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Abstract: We study how stochasticity in the evolution of agricultural productivity interacts with economic 
and population growth at the global level. We use a two-sector Schumpeterian model of growth, in which 
a manufacturing sector produces the traditional consumption good and an agricultural sector produces 
food to sustain contemporaneous population. Agriculture demands land as an input, itself treated as a 
scarce form of capital. In our model both population and sectoral technological progress are endogenously 
determined, and key technological parameters of the model are structurally estimated using 1960–2010 
data on world GDP, population, cropland and technological progress. Introducing random shocks to the 
evolution of total factor productivity in agriculture, we show that uncertainty optimally requires more land 
to be converted into agricultural use as a hedge against production shortages, and that it significantly affects 
both optimal consumption and population trajectories. 
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1. Introduction
Between 1960 and 2010, the global population rose from 
about three to seven billion, more than it had increased 
in the previous two millennia (United Nations, 1999), 
while real global GDP per capita increased by a factor 
of about 2.5 (World Bank, 2016). With more people to 
feed and a positive relationship between income per 
capita and food consumption per capita (Subramanian 
and Deaton, 1996; Tilman et al., 2011), aggregate food 
demand increased significantly. Over the same 50 years, 
however, agricultural production almost tripled, mostly 
on account of a sustained increase in agricultural pro-
ductivity (Alexandratos and Bruinsma, 2012), with the 
result that food did not become more scarce, globally 
on aggregate (Alston and Pardey, 2014). Turning to the 
future, the global population is projected to continue ex-
panding by several billion—likely reaching 10 billion be-
fore 2060 (United Nations, 2015)—and global GDP per 
capita might double by mid-century (Clarke et al., 2014). 
Hence further improvements in agricultural productivity 
will need to take place, driven by innovation and tech-
nology adoption.
In this paper we study how uncertainty and variability 
in agricultural output affect the ability to feed a large, 
growing and increasingly rich global population. As we 
show in Figure 1, global average total factor productivity 
(TFP) growth in agriculture has been around one per-
cent per year over the period 1960 to 2010, contributing 
greatly to meeting the increase in food demand. But it 
also shows that there has been large variation in growth 
rates across regions and over time, ranging from -17 to 
+20 percent per year.1

Weather variability is one cause of the stochasticity in the 
historical agricultural TFP series. As Auffhanuner and 
Schlenker (2014) observe in their review, the relation-
ship between yields and weather, specifically tempera-
ture, is highly nonlinear and concave (also see Schlen-
ker and Roberts, 2009). Consequently extreme heat over 
the growing season is a strong predictor of crop yields. 
Anthropogenic climate change is expected to change 
patterns of weather variability worldwide. The Inter-
governmental Panel on Climate Change thinks that an-
thropogenic climate change is somewhere between “very 
likely” and “virtually certain” to result in more frequent 

1  Data on TFP growth are derived from Fuglie and Rada (2015) 
and FAO (2015). We use the growth accounting methodology of 
Fuglie and Rada (2015), which takes into account a broad set of inputs 
and aggregates TFP growth rates at the level of 27 macro regions. 
Compared to Fuglie and Rada (2015), who apply a Hodrick-Prescott 
filter to smooth year-on-year output fluctuations before calculat-
ing TFP, TFP growth rates reported in Figure 1 are based on raw 
(unsmoothed) output data from FAO (2015), with the purpose of 
highlighting variability of agricultural productivity growth.

incidences of extreme heat, depending on the definition 
and timescale, as well as increasing the frequency of oth-
er types of extreme weather, with varying, but generally 
lower, degrees of confidence (IPCC, 2013). In addition, 
structural models that do not incorporate weather vari-
ability nonetheless show that anthropogenic climate 
change is likely to reduce food supply and increase prices 
by way of gradual changes in average conditions (Nel-
son et al., 2014a). Other emerging sources of variability 
in agricultural TFP have also been put forward, includ-
ing the loss of genetic and species diversity in farming 
systems (Di Falco, 2012), and increasing homogeneity of 
global food supplies (Khoury et al., 2014), making them 
potentially more vulnerable to covariate shocks.
Inspired by these risks, some long-standing and some 
only now emerging, in this paper we study the socially 
optimal global response to the risk of negative shocks to 
global agricultural productivity. To do so we employ a sto-
chastic version of a quantitative, two-sector endogenous 
growth model of the global economy that was introduced 
in Lanz et al. (forthcoming). This provides an integrated 
framework to study the joint evolution of global popula-
tion, sectoral technological progress, per-capita income, 
the demand for food, and agricultural land expansion 
(from a finite reserve of unconverted land). Specifically, 
the model distinguishes agriculture from other sectors of 
the economy (which produce a bundle of consumption 
goods) and treats both population and sectoral TFP as 
endogenous stock variables. The level of population in 
the model derives from preferences over fertility by a 
representative household (Barro and Becker, 1989), with 
fertility costs capturing two components. First, addition-
al labor units demand food, and the level of per-capita 
food demand is proportional to income. In the model, 
food is produced by the agricultural sector, so that the 
evolution of agricultural productivity may act as a con-
straint on the evolution of population. A second fertility 
cost is the time needed to rear and educate children. Our 
model builds on the work of Galor and Weil (2000) by in-
corporating an increasing relationship between the level 
of technology in the economy and the cost of popula-
tion increments. Technological progress raises education 
requirements and the demand for human capital, cap-
turing the well-documented complementarity between 
technology and skills (Goldin and Katz, 1998).
Given the explicit representation of fertility decisions 
and the demand for food associated with population 
and income growth, the model is well-suited to study 
the role of technology as a driver of global econom-
ic development. In the model, sectoral technological 
progress is endogenously determined by the Schum-
peterian R&D model of Aghion and Howitt (1992), in 
which TFP growth is a function of labor hired by R&D 
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firms. Thus, on the one hand technological progress 
in agriculture reduces the cost of producing food, and 
is an important driver of agricultural yields. In turn, 
agricultural technology improvements can alleviate 
Malthusian concerns about the finite land input. On 
the other hand, economy-wide technological progress 
implies a quantity-quality trade-off in fertility choices 
(through increasing education costs), and thus a slow-
down of population growth (as per Galor and Weil, 
2000). Taken together, technological progress is cen-
tral to the development path generated by the model.
As discussed in detail in Lanz et al. (forthcoming), we 
use simulation methods to structurally estimate key pa-
rameters of the model, minimizing the distance between 
observed and simulated 1960–2010 trajectories for world 
GDP, population, TFP growth and agricultural land area. 
The estimated model closely replicates targeted data over 
the estimation period, and is also able to replicate untar-
geted moments, such as the share of agriculture in world 
GDP and the growth rate of agricultural yields.
In this article, we introduce uncertainty about the evo-
lution of agricultural TFP in the coming years. Our ob-
jective is not to carry out an assessment of some specific 
uncertain event. Instead, our contribution is to provide 
an internally consistent picture of how uncertainty in the 
evolution of agricultural technology affects the socially 
optimal allocation of resources in a framework with en-
dogenous land conversion, population, and R&D-based 
TFP growth. Our TFP shocks are therefore illustrative 
in nature, although they are calibrated to be within the 
same order of magnitude as shocks observed in the past. 
In the baseline, agricultural TFP growth starts at around 
one percent per year in 2010 and declines thereafter. This 

implies that agricultural yields increase linearly, which 
is consistent with extrapolating data on trend growth in 
yields from the past several decades, particularly for the 
main grain crops (e.g. Alston et al., 2009; Godfray et al., 
2010). Given the structure of productivity shocks we 
consider, there is a 73 percent probability that this base-
line situation prevails in 2030. If, on the other hand, 
negative productivity shocks occur, and realized shocks 
are permanent in the sense that they affect agricultural 
productivity in all subsequent periods, by 2030 there is 
a 24 percent probability that agricultural TFP is around 
10 percent lower relative to its baseline value, a 3 percent 
probability that it is 15 percent lower, and a 0.1 percent 
probability that it is more than 20 percent lower.
In the model, the socially optimal response to uncertain 
agricultural productivity shocks occurs in a number of 
key dimensions. First, given a risk of lower agricultural 
productivity in the future, more labor can be allocated 
to R&D, so as to speed up technological progress. Sec-
ond, when a negative shock occurs, more primary factors 
can be allocated to agricultural production, specifically 
labor, capital and land. Here, increasing agricultural land 
area involves a decision to deplete a finite reserve base, 
so there is an intertemporal trade-off involved. Third, 
changes in agricultural productivity affect population 
growth through food availability. In particular, deprecia-
tion of agricultural technology increases the relative cost 
of food, with a negative effect on fertility decisions, so 
that agricultural productivity shocks affect equilibrium 
trajectories in the long run. Finally, per-capita consump-
tion also adjusts downwards, as more resources are allo-
cated to the agricultural sector at the expense of manu-
facturing production.

Figure 1. Total factor productivity growth in agriculture, 1960-2010

Plotted data on yearly TFP growth are derived from Fuglie and Rada (2015) and FAO (2015). Average change in TFP measures yearly growth 
rate of TFP averaged (without weights) across 27 macro regions defined in Fuglie and Rada (2015). Minimum and maximum yearly growth 
rates across regions are also reported. See footnote 1 for more details on the reported data.
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Results from the model indicate that the risk of negative 
shocks to agricultural TFP induces a substantial reallo-
cation of resources relative to the baseline. The planner 
allocates more resources to agricultural R&D, but we find 
that, once a negative shock has occurred, agricultural 
TFP does not catch up with its baseline path. Thus in our 
framework it is too expensive for the planner to simply 
compensate lost agricultural TFP with supplementary 
R&D expenditure. Rather the planner expands use of 
other primary inputs to agriculture. But, since there is an 
opportunity cost of labor and capital (which are also used 
to produce the manufactured good), the main response 
of the planner is to increase the area of agricultural land. 
In addition, as technology shocks make food more ex-
pensive to produce, a second major implication is that 
population declines relative to the baseline.

We carry out several extensions to the main analysis just 
described. First, we quantify how substitutability be-
tween land and other primary inputs to agriculture af-
fects the finding that agricultural land is expanded. Our 
initial assumption is derived from the empirical work of 
Wilde (2013), which suggests an elasticity of substitution 
between land and other inputs of 0.6. We show that lower 
substitutability implies a significantly larger expansion of 
agricultural land in response to productivity shocks. Sec-
ond, we shed light on the the role of per-capita income 
in the demand for food, by running a model in which 
food demand is simply proportional to population. This 
is equivalent to assuming a subsistence constraint, as 
considered by Strulik and Weisdorf (2008) for example, 
with zero income elasticity of food demand. Results sug-
gest that agricultural land expansion is very similar, but 
the welfare cost of the productivity shocks is significantly 
larger. Finally, while our main set of runs is concerned 
with the occurrence of uncertain negative shocks to an 
otherwise increasing trend for agricultural productiv-
ity, the literature also raises the possibility of gradually 
stagnating and decreasing agricultural productivity (e.g. 
Alston et al., 2009). We therefore use the model to study a 
scenario in which trend agricultural productivity growth 
gradually slows and eventually goes into reverse. The 
model again suggests an extension of cropland area in 
order to compensate productivity losses.

The remainder of the article is organized as follows. In 
Section 2, we discuss how our work relates to a number 
of strands of the literature. Section 3 provides an over-
view of the model and estimation procedure, and then 
describes how we introduce stochasticity in agricultur-
al productivity. Section 4 reports our main simulation 
results. Section 5 discusses implications of these results 
and sensitivity analysis. We close with some concluding 
comments in Section 6.

2. Relation to the Literature
Our work is related to at least two distinctive strands of 
literature that consider interactions between economic 
growth, food production and population development. 
First, our article is related to the seminal work of Ga-
lor and Weil (2000) and Jones (2001), which is aimed 
at fundamental understanding of the joint evolution of 
economic growth and population over the long run, and 
to Hansen and Prescott (2002), Strulik and Weisdorf 
(2008), Vollrath (2011), Sharp et al. (2012) and Strulik 
and Weisdorf (2014), who also consider the role of agri-
culture and land in growth. Related work by Bretschger 
(2013) and Peretto and Valente (2015) studies natural 
resource scarcity in a general, growth-theoretic setting. 
While our approach shares these theoretical under-
pinnings, it is distinctive in that key parameters of our 
quantitative model are structurally estimated, so that our 
model closely replicates observed trajectories over the 
past fifty years. In turn this allows us to investigate quan-
titatively the implications of stylized uncertainty about 
future technological progress.
Second, our work is related to the literature on structural 
modeling of global agriculture, land use and food trade, 
which is used to estimate the impact of future climate 
change. Many of these models are brought together in 
the Agricultural Model Intercomparison and Improve-
ment Project (AgMIP) (see in particular Nelson and 
Shively, 2014, and other papers in the same volume), 
which suggests that climate change could reduce global 
crop yields significantly and result in an increase of glob-
al cropland area. The models used to derive these results 
feature high-resolution sectoral and regional representa-
tions of agriculture and land use, which allows investiga-
tions into specific crops, regional impacts and trade. On 
the other hand, the evolution of key drivers determining 
global impacts (such as population, the demand for food, 
and agricultural yields) is exogenous to the simulations. 
By contrast, the model we formulate endogenizes global 
aggregate population, per-capita income, and technolo-
gy, which allows us to study how these variables jointly 
respond to uncertainty about future agricultural produc-
tivity growth. Our work also differs in how uncertainty 
about agricultural productivity is implemented. In struc-
tural modeling of climate impacts, different scenarios are 
used to introduce gradual changes in long-run average 
conditions, changes that are precisely calibrated on the 
outputs of climate and crop models. Our scenarios fo-
cus instead on short-run (but persistent) productivity 
shocks, which are calibrated to an order of magnitude on 
variability in past agricultural TFP, but are more illustra-
tive in spirit.
A paper in this line of research that is particularly close 
in spirit to our work is Cai et al. (2014), as they use a 
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dynamic-stochastic partial equilibrium model of global 
land use to study the risk of an irreversible reduction in 
agricultural productivity. They show that, by 2100, this 
risk increases the demand for cropland globally, at the 
expense of valuable biodiversity and ecosystem services. 
Our work shares the purpose of Cai et al. (2014), but 
is otherwise complementary: while their work consid-
ers more finely partitioned land uses,2 ours emphasizes 
the role of endogenous technological progress through 
R&D activities, and also allows population to respond 
to changes in agricultural productivity through endog-
enous fertility.
As we consider responses to agricultural productivity 
shocks, our work also relates to an extensive microeco-
nometric literature that studies variability in agricultural 
productivity. In this area, one line of research exploits 
exogenous variations in rainfall to quantity the impact 
of TFP variations on outcomes in the agricultural sector 
(see notably Jayachandran, 2006; Di Falco and Chavas, 
2008). Close to our main topic of interest, Auffhanun-
er et al. (2006) have shown that rainfall variability affects 
the choice of cropland area under cultivation at the farm 
level.3 As Auffhammer and Schlenker (2014) note, one 
limitation of these reduced-form studies is that long-run 
effects and feedback mechanisms (e.g. general equilibri-
um) are difficult to identify from the data. From this per-
spective, our structural empirical model provides novel 
perspectives on these issues, accounting for a number 
of macro-level interrelationships between endogenous 
outcomes, and quantifying how these jointly respond to 
negative agricultural supply shocks.
It is also important to stress that our aggregate global 
representation has its limitations, and abstracts from a 
number of dimensions that have been discussed in the lit-
erature. First, by construction, our model cannot inform 
spatial aspects of development, which include interna-
tional markets for agricultural commodities, and trade. In 
particular, because the world as a whole is modeled as one 
region, factors are mobile in our framework, and openness 
to trade is only implicit. Our model is, however, consistent 
with a multiregional model with trade in which the expan-
sion of agricultural land is incentivized through changes in 
international commodity prices. For example, a negative 
agricultural supply shock in a given region may not have 
an impact on population or agricultural land area in that 

2  More specifically, Cai et al. (2014) consider the allocation of land 
to commercially managed forests (with many different stock variables 
capluring different forest vintages) and to biofuel crops. Forest 
products and energy are consumed by households. Non-converted 
‘natural’ land generates ecosystem services, which are also valued by 
households.
3  See also Schlenker and Roberts (2009) and Fezzi and Bateman 
(2015) on the role of temperature variability.

particular region, but if the shock is large enough to have 
macro-level repercussions (as we do assume in our work), 
it will cause an increase in world agricultural prices. This 
would in turn affect outcomes in price-sensitive regions 
(typically developing regions), including fertility choices 
and agricultural land expansion.4 This is consistent with 
Burgess and Donaldson (2010) and Costinot et al. (2016) 
for example, who emphasize the role of interregional price 
signals in the allocation of resources, as well as the litera-
ture that uses detailed numerical trade models of agricul-
tural production, mentioned above.

Second, our model does not capture more complex in-
stitutional dimensions of growth and food production 
that have been discussed elsewhere in the literature. One 
example is related to political dynamics at work in the 
presence of agricultural output variability. Using data 
from Sub-Saharan Africa, Bruckner and Ciccone (2011) 
suggest that negative agricultural supply shocks may pro-
vide a window of opportunity for improved democracy. 
In turn, improved democracy would be expected to have 
a positive impact on economic growth (Acemoglu et al., 
2017). In our model, while negative shocks do lead to fast-
er TFP growth, the channel through which TFP increases 
(labor-intensive R&D) is inconsistent with an institutional 
view of growth. Similarly, an extensive literature studies 
how local scarcities induce conflict and migration (see 
e.g. Prieur and Schumacher, 2016, for an overview); the 
associated welfare costs are only implicit in our highly 
aggregated representation of the world. Therefore, while 
our empirical framework brings together several well-es-
tablished strands of economic research to provide novel 
insights into the impacts of negative agricultural produc-
tivity shocks, its limitations ought to be kept in mind.

3. The Model
This section first summarizes the key components of the 
model. Second, we present the simulation-based struc-
tural estimation procedure. Third, we explain how we in-
troduce stochastic shocks to the evolution of agricultural 
productivity.5

4  Note that our model accounts for the fact That remaining reserve 
lands are likely to be less productive, compared to land already under 
cultivation. We come back to this below.
5  As noted above, Lanz et al. (forthcoming) provides a compre-
hensive motivation for the structure of the model, analytical results on 
the evolution of population and land, discussion of the selection and 
estimation of the parameters, as well as ensuing baseline projection 
s from 2010 onwards. Extensive sensitivity analysis is also reported, 
showing that the baseline projections are robust to a number of chang-
es to the structure of the model, which comes from the fact That we 
estimate the model over a relatively long horizon. The GAMS code for 
the model, replicating the baseline runs reported here, is available on 
Bruno Lanz’s website.
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3.1 The Economy

3.1.1 Manufacturing production and agriculture

A manufacturing sector produces the traditional con-
sumption bundle in one-sector models, with aggregate 
output Y _(t ,nm ) at time t  given by:

  (1)

where A _(t ,mn ) is TFP in manufacturing, K _(t ,mn ) is capital and 
L _(t ,mn ) is the workforce.6 The share of capital is set to 0.3, 
which is consistent with Gollin (2002), for example.
Agricultural output Y _(t ,ag ) is given by a flexible nested 
constant elasticity of substitution (CES) function (see 
Kawagoe et al., 1986; Ashraf et al., 2008), in which the 
lower nest is Cobb-Douglas in capital and labor, and the 
upper nest trades off the capital-labor composite with the 
land input X _(t ): 

  (2)

where σ  determines substitution possibilities between 
the capital-labor composite and land. Following em-
pirical evidence reported in Wilde (2013), representing 
long-term substitution possibilities between land and 
other factors in agriculture, we set σ  = 0 .6 . We fur-
ther set the share parameters θ _(X ) = 0 .25  and θ _(K ) = 0 .3 
based on data from Hertel et al. (2012).

3.1.2 Innovations and technological progress

The evolution of sectoral TFP is given by (in the absence 
of negative productivity shocks, discussed below):

  (3)

where j  is an index for sectors (here mn is manufactur-
ing and ag is agriculture), S = 0.05  is the maximum 
aggregate growth rate of TFP each period (based on Fug-
lie, 2012), and ρ _(t , j ) ∈  [0 ,1]  measures the arrival rate 
of innovations, i.e. how much of the maximum growth 
rate is achieved each period. TFP growth in the model, 
which is driven by ρ _(t , j ), is a function of labor allocated to 
sectoral R&D:

where L _(t ,Aj ) is labor employed in R&D for sector j ,  λ _(j ) 
is a productivity parameter (normalized to 1 to ensure 
that TFP growth is bounded between 0 and S) and µ _(j ) ∈ 
(0,1)  is an elasticity. The parameters µ _(mn ) and µ _(ag ) are 
structurally estimated and capture the extent of decreas-

6  Note that under the assumption That technology is Hicks-neu-
tral, the Cobb-Douglas functional form is consistent with long-term 
empirical evidence reported in Antras (2004).

ing returns to labor in R&D (e.g. duplication of ideas 
among researchers; Jones and Williams, 2000).
Expressions (3) and (4) represent a discrete-time version 
of the original model by Aghion and Howitt (1992), in 
which the arrival of innovations is modeled as a continu-
ous-time Poisson process.7 One key departure from Agh-
ion and Howitt (1992), however, is that the growth rate of 
TFP is a function of the share of labor allocated to R&D. 
This representation, which is also discussed in Jones 
(1995a) and Chu et al. (2013), is consistent with micro-
foundations of more recent product-line representations 
of technological progress (e.g. Dinopoulos and Thomp-
son, 1998; Peretto, 1998; Young, 1998), in which individ-
ual workers are hired by R&D firms and entry of new 
firms is allowed (Dinopoulos and Thompson, 1999). One 
feature of such representations, and therefore of ours, is 
the absence of the population scale effect, in other words 
a positive equilibrium relationship between the size of 
the population and technological progress.8 Indeed, over 
time the entry of new firms dilutes R&D inputs and neu-
tralizes the scale effect, and in equilibrium aggregate TFP 
growth is proportional to the share of labor in R&D (see 
Lainez and Peretto, 2006).

3.1.3 Population dynamics

Population in the model represents the stock of effective 
labor units N _(t ) and evolves according to the standard mo-
tion equation:

  (4)

where 1 / δ_(N ) captures the expected working lifetime, 
which is set to 45 years (hence δ _(N ) = 0.022), and incre-
ments to the labor force n _(t )N _(t ) are a function of labor L _(t ,N )

allocated to rearing and educating children:

In this setting, 1 / χ _(t ) is a measure of the time (or opportu-
nity) cost of effective labor units, and a significant com-
ponent of this cost is education. As mentioned earlier, 
empirical evidence suggests a complementarity between 
human capital and technology (e.g. Goldin and Katz, 
1998), and we specify the cost of children as an increas-

7  We implicitly make use of the law of large number to integrate 
out random arrival of innovation over discrete time intervals.
8  Note that Boserup (1965) and Kremer (1993) use the popula-
tion scale effect to explain the sharp increase of productivity growth 
following stagnation in the pre-industrial era, and it is also present 
in unified growth theory models by Galor and Weil (2000) and Jones 
(2001) among others. Empirical evidence from more recent history, 
however, is at odds with the scale effect (e.g. Jones, 1995b; Lainez and 
Perelto, 2006). The fact that it is absent from our model is important, 
because population is endogenous, so that accumulating population 
could be exploited to artificially increase long-run growth.
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ing function of the economy-wide level of technology:

where χ  > 0  is a productivity parameter, ζ  ∈ (0,1)  is 
an elasticity representing scarce factors required in child 
rearing, A _(t ) is an output-weighted average of sectoral TFP, 
and ω  > 0  measures how the cost of children increases 
with the level of technology. The parameters determining 
the evolution of the cost of increments to the labor force 
(χ , ζ  and ω) are estimated as described below.
We show analytically in Lanz et al. (forthcoming) that 
this representation of the cost of children is consistent 
with the more comprehensive model of Galor and Weil 
(2000), in which education decisions are explicit and the 
relationship between technology and human capital aris-
es endogenously. More specifically, in our model the ac-
cumulation of human capital is implicit, as it is function-
ally related to the contemporaneous level of technology. 
Like in Galor and Weil (2000), however, technological 
progress raises the cost of children by inducing higher 
educational requirements, and is therefore an important 
driver of the demographic transition. In other words, the 
positive relationship between technology and the cost of 
effective labor units implies that, over time, the ‘quali-
ty’ of children (measured by their level of education) 
required to keep up with technology is favored over the 
quantity of children, leading to a decline of fertility and 
population growth.
In addition to the opportunity cost of time, there is an 
additional cost to population increments through the 
requirement that sufficient food must be produced. For-
mally, we follow Strulik and Weisdorf (2008) and make 
agricultural output a necessary condition to sustain the 
contemporaneous level of population (see also Vollrath, 
2011; Sharp et al., 2012, for similar approaches):

  (5)

where ƒ _(t ) is per-capita demand for food. In order to in-
clude empirical evidence about the income elasticity of 
food demand, we further specify

with income elasticity of food demand κ  = 0 .25  re-
flecting estimates reported in Thomas and Strauss (1997) 
and Beatty and LaFrance (2005). We further calibrate the 
parameter ξ  = 0 .4  so that aggregate food demand in 
1960 is about 15 percent of world GDP (as per data re-
ported in Echevarria, 1997).

3.1.4 Agricultural land conversion

Land is a necessary input to agriculture, and agricultural 
land X _(t ) has to be converted from a fixed stock of natural 

land reserves (X) by applying labor L _(t ,x ).9 In our model, 
land is therefore treated as a scarce form of capital, and 
we write the motion equation for agricultural land as:

  (6)

where the parameters ψ > 0 and ε ∈ (0,1) are structur-
ally estimated. Through equation (6), we allow converted 
land to revert back to its natural state over a fifty-year 
time frame (i.e. δ_(X) = 0.02). Note also that an important 
implication of (6) is that, as labor is subject to decreasing 
returns in land-conversion activities, the marginal cost 
of land conversion increases with X_(t). Intuitively, this cap-
tures the fact that the most productive plots are convert-
ed first, whereas additional land might be less amenable 
to exploit for agricultural production. An implication is 
that the cost associated with bringing marginal plots into 
production because of uncertainty is higher than the cost 
of converting land earlier in the development process.

3.1.5 Households preferences and savings

In the tradition of Barro and Becker (1989), household 
preferences are defined over own consumption of a 
(composite) manufactured good, denoted c _(t ),  the level of 
fertility n _(t ) and the utility that surviving members of the 
family will enjoy in the next period U _(i , t )+1· Given surviv-
al probability 1 -  δ _(N ),  and simplifying assumptions that 
(i) children are identical and (ii) parents value their own 
utility in period t  + 1 the same as their children’s (see 
Jones and Schoonbroodt, 2010), the utility function of a 
representative household is defined recursively as:

where γ  = 2  reflects an intertemporal elasticity of sub-
stitution of 0.5 (e.g. Guvenen, 2006), β  = 0 .99  is the 
discount factor and η is an elasticity determining how 
the utility of parents changes with the number of surviv-
ing members of the household. As we show in Lanz et al. 
(forthcoming), it is straightforward to express preferenc-

9  Note that aside from the space needed to grow the food, the 
model does not quantify the demand for space by agents in the 
model, such as industrial use to produce manufactured goods, or 
residential use to accommodate the growing population. While this 
sort of land-use competition is certainly important at a local level, we 
abstract from that to focus on an aggregate global representation of 
development rnrhe numerical problem is formulated in GAMS and 
solved with KNITRO (Byrd et al., 1999, 2006), a specialized software 
programme for constrained non-linear programs. Note that this 
solution method can only approximate the solution to the infinite 
horizon problem, as finite computer memory cannot accommodate an 
objective with an infinite number of terms and an infinite number of 
constraints. However, for β  < 1  only a finite number of terms matter 
for the solution, and we truncate the problem to the first T = 200 
periods without quantitatively relevant effects for our results.
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es from the perspective of the dynastic household head, 
yielding the following dynastic utility function:

  (7)

and we set η  = 0 .01 . This implies that altruism towards 
surviving members of the dynasty remains almost con-
stant as the number of survivors increases. It makes the 
household’s objective close to the standard Classical Util-
itarian welfare function.
As in the multi-sector growth model of Ngai and Pis-
sarides (2007), manufacturing output can either be con-
sumed or invested into a stock of physical capital:

  (8)

where N _(t )c _(t ) and I _(t ) measure aggregate consumption and 
investment respectively. The motion equation for capital 
is given by:

  (9)

where δ_(K ) = 0 .1  is the yearly rate of capital depreciation 
(Schündeln, 2013).

3.2 Structural estimation of the model
A schematic representation of the model is provided in 
Figure 2. We formulate the model as a social-planner 
problem, selecting paths for investment I _(t ),  and allocat-
ing labor L _(t , j ) and capital K _(t , j ) across activities in order 

to maximize intertemporal welfare (7) subject to techno-
logical constraints (1), (2), (3), (4), (5) (6), (8), (9) and 
feasibility conditions for capital and labor:

 

The constrained non-linear optimization problem as-
sociated with the planner's program is solved numeri-
cally by searching for a local optimum of the objective 
function (the discounted sum of utility) subject to the 
requirement of maintaining feasibility as defined by the 
constraints of the problem.10

We apply simulation methods to structurally estimate 
parameters determining the cost of fertility (χ , ζ , ω), la-
bor productivity in R&D (µ ^(

mn,ag
)) and labor productivity 

in land conversion (ψ , ε).
In practice, we first calibrate the initial value of the state 
variables to match 1960 data, so that the model is ini-
tialized in the first year of the estimation period. For 

10  The numerical problem is formulated in GAMS and solved with 
KNITRO (Byrd et al., 1999, 2006), a specialized software programme 
for constrained non-linear programs. Note that this solution method 
can only approximate the solution to the infinite horizon problem, as 
finite computer memory cannot accommodate an objective with an 
infinite number of terms and an infinite number of constraints. How-
ever, for β  < 1  only a finite number of terms matter for the solution, 
and we truncate the problem to the first T = 200  periods without 
quantitatively relevant effects for our results.

Figure 2. Schematic representation of the model
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each parameter to be estimated from the data, we define 
bounds for possible values (0.1 and 0.9 for elasticities 
and 0.03 and 0.3 for labor productivity parameters) and 
simulate the model for a randomly drawn set of 10,000 
vectors of parameters. We then formulate a minimum 
distance criterion, which compares observed 1960–2010 
time series for world GDP (Maddison, 1995; Bolt and van 
Zanden, 2013), population (United Nations, 1999, 2013), 
cropland area (Goldewijk, 2001; Alexandratos and Bru-
insma, 2012) and sectoral TFP (Martin and Mitra, 2001; 
Fuglie, 2012) with trajectories simulated from the mod-
el.11 In the model these data correspond to Y _(t ,mn ) + Y _(t ,ag ), 
N _(t ),  X _(t ),  A _(t ,mn ) and A _(t ,ag ) respectively. Thus, formally, for 
each vector of parameters and associated model solution, 
we compute:

  (10)

where Z _(k,τ ) denotes the observed quantity k at time τ and 
Z *_(

k,τ ) is the corresponding value simulated by the model. 
By gradually refining the bounds of each parameter, we 
converge to a vector of parameters that minimizes objec-
tive (10). We find that the model closely fits the targeted 
data; the resulting vector of estimates and fitted trajecto-
ries over the estimation period are reported and briefly 
discussed in the Appendix (see also Lanz et al., forthcom-
ing, for an extensive discussion of the estimation results).
At this stage it is important to note that the social planner 
representation is mainly used as a tool to make structural 
estimation of the model tractable: we rationalize the data 
“as if ” it had been generated by a social planner. Thus 
market imperfections prevailing over the estimation pe-
riod will be reflected in the parameters that we estimate 
from observed trajectories, and will thus be reflected 
in the baseline simulations of the model (i.e. using the 
model to extrapolate the behavior of the system observed 
over the past fifty years).12 But given the estimated tech-
nological parameters, simulations with the model away 
from the baseline will reflect a socially optimal allocation 
of resources.

11  Note that TFP growth estimates are subject to significant uncer-
tainty, and we conservatively assume that it declines from 1.5 percent 
between 1960 and 1980 to 1.2 percent between 1980 and 2000, and 
then stays at 1 percent over the last decade.
12  Because there are externalities in the model, most notably in 
R&D activities (see Romer, 1994, for example) the optimum deter-
mined by the social planner solution will differ from a decentralized 
allocation. Thus if we were able to estimate the parameters using a 
decentralized solution method, a different set of estimates would be 
required to match observed trajectories over the estimation period. As 
shown by Tournemaine and Luangaram (2012) in the context of sim-
ilar model (without land), however, quantitalive differences between 
centralized and decentralized solutions are likely to be small.

3.3 Introducing stochastic shocks to 
agricultural productivity

In the basic formulation of the model, which is used for 
estimating the parameters over the period 1960–2010, 
the evolution of sectoral TFP is deterministic and de-
pends on the share of labor employed in sectoral R&D 
activities. We now study the evolution of the system be-
yond 2010, and introduce stochasticity in how agricul-
tural TFP evolves over time. Specifically, it is assumed 
that technological progress in agriculture is subject to 
stochastic shocks of size ϵ > 0 that occur with probability 
p. Conversely with probability 1 - p there is no shock to 
agricultural productivity (hence ϵ = 0) and the evolution 
of TFP occurs as per the deterministic specification de-
scribed above. Both p and ϵ are assumed to be known by 
the planner, thus the situation is one of pure risk.13

Formally, equation (3) describing the evolution of agri-
cultural productivity is augmented with a non-negative 
term, which represents the possibility that agricultural 
TFP may not follow the functional trajectory we have 
postulated:

  (11)

where ϵ _(t )+1,_(s ) captures the specific realization of the shock 
in state of the world s , and we index all variables by s 
to capture the fact that they are conditional on a specif-
ic sequence of ϵ _(t , s ) over time. A stochastic shock affects 
outcomes in period t  + 1 , while the planner only ob-
serves the outcome after allocating resources in period t . 
We further assume that the planner is an expected utility 
maximizer, weighting welfare in the different states of the 
world by its respective probability. The ensuing objective 
function is then:

  (12)

with ∑ _(s )p _(s ) = 1 .14

Even though this stochastic structure is quite simple, the 
number of possible states of the world in each period 
grows at 2 ^(

t
).

In turn, because the model is formulated as a non-lin-
ear optimization problem, this implies that the number 

13  We note that the probability of negative shocks and their size 
might be a function of agricultural activities. In a companion paper 
(Lanz et al., 2016), we discuss how the scale of modern agriculture may 
affect such negative feedback effect, focusing on the expected impact of 
negative shock s over time rather than on stochastic occurrences. In the 
present paper, however, we focus on a more general exogenous source of 
uncertainty, in which the probability and size of shocks is fixed.
14  Note that this formulation implies the standard assumption that 
markets are complete, both over time and across states of the world.
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of variables that needs to be computed over the whole 
horizon increases exponentially.15 Given that the dimen-
sionality of the decision problem grows with the set of 
possible states of the world, we make two further simpli-
fications. First, we solve the model from 2010 onwards 
using two-year time steps (instead of yearly time steps). 
This significantly reduces the number of variables that 
needs to be computed, without significantly affecting the 
resulting trajectories.16 Second, we consider shocks in 
only three time periods, which is sufficient to illustrate 
the mechanisms at work.

The shock we consider is a 10 percent probability that 
agricultural production declines by 5 percent each year 
over two years. This is in the range implied by Figure 1, 
and is also broadly consistent with changes in produc-
tivity discussed in Nelson et al. (2014b) and Cai et al. 
(2014). Hence, starting the simulation in 2010, we as-
sume that the first realization of the shock may occur af-
ter 2016 allocation decisions have been made, so that ef-
fects are felt in 2018. In the bad state of the world, which 
occurs with a probability of 10%, agricultural TFP is 
(1 –  0 .05) ^(

2
) ≅ 0 .9  of that prevailing in the good state 

of the world. In expected value terms, the shock is thus 
roughly equivalent to a one percent decrease in TFP over 
two years. The same shock can then occur in 2018, with 
effects felt in 2020, and in 2020, with effects felt in 2022.

To summarize, we initialize the model in 2010, and neg-
ative TFP shocks can occur in 2016, 2018 and 2020, with 
effects being felt in subsequent periods. After 2022, no 
more shocks occur and the problem becomes determin-
istic (conditional on the state of the world in which the 

15  More specifically, as the planner faces a dynamic problem, 
optimal decisions in each time period are conditional on the history of 
shocks (i.e. where he is in the exponentially-growing uncertainty tree), 
and the planner maximizes the expected utility of his decisions over 
the remaining event tree. Thus states of the world sharing a com-
mon parent node will share decision variables until the subsequent 
realization of the productivity shock, and diverge thereafter, so that 
computational requirements increase.
16  Increasing the time-steps to evaluate the choice of the controls 
implies some small differences in optimal paths relative to the solution 
using one-year time steps. Another approach would be to formulate 
the problem recursively and solve it with dynamic programming 
methods. This approach is, however, subject to dimensionality restric-
tions in terms of the number of state variables that can be included. 

planner happens to be). Of course, the results would re-
main qualitatively similar if we were to consider the re-
occurrence of shocks beyond 2020, so that it is relatively 
easy to see how our results would generalize.

4. Results: Optimal Control and 
Simulations

This section provides the main results from solving the 
stochastic control problem. First, we describe the partic-
ular agricultural productivity scenarios that we focus on. 
Second, we report implied trajectories for agricultural 
technology, agricultural land, population and welfare.

4.1 Scenario Description
To evaluate the socially optimal response to agricultural 
productivity risk, we contrast trajectories resulting from 
four different situations. First, we consider a case in which 
no shocks to agricultural TFP will occur, and the planner 
knows this for sure. This represents our baseline, as re-
ported in Lanz et al. (forthcoming). Values for selected 
variables are reported in Table 1. World population starts 
at just below 7 billion in 2010 and grows to 8.5 billion by 
2030, a 20 percent increase. At the same time, cropland 
area increases by 70 million hectares, or 5 percent. These 
figures are broadly consistent with the latest population 
projections of the United Nations (2015) and with land-
use projections by FAO, reported in Alexandratos and 
Bruinsma (2012), and Ag-MIP, reported in Schmitz et al. 
(2014). The growth rate of agricultural TFP starts at 0.9 
percent per year in 2010 and declines over time, which 
is rather conservative compared with the assumptions 
used in Alexandratos and Bruinsma (2012). Importantly, 
these figures represent projections from the fitted model 
and are thus informed by the evolution of agricultural 
TFP from 1960 to 2010, as the estimated model essen-
tially projects forward the pace of development that has 
been observed in recent history.
The second situation we consider is also deterministic. 
We assume that shocks occur in 2016, 2018 and 2020. 
We label this scenario ‘2016-2018-2020.’ In the period 
just following each of the three shocks, agricultural TFP 
is exogenously brought down by 10 percent, although 
the planner anticipates each shock and can reallocate re-
sources relative to the baseline.

Table 1. Deterministic 'no shocks' scenario: Baseline values for selected variables

Year
World Population 
billion

Cropland Area 
billion hectares

Yearly Agricultural TFP 
Growth Rate

Per-capita Consumption 
thousand intl. dollars

2010 6.95 1.62 0.0094 4.29

2020 7.73 1.66 0.0086 4.88

2030 8.47 1.69 0.0078 5.46
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In the third scenario, labeled ‘expected value’, the planner 
allocates resources taking into account the expected val-
ue of the TFP reduction. In other words, he takes into ac-
count the risk of a 10 percent reduction in TFP each deci-
sion period, but weights that reduction by the associated 
probability of 10 percent. Thus, agricultural TFP growth 
in each decision period is exogenously brought down by 
around one percentage point. This scenario amounts to 
analyzing the allocation decisions of a risk-neutral plan-
ner, and where the realization of the shock happens to be 
exactly the expected value of the shock.
Finally, we compute trajectories that maximize expected 
utility. In this situation, the planner is risk-averse (rel-
ative risk aversion is set to γ  = 2). He takes into ac-
count the risk that agricultural TFP may decline, and 
what this entails for social welfare. A key point is that 
allocation decisions are contingent on the realized state 
of the world. In other words, after each decision period 
in which the risk is realized, the decision tree branches 
out, and the planner makes allocation decisions contin-
gent on being in a particular node in the uncertainty tree. 
By construction, there are then 2 ^

3 = 8  possible states of 
the world in 2030, and thus the same number of stochas-
tic scenarios for an expected-utility maximizing planner 
(we label each stochastic scenario according to the years 
in which TFP shocks are realized). 

4.2 Agricultural Technology Paths
Figure 3 shows the paths for agricultural TFP under al-
ternative scenarios. Starting with the deterministic sce-
narios, which are displayed in panel (a), agricultural TFP 

grows linearly at around one percent per year (and falling 
slightly) under the best-case ‘no shocks’ scenario. Under 
the deterministic ‘expected value’ path, TFP grows at a 
lower pace from 2016 to 2020, reflecting the expected 
value of the negative shocks. But before 2016 TFP grows 
ever so slightly quicker in the ‘expected value’ scenario, 
because the planner knows that small negative shocks 
will occur from 2016 to 2020 and makes provisions for 
them (see below). This anticipatory effect, as well as 
the subsequent shock to productivity, is more clearly 
apparent in the worst-case ‘2016-2018-2020’ scenario. 
Differences across deterministic scenarios are further il-
lustrated in Figure 4, panel (a), which reports paths for 
agricultural TFP relative to the ‘no shocks’ scenario. It 
shows that, by 2022, agricultural TFP on the ‘expected 
value’ path is around three percent lower than on the ‘no 
shocks’ path, and in the ‘2016-2018-2020’ scenario TFP 
it is more than 20 percent lower.
Turning to the stochastic scenarios, reported in pan-
el (b) of Figures 3 and 4, we distinguish four different 
groups of possible realizations according to the number 
of shocks that occur over time (in Figure 3 we also report 
the posterior probability distribution for each scenario). 
First, under the stochastic ‘no shocks’ scenario there is 
no shock occurring in either 2016, 2018 or 2020, a state 
of the world with posterior probability of around 0.73. 
However, unlike the deterministic ‘no shocks’ scenario, 
the planner prepares for the possibility of negative TFP 
shocks, and accordingly TFP is slightly higher. By con-
trast, in stochastic scenario ‘2016-2018-2020 ‘ a negative 
shock occurs in all three periods. This scenario has a 

Figure 3. Agricultural TFP under alternative scenarios

 (a) Deterministic scenarios (b) Stochastic scenarios
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posterior probability of 0.001. Before the first shock, the 
planner does not know for sure whether the world will 
end up in a good state, or in a bad, shock state. Because 
of the consequent need to hedge, agricultural TFP is not 
significantly different from that in the deterministic ‘no 
shocks’ scenario. However, after 2020 agricultural TFP in 
stochastic scenario ‘2016-2018-2020’ is significantly low-
er than in the deterministic ‘2016-2018-2020 ‘ scenario, 
because the planner did not fully anticipate that he would 
end up in the worst outcome possible.
The last two groups of stochastic scenarios include those 
where either one or two negative TFP shocks occur. In 
scenarios ‘2016’, ‘2018’ and ‘2020’, only one TFP shock 
occurs in each of these respective years, so that by 2022 
agricultural TFP is roughly 10 percent lower than un-
der the deterministic ‘no shocks’ scenario. The posteri-
or probability associated with this group of scenarios is 
around 0.24. Under scenarios ‘2016-2018,’ ‘2016-2020’ 
and ‘2018-2020’ there are two shocks occurring, so that 
by 2020 agricultural TFP is roughly 20 percent lower rel-
ative to the deterministic ‘no shocks’ scenario. The poste-
rior probability is around 0.03. Note that, in both groups 
of scenarios, TFP growth after 2020 is slightly more rapid 
than under the ‘no shocks’ scenarios, as more resources 
are allocated to R&D. However, catching up lost produc-
tivity gains is very slow.

4.3 Optimal Global Land Use
Implications for global cropland of alternative paths for 
agricultural TFP are displayed in Figure 5. We report the 
differences in cropland area relative to the determinis-
tic ‘no shocks’ scenario (in million hectares). Recall that, 

in the deterministic ‘no shocks’ scenario, cropland area 
increases by 70 million hectares between 2010 and 2030 
(see Table 1).

An important feature of Figure 5 is that, if the planner 
knows for sure that TFP will decline in the future (panel 
a), optimal cropland area immediately diverges from the 
‘no shocks’ scenario, with significantly more land being 
converted from natural land reserves. By 2030, an addi-
tional 70 million hectares are converted in the determin-
istic ‘2016-2018-2020’ scenario, which corresponds with 
a doubling of the pace at which land is converted in the 
‘no shocks’ scenario. Why is so much extra land brought 
into agricultural use? The answer is that the planner pre-
fers to substitute towards land to maintain the level of 
food production, because other production factors have 
to be taken away from the manufacturing and R&D sec-
tors, with a consequent large opportunity cost. The de-
terministic ‘expected value’ path only features a slightly 
larger stock of cropland than in the ‘no shocks’ scenario. 
Indeed, over 20 years only an additional 7 million hect-
ares are converted.

Turning to the stochastic scenarios, reported in panel 
(b), we observe that they all feature a larger stock of land 
relative to the ‘no shocks’ scenario. However the stock of 
land in stochastic scenario ‘2016-2018-2020’ (in which 
three negative shocks occur) is significantly lower than 
that in the corresponding deterministic ‘2016-2018-
2020’ scenario. Again, the planner must always hedge 
against an uncertain future in the stochastic scenarios, 
but whenever a negative TFP shock occurs there is an 
immediate increase in the amount of agricultural land 

Figure 4. Agricultural TPF relative to the deterministic 'no shocks' scenario

 (a) Deterministic scenarios (b) Stochastic scenarios
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brought into the system, in order to compensate for low-
er agricultural TFP

4.4 Welfare Analysis: Population and 
Per‑capita Consumption

We now turn to the welfare implications of uncertainty 
about agricultural TFP, focusing on population dynamics 
and per-capita consumption of the manufacturing prod-
uct. Recall that these are the two variables entering the 
objective function of the social planner (see equation 7).
Results for global population paths, relative to the deter-
ministic ‘no shocks’ scenario, are reported in Figure 6. 
As expected, a reduction in agricultural TFP has a neg-
ative impact on population. This follows from the fact 
that agricultural productivity growth declines, and the 
relative cost of food production increases, so the planner 
optimally chooses to reduce fertility on account of the 
higher cost of feeding the population. The effect is again 
most striking in the deterministic ‘2016-2018-2020’ sce-
nario, where the accumulation of population is signifi-
cantly slower compared to the ‘no shocks’ scenario: by 
2030, population is 170 million lower. This is substantial, 
given it is caused by a reduction of agricultural TFP of 
25 percent below the deterministic ‘no shocks’ reference 
scenario over a window of 6 years.
The impact of a reduction of agricultural TFP on pop-
ulation is long lasting, as differences between paths in 
which a negative shock occurs and the deterministic ‘no 
shocks’ scenario are hysteretic, that is they remain in the 
long run. In particular, we observe that stochastic sce-
narios with the same number of shocks (on the one hand 
‘2016’, ‘2018’ and ‘2020’, and on the other hand ‘2016-

2018’, ‘2016-2020’ and ‘2018-2020’) converge to the same 
loss of global population relative to the deterministic ‘no 
shocks’ scenario.
Per-capita consumption of the manufacturing good rela-
tive to the deterministic ‘no shocks’ scenario is reported 
in Figure 7. We find that differences in per-capita con-
sumption between the deterministic best and worst cases 
(panel a) fluctuate at around one percent. This captures 
the fact that, in our model, the two consumption goods 
are complements, so that more expensive agricultural 
products also reduce the demand for other consumption 
goods. In other words, in the face of a certain or uncer-
tain shock to agricultural TFP in the future, the planner 
reduces consumption of both goods in order to smooth 
consumption over time, and allocates manufacturing 
output towards increasing the stock of capital.
In stochastic scenarios, reported in panel b, per-cap-
ita consumption fluctuates significantly. In stochastic 
scenario ‘no shocks’, per-capita consumption is initially 
lower than it is in the deterministic ‘no shocks’ scenario, 
although after the first shock the stochastic ‘no shocks’ 
scenario reaches almost 0.5 percentage points higher 
than the deterministic ‘no shocks’ scenario. This reflects 
the extra consumption afforded by the hedging behavior 
once the planner knows that the anticipated shock will 
not occur. However, when a negative shock occurs, there 
is a sharp decline in per-capita consumption of around 
1.5 percent relative to the deterministic ‘no shocks’ sce-
nario. In the worst-case stochastic scenario ‘2016-2018-
2020’ where three shocks occur, the drop in per-capita 
consumption is much larger than the corresponding de-
terministic ‘2016-2018-2020’ scenario.

Figure 5. Global cropland area relative to the deterministic 'no shocks' scenario

 (a) Deterministic scenarios (b) Stochastic scenarios
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5. Discussion and Sensitivity Analysis
Overall, our results suggest that uncertainty about the fu-
ture evolution of agricultural TFP has major implications 
for growth, population and land use. In scenarios where 
one shock occurs, agricultural TFP is around 10 percent 
lower than in the deterministic ‘no shocks’ trajectory 
(which we shall henceforth refer to as the ‘baseline’, for 
convenience). Given baseline growth of agricultural TFP of 
about one percent per year, this would correspond roughly 
to a ten-year hiatus in technological progress. Given our 
assumptions, the probability that the planner faces such a 
state of the world is around 25 percent. By 2030, our model 

indicates that a shock in 2016, 2018 or 2020 would trigger 
cropland expansion of approximately 20 million hectares, 
which would be in addition to the 70 million hectares con-
version occurring in the baseline, while the optimal popu-
lation would be around 40 million lower than in the base-
line. If two shocks occur, so that agricultural TFP is around 
17 percent lower than the baseline, more than 30 million 
hectares of additional cropland are created. At the same 
time, global population is 80 million lower.
While these figures may appear to be small relative to the 
current cropland area and population, they are, from a 
policy perspective, quite large. From 1990 to 2010, about 

Figure 6. 

 (a) Deterministic scenarios (b) Stochastic scenarios

Figure 7. 

 (a) (b)
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100 million hectares of land were brought into cropping. 
In this period, there has been growing concern about the 
value of the lost natural land and associated ecosystem 
services (e.g. Millennium Ecosystem Assessment, 2005). 
Most of the land conversion has been and will be taking 
place in developing countries, where a large share of valu-
able biodiversity remains, whereas in developed countries 
we observe a decline in cropland area (Alexandratos and 
Bruinsma, 2012). In addition, as strategies to mitigate cli-
mate change, in the future we may see increasing land used 
for the production of biofuels, or for afforestation, instead 
of for food production. The scale of our results is thus im-
portant from the perspective of global conservation and 
rural land-use policy. Second, while the ‘loss’ of popula-
tion is small relative to observed population growth and 
that expected to take place in the near future, it is substan-
tial, as it represents the optimal fertility response to lower 
agricultural productivity. Put another way, a non-optimal 
fertility response by a large number of households max-
imizing their own private objectives could generate a 
food-security problem at the aggregate level.
In the following, we assess the sensitivity of our results 
with respect to three key assumptions we have made. 
First, we consider the role of substitutability between land 
and the capital-labor composite in agriculture. Second, 
we discuss how the income elasticity of food demand af-
fects our results.17 Finally, we study the implications of a 
scenario in which trend agricultural productivity growth 
declines to zero and then becomes negative.

5.1 Lower Land Substitutability (σ  = 0.2)
A key determinant of the demand for agricultural land 
is the parameter σ  (see equation 2), which measures the 
elasticity of substitution between land and a capital-la-
bor composite. The baseline value for σ  in our model is 
0.6. This estimate is derived from Wilde (2013), who uses 
data from pre-industrial England to measure long-run 
substitution possibilities between land and other inputs. 
There is, however, some uncertainty about the external 
validity of this estimate when it comes to the present 
model and in particular the present context, where we 
use the model not to project into the very long run (as we 
do in Lanz et al. (forthcoming)), but rather to focus on 
the period from 2010 to 2030 and study deviations from 
the baseline trajectories. Other applied modeling work 
typically uses lower elasticities of substitution. The exam-
ple we consider here is taken from Hertel et al. (2012), 
who suggest a value of 0.2.

17  For these two sets of simulations, we re-estimate the model to 
remain on the same trajectory over the estimation period 1960-2010. 
This ensures that the results are comparable with those reported above 
(see Lanz et al., forthcoming, for a complete description of the re-esti-
mation of the parameters). 

Figure 8 reports results, with σ  = 0 .2 , for agricultural 
land area under both deterministic scenarios (panel a) 
and stochastic scenarios (panel b). Figure 9 reports the 
corresponding results for consumption per capita.
Panel (a) of Figure 8 shows that, under the deterministic 
scenarios, global cropland expands in a qualitatively sim-
ilar fashion when substitutability of land is lower, but the 
size of the expansion is significantly greater. Relative to 
the deterministic ‘no shocks’ scenario, an additional 110 
million hectares is brought under cultivation globally by 
2030 in the worst-case ‘2016-2018-2020’ scenario. Recall 
that when σ  = 0 .6  the equivalent difference between 
scenarios was about 70 million hectares, so reducing the 
substitutability of land results in an additional 40 million 
hectares of cropland. Panel (b) shows that, under the sto-
chastic scenarios, the area of additional cropland (rela-
tive to the deterministic ‘no shocks’ scenario) is roughly 
doubled when σ  = 0 .2 . For example, the increment ris-
es from 50 to 100 million additional hectares of cropland 
by 2030 in the stochastic ‘2016-2018-2020’ scenario.
Figure 9 shows that, despite the greater expansion of crop-
land that is triggered when the substitutability of land is 
lower, the planner makes a substantial reduction in con-
sumption of the manufactured good in order to cope with 
the shocks to agricultural TFP and the associated increase 
in the cost of producing food. According to panel (a), in 
the deterministic ‘2016-2018-2020’ scenario, consump-
tion per capita is 9 percent lower than in the determin-
istic ‘no shocks’ scenario by 2030. Panel (b) also shows 
large reductions in optimal consumption per capita under 
the various stochastic shock scenarios. In the worst-case 
stochastic ‘2016-2018-2020’ scenario, consumption per 
capita falls by as much as 17 percent relative to the deter-
ministic ‘no shocks’ scenario in 2022, before recovering to 
about 13 percent lower in 2030. Hence a key consequence 
of a lower substitutability of land in agriculture is a higher 
welfare cost of agricultural TFP shocks.

5.2 Subsistence Food Demand (κ  = 0)
In our main model specification, food demand is propor-
tional to the level of population and is also an increas-
ing (but concave) function of per-capita income (here 
per-capita output from the manufacturing sector). This is 
shown in equation (5), where the parameter κ measures 
the income elasticity of food demand. By making a link 
between manufacturing and agricultural output, the pa-
rameter κ  > 0  creates complementarity, so that negative 
shocks to agricultural productivity will have a direct neg-
ative impact on production in the manufacturing sector. 
As an alternative, in this section we consider a case in 
which food demand is solely proportional to population 
(κ  = 0), which is equivalent to a case in which food 
demand represents a physiological requirement. In this 
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framework, which is also studied in Strulik and Weisdorf 
(2008), Vollrath (2011) and Sharp et al. (2012), food pro-
duction is directly proportional to population and hence 
implicitly directly enters into the objective of the planner.

Figure 10 reports results for κ  = 0 . As usual, panel (a) 
includes the deterministic scenarios and panel (b) the 
stochastic scenarios. Figures 11 and 12 report corre-
sponding results for population and consumption per 
capita respectively.

Figure 10 shows that optimal cropland area is fairly in-
sensitive to changing the income elasticity of food de-
mand. Cropland expansion in all scenarios, determin-

istic and stochastic, is only slightly lower relative to the 
comparable trajectories reported in Figure 5. However, 
Figure 12 shows that, when the income elasticity of food 
demand is zero, the trajectory for optimal consumption 
per capita differs significantly from that derived with 
κ = 0.25 (cf. Figure 7). In particular, when κ = 0 and the 
planner faces a negative shock to agriculture, the decline 
in per-capita consumption relative to the ‘no shock’ sce-
nario is initially small, but then increases with time. Ulti-
mately, therefore, the decline in per-capita consumption 
is more pronounced when κ = 0 than when κ = 0.25.
There are two main drivers of these differences. First, 
as expected, when the demand for food is not driven by 

Figure 9. 

 (a) (b)

Figure 8. 

 (a) Deterministic scenarios (b) Stochastic scenarios
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Figure 10. 

Figure 11. 

 (a) Deterministic scenarios (b) Stochastic scenarios

 (a) (b)

Figure 12. 

 (a) (b)
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income (κ = 0), aggregate consumption declines in re-
sponse to an agricultural productivity shock, but not as 
much as when κ = 0.25. This is because κ > 0 implies 
some degree of complementarity between manufacturing 
and food consumption. Second, as we show in Figure 11, 
since κ > 0 implies that more weight is given to sustaining 
population, the decline in population following a shock 
is significantly smaller than when κ = 0. As the stock of 
population grows larger over time, this in turn implies 
that the decline in per-capita consumption is larger.
Thus, in sum, when food consumption reflects a subsis-
tence constraint, the planner favors a large population 
over per-capita consumption, reflecting a preference 
over quantity rather than quality.

5.3 Negative Agricultural Productivity Growth
Our last extension to the model considers the possibil-
ity of a secular decline in the growth trend, rather than 
sudden and persistent shocks to a trend of otherwise 
growing agricultural TFP. This possibility has been raised 
by Alston et al. (2009) for example. Specifically, we con-
sider a trajectory for agricultural TFP in which growth 
is around 1 percent from 2010 to 2015 (which is the 
same as our main specification), declines to 0.5 percent 
during the period 2015 to 2025, then drops to around 
zero and smoothly declines thereafter (at the same pace 
as in the main specification). The resulting trend is plot-
ted in Figure 13, alongside agricultural TFP growth in 
our main specification. To make alternative specifica-
tions readily comparable, we constrain R&D-based TFP 
growth (and its associated labor requirements) to remain 
on its baseline trajectory, so agricultural R&D cannot 

compensate for this secular decline. In other words, the 
planner cannot add more labor to agricultural R&D so as 
to speed up technological progress in that sector. There-
fore, since the planner cannot affect productivity growth, 
other adjustments are needed to compensate.

Results for agricultural land and per-capita consumption 
are reported in Figure 14. Global cropland is expanded 
gradually but significantly relative to the main determin-
istic ‘no shocks’ specification, with more than 200 million 
hectares of additional land brought under cultivation by 
2050. When added to cropland expansion under the de-
terministic ‘no shocks’ scenario, this amounts to a total 
expansion of about 320 million hectares by 2050. As a 
sense-check, the median projection of the AgMIP mod-
els is for global cropland to expand by about 175 million 
hectares by 2050 in a reference scenario without climate 
change, but the range of uncertainty (i.e. the inter-model 
range) extends from about -100 million hectares to more 
than 400 million hectares (Schmitz et al., 2014).

The right panel of Figure 14 shows that consumption per 
capita is initially higher under the scenario of agricultur-
al TFP decline, which may appear puzzling at first. But 
this increase is due to the fact that, with an unexpect-
ed change in the trajectory for agricultural TFP growth, 
the saving rate is too high, and the planner i1runedi-
ately starts to consume more than he initially intended 
to. However, despite a short-term increase in per-capita 
consumption, over the longer run the difference erodes 
and after 2030 it is lower, falling to about 2.7 percent be-
low the deterministic ‘no shocks’ scenario by 2050. This 
result confirms the view that a decline in agricultural TFP 

Figure 13. 

 (a) Agricultural TFP in levels (b) Agricultural TFP relative to baseline
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growth in the near future has large and long-lasting mac-
roeconomic consequences in terms of living-standards.

6. Conclusion
The development of agricultural technology is a key de-
terminant of the ability to sustain enough food produc-
tion in a world with growing population and per-capita 
income. Yet assessing uncertainties about its future evolu-
tion is difficult because of the wide ranging implications 
it will have. In this article we have taken a dynamic-sto-
chastic view of the problem, focusing on the macroeco-
nomic consequences at the global level, where both tech-
nological progress and population are endogenous.

The main contribution of our work is to quantify im-
plications of technological uncertainty, showing that 
it implies significantly more land conversion to sustain 
agricultural production. Because our model combines a 
set of carefully selected theoretical blocks with an em-
pirically-driven approach to the selection of parameters 
determining the quantitative response of the model, it 
suggests a number of hypothesis that could be tested 
empirically in future work. One of these is to focus on 
closed economies (presumably in the past) and quantify 
the change in agricultural land area following a negative 
agricultural shock. Another related empirical endeavor 
suggested by our work is related to substitutability of 
land in agriculture. We have shown that our results are 
significantly affected by assumptions about this quantity, 
and further evidence along the lines suggested by Wilde 
(2013) is warranted.

Our work further shows that population is significant-
ly affected by variability in agricultural TFP. The scale of 
the population impacts with our baseline assumptions 
goes into the tens of millions, eventually even more than 
that. We emphasize that, in our model, this effect goes 
through lower fertility, as negative agricultural produc-
tivity shocks increase the relative cost of food. In other 
words, our model captures a socially optimal adjustment 
of population that is based on a constant mortality as-
sumption. It is nevertheless indicative of a large food se-
curity issue, as in the real world smooth forward looking 
adjustments are unlikely.

We close by highlighting that our global view of the prob-
lem hides distributional issues. Most famines and environ-
mental degradation occur at the local level, and in particu-
lar in developing countries. Agricultural TFP shocks may 
disproportionately affect low-income countries. Similarly, 
since land conversion will most likely occur in developing 
countries, technological uncertainty may exacerbate fur-
ther land conversion and biodiversity losses there.
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Appendix: Estimated parameters and model fit
The vector of parameters that minimizes equation (10) is reported in Table A1, and the result-
ing trajectories are reported in Figure A1, comparing observations over the period from 1960 
to 2010 with simulations from the estimated model. As evident from the figures, the estimated 
model provides a very good fit to recent history, and the relative squared error (10) across all 
variables is 3.52 percent. The size of the error is mainly driven by the error on output (3.3 per-
cent), followed by land (0.1 percent) and population (0.03 percent). Figure Al also reports the 
growth rate of population, which is not directly targeted by the estimation procedure, showing 
that the simulated trajectory closely fits the observed dynamics of population growth.

Table A1.

Parameter Description Estimates

µ _mn Elasticity of labor in manufacturing R&D 0.581

µ _ag Elasticity of labor in agricultural R&D 0.537

χ Labor productivity parameter in child rearing 0.153

ζ Elasticity of labor in child rearing 0.427

ω Elasticity of labor productivity in child rearing w.r.t. technology 0.089

ψ Labor productivity in land conversion 0.079

ε Elasticity of labor in land conversion 0.251
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Figure A1. estimation of the model 1960–2010 (source: Lanz et al., forthcoming)
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