 

true atmospheric conditions, these sensitivity studies have important implications, such that we 

can gauge the certitude of scientific results achieved using these data sets (i.e. for global 

hydrological cycle studies).  

Table 3. Summary of conducted sensitivity experiments for each of the participating GSWP-
2 models, with an “X” indicating that the simulation was performed. 

 B0 I1 M1 M2 P1 P2 P3 P4 PE R1 R2 R3  
SSiBCOLA X X X X X X X X X X X X  
NSIPP X X X X X X X X X X  X  
SWAP X X X  X X X   X    
NOAH X X   X X X  X X    
MOSES X      X   X    

2.2 Observations 

2.2.1 Global-scale Data 

For our global-scale assessment of the GSWP-2 evapotranspiration estimates, we draw upon 

data and results from a recent global water budget analysis (Schlosser and Houser, 2007).  The 

SH07 study combined global fields of precipitation, evaporation (separate land and ocean 

estimates), and water vapor to perform an atmospheric-based water budget assessment via six 

core data sets:  

• The Global Precipitation Climatology Project (GPCP) Version 2 (Adler et al., 2003) 

• The Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP, Xie and 

Arkin, 1997) 

• Goddard Satellite-based Surface Turbulent Fluxes - Version 2 (GSSTF, Chou et al., 

2003) 

• Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite (HOAPS) data 

(Bentamy et al., 2003) 

• COLA Global Offline Land-surface Data (GOLD) sets (Dirmeyer and Tan, 2001) 
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• National Aeronautics and Space Administration (NASA) Global Water Vapor Project 

(NVAP, Vonder Harr et al., 2003) 

SH07 provides further details regarding these data sets, and the period of overlap between 

these datasets and the GSWP-2 data covers the years 1988-1995. Missing from the SH07 study 

was an explicit estimate of the uncertainty in the global land evapotranspiration, and therefore 

we will use the GSWP-2 results to provide a scatter of land evapotranspiration within the global 

water balance. In addition, we have augmented the data collection of SH07 in our analysis to 

include the latest version of the HOAPS ocean evaporation estimate (HOAPS3, 

http://www.hoaps.zmaw.de/) as well as a gap-filled version of CMAP using the NCAR 

Reanalysis precipitation values (CMAPr, provided by the NOAA/OAR/ESRL PSD, Boulder, 

Colorado, USA, from their web site at http://www.cdc.noaa.gov/). 

2.2.2 Field Data 

To evaluate the performances of evapotranspiration simulations from various land surface 

models as well as the quality of the precipitation forcing in GSWP-2, observations of 

precipitation and evapotranspiration (or latent heat flux) have been collected. Four sites have 

been identified for this study, whose data temporally overlap the GSWP-2 period. Table 4 

summarizes the characteristics of each data set used in this study. Some of these observational 

sites have a relatively short record of overlap with the GSWP-2, but they all have at least one 

year of data for comparison. The GSWP-2 grid values corresponding to the individual validation 

site have been extracted from the various model baseline simulations, multi-model analyses, and 

sensitivity experiments for evaluation with the observations. 

Our most complete source of field data (in terms of temporal domain) is from the North 

Appalachian Experimental Watershed (NAEW, Harmel et al., 2007), which is located near 

Coshocton in east central Ohio, an unglaciated portion of the state with rolling uplands.  Its 

1050-acre outdoor laboratory facility is operated by the U.S. Department of Agriculture (USDA) 

– Agricultural Research Services (ARS).  The NAEW consists of a network of 22 instrumented 

watersheds, 11 large lysimeters, meteorological stations, and rain gauges for surface- and 

ground-water hydrology and water quality studies.  The experimental watersheds with natural 

setting range in size from 1 to 300 acres and five of them are larger than 40 acres.  The NAEW is 

one of only two hydrologic stations worldwide with over 60 years of continuous data collected 

from small watersheds and groundwater lysimeters.  The Coshocton site was selected because it 
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represented land conditions prevalent in many states in the Appalachian Region.  There are 11 

active rain gages distributed over the watershed area.  Provisional analyses (not shown) indicate 

little spatial variability in the watershed precipitation with the temporal cross-correlations among 

the 60-year daily precipitation time series of 11 rain gages all larger than 0.95.  Therefore, all 

these rain gauges are averaged to approximately represent the scales of the GSWP-2 LSS grid 

box at 1° resolution.  There is only one weighing lysimeter to record the evapotranspiration.  All 

the observations are aggregated to monthly interval for comparisons with GSWP-2 model 

simulations.   

The second source of data comes from the FLUXNET network of micrometeorological tower 

sites (Baldocchi et al., 2001), designed primarily to measure the exchanges of carbon dioxide, 

water vapor, and energy between terrestrial ecosystem and atmosphere.  Specifically, the Level 3 

data from the AmeriFlux regional networks are available for a number of years overlapping with 

the GSWP-2 period.  This level of data have gone through consistency checks for units, naming 

conventions, reporting intervals, and formatting with quality flag assigned, but without filling in 

the missing values.  We have chosen to use the unfilled instead of gap-filled data because of 

questionable quality of the model-based gap-filling procedure (Bill Munger, 2007, personal 

communication). Three sites have multiyear records of fluxes and precipitation within the 

GSWP-2 period.  Data from the Harvard Forest Environmental Measurement Site (EMS) was 

established in October 1989 but the quality-assured data set started in 1992.  Data collection at 

the Northern Study Area Old Black Spruce site (NOBS), located near Thompson, Manitoba, 

started in 1994 during the BOREAS experiment in the northern boreal forests of Canada.  The 

meteorological tower in the Walker Branch Watershed near Oak Ridge, Tennessee was 

established in 1979, and flux data collection started in 1994. 

There are gaps in the precipitation data of 1994 at the BOREAS NOBS site.  One reason is 

that rain gauge did not seem to work well for snow, which is a major part of the precipitation at 

this site.  As a result, the data gaps are not random and measurements are somewhat biased 

towards convective precipitation (Allison Dunn, 2007, personal communication).  Therefore, in 

this study, we use precipitation data from nearby Thompson Airport, Manitoba, Canada (55.8N, 

97.86W, 223.1m elevation, 

http://www.climate.weatheroffice.ec.gc.ca/climateData/canada_e.html) to complement the 
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Table 4. Site characteristics of each field data selected in the local validation of this study. 
Map labels used in Figure 5 are also indicated. An “A” is used for all ARM stations due to 
close proximity.  

Site 
(Map Label) 

Latitude 
Longitude
Elevation 

Site 
Vegetation 

Vegetation 
Type 

Measurements  
(sampling 
interval) 

Time 
domain 

NAEW 
(C) 

40.37°N 
81.79°W 
243 m 

Rangeland 
SiB, BATS, IGBP: 
Broadleaf  
deciduous  

Lysimeter (daily) 
Precipitation 
(irregular, frequent 
than daily) 

1986 
~1995 

Harvard 
Forest EMS 
(H) 

42.54°N 
72.17°W 
340 m 

Temperate 
Deciduous 

SiB, BATS, IGBP: 
Broadleaf  
deciduous 

Water vapor eddy 
covariance flux 
(hourly) 
Precipitation (daily) 

1992 
~1995 

BOREAS 
NOBS 
(B) 

55.88°N 
98.48°W 
259 m 

Needleleaf 
evergreen 

SiB, BATS, IGBP: 
Needleleaf 
evergreen 

Latent heat flux 
(30 mins) 
Precipitation (daily) 

1994 
~1995 

Walker 
Branch  
(W) 

35.96°N 
84.29°W 
372 m 

Deciduous 
broadleaf 
temperate 

SiB: Deciduous  
and Evergreen 
BATS and IGBP: 
Mixed forest 

Latent heat flux 
(30 mins) 
Precipitation (daily) 

1995 

ARM E8 
Coldwater 
(A) 

37.33°N 
99.31°W 
664 m 

Rangeland 
(grazed) 

SiB: C3 Grass 
BATS: Cropland 
IGBP: Cropland  

ARM E9 
Ashton 
(A) 

37.13°N 
97.27°W 
386 m 

Pasture 
SiB: C3 Grass 
BATS: Cropland 
IGBP: Cropland 

ARM E13 
Lamont 
(A) 

36.61°N 
97.49°W 
318 m 

Pasture and 
wheat 

SiB: C3 Grass 
BATS: Cropland 
IGBP: Cropland 

ARM E15 
Ringwood 
(A) 

36.43°N 
98.28°W 
418 m 

Pasture 
SiB: Groundcover 
BATS: Short grass 
IGBP: Grassland 

ARM E20 
Meeker 
(A) 

35.56°N 
97.00°W 
309 m 

Pasture 

SiB: Groundcover 
w/trees and shrubs 
BATS: Forest/Field 
IGBP: Woody 
Savanna 

Latent heat flux 
(30 mins) 
Precipitation 
(30 mins) 

1994 
~1995 

available flux measurements for the evaluation exercise.  The Thompson site reports both rainfall 

(amount of all liquid precipitation such as rain, drizzle, freezing rain, and hail) and snowfall 

(amount of frozen/solid precipitation such as snow and ice pellets).  The sum of rainfall and the 

water equivalent of the snowfall is used here.    
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During the years overlapping with the GSWP-2 period, data collection in all three AmeriFlux 

sites experienced technical difficulties and instrumentation failure.  As a result, temporal 

coverage for the relevant flux measurements is, at times, irregular (although it has improved in 

recent years).  For our analyses, these gaps in half-hourly or hourly data are addressed in the 

following manner.  We first derive the climatology of diurnal cycle for each calendar month 

based on the available observations of that month.  Then we fill in missing measurements with 

the derived month-specific diurnal cycle climatology. The hourly or half-hourly data are 

aggregated to 3-hourly (1995 only), daily, and monthly whenever necessary for comparisons 

with the model simulations.     

The U.S. Department of Energy operates the Atmospheric Radiation Measurement (ARM) 

Program (Ackerman and Stokes, 2003).  In particular, the southern Great Plains site consists of a 

central facility and a number of Extended Facilities across a large area of Oklahoma and 

southern Kansas, each having instrument clusters to measure radiation, near-surface meteorology 

and surface fluxes.  For our study, data from the Energy Balance Bowen Ratio (EBBR; Cook 

2005) system and the Surface Meteorological Observation System (SMOS) at the extended 

facility is appropriate.  The EBBR uses observations of net radiation, soil surface heat flux, and 

the vertical gradients of temperature and relative humidity to estimate the vertical heat flux at the 

local surface.  The SMOS mostly uses conventional in situ sensors to obtain averages of surface 

wind speed, wind direction, air temperature, relative humidity, barometric pressure, and 

precipitation at the 1-minute, 30-minute, and daily intervals.  Data archives of 10 stations exist 

for the EBBR and of 5 stations for the SMOS during the 1994 ~ 1995 period.  Herein, we use the 

A1-level data (Table 4), in which calibration factors are applied. The data are provided as 30-

minute averages, and we apply the same procedure as for the FLUXNET (month-specific diurnal 

cycle climatology) to fill in any missing measurements.  The resulting half-hourly data is further 

averaged to 3-hourly (1995 only), daily, and monthly for consistency with the model output from 

the GSWP-2. 

3. ANALYSIS 

3.1 Global-scale Evaluation 

3.1.1 Annual Mean and Variability 
For the global, mean annual estimates of evapotranspiration, the GSWP-2 models exhibit a 

range of values in the B0 simulation of 49 to 75 trillion metric tons/year (TMT/year or 1015 
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kg/year). The model-mean value is 65 TMT/year (Figure 1a) with a notable clustering of model 

results (i.e. 7 of the 13 models are within ±2.5%). In terms of a unit-area flux, 1 TMT (= 1015 kg) 

is equivalent to 6.67 mm depth of water distributed equally across all land areas, and thus the 

model-mean, global land annual evapotranspiration flux is 434 mm/year or 1.19 mm/day. The  

Figure 1. (a) Scatter plot of  GSWP-2 global annual mean land evapotranspiration against 
global precipitation of the various simulation experiments.  Units are given in trillion 
metric tons (TMT = 1015 kg)  per year. (b) Budyko diagram of GSWP-2 simulations 
showing comparison of net radiation and evapotranspiration, scaled by precipitation.  
Results are based on global, mean annual values. 

inter-model scatter seen in the baseline simulations is largely preserved in the sensitivity 

experiments, even though fewer of the participating models conducted these runs (but the range 
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between SSiBCOLA and SWAP remains fairly constant across all sensitivity runs). The total 

range (i.e. highest-lowest) of the baseline simulations of global evapotranspiration is 26 

TMT/year. With respect to the modern-era observationally based global water budget 

assessments by SH07 this range is comparable to the global imbalance of precipitation and 

evaporation (about 24 TMT/year or 5% of the global precipitation rate). The range is 

considerably larger than the interannual variability of any particular GSWP-2 model’s annual 

evapotranspiration, which is about 0.65 TMT/year (taken as the value of σtotal from Table 4 of 

Dirmeyer et al., 2006). Further, the choice of atmospheric forcing (discussed in more detail 

below) is seen to shift the model-mean estimate by as much as ±5 TMT/year (or about ±8% of 

the baseline simulation model-mean value) and that the largest shifts result from changes in the 

precipitation forcing. Nevertheless, the results indicate that model structure plays a more 

important role than uncertainty in atmospheric forcing for these global evapotranspiration 

estimates. 

Table 5. The residual calculations of annual ocean evaporation (denoted by asterisk) using 
the global GPCP and CMAP precipitation rates (Schlosser and Houser, 2007) together with 
the GSWP-2 land evaporation plus the Antarctica evaporation (Loewe, 1957).  Residual error 
of ocean evaporation  is calculated using sampling errors from GPCP and CMAP (Schlosser 
and Houser, 2007) and the standard deviation of the annual GSWP-2 evaporation (Dirmeyer 
et al., 2006).  Units are in kg/year. 

Land Evaporation Global Precipitation 

Antarctica GSWP-2 GPCP CMAP 

7.41E+14 6.51±0.08E+16 4.9±0.15E+17 4.94±0.09E+17 

Ocean Evaporation 

GPCP – GSWP-2* CMAP – GSWP-2* HOAPS3 GSSTF2 

4.24±0.15E+17 4.28±0.09E+17 3.95E+17 4.30E+17 

We can use the GSWP-2 model-mean estimate of global land evaporation (and the inter- 

model standard deviation) together with the global precipitation estimates and sampling error 

(from SH07), to obtain as a residual an estimate for global, mean ocean evaporation (Table 5). 

To perform this calculation, an estimate for the evaporation rate over Antarctica (not considered 

in the GSWP-2 simulations) is also required. For this, we used the approach as given by Loewe 

(1957), which provides evaporation flux rates as a function of latitude, and we integrated these 
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rates over the Antarctic land area. Inclusion of this Antarctic flux estimate increases the global 

GSWP-2 evapotranspiration by about 1% (Table 5). Based on these estimates, we find that the 

implied mean evaporation from the global oceans to be 426 ± 12 TMT/year. The GSWP-2 

residual estimate is more consistent to the GSSTF2 estimate (= 430 TMT/year) as opposed to the 

HOAPS estimate (= 395 TMT/year). However, uncertainty bounds for both the GSSTF2 and  

HOAPS estimates are not available (and beyond the scope of this study), and thus an 

unequivocal assessment in this regard is not possible. However, it is encouraging that the GSWP-

2 residual falls in between the more explicit and widely used estimates of global ocean 

evaporation rates. 

Figure 2. Annual timeseries of global evaporation using combinations of various datasets 
(see text for details) as well as the global precipitation from GPCP and CMAP (that also 
includes a gap-filled CMAP product, CMAPr). Unit is TMT/year.  The gray shaded region 
indicates the extent of the GSWP-2 model scatter about the global evaporation estimate 
(using the GSWP-2 model-mean for land evaporation). 

Looking further at the disparity among these global-scale evaporation estimates (Figure 2), 

the spread in the annual land estimates from all of the participating GSWP-2 models (13 B0 
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simulations) is about half of (and never greater than) the difference in the GSSTF and HOAPS 

ocean estimates. Considering that the ocean covers about twice as much of the Earth’s surface as 

the land, this twofold increase in the difference between the global ocean evaporation rates 

(compared to the GSWP-2 range) is not surprising. Yet, it is worth noting that, generally 

speaking, the two ocean estimates considered in this study use very similar bulk aerodynamic 

algorithms, but with different sources of atmospheric data to satisfy their formulae requirements, 

whereas the GSWP-2 spread is a result of structural differences amongst the models, but each 

one forced by identical atmospheric conditions. There is also a notable increase in the spread of 

the global evaporation estimates (constructed by the GSWP-2 B0 estimates and the ocean 

evaporation algorithms) starting in 1991.  As noted in SH07 (see their Figure 8), this is primarily 

a result of a sharp decrease in the HOAPS humidity gradient fields (derived from AVHRR data) 

throughout the tropics following the Mt. Pinatubo eruption. Then, the persistently smaller values 

of HOAPS (compared to the GSSTF estimate) in subsequent years are primarily attributed to 

weaker tropical wind fields (Figure 8 of SH07).  Nevertheless, in choosing any of the two ocean 

evaporation data sets considered (and widely used in the climate research community), the 

GSWP-2 scatter cannot account for the global imbalance between evaporation and precipitation 

for all years considered in this study, which according to SH07, should only be on the order of 

1014 kg as indicated by annual global water vapor tendencies (Figure 6 of SH07). 

3.1.2 Mean Annual Cycle 

Among the more considerable discrepancies amongst the global water budget terms 

considered in the SH07 study is seen in the depiction of the mean annual cycles.  For this study, 

none of the combinations of water flux terms (i.e. precipitation and evaporation), that include the 

addition of the GSWP-2 estimates, were able to produce global E-P values that matched 

consistently with observed variations in global atmospheric water vapor storage (Figure 3).  

When considering the GSWP-2 model-mean estimate for global land evapotranspiration, as well 

as the model spread about the mean (Figure 3, gray shaded region), only marginal consistency 

can be inferred between monthly tendencies of global E-P and water vapor storage during the 

Northern Hemisphere warm season months. However, for the remaining months of the annual 

cycle, none of the GSWP-2 model results can account for the substantial bias that exists between 

global E-P and the monthly changes in atmospheric water storage. Additionally, the relative 

maximum of net atmospheric water gain (occurs in June) is one month earlier than that inferred 
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from the E-P estimates (occurs in July), and similar (but mixed) results are seen for the relative 

minimum. Moreover, all E-P estimates show notably higher magnitudes of their annual cycles as 

compared to the atmospheric water storage changes. The inconsistent timing of the relative 

maxima/ minima and magnitude of the E-P annual cycle are closely aligned with the 

corresponding features of the GSWP-2 global evapotranspiration (Figure 4).  This does not 

necessarily prove that all the GSWP-2 estimates are wrong, but does implicate that its interplay 

with observationally based estimates of global precipitation and ocean evaporation is not 

consistent with observations of global water vapor. 

Figure 3. Global mean annual-cycles (1988-1995) of evaporation minus precipitation (E-P) 
for selected combinations of evaporation (from Figure 2) and precipitation estimates as 
well as corresponding monthly change in total atmospheric water vapor storage. The 
gray shaded region indicates the total range of the E-P estimates from the GSWP-2 
model collection. Units are in TMT/month. 

The systematically lower values of E-P (and in some months opposite sign) to atmospheric 

water vapor changes, particularly from October through May, imply substantial biases between E 

and P and/or a measurement error in water vapor. Unfortunately, the uncertainty estimates of the 

monthly atmospheric water vapor were not readily obtainable for evaluation in this study. 
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Nevertheless, given these large systematic differences (between 2 to 5 TMT depending on the 

choice of E and P estimates), the measurement error in global water vapor would need to be on 

the order of 20% (i.e. noting that from SH07 Figure 6, global water vapor storage is ~10 TMT or 

1016 kg) in order to partially explain these discrepancies. However, in doing so, this would also 

consume most (if not all) of its annual cycle signal (seen in Figure 3). Further, in the absence of 

water vapor trends, the annual mean of the E-P tendencies should be zero. The NVAP 

observations indicate a decrease in global water vapor storage of ~0.03 TMT through the 1988-

1995 period (Figure 6 of SH07). While this trend implies a mean negative rate (or bias) of global 

E-P through the period, it is orders of magnitude smaller than the systematic bias of  

 

Figure 4. Global mean annual cycles (1986-1995) of evapotranspiration from all the GSWP-
2 baseline simulations (in TMT/month).  The heavy curve and light curves indicate the 
GSWP-2 model-mean and individual model results, respectively. The total scatter of the 
GSWP-2 models is highlighted in gray. 

approximately 2 TMT/month seen here. In addition, the range of GSWP-2 evapotranspiration 

(Figure 4) cannot account for this inconsistency throughout the entire annual cycle. Thus, 
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refinements in the global precipitation and ocean evaporation estimates and error estimates of 

water vapor measurement are needed to clarify these inconsistencies. 

3.2 Sensitivity to Precipitation and Radiation Forcing 

Taking advantage of the suite of sensitivity experiments (Table 2) run by a subset of the 

GSWP-2 models for which baseline runs were also submitted (Table 3), we assess the global-

scale sensitivity of evapotranspiration to two primary atmospheric forcing terms, precipitation 

and net radiation (R).  For every model, we calculate the change in global evapotranspiration 

with respect to all combinations of changes in the two forcing terms considered (Table 6). These  

Table 6. The differences between the precipitation and radiation sensitivity simulations as 
well as the baseline (B0) experiment. A * indicates that the difference between the two runs 
are from a single modification or substitution of precipitation.  

Experiment Relative Differences 
R1-B0 NCEP-DOE versus SRB radiation 

R2-B0 ERA-40 versus SRB radiation 

R2-R1 ERA-40 versus NCEP-DOE radiation 

R3-B0 ISCCP versus SRB radiation 

R3-R1 ISSCP versus NCEP-DOE radiation 

R3-R2 ISCCP versus ERA-40 radiation 

P4-P3* Add GPCC gauge analysis to original NCEP-DOE 

P3-P2* Add wind undercatch correction to NCEP-DOE w/ GPCC gauge analysis 

P2-B0* Add GPCP relaxation to complete the NCEP-DOE hybridization 

P3-B0 Add wind undercatch correction and GPCP relaxation  
to complete the NCEP-DOE hybridization 

P4-B0 Original versus hybridized NCEP-DOE 

P4-P2 Add wind undercatch correction and GPCC gauge analysis 
to original NCEP-DOE 

P1-PE Original versus hybridized ERA-40 

P1-B0 Original ERA-40 versus hybridized NCEP-DOE precipitation 

PE-B0* Hybridized ERA-40 versus hybridized NCEP-DOE precipitation 

P4-P1* Original NCEP-DOE versus original ERA-40 precipitation 

P4-PE Original NCEP-DOE versus hybridized ERA-40 precipitation 

P2-P1 Hybridized NCEP-DOE w/o GPCP relaxation versus original ERA-40 

P3-P1 NCEP-DOE w/ GPCC analysis only versus original ERA-40 

P2-PE Hybridized NCEP-DOE w/o GPCP relaxation versus hybridized ERA-40 

P3-PE NCEP-DOE w/ GPCC analysis only versus hybridized ERA-40 
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sensitivities, 

! 

dE 

dP 
 and 

dE 

dR 
 (Table 7, and overbar denotes global area-weighted mean) are, in 

principle, calculable given that each of the sensitivity experiments changes these forcings one at 

a time in a consistent fashion.  As will be shown, however, care must be taken in the 

interpretation of these results. 

The precipitation sensitivity results provide 5 model samples, with 4 of the models reporting 

runs for at least 3 of the 5 possible experiments (i.e. runs P1 to PE, see Table 3).  First, we focus 

on the runs that change - but do not substitute - the NCEP-DOE precipitation (used in the B0  

Table 7. Global evapotranspiration (E) sensitivities, 

! 

dE 

dP 
 and 

dE 

dR 
, as calculated based on 

10-year averaged global mean values from the radiation (R) and precipitation (P) sensitivity 
experiments. Radiation (Wm-2) is converted to mm/day (Dirmeyer  et al., 1999, 1 Wm-2 = 
0.03455 mm/day).  

Model 
Sensitivity Experiment 

SSiB NSIPP SWAP MOSES2 NOAH 
R1-B0 0.24 0.31 0.21 0.19 0.38 
R2-B0 0.27     

R2-R1 0.26     

R3-B0 0.02 0.03    

R3-R1 -0.03 -0.03    

! 

dE 

dR 
 

R3-R2 0.09     

P4-P3 0.26 0.32    

P3-P2 0.21 0.25 0.26  0.18 
P2-B0 0.16 0.18 0.18  0.11 
P3-B0 0.28 0.36 0.39 0.29 0.30 
P4-B0 0.25 0.30    

P4-P2 -1.55 -2.00    

P1-PE -0.11 -0.29   -0.37 
P1-B0 0.86 0.41 -1.04  -0.97 
PE-B0 -0.73 -0.74   0.01 
P4-P1 0.12 0.27    

P4-PE 0.04 0.07    

P2-P1 0.02 0.14 0.41  0.32 
P3-P1 0.40 0.37 0.09  0.03 
P2-PE -0.02 -0.01   0.09 

! 

dE 

dP 
 

P3-PE 1.02 1.17   0.50 

run), which are runs P2, P3, and P4. For the most part, the evapotranspiration sensitivities in this 
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group (denoted by medium-shaded gray boxes in Tables 6 and 7) show a reasonable consistency 

in the sign and magnitude. The notable exception is found for the P4-P2 result, which shows an 

exaggerated negative sensitivity to a small change in global precipitation from the NCEP-DOE 

product as a result of the GPCC analysis plus the wind under-catchment adjustment. Recent 

evidence suggests that the wind under-catchment adjustment is likely to have been excessive and 

erroneous, resulting in questionable quality of the P2 precipitation field (Decharne and Douville, 

2006 – and see next section). We also note that, for all GSWP-2 models performing these 

sensitivity runs, the evapotranspiration sensitivities obtained from the P2-B0 change (i.e. effect 

of GPCP blending at low gauge density) consistently show the lowest, non-negative value 

compared to all other NCEP-DOE precipitation modifications (i.e. excluding substitution with 

the ERA-40 precipitation).  In view of these results, we must call into question the sensitivity 

quantifications that result from the P2 simulations. 

What is perhaps more striking is that the sensitivities obtained from either the P1 or PE runs, 

which substitute the NCEP-DOE with the ERA-40 precipitation (denoted by the darkest-shaded 

gray boxes in Tables 6 and 7), show a wide ride of values with no apparent consistency or 

clustering.  For these P1 and PE runs, the consistency of the substituted ERA-40 precipitation 

(hybridized or not) with the remaining meteorological fields1 (i.e. radiation, surface-air 

temperature, winds, humidity, and air pressure) of the NCEP-DOE product is not assured. In 

other words, we are referring to the condition in which the timing, duration, and/or amount of 

(ERA-40) precipitation at any grid cell may not necessarily correspond to the (NCEP-DOE) 

radiation or atmospheric state variables (noted above). Therefore, it is reasonable to expect that 

any degree of inconsistency between the precipitation and remaining meteorological fields will 

cause spurious sensitivities and inconsistent behavior from the models (and seen in these results).   

For the radiation sensitivity runs, we have a much smaller sample size of model results 

(Table 3). Nevertheless, we are able to make some characterizations among the modeled 

evapotranspiration sensitivities obtained.  There is a notable difference between those 

sensitivities obtained with the ISCCP radiation substitution (denoted by the lightest-shaded gray 

boxes in Tables 6 and 7, mean value ~0.02, and with values of opposite sign) as opposed to those 

that result from a substitution of the B0 radiation fields with the ERA40 or NCEP reanalyses 

                                                
1 Hereafter, the term “remaining meteorological fields” will refer to all the atmospheric variables of the GSWP-2 
forcing, but excluding the variable to which they are made reference. 
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radiation (mean value ~0.27).  This disparity is not necessarily a reflection of differences in 

quality between any of the radiation products, but more likely consistency issues with the 

remaining meteorological data (as seen in the precipitation sensitivities). The B0 radiation field 

is a hybridization of the SRB data with the NCEP reanalyses (Dirmeyer et al., 2006), while the 

R3 radiation field is a result of replacing the 3-hourly ISCCP product with no hybridization. 

Further, the R1 radiation is the NCEP reanalysis (used in the B0 hybridization) and the spatio-

temporal patterns of the R1 and R2 radiation fields (not shown) are quite similar. While this does 

not quantify the extent of inconsistency in the R3 radiation (to the remaining meteorological 

variables), it does call into question its suitability for this sort of sensitivity assessment, and that 

further analysis (beyond the scope of this study) is warranted. 

Therefore, in considering these results to characterize overall evapotranspiration sensitivity 

(to uncertainties in forcing), we consider only the simulations with NCEP-DOE precipitation, 

and we further exclude any runs that involve the wind under-catchment adjustment (i.e. the P2 

run). For sensitivities with respect to radiation, we have chosen not to consider any of the R3 

simulations given the aforementioned considerations. This leaves us with three combinations of 

runs to pool for sensitivity to precipitation (i.e. P4-P3, P3-B0, and P4-B0), and three 

combinations for sensitivity to net radiation (i.e. R1-B0, R2-B0, and R2-R1).  As such, we find 

that global evapotranspiration’s sensitivity to precipitation is 0.31, and the averaged sensitivity of 

evapotranspiration to radiation is approximately 0.27.  The differences between these two mean 

sensitivities, while small, are consistent with the characterization that most of the GSWP-2 

model simulations are marginally located on the “water limited” region of the Budyko curve 

(Figure 1b). However, looking further at the results for NOAH, we find that the sensitivity for 

evapotranspiration with respect to radiation is higher than that with respect to precipitation.  This 

is, nevertheless, consistent with the positioning of its global evaporability and index of dryness 

values that place it predominantly within an “energy limited” categorization. 

3.3 Inter-model Consistency 

Our findings indicate that model structure plays a more substantial role than the 

meteorological inputs in the uncertainty of the GSWP-2 evapotranspiration estimates. Given this, 

we use a simple metric to quantify the degree to which the models perform consistently (or not) 
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amongst themselves, as a guide for further model analyses and development. We perform point-

wise temporal correlations (R) between all possible combinations of models for the B0  

 

Figure 5. Global temporal consistency among the monthly evapotranspiration estimates of 
the GSWP-2 models. The (a) and (b) show the result with the annual cycle included and 
removed (i.e. anomaly correlation), respectively.  Crosshairs and encircled letter 
indicate Fluxnet site and field data site used in this study, respectively. 

simulations (a total of 78), and then take the average of these correlations. The strongest and 

most ubiquitous agreement amongst the models lies in the simulation of the annual cycle, with 



 22 

the most notable exception seen in tropical regions (Figure 5a). We find that the models show 

their largest and most widespread inconsistency among evapotranspiration variations at 

interannual timescales in many boreal regions (Figure 5b). However, consistency amongst the 

model simulations isn’t necessarily indicative of their fidelity.  For example, while the GSWP-2 

models may agree in the timing of the seasonal maximum of global evapotranspiration (Figure 

4), it may very well be contributing to an inconsistent seasonal variation between the global 

balance of E-P and atmospheric water vapor (Figure 3). As shown (Figure 5), regions where the 

GSWP-2 models indicate some of the largest model disparities (northern high latitudes) cannot 

be comprehensively evaluated due to absence of field data. Nevertheless, we are able to partially 

address these issues with a small collection of complementary field data (Table 4). 

With the available field data, we calculate monthly correlation and root mean-square (RMS) 

error of the models against observed evapotranspiration, and display these two metrics as scatter 

plots (Figure 6). First and foremost, the results tend to corroborate the global assessment 

provided by Figure 5, that the ability of the GSWP-2 models to reproduce the observed inter-

annual variability of evapotranspiration at higher latitude locations is not as robust.  For the 

higher latitude sites (denoted by bigger, filled marks in the scatter plots), all correlations are 

reduced and a considerable portion of the correlations becomes negative when the annual cycle is 

removed from the timeseries (Figure 6b). While the RMS error is reduced in these cases, this is 

caused mostly by the fact that the magnitude of the inter-annual variations is smaller than the 

annual cycle (Figure 4b of Dirmeyer et al, 2006). For the lower latitude points (smaller marks in 

Figure 6) the results are qualitatively consistent – but the diminished correlations when removing 

the annual cycle are not as dramatic. 

Evaluation of the models’ monthly-averaged diurnal cycle of latent heat flux (Figure 7, 

excluding NAME, data not available) indicates that the models’ collective inability to reproduce 

the observed values is greatest during the middle of the day during the warm-season months 

(April thru October) of 1995. Additionally, we find that at the Walker Branch site, the models 

show the greatest RMS error during April and May, while the Harvard Forest and Boreas sites 

indicate June as the most problematic month for the modeled estimates. For the aggregated ARM 

sites, June and July show the highest peaks in RMS error, but only marginally so compared to 

other months. Similar results (not shown) are found for the individual ARM site (Table 4) as 

well.  
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Figure 6. Scatterplots of root mean-square error (RMSE, W/m2) versus temporal correlation 

of GSWP-2 modeled monthly latent heat flux with observations from a selection of field 
data collections (see text for details).  The (a) and (b) show results with the mean 
annual cycle included and removed, respectively. The larger and filled plot marks 
indicate those field sites at (relatively) higher latitudes. Each point represents one 
simulation run of one model (including all baseline runs and all sensitivity runs from 
participating models). 
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Figure 7. Monthly aggregates of the root mean-square error (RMSE) of simulated diurnal 

cycle of latent heat flux (W/m2) averaged from all the B0 simulations of 1995 for (a) 
Harvard Forest, (b) Walker Branch, (c) BOREAS NOBS, and (d) ARM sites (Aggregate 
from all the ARM sites). Each curve represents the RMSE calculated against the 
observations by pooling each monthly-averaged diurnal cycle from the GSWP-2 B0 
simulation.   

Aside from model deficiencies, the errors shown between the models and the field 

observations may have also (partially) resulted from inconsistencies between the GSWP-2 grid-

aggregate and field site conditions. The largest errors (in the diurnal cycles) are found at the 

Harvard Forest and Walker Branch sites, and it is also these sites where the locally observed 

vegetation conditions show a weaker correspondence (compared to the BOREAS and ARM 

sites) to the vegetation type described at the GSWP-2 model grids (Table 4). An additional 

concern is whether the local meteorological conditions at these field sites have any consistency 

to the corresponding GSWP-2 grid. Available precipitation data at these sites indicate that the 
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baseline simulation (as well as the P1, P3, and PE sensitivity runs) show a strong degree of 

consistency in the seasonal to interannual variations (Figure 8), and therefore the evaporation 

errors at these sites is likely not a result of inconsistent precipitation provided by the GSWP-2 

gridded data.  Conversely, the correlation and/or RMS errors of the P2 and P4 precipitation to the 

field observations are considerably degraded, which is consistent with previous evaluations 

(Decharme et al., 2006) and the interpretations of our own findings in the evapotranspiration 

sensitivities (Table 7). 

 

Figure 8. Scatter plot of the root-mean square error (RMSE, mm/day) of various GSWP-2 
precipitaiton forcing data versus temporal correlation for the field sites selected for this 
study. The larger and smaller marks indicate results from the raw monthly timeseries 
and with the averaged annual cycle removed, respectively. 

4. CLOSING REMARKS 

We have assessed the simulations of global-scale evapotranspiration from the Global Soil 

Wetness Project Phase 2 (GSWP-2). We find that at a global scale the scatter of GSWP-2 

evapotranspiration estimates can constrain a modern-era water budget assessment to within 

±2.5%, but cannot unequivocally explain the imbalance between the global (i.e. ocean plus land) 

precipitation and evaporation annual variations. In addition, inconsistencies in the magnitude and 

timing of seasonal variations of the global water budget terms are also found to be associated 
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with the GSWP-2 estimates. The scatter among the GSWP-2 global evapotranspiration estimates 

shows a weak sensitivity to the choice of atmospheric forcing prescribed to the models, and the 

inter-model temporal inconsistencies are largest for high latitude inter-annual variations as well 

as for the inter-seasonal variations in the tropics. Evaluation of corresponding field-scale data 

also confirms the models’ discrepancy for estimating evapotranspiration in high latitude regions. 

Analyses of sensitivity simulations that replace uncertain forcings (i.e. radiation, and 

precipitation) indicate that most models’ evapotranspiration is slightly more sensitive to 

precipitation than to net radiation perturbations, and that the majority of the GSWP-2 models, at 

a global scale, are in a slightly moisture-limited evaporative condition. 

In the context to faithfully quantify the global water budget, global water vapor variations 

from the SH07 study, as well as from the results of this study, indicate that variations of 

atmospheric storage are roughly 0.01% of global precipitation or evaporation.  Thus, the scatter 

of the GSWP-2 evapotranspiration (2.5%) seems quite unsatisfactory.  Rigorous error estimates 

in water vapor retrievals appear to remain elusive, yet more recent data from the AMSR-E and 

AIRS satellite instruments show great promise in providing a more comprehensive assessment in 

this regard. Nevertheless, the GSWP-2 results have clarified that improvements in model-based 

estimates will not be delivered through improvements in the atmospheric data used for inputs.  

Rather, refinements in the numerical recipes of these land models hold the most promise toward 

constraining our global water budgets. 

This evaluation of the GSWP-2 modeled evapotranspiration places an emphasis to improve 

our estimates for high-latitude (cold-season) processes.  We find only a small sample of data that 

currently exists to rectify this, and therefore future field experiments would need to augment the 

low density of data. Further, in these regions, many other processes are important for the controls 

on evapotranspiration that involve complex interactions with carbon cycling and the 

biogeochemistry of peatlands (Frolking et al., 2008). At the time of the GSWP-2 exercise, none 

of the models employed had the capability to represent the dominant plant-type of peatlands: 

bryophytes (i.e. non-vascular plants with no roots or vascular systems).  This may potentially be 

an additional key issue in the subsequent analyses and model development, as well as supporting 

field observations, to rectify the disparity seen in the GSWP-2 simulations, and for modeling 

evapotranspiration in general.  Further, for these regions, which are dominated by cold-season 

processes, the modeling challenges of snow cover (Slater et al., 2001) and seasonally frozen soil 
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(Luo et al., 2004) as well as their interplay with non-frozen soil hydro-thermal processes also 

contribute substantially to the evapotranspiration simulations. Thus, any subsequent field 

experiments will need to satisfy a multitude of observational requirements that span across many 

sub-disciplines of biogeophysical and biogeochemical processes. 
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