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Abstract
Northern Eurasia is made up of a complex and diverse set of physical, ecological, climatic and
human systems, which provide important ecosystem services including the storage of substantial
stocks of carbon in its terrestrial ecosystems. At the same time, the region has experienced
dramatic climate change, natural disturbances and changes in land management practices over
the past century. For these reasons, Northern Eurasia is both a critical region to understand and
a complex system with substantial challenges for the modeling community. This review is
designed to highlight the state of past and ongoing efforts of the research community to
understand and model these environmental, socioeconomic, and climatic changes. We further
aim to provide perspectives on the future direction of global change modeling to improve our
understanding of the role of Northern Eurasia in the coupled human–Earth system. Modeling
efforts have shown that environmental and socioeconomic changes in Northern Eurasia can have
major impacts on biodiversity, ecosystems services, environmental sustainability, and the carbon
cycle of the region, and beyond. These impacts have the potential to feedback onto and alter the
global Earth system. We find that past and ongoing studies have largely focused on specific
components of Earth system dynamics and have not systematically examined their feedbacks to
the global Earth system and to society. We identify the crucial role of Earth system models in
advancing our understanding of feedbacks within the region and with the global system. We
further argue for the need for integrated assessment models (IAMs), a suite of models that
couple human activity models to Earth system models, which are key to address many emerging
issues that require a representation of the coupled human–Earth system.
1. Introduction

Northern Eurasia consists of a diverse set of ecosystems,
both natural and managed, across a wide range of
climatic conditions, including subarctic, humid conti-
nental, semi-arid and desert climates. The region is host
to a variety of the Earth’s biomes like tundra, taiga,
broadleaved forest, steppe and desert, as well as
© 2017 IOP Publishing Ltd
significant areas of cropland, pasture, rangeland,
managed forests and urban areas. Northern Eurasia
includes roughly 70% of the Earth’s boreal forest and is
underlain by more than two-thirds of the Earth’s
permafrost (Groisman et al 2009). Frozen soils within
the northern Arctic and subarctic regions store large
quantities of organic carbon, whether in the top soil
layer or indeposits deeper than3m(McGuire et al2009,
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Schuur et al 2015). For example, large amounts of
carbon are believed to be sequestered in the deep
permafrost carbonpool of theYedoma region in Siberia,
in typical Yedoma deposits (late Pleistocene ice- and
organic-rich silty sediments) in Alaska, and in deposits
formed in thaw-lake basins (generalized as thermokarst
deposits). Similarly, significant stocks of carbon are
stored in boreal forests, both in their soil, live biomass,
deadwoodand litter (Pan et al2011,Thurner et al2014).
As a result, Northern Eurasia is a major player in the
global carbon budget. Furthermore, the region has
experienced major environmental and socioeconomic
changes over the past century. These include increases in
temperature, growing season length, floods and
droughts (Groisman and Soja 2009, Soja andGroisman
2012, Groisman et al 2009), permafrost thaw (Roma-
novsky etal2007), and forestfires (Groisman etal2007);
changes in snow characteristics and icing conditions
(Bulygina et al 2011, 2015); and extensive disturbance
from land-use change and water management projects
(Groisman et al 2009). These past and ongoing
environmental and socioeconomic changes can have
major impacts on biodiversity, environmental sustain-
ability, ecosystem services, and the carbon cycle in the
region that can potentially feedback to alter the global
Earth system. These studies also suggest the region is
poised to be further impacted by future climate change.
For these reasons, Northern Eurasia represents a critical
and complex region to understand with substantial
challenges for the modeling community.

To better understand this region, which extends
from 15°E in the west to the Pacific coast in the east
and from 40°N in the south to the Arctic Ocean coast
in the north, a group of international scientists,
including US, European, Asian and Russian scientists
have been motivated to work together and developed a
program of research called the Northern Eurasia Earth
Science Partnership Initiative (NEESPI). As a result of
the first formal NEESPI workshop, which took place in
2002, and other subsequent workshops, the mission of
NEESPI was defined as follows: ‘ . . . identify the
critical science questions and establish a program of
coordinated research on the state and dynamics of
terrestrial ecosystems in Northern Eurasia and their
interactions with the Earth’s climate system to enhance
scientific knowledge and develop predictive capabili-
ties to support informed decision-making and
practical applications.’ An overview of the NEESPI
science plan is given in Groisman and Bartalev (2007).
Since then, a substantial effort has been directed to the
development of a variety of models to organize and
improve our knowledge of Earth system processes in
Northern Eurasia, especially focusing on their future
responses to climate change and changes in socioeco-
nomic drivers. Through NEESPI, a large body of
interdisciplinary and dynamic research has been
produced, highlighting major implications of envi-
ronmental, socioeconomic and climatic change for
natural and managed ecosystems and investigating the
2

potential future states of the region to support
informed decision-making for society. Many of these
results were published in three completed Focus Issues
in Environmental Research Letters (Groisman and Soja
2007, 2009, Soja and Groisman 2012), an ongoing
Focus Issue (which will be the last NEESPI Focus
Issue), one completed Special Issue in Global and
Planetary Change (Groisman 2007) and a large
number of books (Groisman et al 2014).

In this review paper, we assess the state of recent
and ongoing efforts to model specific aspects of the
Earth system relevant to Northern Eurasia. Specifically,
we survey articles from the various NEESPI special
issues, other NEESPI-supporting articles and articles
selected based on the authors’ experience and
knowledge with the relevant literature on Northern
Eurasia. We further select the articles describing the
development and application of models or modeling
frameworks to investigate issues specific to the region.
We underscore the few studies that have aimed to
integrate multiple components of the Earth system
and frame the NEESPI modeling efforts in the context
of more global and general modeling exercises. We
then discuss new approaches to global change
modeling for Northern Eurasia. We draw attention
to the usefulness of Earth system models to examine
the potential importance of feedbacks among Earth
system components on the evolution of global change
and the responses of ecosystems, including those in
Northern Eurasia, to that change. We further
emphasize the need to incorporate human dimensions
with environment dynamics and the emergence of
integrated assessment models as important tools to
model the coupled human–Earth system. A wide
spectrum of model integration exists, ranging in
complexity from representing the impact of climate
change on a single component of the Earth system to a
fully integrated coupled human–Earth system model-
ing framework (see figure 1). However, issues still
exist, consequently NEESPI researchers need to
develop a new paradigm of integrated global change
modeling for Northern Eurasia. Finally, we discuss
how new modeling efforts may help to provide
insights into emerging issues unique to the region and
address questions of uncertainty in future projections.
2. Recent and ongoing modeling studies
over Northern Eurasia

A large number of models have been developed to
represent the complex and diverse set of physical,
ecological, climatic and human systems that make up
Northern Eurasia. These include models focusing on
the many ecological and geophysical processes
comprising Earth system dynamics of interest in the
region, such as the hydrological cycle, soil thermal
dynamics, wildfires, dust emissions, carbon cycle,
terrestrial ecosystem characteristics, climate and
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Figure 1. Schematic showing an example of a current study that focuses on the climate impacts on a single component of the Earth
system, here imposing climate change on forest productivity (shown in red), compared to an example of a framework that links the
Earth system (cyan), including the land (green), atmosphere (light blue) and ocean (dark blue) and their individual components, to
the human system (purple). The resulting coupled human–Earth system modeling framework allows for a complete investigation of
integrated global change. There is a spectrum of integrated modeling studies, and most studies fall in between these two drastic
examples (i.e. representing the impact of climate change on land processes, including both red and green colors).
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weather, or sea ice. Modeling efforts also focus on
human dimensions, like demographic models, risk
management models, and models that link the human
system and the Earth system, such as models
representing agriculture, forestry and water manage-
ment. Because Northern Eurasia accounts for 60% of
the land area north of 40°N, includes roughly 70% of
the Earth’s boreal forest and more than two-thirds of
the Earth’s permafrost, most of the past and ongoing
research on modeling of Earth system dynamics over
Northern Eurasia have put a large emphasis on the
land system, whether the focus is on physical processes
(e.g. land and water carbon cycle, energy balance) or
the fate of the land system under climate change
(permafrost thawing, agriculture, wildfire, dust
storms). Table 1 shows a non-exhaustive list of
modeling studies with a focus on Northern Eurasia
sorted by specific aspects of the Earth and human
systems.

These models also vary widely in their character-
istics, approaches, applications and focus, from
empirical models that are based on statistical relation-
ships using observed data to process-based models that
focus on simulating detailed processes that explicitly
describe the behavior of a system, and from agent-
based models that simulate individual agents of a
system in order to assess the behavior of the system as
a whole to systems models that focus on the
interactions among the various components of a
system. Depending on the particular scope of the
research question, models are developed to take
advantage of the various model classes and
approaches, as summarized in figure 2.

Empirical models can be expertly calibrated to
reproduce past and current behavior of the system
when observational data is available, but they can
suffer from unimpressive out-of-sample performance,
such as for future climate change studies, in different
3

geographical regions, or for components with differ-
ent properties. Process-based models are well-suited
for examining a system’s responses to evolving
conditions, or when observational datasets are scarce
or non-existent (i.e. gap-filling or re-analysis data-
sets), but they can suffer from biases, overfitting of
parameters due to data scarcity, and a lack of
consensus on the underlying theory to describe a
specific process. For these reasons, empirical models
are mainly used when sufficient observational datasets
are available to derive robust statistical relationships,
such as empirical crop models in the United States
(Lobell and Asner 2003, Schlenker and Roberts 2009,
Sue Wing et al 2015), but are not as commonly used
over Northern Eurasia. Process-based models can be
used in global studies, such as process-based crop
models simulating yields over the entire globe, even in
regions where crops are not currently growing
(Rosenzweig et al 2014).

Agent-based models focus on a single agent,
represented with a high level of detail, but at the cost of
not representing interactions and feedbacks among
the various components of the Earth system. These
models are particularly common in ecology, such as
modeling individual trees in a forest (Shuman et al
2013b). At the other end of the spectrum, systems
models are generally designed to study feedback
processes, with a simplified representation of each
component, often assumed to be homogeneous in
scale and properties, and thus are more commonly
used at larger scales when computational demand is
high and data is lacking. For example, micro-scale land
surface models can use a multilayer structure to
represent the canopy, even distinguishing leaf angle
classes in each canopy layer to represent differential
illumination of canopy surfaces (Xu et al 2014);
meanwhile global land surface models generally
assume a single layer ‘big leaf ’ model (Friend 2001).



Table 1. Non-exhaustive list of modeling studies with a focus on Northern Eurasia sorted by specific aspects of the Earth and human
systems. Note that some studies are listed under several aspects of the Earth and human systems.

Agriculture (crop

modeling, economics)

Dronin and Kirilenko 2010, Gelfan et al 2012, Iizumi and Ramankutty 2016, Magliocca et al 2013, Peng et al

2013, Schierhorn et al 2014a, 2014b, Tchebakova et al 2011

Air quality (aerosols,

ozone, pollen . . . )

Baklanov et al 2013, Darmenova et al 2009, Lu et al 2010, Siljamo et al 2013, Sofiev et al 2013, Soja et al

2004, Sokolik et al 2013, Xi and Sokolik 2015, 2016

Carbon (in land and

water)

Bohn et al 2013 2015, Cresto-Aleina et al 2015, Dargaville et al 2002a, 2002b, Dass et al 2016, Dolman et al

2012, Gao et al 2013, Glagolev et al 2011, Gustafson et al 2011, Hayes et al 2011a, 2011b, 2014, John et al

2013, Kicklighter et al 2013, 2014, Kim et al 2011, Koven et al 2011, Kuemmerle et al 2011, 2011b, Lu et al

2009, McGuire et al 2010, Mukhortova et al 2015, Narayan et al 2007, Olchev et al 2009a, 2013, Rawlins et al

2015, Rossini et al 2014, Sabrekov et al 2014, 2016, Saeki et al 2013, Schaphoff et al 2015, Schierhorn et al

2013, Schulze et al 2012, Shakhova et al 2013, 2015, Shuman and Shugart 2009, Shuman et al 2013a, Yue et al

2016, Zhang et al 2012, Zhu et al 2013, 2014, Zhu and Zhuang 2013, Zhuang et al 2013

Climate Anisimov et al 2013, Arzhanov et al 2012a, 2012b, Miao et al 2014, Monier et al 2013, Onuchin et al 2014,

Shahgedanova et al 2010, Shkolnik and Efimov 2013, Volodin 2013, Volodin et al 2013, Zuev et al 2012

Cryosphere (snow,

glaciers, sea ice . . . )

Callaghan et al 2011a, 2011b, Farinotti et al 2015, Hagg et al 2006, Klehmet et al 2013, Loranty et al 2014,

Pieczonka and Bolch 2015, Shahgedanova et al 2010, Shakhova et al 2015, Sorg et al 2012

Demography Heleniak 2015

Energy balance Brovkin et al 2006, Gálos et al 2013, Loranty et al 2014, Olchev et al 2009b, Oltchev et al 2002b, Tchebakova

et al 2012

Hydrological cycle Bowling and Lettenmaier 2010, Cresto-Aleina et al 2015, Gelfan 2011, Georgiadi et al 2010, 2014, Hagg et al 2006,

Karthe et al 2015, Khon and Mokhov 2012, Klehmet et al 2013, Kuchment et al 2011, Liu et al 2013, 2014, 2015,

McClelland et al 2004, Motovilov and Gelfan 2013, Novenko and Olchev 2015, Olchev et al 2009a, 2013, Oltchev

et al 2002a, 2002b, Osadchiev 2015, Rawlins et al 2010, Serreze et al 2006, Shiklomanov et al 2013, Shiklomanov

and Lammers 2013, Sorg et al 2012, Streletskiy et al 2015, Troy et al 2012, Zhang et al 2011

Land-use change Blyakharchuk et al 2014, Griffiths et al 2013, Gustafson et al 2011, Hayes et al 2011a, Hitztaler and Bergen

2013, Kicklighter et al 2014, Kraemer et al 2015, Kuemmerle et al 2009, Meyfroidt et al 2016, Robinson et al

2013, Schierhorn et al 2013, Schierhorn et al 2014, 2014b, Smaliychuk et al 2016, Zhang et al 2015

Infrastructure Shiklomanov and Streletskiy 2013, Shiklomanov et al 2017, Stephenson et al 2011, Streletskiy et al 2012

Nitrogen Kopácěk et al 2012, Kopácěk and Posch 2011, Oulehle et al 2012, Zhu and Zhuang 2013, Zhuang et al 2013

Permafrost Euskirchen et al 2006, Gao et al 2013, Gouttevin et al 2012, Hayes et al 2014, MacDougall and Knutti 2016,

Marchenko et al 2007, Shakhova et al 2013, 2015, Streletskiy et al 2012, 2015, Zhang et al 2011

Terrestrial ecosystems

characteristics

Cresto-Aleina et al 2013, Kopac ̌ková et al 2014, 2015, Lapenis et al 2005, Lebed et al 2012, Li et al 2016,

Shuman et al 2013, 2013b, Shuman and Shugart 2012, Ziółkowska et al 2014

Vegetation shifts Gustafson et al 2011, Jiang et al 2012, 2016, Khvostikov et al 2015, Kicklighter et al 2014, Li et al 2014,

Macias-Fauria et al 2012, Novenko et al 2014, Schaphoff et al 2015, Shuman et al 2015, Soja et al 2007,

Tchebakova et al 2009, 2010, 2016a, 2016b, Tchebakova and Parfenova 2012, Velichko et al 2004

Weather (i.e. extreme

events)

Barriopedro et al 2011, Meredith et al 2015, Mokhov et al 2013, Schubert et al 2014, Shkolnik et al 2012

Wildfire Balshi et al 2007, Dubinin et al 2011, Gustafson et al 2011, Kantzas et al 2013, Loboda and Csiszar 2007,

Malevsky-Malevich et al 2008, Narayan et al 2007, Park and Sokolik 2016, Schulze et al 2012, Soja et al 2004,

Tchebakova et al 2009, 2012, Vasileva and Moiseenko 2013

Zoology Kuemmerle et al 2011a, 2014, Ziółkowska et al 2014
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Process-based models have been used most
frequently by the NEESPI community, most likely
because Northern Eurasia is not as data rich as other
regions of the world. However, in practice, most
process-based models include some form of empirical
modeling to inform parameterizations of processes
that are not precisely known or processes taking place
at scales too small to be fully represented. Meanwhile
many models fall in-between agent-based models and
systems models, with a compromise made between the
detailed representation of systems and their inter-
actions. Furthermore, because of the trade-off between
4

model complexity, scale and observational data
availability, methodologies have been developed to
combine models with observational datasets, whether
they are based on inventories (Dolman et al 2012) or
remote sensing (John et al 2013).

While most modeling studies focus on a specific
component of the Earth system, a few studies have
integrated various aspects of the Earth system, in terms
of scale (Gouttevin et al 2012, Zhu et al 2014),
teleconnection or global feedbacks (Dargaville et al
2002b, Macias-Fauria et al 2012) and processes
(Euskirchen et al 2006, Callaghan et al 2011b, Sokolik



AGENT-BASED MODELS SYSTEMS MODELS

EMPIRICAL MODELS

PROCESS-BASED MODELS

• Statistical relationships
• Grounded by observations
• Out-of-sample issue

• Physical representation of process
• Well-suited for out-of-sample analysis
• Bias issue, require careful calibration

• Multiple systems
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• Little detail in characteristics of system
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Figure 2. Schematic summarizing the strength and limitations of models based on the class of model (empirical models to process-
based models) and modeling approaches (from agent-based models to systems models). The choice of model characteristics generally
depends on the purpose, scale and data availability.
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et al 2013). Other studies focus on integrated systems
where multiple disciplines overlap, such as modeling
studies of water management (Shiklomanov et al
2013), land management (Gustafson et al 2011,
Kuemmerle et al 2011b, Lebed et al 2012, Robinson
et al 2013, Shuman et al 2013a, Blyakharchuk et al
2014) or climate and infrastructure (Shiklomanov and
Streletskiy 2013, Shiklomanov et al 2017). This
growing effort to integrate existing models, through
scale, processes and feedback has translated in more
coordinated and multidisciplinary research projects.
For example, NEESPI scientists have integrated
models that can interact with each other, e.g. weather
and aerosol physics, including dust and smoke
aerosols (Darmenova et al 2009, Xi and Sokolik
2015, 2016, Park and Sokolik 2016); permafrost and
terrestrial hydrology with water management (e.g.
Zhang et al 2011, Shiklomanov and Lammers 2013);
the carbon and water cycles (e.g. Bohn et al 2015); land
carbon and atmospheric transport modeling (Darga-
ville et al 2002a, 2002b); and biospheric and climate
information (Tchebakova et al 2009, 2016a, 2016b,
Shuman et al 2015).

These modeling studies generally fall into two
categories: (1) diagnostic modeling studies that
identify key mechanisms and processes that control
the behavior of a system, assess the present relation-
ships among critical components of the environment
and evaluate models based on experimental and
observational datasets (e.g. Gouttevin et al 2012,
Anisimov et al 2013, Zhu et al 2014, Rawlins et al
2015); and (2) prognostic modeling studies that
focuses on the response of Earth system components
to global change (Gao et al 2013, Zhu et al 2013,
Kicklighter et al 2014).

Diagnostic modeling studies have improved our
understanding of the Earth system. These studies are
important as they ground the modeling efforts to
reality and provide a critical sanity check. They also
5

guarantee that models pass rigorous tests before being
used to enhance our understanding of mechanisms
and processes controlling the system of interest. For
this purpose, there is a growing need for close
collaborations between modeling groups and obser-
vational studies (Liu et al 2013, 2014, Loranty et al
2014, Rawlins et al 2015). Many approaches exist to
evaluate models at different temporal and spatial
scales. Focusing on the example of terrestrial carbon
and water fluxes, eddy-covariance is used for local high
temporal resolution (Liu et al 2014, 2015, Rawlins et al
2015); dissolved organic carbon (DOC) export and
discharge at the mouth of a river allows for the
assessment of the integrated response of a watershed
(Kicklighter et al 2013); inventory of forest carbon
stocks and biomass increment at the regional-to-
global scale evaluation (Pan et al 2011); or satellite
measurements for spatially explicit regional-to-global
scale evaluation (Liu et al 2013, 2014, Mehran et al
2014, Rawlins et al 2015).

At the same time, if a model is assessed as
performing realistically when simulating past or
present day conditions, it does not guarantee that
the response to different environmental conditions,
like future climate change, is sensible. For this reason,
suitable formalisms and standard experimental pro-
tocols that allow comparison between models are
getting more traction. The number of Model
Intercomparison Projects (MIPs) has grown substan-
tially in the past decade. With the inception of the
Atmospheric Model Intercomparison Project (AMIP)
in 1990, more than 30 MIPs are now in existence,
including the Snow Models Intercomparison Project
(SnowMIP), the Ocean Carbon-Cycle Model Inter-
comparison Project (OCMIP), or the Arctic Regional
Climate Model Intercomparison Project (ARMIP) to
name a few. A list of MIPs can be found at www.wcrp-
climate.org/wgcm/projects.shtml. Most MIPs usually
include models that are structurally similar and that

http://www.wcrp-climate.org/wgcm/projects.shtml
http://www.wcrp-climate.org/wgcm/projects.shtml


Figure 3. Schematic of a detailed, but non-exhaustive, accounting of climate change impacts on land biogeochemistry and
biogeophysics. Dashed lines represent the potential feedback of terrestrial ecosystem responses to the climate system.
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focus on the same component of the Earth system
(Sea-Ice Model Intercomparison Project, SIMIP),
phenomenon (Tropical Cyclone Climate Model,
TCMIP), process (Cloud Feedback Model Intercom-
parison Project, CFMIP), time period of focus (Paleo
Model Intercomparison Project, PMIP) or on the
interaction among specific components of the Earth
system (Atmospheric Chemistry and Climate Model
Intercomparison Project, ACC-MIP). Because of large
inconsistencies in input datasets, model output, or
experimental design of simulations between different
classes of models, most models within a MIP have the
same structure and generally fall in the category of
process-based models. Little effort has been devoted to
comparing different classes of models (process-based
versus empirical; agent-based versus system models).
Similarly, few MIPs have focused on a region of
interest, especially on Northern Eurasia.

Prognostic modeling studies focus on projections
of climate change over Northern Eurasia (Arzhanov
et al 2012a, 2012b, Shkolnik et al 2012, Monier et al
2013, Volodin et al 2013) and its associated impacts
over the 21st century. These studies build upon the
model development and evaluation discussed previ-
ously and they investigate the response of the Earth
system to global change. They often focus on specific
processes, such as permafrost thaw (Gao et al 2013) or
natural plant migration (Jiang et al 2012, 2016), or
specific elements of the Earth system, like agriculture
(Schierhorn et al 2014a, 2014b) or forests (Tcheba-
kova and Parfenova 2012, Olchev et al 2013). While
highly focused modeling studies can greatly enhance
our understanding of the response of a key process or
element of the Earth system, they usually make it
difficult to assess the behavior of a system as a whole.
For example, there are many processes through which
6

climate change can impact the emissions of green-
house gases from the land system (see figure 3),
including: (1) climate-induced vegetation shifts; (2)
changes in the frequency and severity of wildfires; (3)
permafrost thaw; and (4) changes in land productivity
caused by changes in temperature and precipitation,
ozone damage, nitrogen deposition, CO2 fertilization,
and land management. Individually, a study focusing
on a single process can enhance our understanding of
the land biogeochemistry under future climate change,
such as the work of Felzer et al (2005), which focuses
on the role of ozone damage on forestry and crop
productivity. But unless such studies are well
coordinated (e.g. using the same climate change
scenarios) and integrated (using the same modeling
framework), these studies would not permit a detailed
accounting and an attribution of the relative role of
each process in the overall system.

Furthermore, if interactions and feedbacks exist
among the different processes of climate change
impacts, individual studies could be misleading. For
example, changes in land emissions of greenhouse
gases (GHGs) can lead to potentially significant
feedbacks to the climate system, adding to the
anthropogenic emissions, and leading to even greater
concentrations of greenhouse gases in the atmosphere.
While our example focuses on land biogeochemistry,
the impact of climate changes in the characteristics of
the land, including albedo, surface roughness and soil
moisture (biogeophysical impact) plays an equally
important role in how the Earth’s energy budget may
evolve (Brovkin et al 2006, 2013). As a result, we argue
that a greater understanding and comprehensive
representation of feedbacks and interactions within
the Earth system are required and should be a major
emphasis of future model development efforts.
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Most studies of climate change impacts rely on
standard scenarios of climate change, such as climate
model projections archived from the Coupled Model
Intercomparison Project Phase 5 (CMIP5, Taylor et al
2012) that use the Representative Concentration
Pathway (RCP) scenarios (van Vuuren et al 2011a).
These climate scenarios are part of the latest
Intergovernmental Panel on Climate Change (IPCC)
Assessment Report (AR5) and have the advantage of
being the result of an international coordinated effort
to create multi-model ensembles of climate simu-
lations under a set of standard scenarios of greenhouse
gas concentrations. Such ensembles of climate
simulations sample the model structural uncertainty
that arise from differences in the parameterizations of
climate processes, the climate system response and
resolution; however, they are only an ensemble of
opportunity and do not sample the full range of
projections. Nonetheless, multi-model ensembles
based on coordinated scenarios have become the
standard for the climate impacts research community,
and have resulted in major advances in the under-
standing of many components of the Earth system,
including ocean ecosystems, agriculture, the global
climate system response, climate extremes, the Asian
monsoon, Arctic sea ice, or soil carbon (Bopp et al
2013, Kharin et al 2013, Knutti and Sedláček 2013,
Rosenzweig et al 2014, Sperber et al 2013, Stroeve et al
2012, Todd-Brown et al 2013). A common experi-
mental design for studies modeling climate impacts is
to prescribe climate change using the CMIP5 multi-
model ensembles, either the full ensemble including all
models that provide the relevant climate information
or simply a subset of models, and to examine the
varied response of a particular component of the Earth
system. A limitation of such a modeling framework is
that because climate change is prescribed, little
attention is placed on potential feedbacks, such as
the regional and global land feedbacks described in
figure 3, which are largely absent from the CMIP5
multi-model ensembles. The reliance of standardized
climate scenarios can often result in a lack of
systematic analysis of the various feedbacks in the
climate system. As a result, it is still unclear which
feedbacks are important and need to be considered.
The alternative is to use modeling frameworks that are
able to represent the many feedbacks in the Earth
system, both at the global and regional scales. Such
models, known as Earth system models, are expected
to be important tools for future modeling studies
focusing on Northern Eurasia.
3. New approaches to global change
modeling for Northern Eurasia

While many studies focus on the impact of climate
change on various ecosystems and components of the
Earth system, climate change impacts cannot be
7

examined without considering the role of human
activity. For this reason, we argue that the term
‘climate change’ should be replaced by the more
accurate terminology of ‘global change’. To examine
how global change influences the Earth system, two
related approaches are being developed based on an
integrated modeling framework, Earth system models
and integrated assessment models. Below, we first
describe these two integrated modeling frameworks in
general and the motivations behind them. We then
describe the potential benefits of applying these
approaches to Northern Eurasia along with the data
needed and available to support such modeling
activities.

3.1. Earth system models
The Earth system has complex interactions among
various physical, biological and chemical processes in
its different components such as the land, the
atmosphere and the ocean. An exact definition of
the Earth system is not formally agreed upon. In this
review, we offer the following definition: coupled
atmosphere, ocean, land (including rivers and lakes)
and cryosphere (sea ice, land ice, permafrost)
components with a representation of dynamical and
physical processes (e.g. river flow, ocean eddies, cloud
processes, erosion), chemical processes (chemical
gases and aerosols), biogeochemical processes (life-
mediated carbon-nutrient dynamics) and biogeophys-
ical processes (life-mediated water and energy balance)
in all components.

Earth system models (ESMs) have long been used
to gain insight into the complex interactions and
feedbacks within the Earth system that cannot be
directly studied in laboratories or through observa-
tional datasets. They are particularly useful tools to
investigate the response of the system to changes in
external forcings, such as changes in the concen-
trations of greenhouse gases, that not only affect each
of the components individually but also the inter-
actions among the components. More recent Earth
systemmodel development efforts have focused on the
representation of the interactive climate-chemistry
system, with efforts like the Coupled Climate-Carbon
Cycle Model Intercomparison Project (C4MIP, Fried-
lingstein et al 2006) or the estimation of the climate–
carbon feedbacks using Earth system models of
intermediate complexity (EMICs, Eby et al 2013).

ESMs have both advantages and limitations over
detailed single component models. ESMs are compu-
tationally expensive. Because they simulate the global
Earth system, they have not been the preferred
modeling framework for targeted studies focusing on
specific regions like Northern Eurasia when feedbacks
are not considered. In addition, because ESMs
represent the entire Earth system, with numerous
interactions and feedbacks among components,
simplifications in the representation of each compo-
nent are necessary to keep the computational burden



Environ. Res. Lett. 12 (2017) 083001 E Monier et al
at reasonable levels. Thus, the representation of any
particular component of the Earth system is rarely at
the cutting edge. While their development relies
heavily on detailed single-component models, the
strength of ESMs is their capability to integrate a vast
number of components. As a result, ESMs are well
suited to investigate the complex feedbacks among
processes and components of the Earth system at the
local, regional and global scales. ESMs can also be used
to investigate regional-to-global scale connections. An
example of complex interactions and feedbacks that
require an ESM is the effect of land-use change on
climate.

Land-use change has been shown to have large
impacts on the climate system, especially at local and
regional scales (Brovkin et al 2006, 2013). Land-use
change can affect the climate system via two pathways.
First, land-use change impacts GHG concentrations in
the atmosphere by changing land-atmosphere fluxes
of carbon dioxide (CO2), through land clearing mainly
associated with deforestation, and nitrous oxide
(N2O), through changes in fertilizer application
associated with the expansion and abandonment of
cropland areas. This ‘biogeochemical pathway’ has a
global fingerprint since GHGs are well-mixed in the
atmosphere. Second, land-use change affects the
physical characteristics of the land surface, including
albedo, roughness and hydrology (e.g. evapotranspi-
ration, soil moisture), and thus influence the exchange
of heat and water between the land and the
atmosphere. This ‘biogeophysical pathway’ has mainly
a local and regional fingerprint, although it can affect
regions away from land-use change through tele-
connections in the climate system. An Earth system
model, with its representation of the land, ocean and
atmosphere components, including chemistry, aero-
sols and carbon cycle, is necessary to represent both
feedback pathways (Hallgren et al 2013).

While many ESMs have recently incorporated the
influence of land-use change on earth system processes
in their simulations (Brovkin et al 2013, Eby et al
2013), the timing and locations of these land-use
changes have been prescribed based on assumed
economic decisions that were not affected by the
simulated changes in environmental conditions. To
better incorporate feedbacks of changing environ-
mental conditions (particularly climate change) on
future economic decisions, another suite of models are
being developed, known as integrated assessment
models, to represent the impacts of global change on
the Earth system.

3.2. Integrated assessment models
The 21st century will bring unprecedented challenges
including rapid population and economic growth,
increasing demand for food, fiber, construction
materials, energy and water at a time when emissions
abatement targets, agreed to at the 21st Conference of
the Parties (or ‘COP21’) to the United Nations
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Framework Convention on Climate Change
(UNFCCC), will induce changes in the energy system
away from fossil fuels and towards low-carbon
alternatives, including biofuels and bioelectricity.
Competition for land to meet these increased human
demands will have major implications for land
management practices, including water resources
management, land-use change and land-use emissions
(Melillo et al 2009, 2016, Reilly et al 2012), with
potentially significant feedbacks to the climate system
(Hallgren et al 2013, Jones et al 2013, DeLucia 2015).
At the same time, GHG emissions will drive changes in
temperature and precipitation patterns that will alter
crop yields (Rosenzweig et al 2014, Sue Wing et al
2015), productivity of managed forests and natural
terrestrial ecosystems, as well as the need for irrigation,
and its costs and capacities. These changes will not
only affect the food and water systems, but also the
energy system (i.e. the Food-Energy-Water nexus)
through impacts on the cost of growing biomass and
water availability. The influence of growing popula-
tions, abating GHG emissions and climate change will
differ regionally, and international trade in food and
energy commodities can smooth impacts across
regions.

A detailed representation of the human system,
including the global economy, demography, technol-
ogies and user preferences, is essential to study
potential impacts of future global change. While
original climate change scenarios relied on 2�CO2

concentrations idealized scenarios (first IPCC Assess-
ment reports), future emissions of greenhouse gases
and aerosols are now projected using integrated
assessment models (IAMs). These models combine
scientific and socio-economic modeling of climate
change primarily for the purpose of examining the
implications of climate mitigation and, to a lesser
degree, potential pathways of adaption to climate
change. IAMs generally include a model of the global
economy that simulates anthropogenic emissions of
greenhouse gas and a model of the physical climate
system (e.g. Integrated Model to Assess the Green-
house Effect or IMAGE, van Vuuren et al 2011b, MIT
Integrated Global System Model or IGSM, Sokolov
et al 2005, Reilly et al 2013, Global Change Assessment
Model or GCAM, Thomson et al 2011, Model for
Energy Supply Strategy Alternatives and their General
Environmental Impact or MESSAGE, Riahi et al 2011,
Asia Pacific Integrated Model or AIM, Fujimori et al
2014). Weyant et al (1996) identify threemajor goals of
integrated assessment modeling: (1) to coordinate the
exploration of the possible fate of both natural and
human systems; (2) to support the development of
climate policies; and (3) to identify research needs to
improve our ability to design robust policy options. As
highlighted in Weyant et al (1996), integrated
assessment models are no stronger than the underly-
ing natural and economic science that supports them.
In addition, major inconsistencies exist in the different



Figure 4. Schematic of modeling framework to investigate the biogeochemical and biogeophysical impacts of human-driven land-use
change, similar to that used in Reilly et al (2012) and Hallgren et al (2013).
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disciplines so the underlying science is often not in a
form suitable for immediate use in IAMs. As a result,
IAMs often lag the latest model development in an
individual discipline. For example, the widely-used
RCP scenarios, the underlying scenarios used as part of
the latest IPCC Assessment Report, provide scenarios
of anthropogenic emissions and concentrations as well
as land-use change. However, the land-use change
scenarios are driven only by economic considerations,
assuming fixed land productivity, and thus do not
account for climate change impacts on crop yields,
natural terrestrial ecosystem productivity, or water
availability for irrigation (Hurtt et al 2011).

Reilly et al (2013) suggest a different strategy for
investigating the impacts of climate change on Earth’s
physical, biological and human resources and links to
their socio-economic consequences in IAMs. The
strategy relates changes in climate variables and
human activities to changes in other physical and
biological variables that affect human activities and
well-being such as crop yield, food prices, premature
death, flooding or drought events, and land-use
change. Based on this strategy, various targeted studies
have investigated land-use change using more detailed
IAM frameworks. For example, Melillo et al (2009) use
an IAM that accounts for the climate change impacts
on management and natural terrestrial ecosystems to
examine direct and indirect effects of possible land-use
changes from an expanded global biofuel program on
greenhouse gas emissions over the 21st century.
Hallgren et al (2013) followed that work by
investigating the climate impacts of a large-scale
biofuels expansion, identifying the contributions of
the biogeochemical and biogeophysical pathways
(figure 4). Reilly et al (2012) use the same detailed
IAM to explore the role of land-use change on global
mitigation strategies to stabilize global warming to
within 2 °C of the preindustrial level. While these
9

modeling efforts highlight the potential capability of
IAMs to enhance our representation of the coupled
human–Earth system, here with a focus on land-use
change, they represent state-of-the-art IAM modeling
and, unfortunately, do not represent the general state
of land-use change modeling in current IAMs. In
addition, little information on Northern Eurasia can
be gleaned from most IAM studies and IAMs are
seldom used with a focus on Northern Eurasia. An
exception is Kicklighter et al (2014), who extend the
same detailed IAM model to include climate-induced
vegetation shifts and investigate their potential
influence on future land-use change and the associated
land carbon fluxes in Northern Eurasia.

3.3. Global change modeling for Northern Eurasia
As the Northern Eurasia modeling community moves
toward global change modeling studies with a major
focus on the coupled human–Earth system, ESMs and
IAMs can become valuable tools that quantify the
relative importance of the responses of Northern
Eurasian ecosystems and their feedbacks to the
evolution of future global change. By examining
interactions and feedbacks among Earth system and
economic components, these models can expand
upon existing research topics and open up new
research avenues. We identify three different strategies
revolving around these new approaches to global
change modeling for Northern Eurasia that can benefit
the NEESPI community:
�
 Taking advantage of existing global change model-
ing efforts at the global level. The ESM and IAM
communities regularly participate in international
coordinated modeling exercises to investigate
varied global change research questions. For
example, Nelson et al (2014a) examine the impact
of climate change on agricultural production,
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cropland area, trade, and prices by climate, crop,
and economic models. While these models are
able to conduct simulations for various sized
regions across the globe, these coordinated exer-
cises generally lack a regional focus when publish-
ing results, and usually do not identify Northern
Eurasia as a key region of interest. Similarly, many
global studies of the food–energy–water (FEW)
system lack a focus on specific regions other than
the United States, Europe, or China. Tighter
collaborations of the NEESPI community with
international coordinated exercises (e.g. AgMIP)
could lead to major benefits for our understand-
ing of FEW in Northern Eurasia and help identify
any gaps in the representation of Northern
Eurasia and its unique characteristics in ESMs
and IAMs.
�
 Developing coupled human–Earth system models
specific to Northern Eurasia. Various efforts to
integrate the human system and the Earth system
with a focus on Northern Eurasia already exist
and must be continued and expanded upon. For
example, a new coupled model, called WRF-
Chem-DusMo (dust module), has recently been
developed to explore the linkages among dust,
climate and land-use change dynamics in Central
Asia (Xi and Sokolik 2015, 2016). As indicated
earlier, Earth system processes and economic
activities tend to be represented rather simply in
current ESMs and IAMs. Collaborations of the
NEESPI community with coupled human–Earth
system modelers could lead to improvements in
the representation of Earth system processes and
economic activities in Northern Eurasia in these
models to the benefit of everyone.
�
 Investigating tipping points specific to Northern
Eurasia. Major focus should be put toward
identifying potential tipping points specific to
the region, with implications for the global Earth
system, such as permafrost degradation, the
associated methane emissions and potential run-
away climate change (Gao et al 2013); dieback of
boreal forests from increasing heat and drought
stress (Goetz et al 2007, Buermann et al 2014)
and ‘green desertification’ caused by single or
repeated catastrophic wildfires (Shvidenko et al
2011) and their potential to alter the global
climate system through changes in greenhouse
gases emissions and surface albedo. In addition,
we argue that future research projects need to
put a greater focus on understanding the varied
and complex interactions among Northern Eura-
sia, surrounding regions and the rest of the
world and identify how important these inter-
actions are. Again, this can be achieved by
relying on ESMs and IAMs, given that the
appropriate improvements in the representation
of key processes are made through collaborations
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between Earth system modelers and modeling
experts from Northern Eurasia (e.g. improving
the representation of permafrost or wildfires in
ESMs).

Finally, we argue for a strong synergy between
investigating the impact of global change on
Northern Eurasia and better identifying the role of
Northern Eurasia in the global system. To do so,
strong collaborations between global and regional
modeling teams are necessary and should be
encouraged. We believe that ESMs and IAMs are
particularly suited to investigate these regional
interactions.

3.4. Data in support of global change modeling for
Northern Eurasia
Similar to other modeling activities, the value of ESMs
and IAMs to advance the understanding of key Earth
system or economic processes in Northern Eurasia
depends on the quality of data used to: 1) develop or
update model algorithms and parameterizations; 2)
provide inputs to drive model simulations; and 3) test
model results. Useful data may be collected over a
range of spatial and temporal scales such as site-level
field observations and experiments, water quality data
collected at the mouth of rivers that integrate
information at a watershed scale, forest and soil
inventories that integrate information at regional to
country scales, economic data that integrate informa-
tion at regional to country scales, and atmospheric
chemistry flask data that integrate information at
hemispheric to global scales (e.g. Krankina et al 2004,
Houghton et al 2007, Prinn et al 2011, Kicklighter et al
2013, Liu et al 2013, 2014). In addition, gridded time-
series data, based on either satellite and airborne
remote imagery or interpolations among networks of
site data, also provide useful information to evaluate
how well ESM and IAM simulations capture spatial
and temporal patterns (e.g. Liu et al 2013, 2014).
However, there is still much uncertainty among
gridded data sets representing an Earth system variable
based on differing assumptions in interpolation
procedures or interpretation of satellite imagery (e.
g. Liu et al 2015). Additional efforts are needed to
better understand and reduce these data uncertainties
in the future.

It should come as no surprise that considerable
amounts of data are required for evaluating the
strengths and limitations of ESMs and IAMs for
investigating global change over the Northern Eurasia
as these models simulate a large number of
components of the coupled human–Earth system.
Due to the multidisciplinary aspect of the coupled
human–Earth system, these datasets can be difficult to
acquire, process and maintain in formats easily
accessible to the whole research community. For
Northern Eurasia, many satellite data products are
publicly available (i.e. NASA and NOAA or the ESA
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Living Planet Programme and the COPERNICUS
programme https://earth.esa.int/web/guest/data-ac
cess), and have been used by the NEESPI research
community to study, among others, the carbon cycle,
land cover, land use, and forest fire monitoring. In
addition, diverse datasets have been developed over the
last decade to support the NEESPI domain modeling.
These include, but are not limited to:
�
 Meteorological data (observations and some model
products) for Northern Eurasia are available (with
data overlaps) from three national data centers.
While these data centers are ‘national’, each center
carries a suite of information for either the
entire NEESPI domain or most of the domain
as well as for the Globe. These are the Russian
Center for Hydrometeorological Information-
World Data Center, RIHMI-WDC (http://meteo.
ru/english/data/), the Beijing Climate Center
(http://bcc.cma.gov.cn), the US National Center
for Environmental Information (www.ncei.noaa.
gov/access) and the European Climate Research
Unit (e.g. CRU TS Version 3.22 and TS 4.0; www.
cru.uea.ac.uk/data).
�
 Hydrological and geomorphological information
for Northern Eurasia is stored and updated at the
NEESPI Focus Research Center for Water System
Studies at the Department of Geography of the
University of New Hampshire (www.wsag.unh.
edu/neespi.html). Examples of products available
from this Center can be seen at: http://neespi.sr.
unh.edu/maps/.
�
 Land cover information for the NEESPI domain
became a part of the GOFC-GOLD data holdings
www.gofcgold.wur.nl/sites/neespi.php. For North-
ern Eurasia, these data holdings serve as a
depository for the needs of the forest monitoring
and full carbon budget accounting of the region.
The NASA data holding for satellite products
(https://mirador.gsfc.nasa.gov/) also includes
Northern Eurasia. The ESA Living Planet Pro-
gramme with COPERNICUS offers also freely
available satellite data over Northern Eurasia (e.g.
Sentinel data; www.esa.int/Our_Activities/Observ
ing_the_Earth/Copernicus).

Furthermore, many information systems have
been developed over the years by the NEESPI
community (e.g. Leptoukh et al 2007, Titov et al
2009, Gordov et al 2013). These tools include storage
and processing models for climate datasets (Okladni-
kov et al 2016), an online instrument for multidisci-
plinary data visualization, analysis and manipulation
with a focus on hydrological application (Shikloma-
nov et al 2016), and a hardware and software platform
prototype for monitoring and projecting environ-
mental changes in the northern extratropical areas
(Gordov et al 2016). These powerful interactive
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visualization and analysis tools provide access to
climate datasets to researchers and users without
requiring expert knowledge in data processing and
plotting. As such, they serve an important mission to
broaden the Northern Eurasia research community.

Similarly, socio-economic data are available for
many countries within Northern Eurasia and the
globe. In particular, the Global Trade Analysis Project
(GTAP) dataset (Aguiar et al 2016) contains the
consistent representation of economic output, trade,
consumption and government expenditures that cover
the entire economies of the following countries:
Norway, Sweden, Finland, Russia, Mongolia, China,
Kazakhstan, Azerbaijan, Georgia, Armenia, Ukraine,
Bulgaria, Romania, Hungary, Czech Republic, Slova-
kia, Poland, Belarus, Lithuania, Latvia, and Estonia.
Land-use data and energy data are available from the
major agencies like the International Energy Agency
(IEA) and Food and Agriculture Organization (FAO).
For many of these countries, regional representation is
also available. For example, Tarr et al (2001) provide
the social accounting matrices for 88 regions of Russia
with data for production, consumption and interme-
diate use of commodities and services, and for bilateral
trade with other regions and the rest of the world. The
economy in each Russian region is represented by 30
industrial sectors producing commodities and ser-
vices.

At the same time, there is a need for improvement
in the availability and quality of both Earth system and
socio-economic data. Networks of Earth system
observing stations, such as meteorological stations,
are quite dense in the populated regions of Northern
Eurasia but they are scarce over the desert regions to
the south, the mountains of western China and
northern Siberia. Since the availability and quality of
observational data from these networks varies
dramatically, and since international archives are
updated only intermittently over these regions, it is
advisable to collaborate with local scientists, especially
in China and the Central Asian newly independent
states. Furthermore, while most country-level eco-
nomic transactions are available for analysis, the
disaggregation of the data at a finer spatial scale is
limited. Even more limited are data for socio-
economic characteristics like level of education, health
services, employment numbers by industry, income by
different age, gender or location, population migra-
tion, etc.

For these reasons, the global change modeling
community must be an essential driver to help identify
the crucial data gaps and to provide guidance to
research agencies about the type of data needed to
support global change modeling. Those include
statistical agencies, who would benefit from informa-
tion on the data required for the analysis of the
economic and welfare implications of global change at
a level that is useful for decision-making. They also
include science agencies, who need to know what data
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would be required, for example, to improve models of
permafrost degradation and its associated methane
emissions.
4. Emerging issues in the coupled human–
Earth system of Northern Eurasia

At the frontier of Earth system and integrated
assessment modeling, many issues and research foci
have recently emerged and driven further development
of coupled human–Earth system models. In this
section, we highlight a few important emerging issues
in the coupled human–Earth system of Northern
Eurasia.

While modeling of the FEW nexus has gained
substantial momentum in recent years, it is still
arguably an emerging issue for most research groups,
even when not focusing on Northern Eurasia. Major
innovations at the nexus of the FEW system are still
needed, with improved integrations of the various
components of the coupled human–Earth system.
Currently, well-recognized studies of the FEW system
(Elliott et al 2014, Nelson et al 2014a, 2014b, Schmitz
et al 2014, Valin et al 2014, von Lampe et al 2014) have
common limitations: they impose climate change
without considering potential feedbacks of the FEW
system to the regional and global climate through
either biogeochemical and biogeophysical pathways;
they fail to fully integrate all three components of the
FEW system and their interactions, such as not
accounting for the impact of water scarcity on
irrigation availability and its impact on irrigated crop
yields or on water availability for power plant cooling
and its impact on energy production; and they fail to
account for even simple adaptive management
practices, such as improvements in conveyance
efficiency, field efficiency and water storage for
irrigation. Certainly, improving the integration of
the FEW system within IAMs is underway but these
modeling development efforts have not yet focused on
Northern Eurasia and its unique environmental and
socioeconomic background. While the FEW nexus is a
global issue, it has unique characteristics in different
regions (Lawford et al 2013). For the NEESPI region,
unique characteristics include thermokarst dynamics,
permafrost degradation, scarcity of human infrastruc-
ture, varied levels of agriculture development and
management practices, locally diverse hydrological
conditions associated with complex biomes and
climate interactions. These characteristics need to be
understood and modeled at appropriate scales. Better
data and information are urgently needed to improve
the effective use of information and models in support
of better planning and decision-making in the region.

With air pollution identified as the world’s largest
environmental health risk (Lim et al 2012), many
research groups have developed modeling frameworks
that link climate change, air pollution and human
12
health (West et al 2007, Jacobson 2008, Selin et al
2009). These modeling frameworks have been used to
estimate the economic implications of changes in air
quality (Fann et al 2014) as well as to evaluate the air
quality co-benefits of climate policies and improve
climate change policymaking (Nemet et al 2010).
However, such studies have largely focused on
countries like the United States (Thompson et al
2014, Saari et al 2014, Garcia-Menendez et al 2015),
despite the importance of the air pollution and health
nexus in Northern Eurasia and its unique character-
istics. Aside from the traditional anthropogenic
precursor emissions associated with the industry,
energy and transportation sectors, or biogenic
emissions of precursors, Northern Eurasia experiences
varied and complex sources of air pollution, including
wildfires, crop residue burning and dust. With Russia
expected to experience the largest increase in burned
forest area in the world (Kim et al 2017), the resulting
emissions of particulate matter are likely to play a
considerable role in future changes in air pollution and
health. Meanwhile, the Russian Federation accounted
for 31%–36% of all cropland burning across the globe
between 2001 and 2003 (Korontzi et al 2006), with
crop residues being burned to clear fields, fertilize the
soil, and eliminate pests and weeds. Finally, the
drylands of Central Asia, which is the largest dry area
in the extratropics, is a major source of dust storms
and a powerful source of atmospheric pollution
(Issanova and Abuduwaili 2017). In addition to these
pollution sources, complex transport of air pollutants
to and from Northern Eurasia need to be better
understood. Quantifying the economic impact of
future changes in air pollution in the region, especially
taking into account these unique sources of pollutants
and the transport of pollutants to and from
surrounding countries, can prove key to accurately
inform policy responses for Northern Eurasia.

Beyond existing issues like the fate of FEW system
or the air quality and health nexus, Northern Eurasia
could experience climate-induced changes in coming
years that may well reshape the region. As the Arctic
sea ice extent shrinks, Arctic trade routes will remain
open for longer periods of time, and new routes will
likely open. Investigating the fate of Northern Eurasia
as these new trade routes emerge will require complex
coupled human–Earth system models that account for
the many potential impacts, interactions and feed-
backs on the system. Combined with increasing
demand for natural resources from neighboring
regions like India, China and other Southeast Asian
countries, these new trade routes could result in the
ability of the timber industry and energy exploration
to reach remote areas like Siberia. At the same time,
warmer temperatures could cause the disappearance
of temporary roads constructed over frozen lakes and
rivers, thus requiring major developments in infra-
structures, including highways and communications
(Stephenson et al 2011). As these changes create new



Figure 5. Schematic of an integrated assessment model (IAM) that couples a human activity model and an Earth systemmodel with a
focus on three feedback pathways: health, land-use change, and water resources.
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economic opportunities, significant population mi-
gration within Northern Eurasia and from neighbor-
ing regions could create new socio-economic stressors.
Furthermore, with increasing population and demand
for energy, along with permafrost degradation that
impacts buildings in many communities in Siberia,
major changes in urbanization, both expansion and
abandonment (including ‘boom and bust’), and
infrastructure (oil and gas) can be expected. The
implications for land-use change in Northern Eurasia
could be substantial.

There are many other examples of complex
pathways of interactions and feedbacks between the
13
human system and the Earth system that are yet to be
investigated and that could prove very important for
Northern Eurasia. Models that include a detailed
representation of all components of the human–Earth
coupled system, while accounting for the exhaustive
number of feedbacks among these components, can
certainly provide tremendous and novel insights into
the complex issue of global change. An example of
such a model, with a focus on three feedback
pathways, water resources, health, and land-use
change, is shown in figure 5.

Given the imperfect nature of models, large
uncertainties in future projections of major driving
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forces of change (i.e. demography, economic growth,
the implementation of climate policies, and the
development of new technologies to name a few),
and our limited knowledge of various processes (i.e.
climate system response, natural climate variability,
ecosystem dynamics), studies need to be placed in the
context of uncertainty (Sokolov et al 2009, Webster
et al 2012, Monier et al 2013). Large model
intercomparison exercises are growing steadily to
better understand model structural uncertainty,
although few have a focus on Northern Eurasia
(Rawlins et al 2015). The implementation of large
ensembles of model simulations is fast becoming the
norm and studies using only a single model have been
slowly marginalized. At the same time, the reliance of
the community on standard scenarios and model
simulations, such as the RCPs and the CMIP5, can
lead to a false sense of confidence in the full
distribution of future global change. For this reason,
coordination of research efforts and explicit guidelines
for modeling global change can be beneficial to the
community, but only if they do not preclude the
diversity of models, approaches, and focus studies.
5. Final words

Since the beginning of the NEESPI project over a
decade ago, scientists from multiple disciplines and
nations have provided a truly interdisciplinary and
dynamic body of research. They highlighted major
past and ongoing environmental, socioeconomic and
climatic changes over Northern Eurasia and investigate
their impacts to natural ecosystems and society. To
support their research, they developed a large number
of models to organize and improve our understanding
of the state and dynamics of terrestrial ecosystems in
northern Eurasia and their interactions with the Earth
system. These models have been important tools to
enhance our scientific knowledge and predictive
capabilities to support informed decision-making.

Many of the new international programs are
emphasizing resilience and transformation of human/
environmental systems in the face of environmental
change. NEESPI has great reason to be proud of its
success. This review provides but a glimpse of what has
been accomplished in observing, understanding and
modeling a region undergoing significant environ-
mental, socioeconomic and climatic changes. None-
theless significant work remains to be done in the
continued improvement of our modeling capability to
represent the coupled human–Earth system in
Northern Eurasia in the face of global change. In this
review, we argue that Earth system models and
integrated assessment models exemplify new
approaches to accomplish that objective. At the same
time, we recognize that to succeed in making ESMs
and IAMs valuable tools for Northern Eurasia, their
14
representations of the unique characteristics of
Northern Eurasia need to improve. This can only be
achieved through tight collaborations between the
Northern Eurasia modeling community and the ESM
and IAM communities.

The International Geosphere Biosphere Pro-
gramme (IGBP) officially ended in December 2015
after 30 years of success and many of its components
transformed into the ‘Future Earth’ Secretariat. As a
result, the NEESPI project is moving to establish a new
program, ‘Northern Eurasia Future Initiative’ (NEFI),
with the goal to better represent the coupled human–
Earth system to model global change for Northern
Eurasia. The future program strongly depends on
building an understanding of how human populations
will be affected by environmental changes across the
region, whatmanagement practices can be developed to
help mitigate or allow adaptation to these changes, and
how we can bridge the considerable gaps in research
procedures, national scale policy intervention, capacity
for prediction, and time- and space- scales that can
plague the incorporation of human dynamics with
environment dynamics. Thus, NEFI is a logical
consequence of the accomplishments of NEESPI.
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