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A B S T R A C T

In this study, we couple the Weather Research and Forecasting Model (WRF) with the Advanced Canopy-
Atmosphere-Soil Algorithm (ACASA), a high complexity land surface model, to investigate the impact of canopy
representation on regional evapotranspiration. The WRF-ACASA model uses a multilayer structure to represent
the canopy, consequently allowing microenvironmental variables such as leaf area index (LAI), air and canopy
temperature, wind speed and humidity to vary both horizontally and vertically. The improvement in canopy
representation and canopy-atmosphere interaction allow for more realistic simulation of evapotranspiration on
both regional and local scales. The coupled WRF-ACASA model is compared with the widely used intermediate
complexity Noah land surface model in WRF (WRF-Noah) for both potential (ETo) and actual evapotranspiration
(ETa). Two LAI datasets (USGS and MODIS) are used to study the model responses to surface conditions. Model
evaluations over a diverse surface stations from the CIMIS and AmeriFlux networks show that an increase surface
representations increase the model accuracy in ETa more so than ETo. Overall, while the high complexity of
WRF-ACASA increases the realism of plant physiological processes, the model sensitivity to surface re-
presentation in input data such as LAI also increases.

1. Introduction

The land surface is an important component that contributes to the
evolution of atmospheric processes. Complex interactions between the
atmosphere and land surface drive the impacts of energy, momentum,
heat, water, and gas exchanges on atmospheric motions. Many of these
effects are attributed to the presence of vegetation in the surface layer
(Potter et al., 1993; Dickinson and Henderson-Sellers, 2006; Dirmeyer
et al., 2010), which is a crucial part of the land surface layer, re-
presenting 99% of the mass of surface biota. Because of this, land
surface parameterization in atmospheric models must emphasize the
processes associated with vegetation. Effects of climate on vegetation
phenology have long been a research focus in the ecology and plant
science communities (Levitt et al., 1980; Jones, 1992). Climate condi-
tions such as temperature, humidity, and radiation strongly influence
plant physiological responses in photosynthesis, respiration, transpira-
tion, and energy flux. However, the influences of vegetation on the
climate and atmospheric processes are not as well understood due to
numerical complexity and related challenges that arise from properly
representing exchanges between the physiologically active vegetated

land surfaces and the atmosphere. In recent years, research interests in
land and atmospheric interactions have grown considerably, benefitting
from the developments of atmosphere and land surface models as well
as advanced instrumentation and field campaigns.

Land cover type and vegetation amount are related factors that
characterize biosphere-atmosphere interactions. Differences in land use
cover can dramatically influence land surface processes by altering
surface roughness, canopy transmission of light, physiological re-
sponses to environmental controls, and interception of precipitation.
Vegetation amount is quantified with the leaf area index (LAI), which is
a representation of the total leaf area over a given area of land. Leaves
provide surface area for photosynthesis, respiration, and transpiration
that control the moisture and energy exchanges with the atmosphere.
Specifically, the LAI strongly influences the amount of absorbed solar
radiation and its partitioning into sensible and latent energy fluxes.
Studies using General Circulation Models (GCMs) have demonstrated
the importance and influence of LAI on the short- and long-term evo-
lution of surface hydrology, including snowpack evolution, soil wet-
ness, and evapotranspiration (ET) (Chase et al., 1996; Pitman et al.,
1999; Bounoua et al., 2000; Hales et al., 2004). (Gao et al., 2008)
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further examined the sensitivities of land surface climate to the changes
in spatial distribution of LAI from different treatments of surface
properties: natural inter-annually varying vegetation versus a 10-year
climatological annual cycle. Overall, the study showed that observed
inter-annually varying vegetation properties led to improvement in
estimations of surface fluxes such as latent heat and surface evapo-
transpiration, regional surface temperature, and spatial distribution of
precipitation.

Actual evapotranspiration (ETa) is the water loss rate by tran-
spiration from plants and evaporation from both soil and vegetation.
The standardized Reference evapotranspiration (ETo) is the evaporative
loss rate from a virtual 0.15 m tall vegetated surface having known
canopy and aerodynamic resistance (Allen et al., 2005). Although ETo
is technically defined for a virtual surface, it provides a good estimate of
the evapotranspiration from a surface covered by 0.15 m tall cool-
season grass with adequate water supply. Vegetation representations of
most plants are by definition not directly included in the ETo; however,
the response of ETo to environmental variables is closely linked to the
response of actual evapotranspiration. The accurate estimations of ETo
and ETa are crucial for optimal water management practices and
drought monitoring, especially for regions with limited water avail-
ability and high water demand, such as the Central Valley of California.

Reference evapotranspiration (ETo) provides a type of en-
vironmentally controlled physiological standard model that is useful in
assessing potential environmental controls on ETa. In reality, the land
surface is covered by diverse vegetation ranging such as grasslands,
mixed woodlands, and forests; their existence at any location is a result
of the complex interaction of anthropogenic activity, ecological con-
straints, and environmental controls including water availability.
Hence, the ETa commonly differs from the ETo, mainly due to differ-
ences in the transpiration component of ET that result from variations
in net radiation, aerodynamic resistance to sensible and latent heat
transfer, and the bulk surface resistance to water vapor transfer from
the surface to the zero plane displacement. The ETa rate ranges from
zero up to a potential evapotranspiration (ETc), which is limited by
energy availability for vaporizing water. When soil water content is
adequate, ETa = ETc, and ETa decreases relative to ETc when soil
water (rather than energy availability) limits evapotranspiration.

Transpiration from vegetated surfaces accounts for significant
amounts of water entering the atmosphere. In addition to environ-
mental conditions, the canopy vegetation also controls the overall
transpiration rate physiologically and physically, by opening and
closing stomata to regulate energy and gas exchanges and by making
substantial leaf area available for this activity in response to light and
water stress. Many processes and interactions in the atmosphere and
biosphere influence plant and soil water losses by evapotranspiration.
The need to improve representation within surface-atmosphere inter-
actions remains an urgent priority within the modeling community.

Motivated by (Gao et al., 2008) and previous studies, this research
extended the earlier works involving coarse resolution GCMs to ex-
amine the impacts of land surface representations in regional models
(Abramowitz et al., 2008; Henderson-Sellers et al., 1996; Chen et al.,
1997). Here, to simulate evapotranspiration over California’s diverse
terrain and ecosystems, the mesoscale Weather Research and Fore-
casting model (WRF) is used with two land surface models (LSMs)
having two distinct levels of complexity: the intermediate complexity
Noah and the complex Advanced Canopy-Atmosphere-Soil Algorithm
(ACASA).

The objective of this paper is to investigate how the variability of
Reference (ETo) and Actual (ETa) evapotranspiration are influenced by
the surface representation, such as leaf area index, and the land surface
model complexity. Both ETo and ETa are important for understanding
of the hydrologic cycle, vegetation dynamics, and surface energy bal-
ances in the surface layer. They are also important variables for use in
water management, drought monitoring, agricultural production, and
fire hazard management. The effects of leaf area index and model

complexity on ETo—which is completely dependent on atmospheric
conditions—represents the vegetated controls on the atmosphere that
can feedback to the land surface. The simulated ETa includes the
feedback processes and represents the complete interaction between the
atmosphere and the vegetation.

2. Models, methodology and data

2.1. Models

In this study, the Advanced Research WRF (ARW) model Version
3.1.1 is used to perform climate simulations over California. WRF is a
state-of-the-art, mesoscale numerical weather prediction and atmo-
spheric research model developed by a collaborative effort of the
National Center for Atmospheric Research (NCAR), the National
Oceanic and Atmospheric Administration (NOAA), the Earth System
Research Laboratory (ESRL), and many other agencies. The WRF model
contains a nearly complete set of compressible and non-hydrostatic
equations for atmospheric physics (Chen and Dudhia, 2000). The high
spatial and temporal resolution of the WRF model is essential for si-
mulating climate over the intricate terrains and land covers of Cali-
fornia. The physical parameterizations used in this study are described
in more detail in (Xu et al., 2014).

The land surface models used in this study are the Noah model
(Mahrt and Ek, 1984; Chen and Dudhia, 2000) and the ACASA model
(Meyers, 1985; Meyers and Paw U, 1987; Pyles, 2000; Pyles et al.,
2000). The two models differ significantly in the complexity of the
representation of plant physiology and biometeorological processes.
While Noah is widely used for both climate studies and weather fore-
casting, it is an intermediate complexity model with multiple soil layers
but only a single canopy layer. NOAH also has varying soil moisture
thresholds affecting canopy resistance, based on the WRF soil type. It
scales the single leaf-based physical and physiological processes to re-
present the whole canopy using bulk similarity assumptions. The AC-
ASA model is a higher-complexity model that includes many plant
physiological and biometeorological processes (i.e., photosynthesis and
respiration) that are not represented in the Noah model. It uses multi-
layer canopy structures and multiple sun angles within each layer to
represent the canopy. These subsequently allow variables such as LAI,
air and canopy temperature, wind speed and humidity to also vary
vertically. The surface layer is divided into 10 canopy layers and 10
above-canopy layers. Within each canopy layer there are 10 leaf angle
classes—9 sunlit angle at 10° intervals and 1 shaded—to represent
differential illumination of canopy surfaces. ACASA has soil moisture
dependence for the bare soil, and for the 10 layers of 10 leaf radiation
angle/shaded classes (100 total) the leaf physiology (photosynthesis
and stomatal conductance) with a volumetric soil moisture threshold
ranging from 0.06 to 0.19, defined by WRF soil type. Soil drier than this
threshold creates a graduated effect representing moisture stress, with
dependence on how dry the soil is below this threshold. A third order
turbulent closure scheme used in the ACASA model allows both down-
and counter-gradient transport, which are not presented in the Noah
model.

Of particular importance is the role of Leaf Area Index (LAI) in
controlling the surface processes in the two land surface models. LAI in
the Noah model is primary used to calculate the bulk canopy resistance
of the single surface layer. Canopy resistance for vegetation transpira-
tion and energy partitioning is estimated using the Jarvis para-
meterization, where canopy resistance Rc is a function of Rc_min (a single
prescribed minimum canopy resistance specified by plant functional
type), LAI, and F1, F2, F3, and F4, which account for the effects of
radiation, temperature, humidity, and soil moisture (Jacquemin and
Noilhan, 1990; Chen and Dudhia, 2001a; Chen and Dudhia, 2001b).
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In the ACASA model, LAI is used to create vertical profiles for
multilayer canopy structures. Depending on land-use cover, the LAI
values affect light and precipitation interception and alter the canopy
energy budgets. The model calculates canopy resistance and stomatal
resistance at the leaf surface of each vertical layer using a combination
of the Ball- Berry stomatal conductance (Leuning, 1990; Collatz et al.,
1991) and the (Farquhar and Von Caemmerer, 1982) photosynthesis
equation used in (Su et al., 1996).
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where gs,w is the leaf stomatal conductance to water vapor, An is the net
CO2 uptake rate at the leaf surface, cs and rhs are the CO2 concentration
and the fractional relative humidity at the leaf surface, m and b are
empirical regression coefficients; cA is the CO2 concentration in air,
qs(TL) is saturated mixing ratio of water vapor at leaf temperature TL, gb
is the leaf boundary layer conductance, and qA is the mixing ratio of
water vapor in the air. Because evapotranspiration is an inevitable re-
sult of plant physiological processes, oversimplifying the linkage be-
tween moisture and carbon dioxide fluxes in land surface processes can
lead to the loss of vital information that impact climate simulations
(Zhan and Kustas, 2001; Houborg and Soegaard, 2004).

2.2. Data

In this study, WRF simulations are forced by the North American
Regional Reanalysis (NARR) dataset, which provides input data such as
wind speed and direction, temperature, moisture, radiation, and soil
temperature to drive the initialization and boundary conditions of the
WRF models. The NARR is a regional data set specifically developed for
the Northern American region. The temporal and spatial resolutions of
this data set are 3-h intervals and 32-km respectively (Mesinger et al.,
2006).

Two leaf area index datasets, USGS and MODIS, are used to drive
the surface processes. The default USGS LAI data used by the WRF
model prescribes the maximum and minimum LAI values for each point
according to plant functional types. Monthly LAI is extrapolated line-
arly between the maximum and minimum LAI values with monthly
Green Vegetation Fraction, which is the fraction of the grid cell covered
by active vegetation (Gutman and Ignatov, 1998). The MODIS (Mod-
erate Resolution Imaging Spectroradiometer) dataset is measured daily
to provide high spatial and temporal resolution LAI (Knyazikhin et al.,
1999). The USGS LAI and MODIS LAI are shown in Fig. 1 for different
seasons of the year 2006. The USGS LAI values are significantly higher
than those of the MODIS LAI dataset, especially during the summer
months. There is no interannual variability in the WRF USGS LAI, in
contrast to the satellite measured MODIS LAI. Both LAI datasets display
temporal and spatial differences among the different time of the year
over California.

The main independent observational datasets used to evaluate the
model simulations were obtained from the California Irrigation
Management Information System (CIMIS) for ETo, and the AmeriFlux
network for both ETo and ETa (Fig. 2). The CIMIS stations are sparsely
located, mostly in the Central Valley and Southern Coastal areas. All of
the CIMIS weather stations are surrounded by irrigated 0.07–0.15 m tall
grass with fetch that varies from about 40–100 m. The wind speed is
measured at 2.0 m and the temperature and humidity are measured at
1.5 m height. All of the grass fields around the CIMIS stations are irri-
gated sufficiently frequent to avoid water stress reductions in ET.
However, the irrigation frequency and amount are controlled by the

property owners and are not recorded. There are only six AmeriFlux
sites in California for the study period, even though it is the period with
the most active stations, and because some stations are very close by
each other, only three distinct markers are visible in Fig. 2. All of the
AmeriFlux site have non-irrigated natural vegetation surrounding the
stations. Sensor heights are given in Table 1. Moreover, due to the close
proximities of the three Sky Oak sites, they are located within the same
WRF model grid cell. Therefore, they are not distinguished in the WRF
model simulations. The combined coverage of the two datasets still
leaves much of California underrepresented for flux observations.
Hence, the WRF model can be used as a potentially valuable tool to fill
in the temporal and spatial gaps of the surface observations.

In both the ACASA and Noah models, only the dominant vegetation
types or plant functional types (PFTs) are used to represent each grid
cell. However, sometime these PFTs do not necessarily represent the
observed vegetation type at each of the stations, as shown in Table 1.
For example, the three Sky Oak sites (USSO2, USSO3, and USSO4) are
identified as evergreen needleleaf forest by WRF, instead of the sa-
vannas and shrublands that actually surround the sites (observed PFT).

2.3. Model setup

Four model simulations from the combination of the two land sur-
face models and two LAI representations were used to simulate ETo and
ETa across all of California’s vast and diverse terrains and ecosystems.
The four simulations were: WRF-ACASA with default USGS LAI, WRF-
ACASA with high resolution MODIS LAI, WRF-Noah with USGS LAI,
and WRF-Noah with MODIS LAI. Simulations were performed for the
years 2005 and 2006 with horizontal grid spacing of 8 km × 8 km.
Each simulation is spun up for 1 month and then ran continuous till the
beginning of next year. For example, the simulation for year 2005 starts
at December 1st, 2004 and run till January 1, 2006. December 2004 is
used for spin up the model. Because NARR and WRF are in Greenwich
time (UTC), January 1, 2006 contains the last few hours of 2005 for the
local time zone. Besides the differences in the land surface model, all
simulations employed the same set of atmospheric physics schemes
stemming from the WRF model. These include the Purdue scheme for
microphysics (Chen and Sun, 2002), the Rapid Radiative Transfer
Model for long wave radiation (Mlawer et al., 1997), the Dudhia
scheme for shortwave radiation (Dudhia, 1989), the Monin-Obukhov
similarity scheme for surface layer physics of non-vegetated surfaces
and the ocean, and the MRF scheme for the planetary boundary layer
(Hong and Pan, 1996). WRF runs at a 60-s time step, while the radiation
scheme and the land surface schemes are called every 30 min, which is
the standard time averaging of eddy covariance method the ACASA
model is based on. Boundary and soil conditions are initialized by input
forcings from NARR. WRF utilizes an initial soil moisture and soil type
map for its domain, including California. Subsequently as WRF and the
land surface models are run, the soil moisture is simulated based on the
LSM hydrological sub-models that include actual evapotranspiration
and water movement within the soil layers; therefore, the soil moisture
values in the simulations represent a spatial and temporal matrix of
values created by the simulations. Reference evapotranspiration was
calculated using the standardized reference evapotranspiration ETo
equation from (Allen et al., 2005) with simulated surface air tempera-
ture, dew point temperature, solar radiation, and wind speed at 2 m
height. Actual evapotranspiration was calculated within the WRF-AC-
ASA and WRF-Noah models.

For the four simulations, ETo and ETa were compared with surface
observations to test the hypothesis that terrestrial representations in
land surface models influence the simulated evapotranspiration on both
local and regional scales. Hourly, daily, monthly and annual temporal
scales were used to evaluate the variability of model performance. The
comparison between surface observations and model simulations were
similar for 2005 and 2006; however, due to the considerable missing
observation data during 2005, mainly results from 2006 are presented
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here. While CIMIS stations are irrigated, the ACASA or the Noah model
does have the ability to apply irrigation in the form of scheduled pre-
cipitation. In addition, the CIMIS site irrigation is controlled by the
property owner. The irrigation frequency and amount was not re-
corded, so it could not be input into the ACASA model.

Some of the challenges in comparing model simulations and the
observations are that (1) the measurement heights are sometimes dif-
ferent from the simulated height, and (2) the station landscape could be
different from the simulated grid point. The CIMIS stations had mea-
surements heights for air temperature and relative humidity at 1.5 m,
and wind speed and radiation at 2 m height. The AmeriFlux sites had
their measurements at varying heights, as shown in Table 1, that also

includes what heights the model output was for. ETo was calculated for
those AmeriFlux heights based on the indicated WRF-ACASA height and
the observed heights. The models simulate surface temperature based
on a 2 m height. Moreover, this simulated 2 m temperature might be
representing the understory of taller plant ecosystems in the WRF-AC-
ASA model (WRF-Noah does not suffer the same problems; because
Noah is a big-leaf model, the 2-m height represents a height more si-
milar in characteristics to the observations). In addition, some stations
were within patches of specific landscape types that may differ sig-
nificantly from the assigned overall grid point landscape in WRF. For
example, the observed PFT of the three Sky Oak stations from the
AmeriFlux data are different from the WRF PFT (Table 1). This mis-
match of PFT leads to an additional simulation of WRF-ACASA with
MODIS LAI with bias-corrected PFT over the Sky Oaks sites in order to
examine the impact of PFT.

3. Results and discussion

3.1. Reference evapotranspiration

The seasonal diurnal patterns of ETo from the four WRF simulations
are compared with surface observations from CIMIS stations in Fig. 3
and the AmeriFlux sites in Fig. 4. The seasonal diurnal patterns of the
model simulations generally compare well with the surface measure-
ments, and the differences between simulations using USGS LAI and
MODIS LAI are small. The Northeast Plateau station (NEP) and the
Blodgett Forest site (USBlo), where the observed PFTs match the WRF
model, show the best model comparisons. The correct PFT affects the
microclimate, so the more accurate PFT means the microclimate is
more accurate, so the modeled ETo should be more accurate. However,
there will still be discrepancies between the different models’ ability to
simulate ETo. Net radiation, air temperature and relative humidity are
the main variables that affect ETo, and the more accurate WRF-ACASA
tends to simulate these values more accurately than WRF-Noah. How-
ever, in the Mojave Desert (MD), San Joaquin Valley (SJV) and
Mountain County (MC) stations, where the observed PFTs do not match
well with the model plant functional types, both models overestimate

Fig. 1. Maps of MODIS LAI and USGS LAI for a) winter: December, January, and February (DJF); b) spring: March, April, and May (MAM); summer: June, July, and August (JJA); and
autumn: September, October, and November (SON) of 2006.

Fig. 2. Maps of the 120 CIMIS stations for reference evapotranspiration (ETo) measure-
ments in triangles, and of the 6 AmeriFlux stations for both reference (ETo) and actual
(ETa) evapotranspiration measurements in color dots.
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Table 1
Selected sites from the CIMIS (NEP, MD, SJV, MC) and AmeriFlux (USBLO, USVAR, USTON, SUSO2, USSO3, USSO4) network are compared for height and Plant Functional Type (PFT).
The height corresponds to the canopy height in WRF-ACASA, and the height of the station measurement.

Station Site Name PFT Height (m)

WRF Observed WRF-ACASA Observed

NEP Northeast Plateau Grassland Irrigated Grassland 1 1.5
MD Mojave Desert Shrublands Irrigated Grassland 3 1.5
SJV San Joaquin Valley Irrigated Cropland and Pasture Irrigated Grassland 1.5 1.5
MC Sierra Nevada Mountain Evergreen Needleleaf Forest Irrigated Grassland 17 1.5
USBLO Blodgett Forest Evergreen Needleleaf Forest Evergreen Needleleaf Forest 17 12.5
USVAR Vaira Ranch Savanna Grassland 10 1
USTON Tonzi Ranch Savanna Woody Savannas 10 23
USSO2 Sky Oak Old Evergreen Needleleaf Forest Woody Savannas 17 4.2
USSO3 Sky Oak Young Evergreen Needleleaf Forest Closed Shrublands 17 1
USSO4 Sky Oak New Evergreen Needleleaf Forest Closed Shrublands 17 15

Fig. 3. Seasonal diurnal patterns of reference ETo for the four model simulations for the CIMIS stations during 2006. The thick black lines are CIMIS ETo measurements with two dash
lines representing one standard deviation above and below the mean diurnal patterns. The red lines are WRF-Noah simulations and the blue lines are WRF-ACASA simulations. The red
and blue dashed lines are for simulations with USGS LAI and the solid lines are for simulations with MODIS LAI. Winter is assumed to be December, January, and February (DJF); spring is
March, April, and May (MAM); summer is June, July, and August (JJA); and autumn is September, October, and November (SON).
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the ETo values during daytime of the warmer seasons. CIMIS ETo is
estimated using weather data measured over irrigated grass, and WRF
weather data are not from data over irrigated grass. It likely explains
the differences between CIMIS and the models. That idea is reinforced
by the fact that differences are biggest in the summer months when the

difference between weather data over irrigated grass and data from the
models is the most different. The two different LAI datasets do not have
a significant impact on the ETo simulations at sub daily scale, though
usage of the MODIS LAI improve the RMSE of WRF-ACASA simulations
for the San Joaquin Valley station by 0.26 mm/day. Overall, the WRF-

Fig. 4. Seasonal diurnal patterns of reference ETo for the AmeriFlux sites during 2006.The black lines are observed ETo with two dash lines representing one standard deviation away
from the mean. The red lines are WRF-Noah simulations and the blue lines are WRF-ACASA simulations. The color dashed lines are for simulations with USGS LAI and the color solid lines
are for simulations with MODIS LAI. Winter is (DJF), spring is (MAM), summer is (JJA), and autumn is (SON).
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Fig. 5. Time series of reference evapotranspiration for the CIMIS stations. The solid black line represents observation. The blue lines are for WRF-ACASA, and the red lines are for WRF-
Noah. The color solid lines are simulations with MODIS LAI, and the color dashed lines are simulations with USGS LAI.

Fig. 6. Time series of reference evapotranspiration for the AmeriFlux sites. The solid black line represents observation. The blue lines are for WRF-ACASA, and the red lines are for WRF-
Noah. The solid lines are simulations with MODIS LAI, and the dashed lines are simulations with USGS LAI.

Fig. 7. Maps of cumulative difference in ETo (mm/yr) between MODIS
and USGS LAI simulated by WRF-ACASA and WRF-Noah for 2006. The left
panel is the differences in WRF-Noah simulations and the right panel is
WRF-ACASA simulations.
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ACASA model results exhibit a reduced bias during the daytime by
0.18 mm/day. Overall, the differences between the two models are not
statistically significant and they are both well within the 1 standard
deviation of the observed values.

The time series of the daily ETo from the 2006 CIMIS surface ob-
servations as well as the four model simulations are compared in Fig. 5.
In general, model simulations of daily ETo agree with observations
during the cool season but depart from the observed trend during the
warmer seasons. The overestimation of daily ETo in the time series are
results of the daytime bias in ETo (Fig. 3). These small biases, in the
order of a few tenths of a millimeter per hour during the daytime, ag-
gregate to be more pronounced in daily values. The sparsely vegetated
Mojave Desert and San Joaquin Valley stations are most problematic for
the model simulations and experience the most bias overall. These

differences are likely due to the collection of CIMIS weather data over
irrigated grass.

Fig. 6 compares the observed and simulated time series of daily ETo
in 2006 for the AmeriFlux sites. In Fig. 6, the timing and magnitude of
the simulations agrees well with the surface observations for all sites
with small differences over the Varia and Tonzi ranches. This reaffirms
the results shown in Fig. 4, which shows simulated diurnal patterns of
ETo. The more complex WRF-ACASA model reduces the ETo bias over
Vaira and Tonzi Ranch stations in summer and autumn in both hourly
and daily scales by about 0.13 mm/day. This is may result from more
sophisticated dew point temperature in the WRF-ACASA model where
higher complexity in plant physiology representation and multilayer
canopy structure improve the moisture exchange within and above the
canopy, as shown in (Xu et al., 2014). However, the differences

Fig. 8. Seasonal Taylor Diagram for the four WRF simulations vs. CIMIS station measurements for daily ETo, 2 m temperature (T_2 m), dew point temperature (Td_2 m), wind speed
(windspeed), and solar radiation (Rs). Blue represents WRF-ACASA simulations, red represents WRF-Noah, open circles are simulations using USGS LAI, and solid dots are simulations
using MODIS LAI. Winter is DJF, spring is MAM, summer is JJA, and autumn is SON.
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between the different models and LAI datasets are not statistically
significant.

The choices of LAI datasets do not have large impacts on model
results of ETo when the same land surface model is used. The differ-
ences in annual cumulative reference evapotranspiration over the entire

domain using the two LAI datasets simulated by WRF-ACASA and WRF-
NOAH are showed in Fig. 7. The differences in ETo simulations with
WRF-Noah overlap with the differences in LAI values between the
MODIS and USGS dataset such as over the Northern California region as
showed in Fig. 1. WRF-ACASA simulations also show differences in the

Fig. 9. Diurnal patterns of the actual ET for the six AmeriFlux sites for year 2006. Red, blue, and green lines are WRF-Noah, WRF-ACASA, and WRF-ACASA with PFT correction, black is
observation. Color dash and solid lines are for USGS and MODIS respectively. Dash black lines are for±1SD of observation.
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same Northern California regions, however, there are more complexity
in the overall differences in ETo between the two LAI datasets. In the
central and southern regions of California, where plants are more
adapted to low moisture environment, small differences in LAI between
the two datasets have larger impact on WRF-ACASA than on WRF-
Noah. There is a large decrease in ETo over the Los Angeles area with
MODIS and WRF-ACASA simulation. This is due to the assumption that
over urban grid cells when LAI is lower in MODIS than in USGS larger
portion of the area is cover by impermeable urban surface. These dif-
ferences are more results of variation in model complexity than the
choice of LAI dataset.

The Taylor diagram in Fig. 8 illustrates the relative accuracy of the
WRF-ACASA and WRF-Noah models to the observational data for daily
ETo, 2 m temperature, dew point temperature, wind speed and solar
radiation in each of the four seasons. Using three non-dimensional
statistical parameters (the ratio of the variances, the correlation be-
tween the two fields, and the RMSE), the Taylor diagram quantifies how
well each model simulates an observed meteorological field with each
LAI dataset. Even though the differences in the LAI values shown in
Fig. 1 are large, the impact of LAI on surface variables appears small.
The largest impact is from model complexity. Generally in all four
seasons, the 2 m air temperatures are well simulated by both WRF-A-
CASA and WRF-Noah models. However, both models are comparatively
poor at simulating wind speed throughout the year. This disparity in

wind speed simulation could be due to the difference measurement
heights and more general model and station discretization. In the
models, wind speeds are simulated at several possible heights. For the
CIMIS sites, the 10 m height simulations were used to extrapolate 2 m
observations, using Eq. (5). Despite the empirical relationship used to
estimate the 2 m wind speed from the simulated 10 m wind speed va-
lues, the correlations are still low (Allen et al., 2005).

⎜ ⎟= ⎛
⎝ −

⎞
⎠

u u
z

4.87
ln(67.8· 5.42)z2

(5)

During the winter, the ETo simulations from both models have
reasonable correlations with the surface observations but the RMSEs are
high with a large amount of variability in the standard deviations. This
could be due to the bias from the wind speed and dew point tempera-
ture simulations used in the Penman-Monteith equation to calculate
ETo. The reduction in both dew point temperature variability and
RMSE of wind speed during the spring seems to improve ETo simula-
tions. The sudden reduction across all statistical variables during the
summer in the ETo simulations seems to be caused by the poor per-
formance of net downward shortwave radiation.

3.2. Actual evapotranspiration

Fig. 9 shows the seasonal diurnal patterns of ETa of the four WRF
simulations and WRF-ACASA with PFT correction for the six AmeriFlux
stations. While the differences in model complexity and leaf area index
data do not have major influence on ETo, the ETa graphs show other-
wise. The measured leaf area index in the MODIS LAI dataset system-
atically lowers the simulated actual evapotranspiration for all six
AmeriFlux stations throughout the seasons. This improved LAI helped
to reduce the RMSE of model simulation throughout most of the sites
and seasons for both WRF-Noah and WRF-ACASA (Table 2). This im-
provement is larger on the WRF-ACASA model (1.05 mm/day) than the
WRF-Noah model (0.21 mm/day). WRF-ACASA relies on LAI in mul-
tiple processes and layers: in the radiation transfer equations, as a direct
multiplier of the physiologically determined latent energy flux density

Table 2
RMSE (mm/day) of actual evapotranspiration, ETa, from the two LAI datasets (USGS and
MODIS) and PFT correction (WRF-ACASA LU using MODIS LAI) for the AmeriFlux sites.

Site WRF-Noah
USGS

WRF-Noah
MODIS

WRF-ACASA
USGS

WRF-ACASA
MODIS

WRF-ACASA
LU

USBlo 1.25 0.98 0.88 0.71 0.80
USVar 1.09 1.16 1.62 1.47 1.88
USTon 0.62 0.61 1.25 1.03 1.07
USSO2 0.67 0.32 3.04 1.14 0.52
USSO3 0.59 0.32 2.95 1.11 0.57
USSO4 0.80 0.34 3.13 1.12 0.45

Fig. 10. The time series of cumulative daily ETa for the six AmeriFlux sites during 2006. The black lines are surface measurement of daily ETa, the blue lines are WRF-ACASA simulations,
and the red lines are WRF-Noah simulations. The green lines are WRF-ACASA simulation with PFT corrections. The model simulations with MODIS LAI are presented using solid lines and
the dash lines are WRF models with USGS LAI.
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per leaf class, and as multipliers to the leaf drag elements affecting the
simulated turbulence. The single layer and simplified processes of Noah
model uses the LAI only to reduce the canopy resistance through an
inverse relationship. In addition to LAI, PFT plays an important role in
the high-complexity WRF-ACASA model. At the Sky Oaks sites, the
combination of the PFT mismatch and higher LAI in the USGS LAI
dataset drive WRF-ACASA to overestimate ETa. Although the more
accurate MODIS LAI greatly reduce the bias, the PFT still has a con-
siderable effect, especially over summer and fall seasons. In effort to
correct the PFT bias, the PFT of the WRF grid cell, where the Sky Oak
sites are located, is reassigned from Evergreen Needleleaf Forest to
shrubland to match the Sky Oak 3 and Sky Oak 4 sites. The green lines
in both Fig. 9 shows the updated WRF-ACASA ETa diurnal cycle for the
two sites using MODIS LAI. The improvement of PFG-correction in
WRF-ACASA is more noticeable than the improvement in LAI re-
presentation with the RMSE reduction of 1.26 mm/day when compares
to WRF-ACASA with USGS.

Fig. 10 shows the time series of daily cumulative ETa from all five
WRF model runs and the AmeriFlux measurements. Similar to Fig. 9,
the time series again show the impacts of the model complexity and
canopy structure on the actual evapotranspiration simulations. Over the
Blodgett forest, where PFTs from the model and surface observation
match well, the more complex WRF-ACASA model generally outper-
forms the WRF-Noah model. The tall and dense canopy of the Blodgett
forest is ideal for using the multilayer structure of the WRF- ACASA
model. The complex canopy representation and their plant physiolo-
gical processes more accurately describe the light penetration and inter-
canopy mixing, exhibited a better ETa simulation. The same does not
apply to the Tonzi Ranch due to underestimation of canopy openness
when the WRF-ACASA model assumes horizontal homogeneity of
closed forest in each grid cell. Because the Vaira Ranch is closely lo-
cated to the Tonzi Ranch, they share the same grid cell. The observed
ETa at the Vaira site shows a large drop to near zero from June until Fall
because the grassland growing season is confined only to the wet season
from October to early May. Therefore, the Ameriflux data showed a
high ETa during late fall through the spring but low ETa during the
remainder of the season when the soil moisture was mostly used up.
However, both WRF-ACASA and WRF-Noah do not include the short
season of grass, where soil moisture limits vegetation grow. Hence, both
models overestimated the ETa outside of the growing season for the
Vaira Ranch site. Sites with deeper rooted vegetation also showed some
effect of insufficient soil moisture but to a lesser extent than the shallow
rooted grass at Vaira. The differences in surface conditions and vege-
tation types of the Vaira Ranch and Tonzi Ranch sites resulted in very
different ETa values even though they are close to each other, thus

sharing the same model grid cell. Improvement in both PFT and LAI
greatly increase the agreement between the WRF-ACASA simulations
and observations as seen in Table 2. The correct PFT affects the mi-
croclimate, so the more accurate PFT means the microclimate is more
accurate and the simulated ETo should be more accurate. However,
there will still be discrepancies between the different models’ ability to
simulate ETo. Net radiation, air temperature and relative humidity are
the main variables that affect ETo, and the more accurate WRF-ACASA
tends to simulate these values more accurately than the WRF-NOAH
type models. The impact of PFT reassignment for the Sky Oak site on
WRF-Noah is negligible compared to the impact on WRF-ACASA, thus it
is not shown.

The maps of annual cumulative difference of ETa between the
MODIS and USGS are shown in Fig. 11 for both WRF-ACASA and WRF-
Noah. There are large differences in the WRF-ACASA simulations be-
tween the two LAI datasets, however these differences are less pro-
nounced in the WRF-Noah simulations. The largest differences in ETa
occur over the Central Valley and Northern California, which align
closely with the differences in LAI shown in Fig. 1. This is expected,
since LAI is essential in several processes in the WRF-ACASA model. In
contrast, the WRF-Noah model only uses LAI in the scaling of the ca-
nopy resistance. Therefore, an overestimate of LAI in the USGS dataset
would result in WRF-ACASA to overestimate ETa more than WRF-Noah.

The Taylor diagram in Fig. 12 summarizes the actual evapo-
transpiration performances of the five simulations over the six Ameri-
Flux sites using WRF-ACASA with USGS, WRF-ACASA with MODIS, and
WRF-ACASA with MODIS and PFT bias correction, WRF-Noah with
USGS, and WRF-Noah with MODIS. The figure shows that the impacts
of LAI on land surface models depend on the complexity of the model.
While the effect of LAI is to improve ETa simulations in both WRF-
ACASA and WRF-Noah, the high complexity WRF-ACASA model ben-
efits the most from the increase in leaf area index accuracy. For ex-
ample, WRF-ACASA simulations using USGS LAI show poor correlations
with surface observation during summer (JJA) and fall (SON). The
RMSE for the simulated ETa during the summer season is too high and
outside of the graph, therefore WRF-ACASA with USGS LAI is not dis-
played on the Taylor diagram during the summer season. However,
when MODIS LAI is used to improve the surface representation, the ETa
simulations also improved. The medium complexity WRF-Noah model
shows much smaller improvements of ETa when using MODIS LAI than
the WRF-ACASA model. Furthermore, correcting the grid cell PFT in
WRF over Sky Oak 3 and Sky Oak 4 sites to match the observed PFTs,
ETa simulations from WRF-ACASA with MODIS LAI vastly improve
during summer (JJA) and fall (SON) seasons when compared with
surface observation.

Fig. 11. Maps of cumulative differences in ETa (mm/yr) between MODIS
and USGS simulated by WRF-ACASA and WRF-Noah for 2006. The left
panel is WRF-Noah and the right panel is WRF-ACASA simulation.
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The sensitivities of LAI and PFT in WRF simulations using ACASA
versus Noah are due to the differences in surface representation be-
tween the WRF-ACASA and WRF-Noah models. Unlike the single layer
“big leaf” model of the WRF-Noah, each of the plant functional types in
the WRF-ACASA model is associated with a different multilayer canopy
structure. While the representation of each PFT with specific canopy
structures and plant physiological process allows a more realistic sur-
face representation, these complex relationships are more dependent on
the quality of input variables such as land cover type and leaf area
index. For example, the model PFT identifies Sky Oaks sites as phy-
siologically active (throughout the year) evergreen needle leaf forest,
when in reality they are low-LAI, seasonally inactive, vegetated sa-
vanna and scrublands. This affects physiological processes in WRF-
ACASA, causing overestimation of ETa; however, the single-layer WRF-

Noah relies less on the land cover representation and is therefore less
sensitive to changes in land surface type designation. Improvements in
surface representation of LAI and PFT help increase the accuracy of the
high complexity WRF-ACASA model more than the medium complexity
WRF-Noah model.

4. Summary and conclusion

In this study, the mesoscale model WRF is used to simulate ETo and
ETa for locations with different combinations of two land surface
models and two LAI datasets to examine the impacts that surface re-
presentations and model complexity have on ETo and ETa. The two
land surface models are the intermediate complexity Noah land surface
model and high complexity ACASA model. The two LAI datasets used in

Fig. 12. Seasonal Taylor diagram for model simulations and surface measurements of ETa over six AmeriFlux sites for 2006. Blue circle is WRF-ACASA with USGS LAI, blue solid dot is
WRF-ACASA with MODIS LAI; red circle is WRF-Noah with USGS, red solid dot is WRF-Noah with MODIS; green solid dot is WRF-ACASA with MODIS LAI and PFT bias correction. Winter
is DJF (December, January, February), spring is MAM (March, April, May), summer is JJA (June, July, August), and fall is SON (September, October, November).
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the models are from the USGS and MODIS. There are four model si-
mulations: WRF-ACASA with USGS LAI, WRF-ACASA with MODIS LAI,
WRF-Noah with USGS LAI, and WRF-Noah with MODIS LAI, plus an
addition ETa simulation using WRF-ACASA with MODIS LAI and PFT
bias correction. Each simulation was run for the years 2005 and 2006
over all of California and adjacent terrain, but only results from 2006
are shown.

The model results were evaluated using surface observations from
the 120 CIMIS network stations for ETo and from the six AmeriFlux
stations for both ETo and ETa. Sensitivity tests were employed to
evaluate the impacts of differences in surface representations (in both
LAI and PFT) and model complexity on simulated ETo and ETa in di-
verse environmental conditions. The results from these four simulations
show that an increase in leaf area index accuracy generally improves
estimates of ETa for both the WRF-ACASA and WRF-Noah models, but it
has little effect on ETo. The Taylor diagrams for CIMIS stations and
AmeriFlux stations do not show significant improvement in ETo or
other meteorological variables with improved LAI. There is, however, a
small improvement of ETo in the WRF-ACASA when MODIS LAI is used
instead of the USGS LAI. In addition to LAI, the land use cover or PFT
also impacts on simulations of ETa. When PFTs are bias corrected to
match surface observation and model assumption, the ETa simulations
in the high complexity WRF-ACASA increase and agree well with sur-
face observations. In the high complexity WRF-ACASA model, the plant
functional type determines the multilayer canopy structure as well as
plant physiological parameters. As a result, it is more sensitive to the
land cover type than the single-layer WRF-Noah model.

In conclusion, surface representations such as LAI and PFT appear to
impact the detailed plant physiological processes calculations such as
ETa. How the overall representation affects surface processes, however,
depends on the model complexity. As the model complexity increases,
the model sensitivity to surface representation also increases. The sur-
face processes of the WRF-ACASA model are more sensitive to the leaf
area index than the simple, single layer WRF-Noah model. The WRF-
ACASA model is also sensitive to land use cover, whereas the WRF-
Noah model is not.

While the high complexity of WRF-ACASA increases the realism of
the plant physiological processes, it must be coupled with high accuracy
in land surface representation in both leaf area index and land use
cover. Consequently, there is a linear relationship between the model
complexity and data quality in surface representation. The lower
complexity land surface model is less restricted, thus providing more
flexibility when high accuracy data is not available. Higher complexity
models, however, perform better over more diverse ecosystems such as
forests. Depending on the target variables and study areas of interest,
the model complexity and surface representation requirements vary.

Further improvement in simulating surface processes such as eva-
potranspiration can be achieved by improving the model grid cell re-
presentation. Both WRF-ACASA and WRF-Noah models assume one
dominant plant functional type in each grid cell. The AmeriFlux data,
then again, show that such homogeneous representation of PFT is in-
accurate. Instead of using only one dominant PFT in each grid cell,
future simulations of land surface processes can be improved by using a
combination of PFTs in each grid cell. Although the impact of hetero-
geneous land use cover in each grid cell may not greatly affect low- or
even moderate-complexity models such as WRF-Noah, it could benefit
high-complexity models such as the WRF-ACASA model.
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