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Abstract 

Although policymaking in response to the climate change is essentially a challenge of risk 
management, most studies of the relation of emissions targets to desired climate outcomes 
are either deterministic or subject to a limited representation of the underlying uncertainties. 
Monte Carlo simulation, applied to the MIT Integrated Global System Model (an integrated 
economic and earth system model of intermediate complexity), is used to analyze the 
uncertain outcomes that flow from a set of century-scale emissions targets developed 
originally for a study by the U.S. Climate Change Science Program.  Results are shown for 
atmospheric concentrations, radiative forcing, sea ice cover and temperature change, along 
with estimates of the odds of achieving particular target levels, and for the global costs of the 
associated mitigation policy. Comparison with other studies of climate targets are presented 
as evidence of the value, in understanding the climate challenge, of more complete analysis 
of uncertainties in human emissions and climate system response. 
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1. INTRODUCTION 
The United Nations Framework Convention on Climate Change (FCCC) states its 

objective as:  “…stabilization of greenhouse gas concentrations in the atmosphere at a 

level that would prevent dangerous anthropogenic interference with the climate system” 

(UNFCCC, 1992), and discussion of such a long-term goal is a continuing focus of the 

Working Group on Long-Term Cooperative Action under the Bali Action Plan (UN 

FCCC, 2007). This framing of the task has led to a focus on the calculation of the total 

emissions of CO2 (or of all greenhouse gases stated in CO2-equivalents) that can be 

allowed over the century while maintaining a maximum atmospheric concentration.  

In addition to objectives framed in terms of atmospheric concentrations, the climate 

goal also has been stated as a maximum increase, from human influence, to be allowed in 

global average temperature.  For example, the European Union has adopted a limit of 2°C 

above the pre-industrial level, and in 2009 this 2°C target received an endorsement, if not 

a firm commitment, from the leaders of the G8 nations (G8 Summit, 2009).1  Because of 

the uncertainty in the temperature change projected to be caused by any path of global 

emissions, the policy goal is sometimes stated in terms of a maximum increase in 

radiative forcing by long-lived greenhouse gases, stated in watts per square meter 

(W/m2). For example, this last approach was taken by a study of stabilization targets 

undertaken by the U.S. Climate Change Science Program (CCSP) (Clarke et al., 2007), 

and a set of radiative forcing targets form the basis for construction of scenarios to be 

used in the IPCC’s 5th Assessment Report (Moss et al., 2007). 

Though the climate policy challenge is essentially one of risk management, requiring 

an understanding of uncertainty, most analyses of the emissions implications of these 

various policy targets have been deterministic, applying scenarios of emissions and 

reference (or at best median) values of parameters that represent aspects of the climate 

system response, and the cost of emissions control. Examples of these types of studies as 

carried out by governmental bodies include the U.S. CCSP study mentioned above 

(Clarke et al., 2007) which applied three integrated assessment models to the study of 

four alternative stabilization levels, and the analysis of the cost of emissions targets in the 

                                                 
1 The G8 leaders that they, “recognized the scientific view on the need to keep global temperature rise 

below 2 degrees above pre-industrial levels.” 
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IPCC’s 4th Assessment Report (AR4) (Fisher et al., 2007).  These efforts provide insight 

to the nature of the human-climate relationship, but necessarily they fail to represent the 

effects of uncertainty in emissions, or to reflect the interacting uncertainties in the natural 

cycles of CO2 and other gases or the response of the climate system to these gases. Where 

efforts at uncertainty analysis have been made—e.g., in the IPCC AR4 (Meehl et al., 

2007) and studies following on the CCSP report (Wigley et al., 2009)—the results lack 

consideration of uncertainty in emissions and of some aspects of climate system response 

(a topic to which we return below). 

Here, seeking a more complete understanding of how emissions targets may reduce 

climate change risk, we quantify the distributions of selected climate and cost outcomes, 

applying Monte Carlo methods (with Latin Hypercube sampling) to the MIT Integrated 

Global Systems Model (IGSM), an earth system model of intermediate complexity.  This 

statistical approach cannot fully explore the extreme tails of the distribution of possible 

outcomes, and there are physical processes (e.g., rapid release of methane clathrates) that 

are too poorly understood to be included. The method can, however, provide a formal 

estimate of uncertainty given processes that can be modeled and whose input probability 

distributions reasonably are constrained.  An advantage of the IGSM in this regard is that, 

in contrast to more complex but less flexible general circulation models, it can span the 

range of climate responses implied by the climate change observed during the 20th 

century.   

Section 2 describes the methods used in the analysis, including the IGSM, the 

distributions of its uncertain parameters, the sampling method applied, and the 

greenhouse gas concentration stabilization policies to be simulated.  We present the 

resulting distributions of model outcomes in Section 3 for the climate response and in 

Section 4 for the mitigation cost implications.  Section 5 compares these results with the 

outcome of studies with less-complete representations of uncertainty, to show the value 

of attempts to include a more-complete consideration of human and physical system 

uncertainties and their interactions.  This final section also discusses the implications of 

the long-term climate targets now under consideration in national discussions and 

international negotiations. 
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2. ANALYSIS METHODS 

2.1 Model Components 
The MIT Integrated Global System Model includes sub-models of the relevant parts of 

the natural earth system and a model of human activity and emissions. Here we apply 

Version 2 of the IGSM as described in Sokolov et al. (2005, 2009b).  The model includes 

the following components: 

•  A model of human activities and emissions, the Emissions Prediction and Policy 

Analysis Model (Paltsev et al., 2005). 

•  An atmospheric dynamics, physics and chemistry model (Sokolov and Stone 1998; 

Wang et al., 1998), which includes a sub-model of urban chemistry (Calbo et al., 

1998; Mayer et al., 2000; Prinn et al., 2007). 

•  A mixed-layer, anomaly-diffusing ocean model [ADOM] (Sokolov et al., 2005; 

Sokolov et al., 2007), with carbon cycle and sea ice sub-models. 

•  A land system model (Schlosser et al., 2007) that combines the Terrestrial Ecosystem 

Model [TEM] (Felzer et al., 2004; Sokolov et al., 2008), a Natural Emissions Model 

[NEM] (Liu 1996), and the Community Land Model [CLM] (Bonan et al., 2002). 

Together these components describe the global, terrestrial water, energy, and 

biogeochemical budgets and terrestrial ecosystem processes that govern them. 

The climate system component of the IGSM is a fully coupled model which enables 

the simulation of feedbacks between components.  The time steps in the various sub-

models range from 10 minutes for atmospheric dynamics to one month for certain 

terrestrial processes, reflecting differences in the characteristic timescales of the 

underlying natural phenomena.  

The IGSM differs from similar models by its inclusion of significant chemical and 

biological detail. In particular, natural fluxes of CO2, CH4 and N2O are estimated from 

the simulated activities of plants and microbes on land and in the oceans; these vary over 

the earth’s surface in response to vegetation distribution and simulated variations in light 

availability as influenced by clouds and aerosols, climate, atmospheric chemistry (CO2 

and O3), terrestrial hydrology, and oceanic acidity. The processes governing these natural 

fluxes are coupled to the relevant climate, terrestrial hydrology, soil/vegetation, and 

ocean processes to capture their dependence on temperature, rainfall, nutrient availability, 
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organic substrates, ocean acidity and other variables. Global anthropogenic emissions of 

CO2, CO, NOx, volatile organic compounds (VOCs), black carbon (BC), SOx and other 

key species are estimated by a regionally disaggregated model of global economic growth 

(Paltsev et al., 2005). This procedure allows for treatment over time of a shifting mix and 

geographical distribution of emissions. 

Another feature of the IGSM for uncertainty analysis is its flexibility, allowing it to 

reproduce the projections of a wide range of 3D Atmosphere-Ocean General Circulation 

Models (AOGCMs).  This aspect of the analysis is accomplished by varying cloud 

feedback and deep-ocean mixing parameters (Sokolov et al., 2003; Forest et al., 2008).  

Whereas the climate system response to external forcings, as represented in an AOGCM, 

is a result of many parametric and structural formulations that are not easily varied, the 

IGSM can simulate a wide and continuous range of climate response, permitting 

parametric uncertainty analysis that would not be possible in the larger models. 

2.2 Monte Carlo Simulation Design  
Monte Carlo simulation is a widely-used set of techniques for characterizing 

uncertainty in numerical models resulting from uncertainty in model parameters (e.g., 

Rubenstein and Kroese, 2008).  The basic steps in Monte Carlo analysis are: (1) identify 

uncertain parameters and develop probability distributions for them, (2) sample from the 

distributions to construct multiple sets of parameter values, and (3) simulate large 

ensembles of model runs (hundreds or thousands of runs in each ensemble) using the 

sampled parameter values.  The distribution of model outcomes from the ensemble of 

simulations provides estimates of future uncertainty, conditional on the model structure 

and the distributions of uncertain parameters.   

The results are also conditional on specific assumptions under which future scenarios 

are constructed.  As applied here, the no-policy results assume there are no direct efforts 

to control emissions of long-lived greenhouse gases.  Each of four emissions control 

levels then creates a different estimate of uncertainty conditioned on achieving that policy 

target.  The ensemble size can also be an issue. With pure random sampling the ensemble 

size required to obtain an estimate with suitable accuracy can be in the thousands to tens 

of thousands of model simulations, making this approach infeasible even for models like 

the IGSM that, although simplified, still require significant computer time.  Fortunately, 
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the size of the required sample can be significantly reduced by applying well-designed 

sampling strategies.  Below, we describe the probability distributions assumed for the 

model parameters, and the sampling strategy and ensemble size used in our calculations. 

2.2.1 Parameter Distributions  
The details of the probability distributions developed for each model parameter, as 

well as the data sources used in constructing each distribution, are documented by 

Webster et al. (2008a) for the economic model parameters, and by both Forest et al. 

(2008) and Sokolov et al. (2009b) for the earth system model.  Here we briefly 

summarize these uncertain parameters; their probability distributions are provided in 

Appendix A.   

For the economic (EPPA) model, with its sixteen regions with different characteristics, 

probability distributions are constructed for over 100 separate socio-economic and 

technological parameters.  These parameters can be grouped into the following broad 

categories: 

• Elasticities of Substitution 

• Labor Productivity Growth Rates 

• Autonomous Energy Efficiency Improvement (AEEI) 

• Fossil Fuel Resource Availability 

• Population Growth 

• Urban Pollutant Trends 

• Future Energy Technologies 

• Non-CO2 Greenhouse Gas Trends 

• Capital Vintaging 

The distributions for elasticities of substitution, labor productivity growth rates, AEEI, 

fossil fuel resources, population growth, and urban air pollutant trends are based on 

historical data and/or other published studies.  The distributions for the cost of future 

energy technologies, trends of non-CO2 greenhouse gas emissions, and capital vintaging 

are based primarily on expert elicitations, documented in Webster et al. (2008a). 

Taking advantage of the sensitivity of emissions to each parameter revealed in earlier 

studies (Webster et al., 2002; Webster et al., 2003), we focus on improving the basis for 

estimates of uncertainty in labor productivity growth rates, trends in urban air pollutant 
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emissions per unit of activity, and the elasticities of substitution.  An effort was made to 

base these estimates on observations as opposed to relying on expert elicitation as in our 

earlier studies.  Labor productivity growth rates, which are a primary driver of economic 

growth in the model, are now based on observed GDP variability over the period 1950-

2000.  The variability is used to sample future growth rates as a random walk with drift, 

where the drift is the reference growth path of the EPPA model and the random walk 

component is sampled for each 5-year period, producing more realistic growth paths 

where regions experience periods of faster or slower growth. Previous work sampled high 

or low growth rates that then were applied for the entire 100-year forecast horizon.  

Future trends in urban pollutants, such as SO2 and NOx, are now based on the stochastic 

emissions frontier analysis of 15 countries in Stern (2005, 2006), and so have a stronger 

empirical foundation.  For distributions for elasticities of substitution between different 

inputs to production (e.g., capital vs. labor, capital/labor bundle vs. energy bundle) we 

use estimates from published econometric studies.   

The probability distributions for uncertain physical parameters in the earth system 

model are described in Sokolov et al. (2009b).  Five uncertain parameters are treated in 

this study: 

• Climate sensitivity 

• Mixing of heat into the deep ocean  

• Aerosol radiative forcing 

• CO2 fertilization effect in terrestrial ecosystems 

• Precipitation frequency trends as a function of increasing temperature. 

The joint distribution of the first three uncertainties – climate sensitivity, ocean heat 

uptake, and aerosol forcing – is constrained by 20th century observations (Forest et al., 

2008).  Samples for these three parameters are drawn from their joint distribution in order 

to capture the interdependence implied by observations.  The probability distribution used 

in this analysis is based on the estimates of the 20th century change in deep-ocean heat 

content for the 0-3000m layer from Levitus et al. (2005). Other data analyses have been 

prepared for the upper ocean (0-700m layer) (Domingues et al., 2008; Levitus et al., 

2009; Ishii and Kimoto, 2009), which would yield alternative joint distributions. These 

more recent efforts differ from the earlier Levitus et al. (2005) in the application of bias 
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corrections to the various ocean temperature records.  In addition, the change in ocean 

heat content below 700m has not been estimated in these more recent data analyses and 

so assumptions are required about the additional temperature change in the deep ocean.  

Examples of the sensitivity of future climate projections to the choice of the deep ocean 

temperature estimates, used to construct input distributions from climate parameters, are 

given in Sokolov et al. (2009a, b).   

We also include here two physical uncertainties not treated by Webster et al. (2003): 

uncertainty in the CO2 fertilization effect on vegetation productivity, and the change in 

the frequency of precipitation as a function of increases in surface temperature.  The 

former affects how much CO2 is removed from the atmosphere by vegetation and 

potentially retained in plants and soils.  The latter affects emissions of nitrous oxide from 

soils as those emissions depend on periods of soil saturation. Uncertainty in the carbon 

uptake by the ocean is not considered as an independent uncertainty but is linked to the 

uncertainty in the oceanic heat uptake (see Sokolov et al., 2009b for details).  

2.2.2 Sampling Design 
To limit the ensemble size, we employ stratified sampling (see Rubenstein and Kroese 

2008, Ch. 5) and, in particular, the Latin Hypercube method for sampling across multiple 

parameters (McKay et al., 1979).  Numerical experiments demonstrate that, compared 

with pure random sampling, the outcome distributions converge more quickly to the 

limiting distributions as sample size increases.  We use 400 samples in each ensemble, a 

sample size that, for Latin Hypercube sampling, has been shown to approximate well the 

limiting distribution for many nonlinear models2.   

As noted previously, there is correlation among some of the input parameters.  For the 

physical climate parameters, correlation is modeled by sampling directly from the joint 

distribution described in the previous section.  For many of the economic parameters, we 

impose correlation structure on related subsets of parameters (see Webster et al., 2008a 
                                                 
2 For the no policy scenario we tested the adequacy of the ensemble size by comparing sample sizes of 100, 

200, 300, 400, 500, and 1000.  To do this we performed 20 independent ensembles (drawing different 
sample sets for each) for each ensemble size, and compared the standard deviation of the estimate of 
median temperature change to the mean estimate of the standard deviation from the 20 ensembles.  The 
standard deviation of the estimate of the median fell from 0.5% with 100 samples, to 0.2% with 400 
samples, and had no appreciable improvement with 500 or 1000 samples.  Similarly, the standard 
deviation of the estimate of the 0.95 fractile fell from 1.8% of its mean with 100 samples to 0.8% with 
400 samples, and 0.75% with 1000 samples.   
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for details).  The correlation is imposed during the sampling process using the procedure 

from Iman and Conover (1982).  This method chooses the next subinterval for sampling, 

without replacement, by imposing the specified rank correlation.  

Finally, to estimate the cost of a stabilization target, the simulated macroeconomic 

consumption in a policy case is subtracted from that in the no-policy case.  The procedure 

involves pairwise comparisons of results for each policy case with that of the no-policy 

case for each ensemble member, applying identical input values.  The same 400 samples 

are used for all five ensembles, with the only difference among them being the 

introduction of different policy constraints. 

2.3 Stabilization Scenarios 
We base the four stabilization scenarios on those developed, applying the MIT IGSM, 

for the U.S. Climate Change Science Program (CCSP) Assessment Product 2.1A (Clarke 

et al., 2007). These cases were designed to provide insight into discussions of climate 

policy, particularly with regard to the implications of stabilization for emissions 

trajectories, energy systems, and mitigation cost. We build on that exercise by performing 

an uncertainty analysis of each of the CCSP policy constraints. The likelihoods of 

different levels of climate change depend on the assumption that these emissions 

scenarios are followed over the 100 year simulation horizon, and they are a best estimate 

of that conditional future based on information we have today as represented by the 

model structure and input uncertainty.3  Note that the IGSM simulation represents only 

the potential human perturbation of the climate system, as departures from any natural 

variability that may be experienced. 

The stabilization scenarios in the CCSP exercise were labeled as Levels 1, 2, 3, and 4 

(Clarke et al., 2007) and we retain those labels.  Each of the emissions paths developed in 

the MIT component of the CCSP exercise is applied as a vector of constraints on global 

greenhouse gas emissions beginning in 2015. They are met in each simulated time period 

and so allow the same cumulative emissions from 2015 to 2100.  The quantity that is held 
                                                 
3 More will be learned as time passes policies can be expected to be revised over time as uncertainty is 

reduced or we learn that median estimates are higher or lower.  Nevertheless, analysis of what will 
happen if we follow a specific path through the horizon remain relevant to the decisions we must make 
today in the face of existing uncertainty.  For studies that examine the implications of hypothetical 
future resolution of uncertainty see Webster et al. (2008b), Yohe et al. (2004), Kolstad (1996), and 
Ulph and Ulph (1997). 
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nearly constant under policy as parameters vary is the cumulative emissions of 

greenhouse gases, as weighted by 100-year Global Warming Potentials (GWPs).4   When 

these emissions levels are propagated through an earth system model with different 

parameter values, the resulting concentrations will necessarily vary from these targets 

because earth system feedbacks on concentrations are themselves uncertain and depend 

on the realized climate.5 

In Table 1, we describe the no-policy and four stabilization scenarios in terms of their 

cumulative GWP-weighted emissions (denoted as CO2-equivalent (CO2-eq.) emissions) 

over 2001-2100, which are 2.3, 3.4, 4.5, and 5.4 trillion (1012 or Tera) metric tons for 

Levels 1, 2, 3, and 4, respectively.  The no-policy scenario has median cumulative 

emissions of 8.0 trillion metric tons.   Table 1 also summarizes the ensemble results for 

the median levels of  

• CO2 concentrations,  

• CO2-equivalent concentrations, calculated using radiative forcing due to long-

lived greenhouse gases only (they are listed in Table 2) relative to the pre-industrial 

level,  

• Change in total radiative forcing attributable to the long-lived greenhouse gases 

and tropospheric ozone and aerosols, and  

• Change in global mean surface temperature.  

These calculated medians, stated in relation to the 1981-2009 average to be 

comparable with results in the IPCC AR4, can help inform policy discussions by giving 

some idea of the relations between emissions, concentrations and temperature increase.  

                                                 
4 Scenarios where there is low growth in emissions can lead to some ensemble members where emissions 

are below the constraint level, especially for the Level 4 and Level 3 cases.   The variation in GWP-
weighted emissions is less than 1%. 

5 Both the EPPA and earth system components of the IGSM have been updated since the CCSP study but 
these emissions scenarios remain of interest in terms of how our current best estimate of the cost of 
achieving them and their effectiveness in reducing the risk of serious climate change compares to the 
uncertainty in these estimates. 
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Table 1. Policy Constraints and Median Values of Key Results from Emissions 
Scenarios. 

Policy 
Scenario 

Cumulative 
Emissions 

Constraints 

Median Results for Each Ensemble 
Decadal Average for 2091-2100 

(Changes Relative to 1981-2000 Average) 

  
2001-2100 

(Tt CO2-eq)1 

CO2 
Concen-
trations 
(ppm)2 

CO2–eq 
Concen-
trations 

Long-lived 
GHGs 

(ppm)2 

Change 
in 

Radiative 
Forcing 

(W/m2)3 

Change in 
Annual Mean 

Surface 
Temperature 

(°C)3 

Level 1 2.3 480 560 2.4 1.6 

Level 2 3.4 560 660 3.5 2.3 

Level 3 4.5 640 780 4.5 2.9 

Level 4 5.4 710 890 5.3 3.4 

No-Policy   8.04 870     1330 7.9 5.1 
1Calculated using 100-year GWPs as calculated in Ramaswamy, et al. (2001). Includes gases 

listed in Table 2. 
2 Rounded to nearest 10 ppm. 
3 Difference between the average for the decade 2091-2100 and 1981-2000; from pre-

industrial to 1981-2000 the net forcing for the included substances is estimated to be 1.8 
W/m2). 

4 Ensemble medians. 

 

Table 2. Cumulative ensemble median CO2-equivalent emissions1,2, 2001-2100. 

 CO2 
Emis. 

(Gt CO2-
eq) 

CH4 
Emis. 

(Gt CO2-
eq) 

N2O 
Emis. 

(Gt CO2-
eq) 

HFCs 
Emis. 

(Gt CO2-
eq) 

PFCs 
Emis. 

(Gt CO2-
eq) 

SF6 
Emis. 

(Gt CO2-
eq) 

Level 1 1400 651 275 3.1 0.4 0.8 

Level 2 2330 733 305 4.1 0.4 0.8 

Level 3 3340 811 332 4.7 0.4 0.8 

Level 4 4120 886 361 5.2 0.4 0.8 

No-
Policy 

5890    1300 531 181 7.3   16.2 

1Calculated using 100-year GWPs (Ramaswamy, et al., 2001). 
2 Rounded to nearest 3 significant figures. 

 
Table 2 shows the cumulative emissions of each of the long-lived greenhouse gases.  

The IGSM represents the group of hydrofluorocarbons (HFCs) as HFC-134a and 

perfluorocarbons (PFCs) as perfluoromethane (CF4).  Other assumptions in constructing 

the stabilization scenarios are provided in Clarke et al. (2007).  
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3. RESULTS OF THE ANALYSIS 

3.1 Uncertainty in Climate under Stabilization Scenarios 
Following Sokolov et al. (2009b), which examined the uncertainty in climate 

projections in the absence of climate policy, we report results as decadal averages, for 

example using 2091-2100 to represent the end period of the simulation.   The 21st century 

change is then expressed as the difference from the average for the period 1981-2000.  

The resulting distributions of outcomes are presented graphically as frequency 

distributions of the ensemble results.  For each quantity, we choose a bin size such that 

roughly 50-80 bins are used, and then smooth the results over five-bin intervals.  The 

specific binsize is given in the caption for each figure.  The vertical coordinates are 

normalized so that the area under each distribution integrates to unity. 

3.1.1 Emissions 
The uncertainty in greenhouse gas emissions under the five scenarios was described in 

Webster et al. (2008a).  Before describing the uncertainty in climate outcomes, we first 

show the path of the median emissions over time and the 5% and 95% bounds on 

emissions for total greenhouse gas emissions in CO2-eq. from that study (Figure 1).  The 

no-policy case (black lines) has a large uncertainty range, while the policy cases do not 

exhibit uncertainty, because the emissions constraint is binding – i.e., for the four 

constraint cases the three lines are on top of one another because of this lack of 

uncertainty in total emissions.  (In fact, there is some uncertainty, too small to be seen in 

the figure, in the initial year of the Level 4 and Level 3 scenarios, because under the low-

growth ensemble members the constraint is not binding.)  There is some uncertainty in 

the emissions of individual greenhouse gases, such as CO2 or CH4, because of variation 

in the relative costs of abatement of the different gases and trading among greenhouse 

gases is allowed using GWPs (see Webster et al., 2008a).   
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Figure 1. Global anthropogenic greenhouse gas emissions in CO2-eq in billion metric 
tons per year over 2000-2100.  Solid lines indicate median emissions, and 
dashed lines indicate 5% and 95% bounds on emissions.  The policy scenario 
is indicated by the color of lines: no-policy (black), Level 4 (Red), Level 3 
(Orange), Level 2 (Blue), and Level 1 (Green). 

3.1.2 Concentrations 
In Figure 2, we show the uncertainty in concentrations of the main long-lived 

greenhouse gases averaged for the decade 2091-2100, expressed as frequency 

distributions. Naturally, CO2, CH4, and N2O concentrations have a smaller variance in the 

stabilization cases than under a no-policy assumption: the policy ensembles implement an 

absolute constraint on emissions, so almost all emissions uncertainty has been eliminated 

(see Figure 1).  The main source of uncertainty in CO2 concentrations in simulations 

under emissions constraint is the rate of carbon uptake by the ocean and terrestrial 

ecosystems.6    

The 95% bounds (0.025 to 0.975 fractile range) of the modeled CO2 concentrations 

(Figure 2a) for the no-policy case are 691 – 1138 ppm (a difference of 447 ppm). In 
                                                 
6 As noted above, the IGSM considers uncertainty in carbon uptake by both ocean and terrestrial 

vegetation. The IGSM accounts for the effect of nitrogen limitation on terrestrial carbon uptake, this 
significantly reduces both strength of feedback between climate and carbon cycle and uncertainty in this 
feedback (Sokolov et al., 2008). 
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simulations applying median no-policy emissions they are 777 and 932 ppm (155 ppm) 

respectively (which gives an indication of the relative contribution of emissions and 

earth-system uncertainty).  The stabilization policies reduce these concentrations to 95% 

bounds of 640 – 771 ppm for Level 4 controls (a 131 ppm difference), 580– 696 ppm for 

Level 3 (a 116 ppm difference), 506 – 597 ppm for Level 2 (a 91 ppm difference), and 

442 – 511 ppm for Level 1 (a 69 ppm difference).  One implication of these results is that 

emissions targets intended to achieve specific stabilization goals would need to be 

adjusted over time as the uncertainty in the carbon cycle is resolved. 

In the CCSP exercise (Clarke et al., 2007) the targets were designed to achieve 

radiative forcing levels and, given the earth system parameters in the version of the MIT 

IGSM used there, they also were consistent with ultimate stabilization of CO2 at 750, 

650, 550, and 450 ppm.  For all but the tightest Level 1 control case, actual stabilization 

is modeled to occur after the 2100 horizon of the exercise and so concentrations in 2100 

as simulated by the IGSM in the CCSP exercise were 677, 614, 526, and 451 ppm in the 

Level 4 to Level 1 control cases, respectively.  The median concentrations for the last 

decade (2091-2100) in the ensembles developed here are 714, 643, 554, and 477 ppm in 

the Level 4 to Level 1 in these same cases.  The difference in CO2 concentration levels is 

due primarily to changes in the parameterization of the carbon uptake by the deep ocean 

between the two IGSM versions, which leads to lower carbon uptake in the version of the 

model applied here, as explained in Sokolov et al. (2007). 

For CH4 (Figure 2b) and N2O (Figure 2c), there is also still some uncertainty under 

the stabilization cases due to the natural emissions of these gases, which depend in turn 

on temperature and precipitation. Surface temperature influences microbial metabolism, 

and therefore variations in estimated temperature among ensemble members will result in 

variations in the estimated rates of methanogenesis and denitrification and the 

corresponding natural emissions of CH4 and N2O, respectively.  In addition, the intensity 

and frequency of precipitation influences the formation of anaerobic zones within the soil 

where denitrification occurs (Schlosser et al., 2007).  Hence, variations in precipitation 

will alter the extent and duration of these soil anaerobic zones and influence 

denitrification rates, contributing to additional uncertainty in natural N2O emissions. 
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Figure 2. Frequency distributions of concentrations averaged for the decade 2091-
2100 for (a) CO2, (b) CH4, and (c) N2O.  Frequency distributions calculated 
using bins of 1.0 ppm/ppb intervals, and smoothed over five bin interval. 
Horizontal lines show 5% to 95% interval, and vertical line indicates median. 
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The frequency distribution of the total greenhouse gas concentrations expressed as 

CO2-eq concentrations – calculated as the CO2 concentrations that would be needed to 

produce the same level of radiative forcing, relative to the pre-industrial level (see Huang 

et al., 2009 for more detail) – is shown in Figure 3.  The paths over time of the median 

and 95% bounds of CO2 are given in Figure 4a. The time paths for CH4 and N2O (not 

included here) show similar patterns. Figure 4b shows the same patterns for the CO2-eq 

concentrations, considering all the greenhouse gases. 

The policies also affect the concentrations of black carbon (BC) and ozone that 

contribute to radiative forcing (see Appendix B, Tables B3 and B4). Specifically, the 

concentrations of both species decrease with increasing stringency of the policy. 
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Figure 3. Frequency distributions of concentrations averaged for the decade 2091-
2100 for CO2-equivalent for the total of CO2, CH4, N2O, HFCs, PFCs, and SF6.  
CO2 equivalence is calculated using instantaneous radiative forcings. 
Frequency distributions calculated using bins of 2.0 ppm intervals, and 
smoothed over five bin interval. Horizontal lines show 5% to 95% interval, 
and vertical line indicates median. 
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Figure 4. 95% probability bounds for decadal averages of (a) CO2 concentrations 
and (b) CO2-equivalent concentrations. 
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3.1.3 Radiative Forcing 
The uncertainty in total radiative forcing, which is the sum of the effects of all long-

lived greenhouse gases plus troposphere ozone and aerosols, is shown in Figure 5.  By 

the end of this century, radiative forcing has a 95% range of 5.9 – 10.1 W/m2 in the 

absence of climate policy (7.3 – 8.5 W/m2 due to climate uncertainties only).  This range 

decreases under the stabilization scenarios to 4.0 - 6.0 W/m2 (Level 4), 3.3 – 5.2 W/m2 

(Level 3), 2.3 – 4.1 W/m2 (Level 2), and 1.5 – 3.0 W/m2 (Level 1), relative to the average 

for 1981-2000.  The uncertainty in radiative forcing under the stabilization scenarios is 

due to two factors: (1) as shown above, concentrations vary because of earth system 

feedbacks on CO2, CH4 and N2O, and (2) there remains emissions uncertainty for sulfates 

and carbonaceous aerosols as well as ozone precursors.   

3.1.4 Temperature Change 
The resulting uncertainty in global mean surface temperature change under each 

scenario is given in Figure 6.  Figure 6a shows the 95% bounds on the decadal average 

surface temperature change relative to the average for 1981-2000, and Figure 6b shows 

the frequency distribution of the difference between the average surface temperature for 

the period 2091-2100 and the average for the period 1981-2000.  (Numerical values for 

selected fractiles are provided in Table B1, Appendix B.)   The effect of the stabilization 

scenarios is to lower the entire distribution of future temperature change, including the 

mean, median, and all fractiles.  The 95% bounds in the no-policy simulations are 3.3 – 

8.2oC (3.7 – 7.4oC for climate-only uncertainty).  The stabilization scenarios lower this 

range to 2.3 – 5.0oC (Level 4), 2.0 – 4.3oC (Level 3), 1.6 – 3.4oC (Level 2), and 1.1 – 

2.5oC (Level 1).   
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Figure 5. Total radiative forcing relative to 1981-2000 (greenhouse gases and 
aerosols) from all emissions for each policy case, shown as (a) 95% 
probability bounds over time, and (b) frequency distributions averaged for the 
decade 2091-2100.  Frequency distributions calculated using bins of 0.1 w/m2 
intervals, and smoothed over a five bin interval. Horizontal lines show 5% to 
95% interval, and vertical line indicates median. 
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Decadal Average Global Mean Surface Temperature Change
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0 2 4 6 8 10

Pr
ob

ab
ilit

y 
D

en
si

ty

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

No Policy
Level 4
Level 3
Level 2
Level 1

b)

 

Figure 6. Decadal average global mean temperature change shown as (a) 95% 
bounds over time relative to average for 1981-2000, and (b) frequency 
distributions of temperature change between the 1981-2000 average and the 
2091-2100 average. Frequency distributions calculated using bins of 0.1 
degree intervals, and smoothed over a five bin interval.  Horizontal lines in b) 
show 5% to 95% interval, and vertical line indicates median. 
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An important feature of the results is that the reduction in the tails of the temperature 

change distributions is greater than in the median. For example, the Level 4 stabilization 

scenario reduces the median temperature change by the last decade of this century by 

1.7oC (from 5.1 to 3.4 oC), but reduces the upper 95% bound by 3.2oC (from 8.2 to 

5.0oC).  In addition to being a larger magnitude reduction, there are reasons to believe 

that the relationship between temperature increase and damages is non-linear, creating 

increasing marginal damages with increasing temperature (e.g., Schneider et al., 2007).   

While many estimates of the benefits of greenhouse gas control focus on reductions in 

temperature for a reference case that is similar to our median, these results illustrate that 

even relatively loose constraints on emissions reduce greatly the chance of an extreme 

temperature increase, which is associated with the greatest damage.   

Also, unlike the uncertainty in concentrations and radiative forcing, the uncertainty in 

temperature change, expressed as percent relative to the median, is only slightly less 

under the stabilization cases than under the no-policy case.  For example, in the decade 

2091-2100, the 95% range without policy goes from 40% below the median to 60% 

above, while the equivalent range under the Level 2 emission target is –33% to +44% of 

the median. In contrast, the 95% range for CO2-eq concentrations under Level 2 is ±9% 

of the median, and the range for radiative forcing is –33% to +18% of the median forcing.  

Long term goals for climate policy are sometimes identified in terms of temperature 

targets.  As illustrated by these calculations, a radiative forcing or temperature change 

target does not lead to an unambiguous emissions constraint because, for a given 

emissions constraint, the resulting temperature changes are still uncertain within this 

factor of 30 to 40%.   

Unclear in such statements regarding temperature targets is whether an emissions 

constraint set today should be based on the median climate response, or if the goal should 

be to avoid exceeding a target level of temperature change with a particular level of 

confidence.  The emissions path would need to be much tighter, for example, if the goal 

was to reduce the probability of exceeding a temperature target to, say, less than one in 

ten or one in twenty. 

The temperature change resulting from increasing greenhouse gases and other 

substances will not be uniform with latitude, with the change being greater at high 
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latitudes and lesser in the tropics (Meehl et al., 2007).  Figure 7 shows our estimates of 

the projected change in the zonal distribution of mean surface air temperature from the 

1981-2000 average to the 2091-2100 average under each of the scenarios for the median 

(Figure 7a), the upper 95% bound (Figure 7b), and the lower 95% bound (Figure 7c). 

As is the case for global temperature change the reduction due to stabilization in the 

upper 95% bound is greater than the reduction in the median temperature change.   

As an example of the impact on high latitude temperature changes, we show the 

frequency distributions for 60oN–90oN (Figure 8).  Numerical values for mean, standard 

deviation, and selected fractiles are given in Table B3 in Appendix B for a range of zonal 

bands.  As can be seen from these results, climate policies have a larger effect on 

temperature changes at high latitudes than on global mean surface warming. The Level 4 

policy scenario, for example, would reduce surface temperatures in high latitude regions 

by between 2 and 7oC relative to the no-policy case or a 40% decrease, compared to a 

range of 1 to 3oC or a 30% decrease in global mean surface warming. 

3.1.5 Sea Ice 
Since changes in sea ice are highly correlated with changes in high latitude 

temperature, it is not surprising that emissions reductions have a very strong impact on 

changes in sea ice area in both hemispheres. Figure 9 shows changes in sea ice area 

(2091-2100 average minus 1981-2000 average) as a fraction of 1981-2000 sea ice area. In 

the absence of climate policy the median decrease in summer Arctic sea ice is 70% of 

present day coverage, while even relatively moderate policy (Level 4) decreases the 

median sea ice loss to 40%.  The effect of emission reductions on sea ice changes during 

local winter is smaller.7  

                                                 
7 Climate policies also influence emissions and concentrations of some air pollutants, notably black carbon 

(Table B4) and to a lesser extent ozone. 
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Figure 7. Zonal mean surface temperature change from the 1981-2000 average to 
the 2091-2100 average by policy case (a) median zonal temperature change, 
(b) upper 95th percentile zonal temperature change, and (c) lower 95th 
percentile zonal mean temperature change. 
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Figure 8. Frequency distributions for the decadal average surface temperature 
change at 60o-90oN between 1981-2000 and 2091-2100.  Frequency 
distributions calculated using bins of 0.1 degree intervals, and smoothed over 
a five bin interval.  Horizontal lines show 5% to 95% interval, and vertical line 
indicates median. 
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Fractional Change in Sea Ice - September, Northern Hemisphere
Change from 1981-2000 average to 2091-2100 Average
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Fractional Change in Sea Ice - March, Southern Hemisphere
Change from 1981-2000 average to 2091-2100 Average
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Figure 9. Changes in sea ice area (2091-2100 relative to 1981-2000) as a fraction 
of 1981-2000 coverage for (a) Northern Hemisphere in September, and (b) 
Southern Hemisphere in March.  Frequency distributions calculated using bins 
of 0.0025 intervals, and smoothed over a five bin interval.  Horizontal lines 
show 5% to 95% interval, and vertical line indicates median. 
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3.2 Reduction of the Probability of Exceeding Targets or Critical Levels 
An important feature of uncertainty results is the ability to demonstrate that emissions 

control brings greater reduction in the tails of distributions than the median. And because 

there is evidence that marginal damages are increasing with the degree of climate change, 

targets are frequently stated in terms of conditions “not to be exceeded” as noted in the 

Introduction.  Thus a useful way to represent the results in Section 3.1 is in terms of the 

probability of achieving various targets. Three examples are shown here. Global mean 

surface temperature is often used as an indicator of climate change for this purpose, as it 

relates to impacts on human and natural systems. Temperatures in the high latitudes are 

important for the stability of the large ice sheets of Greenland and Antarctica as well as 

the stability of permafrost regions.  And reduction of sea ice extent, along with polar 

temperatures, is an important input to study of the fate of the deep ocean circulations. 

We show the probability of exceeding several illustrative targets for global mean 

temperature change (from 1981-2000 to 2091-2100) under the policy scenarios in Figure 

10.  For a very low temperature change target such as 2°C, the Level 4 and Level 3 cases 

decrease the probability only slightly. The Level 1 case reduces the probability of 

exceeding 2°C to about 25% or a 1 in 4 odds.  In contrast, higher temperature change 

targets, such as 4°C, exhibit convexity; Levels 4 or 3 reduce the probability of 

exceedence significantly, with little incremental gain from more stringent reductions in 

the Level 2 and Level 1 cases.  The numerical values in the form of odds are given in 

Table C1 in Appendix C.8 

                                                 
8 Regarding the precision of the odds of low probability outcomes, the Latin Hypercube sample of 400 

model runs cannot resolve likelihoods of outcomes of less than 1 in 400, and the actual precision is less 
than that due to the random nature of the draw for any one sample. Also, as noted earlier, there are hard 
to quantify aspects of climate response and economic activity, such as how ocean temperatures were 
used to constrain climate parameters, how to represent economic growth, and processes that are not well 
characterized and thus not represented in our (or any) modeling system (such as the behavior or large 
ice sheets, or possible large scale biogeochemical feedbacks from Arctic systems). Methods that could 
address some of these issues include; a larger sample size or an importance sampling design 
(Rubenstein and Kroese, 2008) or a meta-uncertainty analysis weighting estimates derived from 
different data sets. Complementary methods, such as expert elicitation may be of some use for 
incorporating highly speculative processes because they can more readily integrate different lines of 
evidence, albeit with the recognized biases in any expert elicitation process (Morgan and Henrion, 
1990). 
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Figure 10. Change in the probability of exceeding illustrative targets for global mean 
surface temperature change, as measured by the change between the 
average for 1981-2000 and the average for 2091-2100.  Lines indicate the 
change in probability under different policy cases for exceeding a given 
target: 2oC (green dotted line), 3oC (blue dashed line), 4oC (orange dashed 
line), 5oC (red dashed line), and 6oC (black solid line). 

As an illustration of how the probability of exceeding temperature targets at high 

latitudes change, we calculate the average temperature change between 60oN and 90oN.  

In Figure 11, we show the probability for each ensemble that the temperature change for 

this latitude band over the next century will exceed 3, 4, 5, 6, 7, and 8oC.  For example, 

the odds that the average surface temperature change for 60oN-90oN exceeds 5oC are 98 

in 100 in the no-climate policy ensemble, and decrease to 9 in 20 under Level 4, 2 in 10 

under Level 3, 1 in 100 under Level 2, and there are no simulations above 5oC under 

Level 1 (Table C3). 

Besides the likelihood of achieving particular policy targets with an emissions limit, 

this form of presentation may also be useful in illustrating the effects on specific 

components of the climate system. One candidate is the change in sea ice at the end of 

summer (September for the Northern Hemisphere, March for the Southern Hemisphere).   
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Figure 11. Change in the probability of exceeding illustrative targets for average 

surface temperature change at 60oN to 90oN, as measured by the change 
between the average for 1981-2000 and the average for 2091-2100.  Lines 
indicate the change in probability under different policy cases for exceeding a 
given target: 3oC (green dotted line), 4oC (blue dashed line), 5oC (orange 
dashed line), 6oC (red dashed line), 7oC (black solid line), and 8oC (brown 
dash-dot line). 
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Figure 12. Change in the probability of exceeding illustrative targets for changes in 

sea ice extent in September in the Northern Hemisphere relative to the 
average for 1981-2000.  Lines indicate the change in probability under 
different policy cases for exceeding a given target: 20% decrease (green 
dotted line), 30% decrease (blue dashed line), 40% decrease (orange dashed 
line), 50% decrease (red dashed line), and 60% decrease (black solid line). 

 
Figure 12 shows the probability from this analysis that the decrease in September 

northern hemisphere sea ice cover from the 1981-2000 average to the 2091-2100 average 

exceeds 20%, 30%, 40%, 50%, and 60%.  For example, the odds of a decrease in sea ice 

cover of more than 40% is 97 in 100 without climate policy, and falls to 2 in 5, 15 in 100, 

1 in 100, and less than 1 in 400 under Levels 4, 3, 2, and 1, respectively (Table C4).  

Similar odds are given in Table C5 for the Southern Hemisphere in March. 

3.3 Uncertainty in the Global Cost of Emissions Mitigation 
The CCSP study of stabilization scenarios (Clarke et al., 2007) yielded, for each 

participating model, a set of single estimates of the cost of achieving the atmospheric 

targets, but of course the cost of achieving any global emissions target also is uncertain. 

Monetized, global estimates of the cost of emissions mitigation over the century are 

subject to many qualifications, discussed by Clarke et al. (2007), but nonetheless we 

extend our illustration of the risk management framing of climate policy decisions by  
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Figure 13. Median, 50%, and 95% probability bounds of consumption loss (%) 
relative to no-policy case for the years (a) 2020, (b) 2060, and (c) 2100.  
Solid black line indicates median, dark grey shading indicates 50% probability 
interval, and light grey shading indicates 95% probability interval. 

 
reproducing the results for uncertainty in the costs of emissions reductions as computed 

by Webster et al. (2008a).  As in Webster et al. (2008a) and Clarke et al. (2007), we use 

the loss in global aggregate consumption as the measure of cost.  Figure 13 shows the 

uncertainty in the costs of abatement in 2020, 2050, and 2100 for the five scenarios.  In 
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contrast to the probability of exceeding climate targets, which falls as the emissions cap 

is tightened; the uncertainty in costs grows as the emissions cap is decreased. 

 

4. COMPARISONS WITH OTHER STUDIES 
Formal uncertainty analysis of the type shown here is computationally demanding, and 

as a result is infrequently conducted.  Sometimes, however, assessments interpret the 

range of outcomes across models as a proxy for the uncertainty range, or include 

uncertainty in some but not all of the relevant processes.  What is gained by the more 

complete representation of uncertainty in this paper can be shown in a comparison of our 

results with examples of other approaches.   

One example is the CCSP study from which we drew the greenhouse gas constraints 

used in the IGSM calculations performed for that study and adopted here.  The IGSM 

was one of three models used in the study; the other two were the MERGE and 

MiniCAM models (Clarke et al., 2007). These models have very different structures, and 

in the CCSP study no effort was made to calibrate them to common assumptions about 

economic growth, technology costs or other aspects of economic and emissions behavior.  

As a result of these inter-model differences, there was in the CCSP study, as in other 

multi-model assessments, the potential to take the difference in results among the model 

results as a measure of uncertainty—this despite warnings by the CCSP report’s authors 

that such a procedure was inappropriate.   

Figure 14 shows why this warning was warranted and illustrates the limitations of 

multi-model assessments as a basis for forming judgments about uncertainty.  For the 

reference and each constraint, Level 1 through Level 4, the figure repeats the probability 

distributions of CO2 concentrations in 2091-2100 from Figure 2a. Also shown in Figure 

14 are five horizontal lines with black circles indicating the range of point estimates from 

the different models in Clarke et al. (2007) for the particular policy scenario.  For the 

IGSM, the reference case used in the CCSP study is below the median in the current 

calculations, in part because of model changes since the earlier analysis was done. But 

what is important for this comparison is the magnitude in estimated uncertainty between 

the two approaches. In all cases, the range of model point estimates is much narrower  
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Figure 14. Frequency distributions, and medians and 95% bounds, of CO2 
concentrations averaged for the decade 2091-2100. Frequency distributions 
calculated using bins of 1.0 ppm/ppb intervals, and smoothed over five bin 
interval.  Horizontal lines with single vertical line in center indicate 5%-95% 
range and vertical mark indicates median from this study.  Horizontal lines 
with three circles indicate range of reported results from Clarke et al. (2007), 
and circles indicate the point estimates from the three models. 

than the uncertainty range—indeed, less than 50% of the range calculated for the IGSM 

alone.9 

Taking another step toward uncertainty analysis, Wigley et al. (2009) used these same 

CCSP emissions scenarios to conduct an analysis similar to the current study, but 

incomplete in its representation of uncertainty. The authors propagate the emissions 

scenarios developed by the three models in Clark et al. (2007) through the MAGICC 

model, a single simplified gas-cycle/climate model, to assess the ranges of results for 

concentrations, radiative forcing, temperature change and sea level rise associated with 

the uncertainty in anthropogenic emissions.  

                                                 
9 Note that the differences between model results in Clarke et al. (2007) reflect both different emissions 

paths and different carbon cycle models, while the uncertainty ranges in this study for the stabilization 
scenarios reflect only climate system uncertainties. 
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Climate related uncertainty in temperature change was estimated using just the 

emissions scenario from the MiniCAM model, with uncertainty in system response 

represented just by the lower and upper bounds from the IPCC’s 90% confidence interval 

for climate sensitivity: 1.5oC and 6.0oC.  It is then asserted that, because contributions 

from uncertainties in other climate parameters are much smaller, the resulting ranges of 

temperature change should represent the 90% confidence interval on temperature change 

(conditional, of course, on a given emissions projection).  The 90% ranges in this study 

are 3.5oC to 7.4oC for No Policy and 0.7oC to 2.4oC for Level 1 cases, with median 

warming of 2.8oC and 1.4oC, respectively.  

The 90% range for the no-policy case in our study that can be compared with the 

Wigley et al. (2009) estimate is the range for a single (median) emissions projection as 

estimated by Sokolov et al. (2009b) which is 3.8oC to 7.0oC, whereas our range for Level 

1 is 1.2oC to 2.4oC.10  

Our median warming is larger in both cases, with values of 5.1oC and 1.8oC, 

respectively. In the no-policy case, the difference is partly due to higher emissions; for 

example, Wigley et al. (2009) calculate a 3.5oC warming for EPPA no-policy emissions. 

Because the median value of climate sensitivity in our simulations (2.9 oC) is very close 

to the median value used by Wigley et al. (2009), the remainder of the differences 

between the two studies is the result of differences in the heat uptake by the ocean and 

radiative forcing. While our absolute 90% range for temperature changes in the no-policy 

case is slightly wider than the one in Wigley et al. (2009), our relative ranges are 

narrower for both scenarios: from 26% below the median to 360% above the median for 

no-policy and from -31% to 39% for Level 1. The smaller uncertainty ranges in our 

projections of surface warming is explained by the fact that we use a joint probability 

distribution of climate sensitivity, aerosol forcing, and ocean heat uptake that is 

constrained by the climate change observed during 20th century. As discussed by Forest 

et al. (2008), 20th century climate changes rule out low values of climate sensitivity (our 

90% range is 2.0oC to 5.0oC) and also impose correlation between climate sensitivity, the 

rate of ocean heat uptake, and the strength of aerosol forcing. 

                                                 
10 The comparison of results is not exact since Wigley et al. (2009) show the difference between values at 

2100 and 2000 rather than between 2091-2100 and 1981-2000 averages. 
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Figure 15. Cumulative probability distributions of global mean temperature change 
from decadal average for 1861-1870 (preindustrial) to the decadal average 
for 2091-2100. 

As a consequence of the above differences, the likelihood of meeting a temperature 

target of 2oC above preindustrial (adding 0.7oC to the calculated results to include the 

warming since pre-industrial) under the Level 1 policy differs between these two studies. 

Wigley et al. (2009) estimate a 50% probability whereas the relatively small change in 

the lower tail of the distribution in our analysis lowers this probability to only 20% 

(Figure 15).  

Another example of partial uncertainty analysis is the IPCC Fourth Assessment Report 

(AR4), which presented probability bounds on some of its projections, conditional on 

each of several different SRES emission scenarios (Nakicenovic et al., 2000). These 

scenarios together with the 90% range of results from the IPCC AR4 AOGCMs (where 

available), and the distribution of temperature change from our simulations, are shown in 

Figure 16.   This comparison suggests that the IPCC projections significantly 

underestimate the risks of climate change in the absence of an emissions constraint.  The 

significantly larger chance of greater climate change in this study than in the IPCC is due 

to both the emissions scenarios and the climate response.  Detailed comparisons of 
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emissions for the IPCC SRES scenarios with the emissions used in this study can be 

found in Prinn et al. (2008) and Webster et al. (2008a).  As noted by Webster et al. 

(2008a) only the A1FI and A2 scenarios fall within the uncertainty range for our no-

policy case.  Given our analysis, the other SRES scenarios are unlikely absent the 

influence of climate policy.  It has been widely observed that the SRES scenarios, 

originally constructed in the mid-1990s, underestimated emissions trends of the last 10 to 

15 years and are well-below observed emissions today (Canadell et al., 2007; Pielke et 

al., 2008).  
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Figure 16. Comparison of global mean temperature change (from 1981-2000 to 
2091-2100) uncertainty ranges for IPCC SRES scenarios (Meehl et al., 2007) 
and from this analysis.  The grey bars for IPCC results indicate the “likely” 
range (between 66% and 90% probability), and solid black line indicates the 
5-95% range of AOGCM results (only provided for B1, A1B, and A2).  Results 
from this analysis are shown as box plots, where box indicates the 50% range 
and center line is median, outer whiskers indicate the 10-90% range, and the 
dots indicate the 5-95% range. 
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With regard to the climate response, Prinn et al. (2008) compared the IGSM forced by 

the anthropogenic emissions for SRES scenarios and showed significantly higher surface 

warming than that produced by the IPCC AR4 AOGCMs. The difference is explained by 

a few factors. Due to a different treatment of carbon-nitrogen interactions, the terrestrial 

carbon uptake simulated by the IGSM is smaller than the one simulated by the carbon-

cycle model used by the IPCC. The IGSM also takes into account climate change related 

increases in the natural emissions of methane and N2O. As a result, greenhouse gas 

concentrations simulated by the IGSM for a given SRES scenario are higher than the 

concentrations for the same scenario used to force the AOGCMs in the simulations 

described in IPCC AR4 (Meehl et al, 2007). As can be seen from results presented by 

Prinn et al. (2008), changes in surface air temperature (SAT) in the IGSM simulations 

with median no-policy, Level 4 and Level 2 emissions are very close to surface warming 

obtained in simulations in which the IGSM was forced by the IPCC concentrations for 

A1FI, A1B and B1 scenarios, respectively. In addition, the rates of oceanic heat uptake 

for almost all of the AR4 AOGCMs lie in the upper half of the range implied from the 

Levitus et al. (2005) estimates of the 20th century changes in the heat content of the deep 

ocean. As shown by Sokolov et al. (2009a), surface warming projections obtained in the 

IGSM simulations with climate input parameter distributions based on the Domingues et 

al. (2008) estimates of changes in deep ocean heat content are closer to the results of the 

IPCC AR4 AOGCMs.  

As can be seen from Figure 16, the “likely”11, ranges given by the IPCC AR4 are 

significantly wider than both 90% ranges in the simulations with the MIT IGSM and the 

90% probability ranges based on the simulations with the AR4 AOGCMs. Meehl et al. 

(2007) construct a “likely” range for temperature change of 40% below the best estimate 

to 60% above the best estimate, with the best estimate being a mean value of surface 

warming projected by the AOGCMs. The long upper tail of the “likely” range is 

explained, in part, by the possibility of a strong positive feedback between climate and 

the carbon cycle (Knutti et al., 2008). As mentioned above, taking into account the 

nitrogen limitation on terrestrial carbon uptake makes this feedback much weaker 

(Sokolov et al., 2008).  However, as noted earlier, ocean data and other aspects of the 

                                                 
11 IPCC defines “likely” as having a probability of greater than 66% but less than 90%. 
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analysis, if varied produce a different range, and so a meta-analysis across these different 

data sources and approaches would yield still greater uncertainty.  A detailed comparison 

between our no-policy case and the IPCC AR4 results is given by Sokolov et al. (2009). 

Currently, a new round of scenario analyses is underway that would provide for a 

common basis for climate model runs in the IPCC AR5.  Guidance for those scenarios is 

provided in Moss et al. (2008). Four Representative Concentration Pathways (RCPs) are 

being prepared, which are described as:  “one high pathway for which radiative forcing 

reaches > 8.5 W/m2 by 2100 and continues to rise for some amount of time; two 

intermediate "stabilization pathways" in which radiative forcing is stabilized at 

approximately 6 W/m2 and 4.5 W/m2 after 2100; and one pathway where radiative 

forcing peaks at approximately 3 W/m2 before 2100 and then declines.”  The radiative 

forcing increase in the RCPs is specified from the preindustrial level. All RCP pathways 

reflect cases in the published literature with the first three based on the CCSP scenarios.  

Thus, not coincidentally, the analysis reported here is approximately consistent with the 

RCP scenarios.  In particular, the median of our no-policy case (see Table 1) — when 

corrected to a change from pre-industrial by the addition of an estimated of 1.8 W/m2 

increase12 — is consistent with the “high and rising” RCP, while our Level 2 (3.5 + 1.8 = 

5.3 W/m2 above preindustrial by 2100) and Level 1 (2.4 + 1.8 = 4.2 W/m2) are roughly 

consistent with achieving stabilization sometime after 2100 at 6.0 and 4.5 W/m2 

respectively.13  The analysis presented here thus may provide an assessment of 

uncertainty to complement the scenario analysis being developed for the IPCC AR-5. 

 

5. DISCUSSION 
Deciding a response to the climate threat is a challenge of risk management, where 

choices about emissions mitigation must be made in the face of a cascade of 

uncertainties: the emissions if no action is taken (and thus the cost of any level of 

control), the response of the climate system to various levels of control, and the social 

                                                 
12 Our estimate of 1.8 W/m2 is derived from the GISS model (Hansen et al., 1988), the radiation code from 

which is used in the MIT IGSM.  The IPCC estimates the change in radiative forcing from preindustrial 
to present to be 1.6 W/m2, based on their estimates of the forcing from individual GHGs (Forster et al., 
2007).  

13 We do not have a case comparable to the 3 W/m2 as that was not in the CCSP scenario design, and 
presents considerable challenges in simulating as it requires technologies with net negative emissions. 
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and environmental consequences of the change that may come. In policy deliberations, 

analysis of the very complex issues of climate change effects frequently is put aside, to be 

replaced with a global target intended to avoid “danger”—stated, depending on the 

context, in terms of a maximum allowable global temperature change, a maximum 

allowable increase in radiative forcing, or a maximum total of anthropogenic emissions 

of greenhouse gases over some long run period, usually a century. And, usually, the 

relationship between these different measures is expressed without representing the 

uncertainty among them, stating uncontrolled emissions in the form of a set of scenarios 

and representing climate processes in the form of single “reference” or sometime median 

values. For example, a widely-held position in climate discussions is that limiting 

atmospheric concentrations of CO2 to 450 ppm (or 550 ppm CO2-eq) will achieve the 

target of a maximum of 2oC temperature increase from the pre-industrial level. Major 

issues of international negotiation, and potential economic cost, attend these 

relationships, and it should be helpful to international discussions to have an analysis of 

the likelihood that this relationship holds true, Here we have provided such an analysis, 

and as shown in Section 4, the impression of the effectiveness of commonly-discussed 

emissions limits can look very different when this human-climate system is subjected to a 

more complete uncertainty analysis than normally is available. 

Several qualifications about these results are worth mentioning. The resulting 

uncertainties presented are conditional on the structural formulations of the MIT IGSM.   

Distributions from other models, while likely different, would be similarly conditional. 

Also, there are sources of uncertainty that are not treated here because of our current 

inability to represent the relevant processes in a systematic and efficient fashion.  

Additionally, the climate uncertainties presented here result from known or expected 

sources of parametric uncertainty, and do not account for unanticipated changes or 

shocks to the system that may occur. Also, as noted above, our projections of the climate 

response to human forcing are conditional on the estimated joint distribution of input 

parameters based on 20th century data series, importantly including a series for changes in 

the heat content of the deep ocean. As indicated by Sokolov et al. (2009b) the use of an 

alternative study of available ocean data (Domingues et al., 2008) leads to a decrease in 

the simulated surface warming at the end of 21st century. Median surface warming in the 
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no-policy case decreases from 5.1oC to 4.1oC.  Based on the results of Sokolov et al. 

(2009a), a similar decrease should be expected in the transient surface air temperature 

changes over the 21st century in simulations with climate policies.14 

  Of course, analyses focused on long-term emissions targets give only a partial picture 

of the decision problem that nations face.  A more complete framing would consider the 

possibility of learning and revision of targets over time (e.g., Webster et al., 2008; Yohe 

et al., 2004; Kolstad et al., 1996). Emissions goals agreed in the next decade or two can 

and likely will be revised as new information comes to light.  Nevertheless, the 

representation of the problem given here can refocus the debate away from the illusion of 

deterministic choices towards a risk management perspective.

                                                 
14 It is worth mentioning that while estimate for changes in ocean heat content provided by Domingues et 

al. (2008) suggests larger rate of the oceanic heat uptake, it also suggest higher values of climate 
sensitivity and, therefore, larger final equilibrium warming for the same concentrations of GHGs. 
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APPENDIX A: UNCERTAIN PARAMETER DISTRIBUTIONS 

Table A1. Uncertain EPPA Parameter Distributions. 

Parameter 
Category 

Parameter Specific 
Region/Sector 

Distribution Type Mean 
Value 

Energy vs. 
Capital/Labor 

ALL 
Normal(1, 0.3) 1.0 

Energy vs. 
non-energy 

in final 
demand 

ALL 

Loglogistic(0, 0.34997, 
3.9747) 

0.39 

Electric vs. 
Non-Electric 

ALL 
Normal(1, 0.15) 1.0 

Electricity, 
Energy Int. 

Normal(1, 0.25) 1.0 
Interfuel 

Substitution 
All Others Normal(1, 0.15) 1.0 

Agriculture Beta(1.2011, 30.173, 0, 
10.712) 

0.41 

Oil, Coal, Natural 
Gas 

Gamma(131.49, 
0.0061534) 

0.81 

Electricity Beta(13.025, 13.597, 0, 
2.0246) 

0.99 

Energy Int. Beta(10.423, 9.9004, 0, 
2.1431) 

1.1 

Services Gamma(25.83, 0.059017) 1.52 

Other Ind. Beta(4.9804, 5.1404, 0, 
2.3802) 

1.17 

Labor vs. 
Capital 

Transportation Gamma(42.252, 0.021188) 0.9 
Coal Beta(1.5, 2.8, 0.5, 2) 1.02 
Oil Beta(1.5, 2.8, 0.5, 2) 1.02 

Elasticities of 
Substitution 

Fixed Factor 
Supply 

Natural Gas Beta(1.5, 2.8, 0.5, 2) 1.02 
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Table A1 (continued). Uncertain EPPA Parameter Distributions. 

Parameter 
Category 

Parameter Specific 
Region/Sector 

Distribution Type Mean 
Value 

USA Pearson5(4.8295, 0.2) 0.06 
CAN Pearson5(4.8295, 0.2) 0.06 
MEX Beta(3.2252, 3.1, 0, 0.04) 0.02 
JPN Beta(3.2, 4.7, 0.01, 0.16) 0.07 
ANZ Beta(7.8, 7.8, 0, 0.08) 0.04 
EUR Beta (2.8, 5.6, 0.03, 0.16) 0.07 
EET Beta(5.6, 6.8, 0.02, 0.16) 0.08 
FSU Beta(3.7, 5.6, 0, 0.16) 0.06 
ASI Beta(2.1, 4.1, 0, 0.2) 0.07 

CHN Loglogistic(0, 0.052, 
3.4102) 

0.06 

IND Beta(7.6, 11.4, 0, 0.2) 0.08 
IDZ Beta(3.2252, 3.1, 0, 0.04) 0.02 
AFR Beta(3.2252, 3.1, 0, 0.04) 0.02 

MES Beta(3.2294, 3.4608, 0, 
0.04) 

0.02 

LAM Beta(3.2252, 3.1, 0, 0.04) 0.02 

CH4 Elas. In 
Agriculture 

ROW Beta(3.2294, 3.4608, 0, 
0.065) 

0.03 

OECD Beta(8.7, 7.8, 0, 0.075) 0.04 
LDC Beta(5.1, 5.3, 0, 0.037) 0.02 
FSU Beta(7.8, 5.5, 0.01, 0.06) 0.04 

Abatement 
Cost 

Elasticities 

N2O Elas. In 
Agriculture 

EET Beta(4.2, 4.3, 0, 0.08) 0.04 
Vintaging ALL Gamma(10.429, 0.049431) 0.52 

SO2 Beta(7, 3, -0.1, -0.005) -0.03 
NOx Beta(7, 3, -0.03, -0.005) -0.01 
BC Beta(7, 3, -0.1, -0.005) -0.03 
OC Beta(7, 3, -0.1, -0.005) -0.03 
VOC Beta(7, 3, -0.03, -0.005) -0.01 
CO Beta(7, 3, -0.03, -0.005) -0.01 

Urban Emission Trends 

NH3 Beta(7, 3, -0.03, -0.005) -0.01 
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Table A1 (continued). Uncertain EPPA Parameter Distributions. 

Parameter 
Category 

Parameter Specific 
Region/Sector 

Distribution Type Mean 
Value 

Synthetic Oil Beta(2.2, 2.2, 1.4, 5) 3.20 

Synthetic Gas Pearson5(14.8, 40.6,  
Shift(1)) 

3.94 

IGCC w/ CCS Loglogistic(1, 0.16013, 
3.8256) 

1.18 

NGas w/ CCS Beta(2.6535, 1.6999, 0.99, 
1.24493) 

1.15 

NGCC Beta(3.0524, 1.8233, 
0.77127, 0.97101) 

0.90 

Bio-Oil Pearson5(14.8, 40.6,  
Shift(1)) 

3.94 

Advanced Technology Costs 

Bio-Electric Pearson5(14.8, 40.6,  
Shift(1)) 

3.94 

Population 
Lognormal(16.397, 

0.11731,  Shift(-
4022911)) 

9285154 

USA Normal(1, 0.4) 1.0 
CAN Normal(1, 0.4) 1.0 
MEX Normal(1, 0.4) 1.0 
JPN Normal(1, 0.4) 1.0 
ANZ Normal(1, 0.4) 1.0 
EUR Normal(1, 0.4) 1.0 
EET Normal(1, 0.4) 1.0 
FSU Normal(1, 0.4) 1.0 
ASI Normal(1, 0.4) 1.0 
CHN Normal(1, 0.4) 1.0 
IND Normal(1, 0.4) 1.0 
IDZ Normal(1, 0.4) 1.0 
AFR Normal(1, 0.4) 1.0 
MES Normal(1, 0.4) 1.0 
LAM Normal(1, 0.4) 1.0 

Autonomous Energy 
Efficiency Improvement 

(AEEI) 

ROW Normal(1, 0.4) 1.0 

Oil Lognormal(0.40547, 
0.24651,  Shift(-0.5)) 

1.0 

Gas Lognormal(0.40547, 
0.24651,  Shift(-0.5)) 

1.0 

Coal Lognormal(0.40547, 
0.24651,  Shift(-0.5)) 

1.0 
Fossil Fuel Resource Stocks 

Shale Oil Beta(1.5, 6, 0, 6) 1.20 
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Table A1 (continued). Uncertain EPPA Parameter Distributions. 

Parameter 
Category 

Parameter Specific 
Region/Sector 

Distribution Type Mean 
Value 

Nuclear Beta(1.2, 4, 0, 1.5) 0.35 
CCS 

Technologies 
Beta(1.5, 2.5, 0.3, 5.5) 2.25 Technology Penetration 

Rates 
Wind/Solar Beta(1.1, 5, 0, 2) 0.36 

USA Normal(1,0.3) 1.0 
CAN Normal(1,0.3) 1.0 
MEX Normal(1,0.3) 1.0 
JPN Normal(1,0.3) 1.0 
ANZ Normal(1,0.3) 1.0 
EUR Normal(1,0.3) 1.0 
EET Normal(1,0.3) 1.0 
FSU Normal(1,0.3) 1.0 
ASI Normal(1,0.3) 1.0 
CHN Normal(1,0.3) 1.0 
IND Normal(1,0.3) 1.0 
IDZ Normal(1,0.3) 1.0 
AFR Normal(1,0.3) 1.0 
MES Normal(1,0.3) 1.0 
LAM Normal(1,0.3) 1.0 

SO2 

ROW Normal(1,0.3) 1.0 
CO Normal(1, 0.25) 1.0 
BC Lognormal(-0.0812, 0.305) 1.0 
OC Lognormal(-0.0812, 0.305) 1.0 
NOx Lognormal(-0.0812, 0.305) 1.0 
NH3 Lognormal(-0.0812, 0.305) 1.0 

Urban 
Pollutant 

Initial 
Inventories 

VOC Lognormal(-0.0812, 0.305) 1.0 
AGRI Beta(1.8, 1.8, 0.4, 1.6) 1.0 
COAL Beta(2, 2, 0.89, 1.11) 1.0 
GAS Beta(2, 2, 0.86, 1.14) 1.0 
OIL Beta(2, 2, 0.86, 1.14) 1.0 
EINT Beta(2, 2, 0.86, 1.14) 1.0 

LANDFILL Beta(1.8, 1.8, 0.96, 1.04) 1.0 

CH4 Emissions Factors 

DSEWAGE Beta(1.8, 1.8, 0.96, 1.04) 1.0 
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APPENDIX B: RESULTS OF MONTE CARLO ANALYSIS OF IGSM 

Table B1. Mean, standard deviation, and selected fractiles for increase in global 
mean temperature from the average for 1981-2000 to 2091-2100.  

  REF Level 4 Level 3 Level 2 Level 1 

Mean 5.3 3.5 3.0 2.4 1.8 
 Stdev 1.2 0.7 0.6 0.5 0.4 

2.5% 3.3 2.3 2.0 1.6 1.1 

5.0% 3.5 2.5 2.1 1.7 1.2 

25.0% 4.4 3.0 2.6 2.1 1.5 

50.0% 5.1 3.4 2.9 2.3 1.8 

75.0% 5.9 3.9 3.4 2.7 2.0 

95.0% 7.4 4.7 4.1 3.2 2.4 

Fractiles 
(Degrees 

C) 

97.5% 8.2 5.0 4.3 3.4 2.5 

2.5% 0.6 0.7 0.7 0.7 0.6 

5.0% 0.7 0.7 0.7 0.7 0.7 

25.0% 0.9 0.9 0.9 0.9 0.9 

50.0% 1.0 1.0 1.0 1.0 1.0 

75.0% 1.2 1.2 1.2 1.1 1.2 

95.0% 1.4 1.4 1.4 1.4 1.4 

Fractiles 
(Relative 

to Median) 

97.5% 1.6 1.5 1.5 1.4 1.5 
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Table B2. Annual mean surface temperature change from the average for 1981-
2000 to 2091-2100 for aggregate zonal bands. 

  REF Level 4 Level 3 Level 2 Level 1 
Mean 7.5 4.6 3.8 2.8 1.9 
Stdev 1.9 1.0 0.9 0.6 0.4 
2.5% 4.5 3.0 2.5 1.9 1.2 
5.0% 4.8 3.2 2.7 2.0 1.3 

25.0% 6.2 3.8 3.2 2.4 1.7 
50.0% 7.3 4.4 3.7 2.8 1.9 
75.0% 8.4 5.2 4.3 3.2 2.2 
95.0% 11.0 6.4 5.4 3.9 2.7 

90oS TO 
60oS 

97.5% 12.3 6.8 5.9 4.4 2.9 
Mean 4.7 3.2 2.7 2.2 1.6 
Stdev 1.2 0.7 0.6 0.5 0.4 
2.5% 2.8 2.1 1.8 1.5 1.0 
5.0% 3.0 2.2 1.9 1.6 1.1 

25.0% 4.0 2.7 2.3 1.9 1.4 
50.0% 4.6 3.1 2.7 2.1 1.6 
75.0% 5.3 3.6 3.1 2.5 1.9 
95.0% 6.8 4.4 3.8 3.0 2.3 

60oS TO 
30oS  

97.5% 7.6 4.7 4.1 3.2 2.4 
Mean 4.5 2.9 2.5 2.0 1.4 
Stdev 1.1 0.6 0.6 0.4 0.3 
2.5% 2.7 1.9 1.6 1.3 0.9 
5.0% 2.9 2.0 1.7 1.4 0.9 

25.0% 3.7 2.5 2.1 1.7 1.2 
50.0% 4.4 2.8 2.4 1.9 1.4 
75.0% 5.1 3.3 2.8 2.2 1.7 
95.0% 6.4 4.0 3.5 2.7 2.1 

30oS TO 
0o 

97.5% 7.2 4.3 3.7 2.9 2.2 
Mean 4.8 3.1 2.7 2.2 1.6 
Stdev 1.1 0.6 0.5 0.4 0.3 
2.5% 3.1 2.1 1.8 1.4 1.0 
5.0% 3.2 2.3 1.9 1.5 1.1 

25.0% 4.0 2.7 2.4 1.9 1.4 
50.0% 4.7 3.1 2.7 2.1 1.6 
75.0% 5.4 3.5 3.1 2.5 1.9 
95.0% 6.6 4.2 3.6 2.9 2.2 

0o TO 
30oN 

97.5% 7.2 4.4 3.8 3.1 2.3 
Mean 5.5 3.7 3.2 2.6 1.9 
Stdev 1.2 0.7 0.6 0.5 0.4 
2.5% 3.6 2.5 2.1 1.7 1.2 
5.0% 3.7 2.7 2.3 1.8 1.3 

25.0% 4.6 3.2 2.8 2.3 1.7 
50.0% 5.4 3.6 3.2 2.6 1.9 
75.0% 6.2 4.1 3.6 2.9 2.2 
95.0% 7.5 4.8 4.2 3.4 2.6 

30oN to 
60oN 

97.5% 8.2 5.1 4.4 3.6 2.8 
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Table B2 (continued). Annual mean surface temperature change from the average 
for 1981-2000 to 2091-2100 for aggregate zonal bands. 

  REF Level 4 Level 3 Level 2 Level 1 
Mean 9.9 5.9 4.9 3.7 2.6 
Stdev 2.5 1.2 1.0 0.7 0.5 
2.5% 6.0 3.9 3.2 2.4 1.6 
5.0% 6.4 4.2 3.5 2.6 1.8 

25.0% 8.2 5.0 4.3 3.2 2.2 
50.0% 9.5 5.7 4.8 3.6 2.5 
75.0% 11.1 6.6 5.5 4.2 2.9 
95.0% 14.0 8.0 6.6 4.9 3.5 

60oN to 
90oN 

97.5% 15.5 8.5 7.0 5.2 3.7 

Table B3. Black carbon concentrations at the last decade of 21st century in 
simulations with different climate policies as a percentage of BC concentrations in 
simulations without policy. 

Fractiles Level 4 Level 3 Level 2 Level 1 
5% 73% 67% 58% 49% 
50% 84% 78% 71% 63% 
95% 94% 89% 83% 78% 

Table B4. Ozone concentrations at the last decade of 21st century in simulations 
with different climate policies as a percentage of concentrations in simulations 
without policy. 

Fractiles Level 4 Level 3 Level 2 Level 1 
5% 91% 89% 87% 84% 
50% 94% 93% 92% 90% 
95% 98% 98% 98% 96% 
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APPENDIX C: PROBABILITIES OF EXCEEDING TARGETS 

Table C1. Odds of Exceeding Illustrative Targets in Global Mean Surface Air 
Temperature Change from 1981-2000 average to 2091-2100 average in no-policy 
and Four Control Ensembles. 

 ΔT > 2oC ΔT > 4oC ΔT > 6oC 
 No-Policy 400 in 400 17 in 20 1 in 4 
 Level 4 400 in 400 1 in 4 1 in 400 
 Level 3 97 in 100 7 in 100 <1 in 400 
 Level 2 8 in 10 1 in 400 <1 in 400 
 Level 1 1 in 4 <1 in 400 <1 in 400 
 
 

Table C2. Probability of Exceeding Selected Targets in Average Surface Air 
Temperature Change over 60oN to 90oN from 1981-2000 average to 2091-2100 
average. 

 ΔT > 4oC ΔT > 6oC ΔT > 8oC 
 No-Policy 400 in 400 95 in 100 7 in 10 
 Level 4 95 in 100 3 in 10 3 in 100 
 Level 3 8 in 10 9 in 100 1 in 400 
 Level 2 1 in 4 1 in 400 < 1 in 400 
 Level 1 1 in 200 < 1 in 400 < 1 in 400 
 

Table C3. Probability of Exceeding Selected Targets in Sea Ice Cover Change from 
1981-2000 average to 2091-2100 average (September, Northern Hemisphere). 

 ΔSIC > 20% ΔSIC > 40% ΔSIC > 60% 
 No-Policy 400 in 400 97 in 100 3 in 4 
 Level 4 398 in 400 2 in 5 1 in 20 
 Level 3 380 in 400 15 in 100 1 in 200 
 Level 2 3 in 5 1 in 100 < 1 in 400 
 Level 1 8 in 100 < 1 in 400 < 1 in 400 
 

Table C4. Probability of Exceeding Selected Targets in Sea Ice Cover Change from 
1981-2000 average to 2091-2100 average (March, Southern Hemisphere). 

 ΔSIC > 10% ΔSIC > 20% ΔSIC > 40% 
 No-Policy 400 in 400 399 in 400 6 in 10 
 Level 4 400 in 400 2 in 3 6 in 400 
 Level 3 400 in 400 38 in 100 1 in 200 
 Level 2 400 in 400 1 in 20 < 1 in 400 
 Level 1 19 in 20 < 1 in 400 < 1 in 400 
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Table C5. Probability of Exceeding Illustrative Targets of Global Consumption Loss 
due to the Costs of Emissions Reductions in 2020. 

 ΔWL > 1% ΔWL > 2% ΔWL > 3% 
 No-Policy - - - 
 Level 4 1 in 100 1 in 400 < 1 in 400 
 Level 3 3 in 100 1 in 200 < 1 in 400 
 Level 2 1 in 4 1 in 50 1 in 200 
 Level 1 7 in 10 3 in 10 1 in 10 
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