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a  b  s  t  r  a  c  t

This study  estimates  statistical  models  emulating  maize  yield  responses  to  changes  in temperature
and  precipitation  simulated  by global  gridded  crop  models.  We  use the unique  and  newly  released
Inter-Sectoral  Impact  Model  Intercomparison  Project  Fast  Track  ensemble  of global  gridded  crop  model
simulations  to build  a  panel  of annual  maize  yields  simulations  from  five  crop  models  and  corresponding
monthly  weather  variables  for  over  a century.  This  dataset  is  then  used  to estimate  statistical  relation-
ship  between  yields  and  weather  variables  for each  crop  model.  The  statistical  models  are  able  to  closely
replicate  both  in-  and  out-of-sample  maize  yields  projected  by the  crop  models.  This  study  therefore  pro-
vides simple  tools  to predict  gridded  changes  in maize  yields  due  to  climate  change  at  the  global  level.  By
emulating  crop  yields  for several  models,  the tools  will  be useful  for  climate  change  impact  assessments
and  facilitate  evaluation  of  crop  model  uncertainty.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The impact of climate change on crop yields has been exten-
sively studied. To estimate these impacts, two  approaches are
usually taken: (i) process-based crop models, which represent
mechanistically or functionally the effect of weather, soil condi-
tions, management practices and abiotic stresses on crop growth
and yields; or (ii) statistical techniques that empirically estimate
the effect of weather on crop yields while controlling for other
factors based on historical observations.

Process-based crop models are able to consider the detailed
effect of weather and climate change on crop yields at the global
level or at the site level by considering monthly, daily, or even
hourly weather information (Basso et al., 2013). Some models can
also capture other factors, such as pest damages, soil properties,
fertilizer application, planting dates, and the carbon dioxide (CO2)
fertilization effect. These models are either calibrated at the field
scale (Elliott et al., 2013; Izaurralde et al., 2006; Jones et al., 2003),
the national level (Bondeau et al., 2007) or the grid cell level
across the globe (Deryng et al., 2011). These models can simulate
a wide range of weather and environmental conditions, but are
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computationally demanding and sometimes proprietary, which
limits their accessibility.

Statistical models, usually in the form of regression analysis,
on the other hand, use observed data to estimate the impact of
weather on crop yields and are usually based on data aggregated by
month (Carter and Zhang, 1998), growth stage (Dixon et al., 1994)
or year (Blanc, 2012; Schlenker and Lobell, 2010). Regression anal-
yses usually consider the effect of temperature and precipitation on
crop yields (Corobov, 2002; Lobell and Field, 2007; Nicholls, 1997)
and its derived composites, such as growing degree days (GDD)
(Lobell et al., 2011), evapotranspiration (Blanc, 2012), and drought
indices (Blanc, 2012; Carter and Zhang, 1998; Lobell et al., 2014).
Some studies control for alternative effects, such as cloud cover
(You et al., 2009); sources of water availability such as proximity to
streams (Blanc and Strobl, 2014) and dams (Blanc and Strobl, 2013;
Strobl and Strobl, 2010); management strategies, such as fertilizer
application (Cuculeanu et al., 1999) or changes in planting dates
(Alexandrov and Hoogenboom, 2000); and technological trends
(Lobell and Field, 2007). The ability of these models to provide
large-scale yields estimates is limited by data availability, and they
are thus generally based on crop yield data averaged globally (Lobell
and Field, 2007), at the country level (Blanc, 2012; Schlenker and
Lobell, 2010), or at the county level (Lobell and Asner, 2003).

The out-of-sample predictive ability of statistical models is a
concern when estimating impacts for scenarios of climate change
not previously observed. This issue has been considered in recent

http://dx.doi.org/10.1016/j.agrformet.2015.08.256
0168-1923/© 2015 Elsevier B.V. All rights reserved.
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studies by Holzkämper et al. (2012) and Lobell and Burke (2010)
using the so-called ‘perfect model’ approach, which consists of
training a statistical model on the output of a process-based crop
model, assuming that this output is ‘true’. The main aim of these
studies is to evaluate the ability of statistical models to provide
predictions out-of-sample. They find that statistical models are
capable of replicating the outcomes of process-based crop models
reasonably well. The spatial and temporal scope of these studies
is, however, fairly small. Oyebamiji et al. (2015) expand on these
studies and estimates an empirical crop yield emulator at the global
level for five different crops but, as in previous studies, they only
consider one process-based crop model. This is a concern because
the choice of crop model is an important source of uncertainty in
climate change impact assessments on crop yields (e.g. Bassu et al.,
2014; Mearns et al., 1999). Therefore, having access to a tool capable
of replicating yields from a wide ensemble of crop models would
facilitate the analysis of crop model uncertainty in climate change
impact assessments.

To address the limitations of simulations based on processed-
based models and to consider crop model uncertainty, we  design
an ensemble of simple statistical models able to accurately repli-
cate the outcomes of process-based crop models at the grid cell
level over the globe using only a limited set of weather vari-
ables. To this end, we use the recently released Inter-Sectoral
Impact Model Intercomparison Project (ISI-MIP) Fast Track experi-
ment dataset of global gridded crop models (GGCM) simulations.
This project was coordinated by the Agricultural Model Intercom-
parison and Improvement Project (AgMIP) (Rosenzweig et al., 2013)
as part of ISI-MIP (Warszawski et al., 2014). To enable comparison
across models, all GGCMs are driven with consistent bias-corrected
climate change projections derived from the Coupled Model Inter-
comparison Project, phase 5 (CMIP5) archive (Hempel et al., 2013;
Taylor et al., 2012). Our statistical models are trained on the
crop yields simulated by these process-based crop models and
are subject to the widest range of climate conditions estimated in
CMIP5. The statistical models are then used to predict the spatial
responses of maize yields to weather. Differences between pre-
dictions from the process-based and statistical models are then
assessed in order to measure how well statistical models can
capture yield responses to weather variations driven by climate
change.

Based on the evaluation of a large set of weather variables,
non-linear transformations and interactions effects, we  show that
a simple specification including temperature and precipitation in
polynomial form and interaction terms performs relatively well.
Various validation exercises show that out-of-sample maize yield
predictions are reasonably accurate, especially with respect to
long-term trends. Robustness analyses considering either trans-
formed dependent variable, more precise representations of the
growing season, or region-specific estimates support the overall
preferability of the parsimonious specification for global climate
change projections.

This paper has five further sections. Section 2 presents the
data and methods used to statically estimate relationship between
yields and weather variables. Results are presented and discussed
in Section 3. The models are validated in Section 4 and sensitivity
analyses are performed in Section 5. Section 6 concludes.

2. Material and methods

2.1. Data

Data used in this study are sourced from the ISI-MIP Fast
Track experiment, an inter-comparison exercise of global gridded

process-based crop models using the CMIP5 climate simulations.1

In this exercise, several modeling groups provided results from
global gridded process-based crop models run under the same set
of weather and CO2 concentration inputs.

2.1.1. Crop yields and growing seasons
Crop yields and growing season information are obtained from

GGCMs members of the ISI-MIP Fast Track experiment. Based on
data availability, we consider five crop models: the Geographic
Information System (GIS)-based Environmental Policy Integrated
Climate (GEPIC) model (Liu et al., 2007; Williams, 1995), the Lund
Potsdam-Jena managed Land (LPJmL) dynamic global vegetation
and water balance model (Bondeau et al., 2007; Waha et al., 2012),
the Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS)
with managed land model (Bondeau et al., 2007; Lindeskog et al.,
2013; Smith et al., 2001), the parallel Decision Support System
for Agro-technology Transfer (pDSSAT) model (Elliott et al., 2013;
Jones et al., 2003), and the Predicting Ecosystem Goods And Services
Using Scenarios (PEGASUS) model (Deryng et al., 2011).

Each GGCM simulation provides estimates of annual maize
yields in metric tons (t) per hectare (ha), as well as planting and
maturity dates, at a 0.5 × 0.5 degree resolution (about 50 km2). For
each of these models, we select model simulations considering the
effect of CO2 concentration in order to account for CO2 fertilization
effect, which plays an important role in biomass production. Also,
we consider simulations assuming no irrigation in order to capture
the effect of precipitation on crop yields.

GGCMs differ in their representation of crop phenology, leaf
area development, yield formation, root expansion and nutrient
assimilation. However, they all account for the effect of water, heat
stress and CO2 fertilization. None of the models considered assume
technological change. A more detailed description of each model’s
processes is provided by Rosenzweig et al. (2014). Some caveats are
associated with each model.2 For instance, the LPJ-GUESS model
estimates potential yields (yield non-limited by nutrient or man-
agement constraints) rather than actual yield and therefore only
relative change should be considered when assessing the impact
of climate change on crop yield using this model. Also, the GEPIC
model accounts for soil fertility erosion, which requires the simu-
lations to be run independently for each decade, while the pDSSAT
model only updates CO2 inputs every 30 years, which results in a
periodic step in yield projections. As a result, these GGCM simu-
lations are more suited to assess long-term trends in yields rather
than inter-annual yield variability.

2.1.2. Weather
Bias-corrected weather data used as input into each crop model

are obtained from the CMIP5 climate data simulations. This study
uses daily weather data for three of the five climate models, or
General Circulation Models (GCMs) included in CMIP5: HadGEM2-
ES, NorESM1-M, and GFDL-ESM2M. As summarized in Warszawski
et al. (2014), these GCMs project, respectively, high, medium and
low level of global warming.

GCM simulations are available for an ‘historical’ period of
1975–2005 and a ‘future’ period of 2006 to 2099. For the ‘future’
period, each GCM is run under four Representative Concentration
Pathways (RCPs), each representative of different level of radia-
tive forcing (RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5). We  selected

1 The data are available for download at https://www.pik-potsdam.de/research/
climate-impacts-and-vulnerabilities/research/rd2-cross-cutting-activities/isi-mip/
data-archive/fast-track-data-archive.

2 These caveats are discussed at https://www.pik-potsdam.de/research/climate-
impacts-and-vulnerabilities/research/rd2-cross-cutting-activities/isi-mip/data-
archive/fast-track-data-archive/data-caveats.
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Table  1
Variables used in the statistical analysis.

Variables Description Unit

Yields Annual crop yields t/ha
Pr  Monthly average daily precipitation mm/day
Tmin Monthly average daily minimum

temperature

◦C

Tmax Monthly average daily maximum
temperature

◦C

Tmean Monthly average daily mean temperature ◦C
N Pr0 Ratio of number of days per month without

precipitation (daily Pr = 0)
Ratio

N  Tmin0 Ratio of number of days per month with
minimum daily temperature below 0 ◦C

Ratio

N  Tmax30 Ratio of number of days per month with
maximum daily temperature above 30 ◦C

Ratio

ETo  Monthly average daily reference
evapotranspiration

mm/day

GDD Monthly heat accumulation ◦C
CO2 Mid-year CO2 concentration ppm

the scenario with the highest level of global warming compared
to historical conditions, RCP 8.5, and the corresponding CO2 con-
centrations data (Riahi et al., 2007).3 As the maximum amount of
warming induced under other RCPs is encompassed in this path-
way, and a wide range of climate change patterns are represented
by the three GCMs, the analyses consider the broadest possible
range of climate change.

Each GCM produces three variables that are used as inputs by
crop models: daily minimum soil surface temperature (Tmin), daily
maximum soil surface temperature (Tmax), and daily precipita-
tion (Pr). We  compute various composite variables based on these
weather variables (which are summarized in Table 1). Mean daily
temperature (Tmean) is calculated as:

Tmean = T  min  +T max
2

(1)

We also consider reference evapotranspiration (ETo) to repre-
sent the evaporative demand of the air. Following Hargreaves and
Samani (1985), it is calculated daily as:

ETo = 0.0023 (Tmean + 17.8) (T max  −T min)0.5 Ra (2)

where Ra is the extraterrestrial radiation calculated as a function of
the latitude and time of the year (Allen et al., 1998).

GDD represents the number of growing degree days beneficial
for the plant. This measure is calculated daily as:

GDD = (T min  +T  max)/2 − Tbase (3)

where Tbase, the base temperature for maize, is 8 ◦C (Asseng et al.,
2012).

To facilitate a simple relationship between annual crop yields
and weather variables, monthly averages are calculated for Tmean,
Tmin, Tmax, Pr and ETo; GDD is aggregated over each month. The
variable N pr0 represents the proportion of days in a month with no
precipitation (Pr = 0). Similarly, N Tmin0 and N Tmax30 represent
the proportion of days per month with minimum daily temperature
below 0 ◦C (Tmin < 0) and maximum daily temperature above 30 ◦C
(Tmax > 30). The threshold of 0 ◦C is chosen to capture the effect of
frost and the threshold of 30 ◦C is used to capture the temperature
above which maize development is affected (Asseng et al., 2012).

2.1.3. Sample summary information and statistics
We consider crop model simulations from 1975 to 2005 for the

historical runs and 2006 for the future period. As only one RCP

3 The data are available at http://tntcat.iiasa.ac.at/RcpDb/dsd?Action=
htmlpage&page=welcome.

scenario is selected for each GCM, the panel spans from 1975 to
2099 without distinction (i.e., for each GCM, there is one historical
scenario and one future scenario). In the final sample, we omit grid
cells for which there are less than 10 yield observations after data
cleaning.

As summarized in Table 2, each GGCM has a sample of more
than 13 million observations covering more than 50,000 grid cells
globally. When considering the planting dates and growing sea-
son length for each sample, the growing seasons averaged over
grid cells spread between June and October in the Northern Hemi-
sphere and December and May  in the Southern Hemisphere, but
differ slightly for each crop model.

Summary statistics for each GGCM and GCM are presented in
Table 3. Global average maize yields vary from 1.42t/ha for the
LPJmL model under the GFDL-ESM2M GCM to 3.00t/ha for the
pDSSAT model under the NorESM1-M GCM. The range of yields
across GGCMs is smallest for the LPJ-GUESS model and is largest
for the PEGASUS model.

Summary statistics for the main weather variables (Tmean and
Pr) differ by crop model due to their difference in spatial repartition
(i.e., a different number of grid cells are represented by each crop
model). As described in the next section, we consider weather vari-
ables over the summer months to represent the growing season.
In the table, numbers suffixes are used to represent each summer
month, so 1, 2, and 3 refer to, respectively, June, July and August
in the Northern Hemisphere and December January and February in
the Southern Hemisphere. In all GGCMs, precipitation is the low-
est in the first month of the growing season and highest in the
last month, and temperatures peak in the second month. While
no clear pattern amongst GCMs is discernable from these statistics
for precipitation, temperatures are clearly the highest under the
HadGEM2-ES GCM and the lowest under the GFDL-ESM2M GCM.

2.2. Methods

We  build on the ‘perfect model’ approach employed by
Holzkämper et al. (2012) and Lobell and Burke (2010) to esti-
mate the determinants of yields produced by process-based crop
models, and evaluate the ability of these statistical models to fore-
cast yields out-of-sample. As summarized in Fig. 1, a statistical
model is fitted to a panel of crop yields produced by process-based
crop models. The statistical estimates are then used to predict in
and out-of-sample maize yields, which are compared to the out-
come of the process-based crop models under the same climate
model influences. This method is based on the assumption that
the process-based crop models produce ‘true’ yields in response to
weather. The goal of the study is to enable the use of these statistical
models to predict changes in yields based on data from alternative
GCMs (as represented by the lower left box).

For each GGCM, we  estimate the relationship:

Yieldlat,lon,gcm = ˛Weatherlat,lon,gcm + ˇCO2 + ılat,lon

+ !lat,lon,gcm (4)

where Yield corresponds to maize yields simulated by process-
based crop models for each grid cell (defined by its longitude, lon,
and latitude, lat)  under each climate model, gcm; Weather is a vector
of monthly weather variables and CO2 is the annual midyear CO2
concentration level in the atmosphere; ı is a grid cell fixed effect;
and ! an error term.

Weather variables are considered as monthly values within the
summer months, which are deemed the most influential on crop
growth. For the Northern Hemisphere, the summer covers the
months of June, July and August. For the Southern Hemisphere, the
summer covers the months of December, January and February.
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Table  2
GGCMs summary information.

Model Observations Grid Cells Growing season (calendar months)

Northern Hemisphere Southern Hemisphere

GEPIC 21,545,220 62,005 6–9 12–3
LPJ-GUESS 19,819,086 56,620 6–10 12–5
LPJmL  21,547,956 62,148 5–10 12–4
pDSSAT 15,226,693 50,766 5–8 10–12
PEGASUS 13,404,091 51,568 6–9 12–4

Notes: For the pDSSAT model, information regarding planting dates is only available for the HadGEM2-ES GCM. The average growing season for each hemisphere starts on
the  mean planting month and lasts the mean growing season length (calculated as the period between the planting date and the maturity date).

Table  3
Summary statistics by GGCM and GCM.

Model Variable GFDL-ESM2M HadGEM2-ES NorESM1-M

Mean St dev Min  Max  Mean St dev Min Max Mean St dev Min  Max

GEPIC Yield 1.85 2.04 0 14.66 1.70 1.73 0 12.29 1.93 1.99 0 12.76
Pr 1 3.06 3.91 0 147.08 2.97 3.69 0 152.08 2.95 3.61 0 157.16
Pr  2 3.42 4.23 0 175.98 3.43 4.34 0 174.54 3.41 3.97 0 188.96
Pr  3 3.43 4.20 0 127.33 3.43 4.16 0 112.80 3.47 3.92 0 102.28
Tmean 1 21.01 9.01 −3.72 45.10 22.00 8.86 −4.85 46.82 21.29 8.81 −4.02 43.65
Tmean 2 22.79 7.73 −0.67 45.25 23.77 7.78 −0.84 47.32 23.35 7.24 −1.34 44.96
Tmean 3 22.02 8.20 −1.48 45.89 23.00 8.18 −3.98 46.68 22.30 7.82 −2.98 44.97

LPJ-GUESS Yield 1.77 1.65 0 10.34 1.84 1.62 0 10.80 1.96 1.73 0 9.71
Pr  1 3.01 3.63 0 147.08 2.84 3.43 0 152.08 2.83 3.32 0 135.68
Pr  2 3.33 3.94 0 175.98 3.26 3.95 0 174.54 3.27 3.66 0 188.96
Pr  3 3.30 3.94 0 127.33 3.23 3.85 0 112.80 3.31 3.66 0 102.28
Tmean 1 21.74 8.46 −3.54 45.02 22.62 8.62 −5.92 46.82 21.78 8.48 −6.22 43.65
Tmean 2 23.44 7.27 −0.51 45.25 24.40 7.53 −2.10 47.32 23.83 6.94 −1.89 44.96
Tmean 3 22.64 7.77 −0.29 45.89 23.57 7.98 −3.83 46.68 22.69 7.61 −4.77 44.97

LPJmL Yield 1.42 1.80 0 17.40 1.53 1.75 0 17.66 1.56 1.84 0 17.24
Pr  1 3.13 3.99 0 147.08 2.93 3.70 0 152.08 2.95 3.63 0 157.16
Pr  2 3.47 4.32 0 175.98 3.38 4.36 0 174.54 3.39 3.99 0 188.96
Pr  3 3.48 4.29 0 127.33 3.38 4.17 0 112.80 3.45 3.95 0 102.28
Tmean 1 22.38 8.26 −2.43 45.10 22.93 8.55 −2.54 46.82 22.20 8.32 −4.02 43.65
Tmean 2 23.97 7.11 −0.20 45.25 24.64 7.44 −0.35 47.32 24.14 6.79 −1.34 44.96
Tmean 3 23.26 7.57 0.93 45.89 23.90 7.86 −1.35 46.68 23.11 7.45 −1.58 44.97

pDSSAT Yield 2.70 2.60 0 24.07 2.94 2.46 0 23.93 3.00 2.70 0 23.84
Pr  1 3.56 4.18 0 147.08 3.36 3.85 0 152.08 3.40 3.81 0 157.16
Pr  2 3.88 4.53 0 175.60 3.83 4.62 0 158.49 3.84 4.23 0 188.96
Pr 3 3.86 4.52 0 127.33 3.78 4.42 0 112.80 3.87 4.19 0 102.28
Tmean 1 23.55 6.90 0.02 44.73 24.45 6.94 2.85 46.82 23.76 6.55 0.77 43.65
Tmean 2 24.88 5.91 4.29 44.53 25.95 5.91 6.07 45.92 25.28 5.40 3.65 44.23
Tmean 3 24.33 6.24 5.38 44.86 25.32 6.25 3.29 46.68 24.53 5.83 4.85 43.77

PEGASUS Yield 1.83 2.64 0 34.64 1.69 2.32 0 34.44 2.00 2.82 0 34.91
Pr  1 3.84 4.26 0 147.08 3.52 3.90 0 152.08 3.52 3.81 0 135.68
Pr  2 4.14 4.59 0 175.98 4.00 4.64 0 174.54 4.00 4.19 0 188.96
Pr  3 4.12 4.56 0 127.33 3.96 4.43 0 112.08 4.03 4.13 0 102.28
Tmean 1 23.63 6.06 6.14 44.90 24.14 6.42 4.81 46.04 23.57 6.03 3.75 43.37
Tmean 2 24.95 5.00 9.41 44.50 25.77 5.23 10.23 45.90 25.20 4.71 10.26 44.71
Tmean 3 24.35 5.33 8.77 44.59 25.01 5.61 7.92 46.68 24.21 5.30 6.85 43.99

Note: suffixes 1, 2, 3 denote, respectively, June, July and August in the Northern Hemisphere and December January and February in the Southern Hemisphere.

Table  4
Specification description.

Specification name Base specification Variables added to the base specification

Fifth order polynomial (poly) Interaction (int)

S1 Pr, Tmean, CO2 Pr sq, Pr cu, Pr qu, Pr qc, Tmean sq, Tmean cu, Tmean qu,
Tmean qc, CO2 sq

Pr x Tmean, Pr x CO2

S2  Pr, Tmin, Tmax, CO2 Pr sq, Pr cu, Pr qu, Pr qc, Tmin sq, Tmin cu, Tmin qu, Tmin qc,
Tmax sq, Tmax cu, Tmax qu, Tmax qc, CO2 sq

Pr x Tmean, Pr x CO2

S3  Pr, N Pr0, Tmean, N Tmin0,
N Tmax30, CO2

Pr sq, Pr cu, Pr qu, Pr qc, N Pr0 sq, N Pr0 cu, N Pr0 qu, N Pr0 qc,
Tmean sq, Tmean cu, Tmean qu, Tmean qc, N Tmin0 sq,
N  Tmin0 cu, N Tmin0 qu, N Tmin0 qc, N Tmax30 sq,
N  Tmax30 cu, N Tmax30 qu, N Tmax30 qc, CO2 sq

Pr x Tmean, Pr x CO2

S4  Pr, ETo, CO2 Pr sq, Pr cu, Pr qu, Pr qc, ETo sq, ETo cu, ETo qu, ETo qc, CO2 sq Pr x ETo, Pr x CO2
S5  Pr, GDD, CO2 Pr sq, Pr cu, Pr qu, Pr qc, GDD sq, GDD cu, GDD qu, GDD qc,

CO2 sq
Pr x GDD, Pr x CO2

Note: suffix sq denotes square terms, cu cubic terms, qu quartic terms, and qc quintic terms.
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Fig. 1. Schematic.

Variables included in the regression specifications are listed in
Table 4. The base specification is composed of five sets of explana-
tory variables, which are denoted S1 to S5. The S1 specification
includes ‘simple’ weather variables, and more complicated com-
posite variables are added in subsequent specifications. For each
specification, we consider possible non-linear effects of weather
variables on crop yields by including polynomial terms. We find
that the non-linear relationship is best approximated by a fifth
order polynomial of weather variables (S1poly to S5poly). In addi-
tional sets of specifications, we add interaction terms between
temperature and precipitation variables and between CO2 and
precipitation variables to the simple and the polynomial terms
(specifications S1polyint to S5polyint).

Some adjustments to the specifications presented above are
made for some crop models. For instance, the pDSSAT model
accounts for the CO2 fertilization effect, but the CO2 level input
into this model is only updated every 30 years (as opposed to
every year for other crop models considered). For this model, we
therefore consider the CO2 30y variable, which averages CO2 con-
centration over 30 year periods (1950–79, 1980–2009, etc.) instead
of the annual CO2 variable. Also, the GEPIC model is run indepen-
dently every decade to take into account soil nutrient depletion,
so we include a dummy  variable to capture 10-year cycles in the
regression specification for this model.4

As multiple observations exist for each year and grid cell, due to
the different climate scenarios considered, and grid cell fixed effects
(ı) are included in all specifications, we use the areg OLS estimator
in Stata 12 (StataCorp, 2011), which allows for the absorption of
categorical variables.

3. Results

Based on the methodology presented Section 2, we estimate
three specifications for each crop model. We  then determine the

4 Harvesting in low-input regions leads to soil nutrient depletion, which causes
ever decreasing yields. In order to avoid this in practice, farmers leave land fallow to
allow the soils to recover. This pattern is mimicked in the GEPIC model by re-running
the  model for every decade to reset the soil profile.

preferred specification in Section 3.1 and present detailed results
for this specification in Section 3.2.

3.1. Model selection

In Table 5, we  report statistics from the estimation of regres-
sions for each GGCM and specification.5 The root mean square error
(RMSE) indicates that the average error between predicted and
‘actual’ yields range from 0.4t/ha for the LPJ-GUESS model to 1.4t/ha
for the PEGASUS and pDSSAT models. In relative terms, however,
the normalized RMSE (NRMSE), which is calculated by dividing the
RMSE by the difference between maximum and minimum yields,
indicates that those errors represent around 5% of maize yields for
the LPJ-GUESS and LPJmL models, 4% for the PEGASUS model, and
6% for the pDSSAT model.

For each GGCM, we also calculate the Akaike Information Crite-
rion (AIC) and Bayesian Information Criteria (BIC) to help select
of the ‘best’ model and account for the increase in the com-
plexity of the model.6 According to these criterions, the best
specification—defined as having the lowest AIC value—is S3sqint,
but there are only small differences across specifications. For exam-
ple, for the GEPIC model, S1 (which has the largest AIC value) is
84% as likely to minimize the model information loss as S3polyint
(which has the smallest AIC value).7 For the PEGASUS model, the
relative likelihood of specification S1 to S3polyint is 0.90. This
indicates that adding complexity to the statistical models leads to
only small improvements in explanatory power. The more com-
plex specifications involve a larger number of variables and/or
more refined explanatory variables. For example, S3 specifications
require information on the number of frost days and heat stress
as well as dry days for every month, and S4 specifications require
the calculation of reference evapotranspiration. By contrast, rel-
ative to specification S1, specification S1polyint provides large
improvements in the goodness of fit of the statistical model by only

5 As the R2 is not appropriate for goodness of fit evaluation of non-linear models,
we  omit this statistic from the results.

6 The results for the BIC are very close to those for the AIC, so we only report the
results for the AIC in Table 5.

7 The relative likelihood of model i is calculated as exp((AICmin − AICi)/2).
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Table  5
Goodness of fit measures by crop model and specification (dependent variable: Yield).

Model Statistics S1 S1poly S1polyint S2 S2sq S2polyint S3 S3sq S3polyint S4 S4sq S4polyint S5 S5sq S5polyint

GEPIC RMSE 0.930 0.875 0.872 0.929 0.900 0.867 0.914 0.887 0.859 0.924 0.905 0.868 0.927 0.903 0.871
NRMSE  0.064 0.060 0.060 0.063 0.061 0.059 0.062 0.061 0.059 0.063 0.062 0.059 0.063 0.062 0.059
AIC  (e+07) 5.800 5.530 5.520 5.790 5.660 5.490 5.720 5.590 5.450 5.770 5.680 5.500 5.780 5.670 5.510

LPJ-GUESS RMSE 0.548 0.490 0.482 0.548 0.521 0.479 0.542 0.510 0.474 0.548 0.515 0.476 0.548 0.517 0.478
NRMSE  0.051 0.045 0.045 0.051 0.048 0.044 0.050 0.047 0.044 0.051 0.048 0.044 0.051 0.048 0.044
AIC  (e+07) 3.230 2.790 2.720 3.230 3.030 2.700 3.190 2.950 2.660 3.230 2.990 2.680 3.230 3.010 2.690

LPJmL RMSE 0.895 0.761 0.759 0.893 0.822 0.757 0.879 0.793 0.746 0.902 0.850 0.799 0.895 0.813 0.743
NRMSE  0.051 0.043 0.043 0.051 0.047 0.043 0.050 0.045 0.042 0.051 0.048 0.045 0.051 0.046 0.042
AIC  (e+07) 5.630 4.930 4.920 5.620 5.260 4.910 5.550 5.110 4.850 5.660 5.410 5.140 5.630 5.220 4.830

pDSSAT RMSE 1.432 1.320 1.316 1.428 1.352 1.310 1.420 1.343 1.309 1.432 1.394 1.345 1.432 1.359 1.316
NRMSE 0.060 0.055 0.055 0.059 0.056 0.054 0.059 0.056 0.054 0.060 0.058 0.056 0.060 0.057 0.055
AIC  (e+07) 5.410 5.160 5.150 5.400 5.230 5.140 5.380 5.210 5.140 5.410 5.330 5.220 5.410 5.250 5.150

PEGASUS RMSE 1.397 1.308 1.306 1.397 1.343 1.299 1.381 1.326 1.297 1.397 1.360 1.327 1.397 1.348 1.305
NRMSE 0.040 0.038 0.037 0.040 0.039 0.037 0.040 0.038 0.037 0.040 0.039 0.038 0.040 0.039 0.037
AIC  (e+07) 4.690 4.520 4.510 4.690 4.590 4.500 4.660 4.560 4.490 4.690 4.620 4.560 4.690 4.600 4.510

Note: BIC values are similar to AIC values and are therefore not reported.

including non-linear and interaction effects of mean temperature
and precipitation. The relative likelihood of the S1polyint specifi-
cation ranges from 0.96 for the LPJmL model to 1.00 for the pDSSAT
model. Given these findings, and as our aim is to produce sim-
ple tools that allow researcher to estimate crop yields, S1polyint
is our preferred specification. Our discussion of results in the next
subsection focuses on estimates for this specification.

3.2. Regression results

Estimated coefficients for the S1polyint specification are
reported in Table 6. Results for other specifications are presented
in Appendix A and estimated values for ı for each specification
and crop model are provided in Appendix B. For all GGCMs, the
results from S1polyint show that precipitation and temperature
during all the summer months have a significant impact on maize
yields. In general, the coefficients for Pr,  Tmean and its polynomial
terms are positive and significant indicating a non-linear relation-
ship. However, the significant coefficient for Pr x Tmean indicates
that the impact of a change in temperature depends on the amount
of precipitation and vice versa. To facilitate the interpretation of
marginal effects, a graphical representation of the effect of Pr and
Tmean is provided in Appendix C when the covariate is held at its
mean value. The graphs show that an increase in rainfall results in
an increase in yields at low levels but has a detrimental effect at
high levels. For instance, in the GEPIC model, under average con-
ditions (when Tmean 1 is held at its means of 21.4 ◦C, and CO2 at
540 ppm), a 1 mm increase in rainfall during the first month of sum-
mer  increases maize yields by 0.11t/ha when Pr 1 is at 3 mm/day
but decreases yield by 0.04t/ha when Pr 1 at 10 mm/day. During
the third month, when rainfall has the smallest effect, a similar
increase in rainfall results in a 0.06t/ha increase in maize yields
when Pr 3 is at 3 mm/day but decreases yield by 0.03t/ha when
Pr 3 at 10 mm/day.

Regarding temperature, the graphs provided in Appendix C
show that temperature has a ‘bell shape’ effect on maize yields for
all models during summer months. For the PEGASUS model, under
average rainfall conditions (Pr 2 is held at its mean value of 4 mm),
a 1 ◦C increase in mean monthly temperature in the second month
of summer increases maize yields by 0.06t/ha when Tmean 2 is at
20 ◦C but decreases yields by 0.06t/ha when Tmean 2 is at 30 ◦C. The
estimated yield response for the LPJ-GUESS model due to the same
temperature increase when Tmean 2 is at 30 ◦C is only 0.001t/ha.

The direct effect of CO2 fertilization on maize yields is cap-
tured by the quadratic relationship, and its indirect effect on water

use efficiency improvements is captured by the interaction term
between CO2 and precipitation. The regression estimates indicate a
concave relationship between CO2 and yields for all GGCMs, except
for the PEGASUS model. For this model, yields appear to have a very
mild convex but strictly positive relationship with CO2.

4. Validation

To assess the ability of our regressions models to emulate
maize yields simulated by GGCMs, we  implement two validation
exercises. First, we  compare predicted yields with ‘actual’ yields
using the same sample used to estimate the regression coefficients.
This within-sample exercise facilitates validation using the largest
available dataset. Second, we conduct an out-of-sample validation
exercise by estimating the regression coefficients using a sample
that includes data from all but one climate model and using these
coefficients to estimates yields under the excluded climate model.
Our validation analyses focuses on the S1polyint specification.

4.1. In-sample validation

In our in-sample validation exercise, we  use the full sample to
predict maize yields for each grid cell, year and climate model.
Fig. 2 reports annual yields from each GGCM and statistical model
averaged over all grid cells for the whole globe and also for the US
Corn Belt8 in order to assess the suitability of the emulator for high
yielding areas. The shaded areas represent the ‘historical’ period.
Discrete yield changes between the ‘historical’ and ‘future’ periods
are due to large changes in climate variables from the climate mod-
els used to drive GGCM simulations.

These graphs shows that, on average over the three climate
models considered, the predictions from the statistical models
follow the same trend as projections from GGCMs, especially at
the global level. The statistical models are also able to reproduce
some inter-annual yield variability albeit with less accuracy. This
feature is especially apparent in the graph specific to the Corn Belt
region where maize yields are on average the highest.

Fig. 2 also reveals that simulated yields differ across GGCMs,
despite being driven by the same climate data. As no crop model
is deemed more appropriate than another, it confirms the need to
consider a wide range of GGCMs in climate change impact studies.

8 The Corn Belt is represented by the states of Iowa, Illinois, Nebraska and Min-
nesota.
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Table  6
Regression results for the S1polyint specification for each GGCM (dependent variable: Yield).

Variables GEPIC LPJ-GUESS LPJmL pDSSAT PEGASUS

Pr 1 0.181* 0.0960* 0.182* 0.250* −0.0237*
Pr 2 0.148* 0.0430* 0.0781* 0.114* 0.0107*
Pr  3 0.0843* 0.0398* 0.0279* 0.0856* 0.108*
Pr  sq 1 −0.0199* −0.0128* −0.0133* −0.0207* −0.00818*
Pr  sq 2 −0.0152* −0.0111* −0.00835* −0.0119* −0.00808*
Pr  sq 3 −0.0146* −0.0194* −0.00668* −0.0126* −0.0178*
Pr  cu 1 0.000548* 0.000364* 0.000343* 0.000559* 0.000245*
Pr  cu 2 0.000352* 0.000259* 0.000192* 0.000277* 0.000201*
Pr cu 3 0.000486* 0.000636* 0.000224* 0.000421* 0.000615*
Pr  qu 1 −5.63e−06* −3.84e−06* −3.42e−06* −5.71e−06* −2.68e−06*
Pr  qu 2 −3.06e−06* −2.23e−06* −1.68e−06* −2.41e−06* −1.79e−06*
Pr  qu 3 −6.22e−06* −7.98e−06* −2.84e−06* −5.36e−06* −7.96e−06*
Pr  qc 1 1.89e−08* 1.32e−08* 1.12e−08* 1.91e−08* 9.46e−09*
Pr  qc 2 8.66e−09* 6.23e−09* 4.81e−09* 6.79e−09* 5.15e−09*
Pr  qc 3 2.62e−08* 3.28e−08* 1.19e−08* 2.25e−08* 3.34e−08*
Tmean 1 −0.141* −0.270* −0.688* −1.769* −6.567*
Tmean 2 −0.393* −0.435* −1.472* −3.791* −1.241*
Tmean 3 −0.207* −0.380* −1.707* −3.996* −8.812*
Tmean sq 1 0.0155* 0.0271* 0.0827* 0.190* 0.641*
Tmean sq 2 0.0515* 0.0453* 0.152* 0.376* 0.124*
Tmean sq 3 0.0228* 0.0315* 0.167* 0.384* 0.766*
Tmean cu 1 −0.000648* −0.000907* −0.00383* −0.00867* −0.0285*
Tmean cu 2 −0.00262* −0.00206* −0.00664* −0.0164* −0.00499*
Tmean cu 3 −0.00124* −0.00109* −0.00687* −0.0168* −0.0314*
Tmean qu 1 9.37e−06* 8.75e−06* 7.68e−05* 0.000179* 0.000589*
Tmean qu 2 5.34e−05* 4.26e−05* 0.000130* 0.000325* 8.51e−05*
Tmean qu 3 3.03e−05* 1.64e−05* 0.000127* 0.000343* 0.000609*
Tmean qc 1 −3.60e−08* 2.17e−08* −5.64e−07* −1.41e−06* −4.60e−06*
Tmean qc 2 −3.77e−07* −3.30e−07* −9.38e−07* −2.43e−06* −5.12e−07*
Tmean qc 3 −2.69e−07* −8.70e−08* −8.75e−07* −2.65e−06* −4.52e−06*
CO2  0.00456* 0.00252* 0.00224* 0.00540* 0.000114*
CO2 sq −2.18e−06* −7.43e−07* −6.66e−07* −2.58e−06* 1.07e−06*
Pr  x Tmean 1 0.000713* 0.00257* −1.03e−05 0.00104* 0.00417*
Pr  x Tmean 2 0.00424* 0.00472* 0.00271* 0.00302* 0.00366*
Pr  x Tmean 3 0.00406* 0.00757* 0.00235* 0.00322* 0.00367*
Pr  x co2 1 4.25e−05* −3.75e−05* −6.35e−06* −5.91e−05* −2.86e−05*
Pr x co2 2 −9.13e−05* −3.43e−05* −5.39e−05* −6.00e−05* −3.56e−05*
Pr  x co2 3 −7.45e−05* −6.56e−05* −4.45e−05* −8.13e−05* −6.87e−05*
Constant 2.104* 3.459* 10.44* 31.81* 66.18*

Notes: Robust standard errors not reported; * denotes significance at the 1% level; 10-year annual time dummies are included in the GEPIC model regression but not reported;
See  detailed regression results in Appendix A.

A geographical representation of predicted yields is provided
in Figs. 3–7. The first map  in each figure represents, for a par-
ticular GGCM, maize yields for each grid cell averaged over the
period 2090–2099. The second map  shows yields estimated using
the S1polyint specification. For all GGCMs, the statistical model is
able to reproduce the spatial distribution of yields reasonably accu-
rately. Both models predict that yields will be the highest in the
eastern part of the US, Europe, and China. The LPJ-GUESS and LPJmL
models, and associated statistical models, also identify high yield
areas in South America. In dry and hot regions, such as the Saharan
belt, the Middle East and central Australia, and in the Arctic Circle,
maize yields are extremely low.

To further identify differences between projections from the
two types of models, the third and fourth maps in Figs. 3–7 dis-
play, respectively, absolute and percentage differences in yields
estimated by each GGCM and the corresponding S1polyint statis-
tical model. These graphs reveal that yield differences are fairly
small in absolute terms (between + and −0.8t/ha) for the LPJ-GUESS
model. In percentage terms, the maps show large over-predictions
from the statistical model in low yield areas, but these are relative
to small base values. In areas of high productivity, percentage dif-
ferences are lower (less than 10% error) especially in the southern
parts of America and Africa. For the LPJmL model, the S1polyint
specification under predicts yields in the Canadian belt. In percent-
age terms, differences exceeding 20% are predicted globally, but
areas of agreement are observed in the most productive regions
of Eastern US, South America, and China. For the GEPIC model, the

S1polyint specification moderately under- or over-predicts abso-
lute yields in the western part of the US, but predicts yields in
the rest of the globe reasonably accurately. For the pDSSAT model,
the spatial distribution of crop yields in absolute terms is repre-
sented reasonably well by estimates from the statistical model,
with a tendency for the statistical model to over-estimate yields
mostly over low-yield areas such as the Sahara, Middle East and
central Australia. The largest differences in predicted yields occur
when estimating yields for the PEGASUS model. Differences in yield
predictions range from −2.8t/ha and +2.8t/ha and some percent-
age differences are greater than 20%. These differences are also
reflected by the relatively high RMSEs associated with the S1polyint
specification for the PEGASUS model (see Table 3).

4.2. Out-of-sample validation

As the purpose of this study is to provide a crop emulator
capable of predicting crop yields under alternative climate change
scenarios, we  implement an out-of-sample validation exercise by
re-estimating the S1polyint specification using yield simulations
under two  of the three GCMs. Using regression coefficients esti-
mated using this sample, yields are then predicted under the GCM
omitted from the training dataset. We reiterate the procedure three
times in order to assess the predictive ability of our estimates for
each omitted GCM.

Table 7 reports RMSEs and NRMSEs for each GGCM and
climate model for in- and out-of-sample predictions from our
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Fig. 2. Average maize yield projections from GGCMs and statistical models under the S1polyint specification.

leave-one-GCM-out validation exercise. As expected, prediction
errors are larger out-of-sample than in-sample. Out-of-sample
RMSEs are between 0.12t/ha (pDSSAT) and 0.07t/ha (LPJmL) larger
than corresponding in-sample values. In relative terms, the NRMSE
difference between in-sample and out-of-sample predictions
range between 0.003 (PEGASUS) and 0.012 (GEPIC).

To evaluate discrepancies between GGCM yields and out-of-
sample statistical yields over time, Figs. 8–12 show yield time series
for each GGCM and leave-one-GCM-out combination. The figures
indicate that predicted maize yields are underestimated for the
NorESM1-M model when this GCM is excluded from the training
dataset. This is because yield projections under the NorESM1-M



142 E. Blanc, B. Sultan / Agricultural and Forest Meteorology 214-215 (2015) 134–147

Table  7
RMSE and NRMSE statistics for in-sample and out-of-sample predictions for the leave-one-GCM-out validation using the S1polyint specification (Dependent variable: Yield).

Models Statistics GFDL-ESM2M HadGEM2-ES NorESM1-M Overall

In-sample Out-of-sample In-sample Out-of-sample In-sample Out-of-sample In-sample Out-of-sample

GEPIC RMSE 0.839 0.984 0.819 1.045 0.902 0.852 0.853 0.960
NRMSE 0.066 0.067 0.056 0.085 0.062 0.067 0.061 0.073

LPJ-GUESS RMSE 0.448 0.597 0.477 0.530 0.476 0.543 0.467 0.557
NRMSE 0.041 0.058 0.046 0.049 0.044 0.056 0.044 0.054

LPJmL RMSE 0.752 0.815 0.730 0.850 0.764 0.782 0.749 0.816
NRMSE 0.043 0.047 0.042 0.048 0.043 0.045 0.043 0.047

pDSSAT RMSE 1.272 1.467 1.318 1.392 1.307 1.387 1.299 1.415
NRMSE 0.053 0.061 0.055 0.058 0.054 0.058 0.054 0.059

PEGASUS RMSE 1.306 1.353 1.278 1.436 1.284 1.405 1.289 1.398
NRMSE 0.037 0.039 0.037 0.042 0.037 0.040 0.037 0.040

Fig. 3. Maize yields averaged over 2090–2099 for the GEPIC and statistical models
(S1polyint specification).

model are higher than under other GCMs. Conversely, maize yields
are smallest under the GFDL-ESM2M model. When the sample
for this GCM is excluded from the training sample, yield predic-
tions from the statistical models are over-estimated, especially
toward the end of the century. Similar patterns are observed
for the HadGEM2-ES model depending on whether the level of
yields for this GCM is high or low compared to the training
sample.

These results show that it is important to consider the largest
ensemble of climate change scenarios possible in order to cap-
ture the response function with the best out-of-sample predictive
capacity. As the full sample was designed to encompass the

Fig. 4. Maize yields averaged over 2090–2099 for the LPJ-GUESS and statistical
models (S1polyint specification).

extremes ranges of climate change currently being projected, sta-
tistical models estimated using this sample are therefore expected
to provide reasonable predictions of crop yields even under plau-
sible alternative climate change scenarios. Detailed instructions on
how to use the emulator to predict changes in crop yields from
user-defined climate scenarios are provided in Appendix E.

5. Robustness checks

To further assess the appropriateness of the statistical models
estimated in Section 3, we  implement a series of robustness tests.
Specifically, we  separately estimate the S1polyint specification



E. Blanc, B. Sultan / Agricultural and Forest Meteorology 214-215 (2015) 134–147 143

Fig. 5. Maize yields averaged over 2090–2099 for the LPJmL and statistical models
(S1polyint specification).

when the dependent variable is log-transformed, under alterna-
tive definitions of the growing season, and when it is estimated
separately for sub-global samples.

5.1. Dependent variable transformation

For dependent variables characterized by non-negative val-
ues and a positively skewed distribution, as is the case with our
data, a common estimation strategy consists of regressing the
explanatory factors on a log-transformed dependent variable. To
test this estimation strategy, and to contend with zero values, we
consider the log(Yield+1) as our new dependent variable for the
S1polyint specification. The regression results for each specifica-
tion of the log-linear model (see Appendix A) show coefficient signs
and significance levels very similar to those for the regression in
levels.

To allow comparison between the log-linear and linear models,
we convert the predicted log yields to levels following Wooldridge
(2009) and re-estimate the NRMSE using these values. As indicated
by the values for these statistics in Table 8, the log-linear functional
form (S1polyint-log) does not improve the ability of the statistical
model to fit the crop models. The large NRMSEs are driven by a few
extreme precipitation values entailing very large yield estimates
once unlogged. The linear functional form is therefore preferable
to emulate maize yield from GGCMs.

Fig. 6. Maize yields averaged over 2090–2099 for the pDSSAT and statistical models
(S1polyint specification).

Table 8
NRMSE statistics for the S1polyint-log (dependent variable: log(Yield+1)) and the
S1polyint specifications (dependent variable: Yield).

Models S1polyint-log S1polyint

GEPIC 0.181 0.060
LPJ-GUESS 0.231 0.045
LPJmL 0.133 0.043
pDSSAT 0.161 0.055
PEGASUS 0.066 0.037

5.2. Growing seasons

In the base specifications, for simplicity, we considered the effect
of weather during summer months. However, crop growing sea-
sons vary by grid cell and, as shown in Table 2, can span a wide
range of months at the global level. To investigate the benefits of
representing growing seasons more precisely, we estimate specifi-
cation S1polyint using monthly weather data for the actual growing
season for each GGCM. We  label this specification S1polyint-GS. As
growing season lengths differ between the Northern and Southern
Hemispheres for some GGCMs, we  estimate separate regressions
for each Hemisphere. For example, specifications for the pDSSAT
model consider weather variables for four months (May, June,
July and August) in the Northern Hemisphere, and three months
(October, November, and December) in the Southern Hemisphere.
For the pDSSAT model, growing season information is only avail-
able for the HadGEM2-ES climate model, so data for other climate
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Fig. 7. Maize yields averaged over 2090–2099 for the PEGASUS and statistical mod-
els (S1polyint specification).

models is not included in the growing-season specific estimates for
this model.

Detailed regression results (see Appendix A) show that some
weather coefficients are not significant for some months (e.g.,
T mean for February and March for the GEPIC model in the Southern
Hemisphere). NRMSE statistics presented in Table 9 are gener-
ally more favorable for the Northern Hemisphere regressions than
for the Southern Hemisphere. The overall NRMSE, calculated by

Fig. 8. Annual average maize yield predictions from the GEPIC and statistical models
(S1polyint specification) in the leave-one-GCM-out validation exercise.

Fig. 9. Annual average maize yield predictions from the LPJ-GUESS and statistical
models (S1polyint specification) in the leave-one-GCM-out validation exercise.

Fig. 10. Annual average maize yield predictions from the LPJmL and statistical mod-
els (S1polyint specification) in the leave-one-GCM-out validation exercise.

Fig. 11. Annual average maize yield predictions from the pDSSAT and statistical
models (S1polyint specification) in the leave-one-GCM-out validation exercise.
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Fig. 12. Annual average maize yield predictions from the PEGASUS and statistical
models (S1polyint specification) in the leave-one-GCM-out validation exercise.

Table 9
NRMSE statistics for the S1polyint-GS (dependent variable: Yield) and S1polyint
specifications (dependent variable: Yield).

Models S1polyint-GS S1polyint

North South Overall

GEPIC 0.059 0.069 0.061 0.060
LPJ-GUESS 0.048 0.595 0.050 0.045
LPJmL 0.787 0.035 0.042 0.043
pDSSAT 0.055 0.050 0.053 0.055
PEGASUS 0.042 0.031 0.039 0.037

Note: Overall statistics are calculated by weighting Northern and Southern results
by the number of observations in each Hemisphere.

weighting the Northern and Southern NRMSE by the number of
observations in each hemisphere, indicate that the summer-month
regressions have a better goodness of fit for the GEPIC, LPJ-GUESS
and PEGASUS models than the growing season-specific regressions.
The difference in NRMSE between these regressions is very small for
the LPJmL and the pDSSAT models. From these results, we  can con-
clude that using growing season-specific weather variables does
not lead to large improvements in the predictive power of the statis-
tical model. The parsimonious specification accounting for summer
weather variables is therefore preferable.

5.3. Parameter heterogeneity

Our base specifications assume that coefficients on weather
variables are the same in all grid cells. To assess the possibility
of heterogeneity in these parameters across regions, we  estimate
the statistical models independently for different climatic regions.
In separate robust checks, we define climate regions by agro-
ecological zones (AEZs) and average summer temperature brackets.

5.3.1. Global agro-ecological zones
We first consider global AEZs as defined by Lee et al. (2005).

Each AEZ is a combination of a climate region and a growing period
length (see Appendix D for more details). We  consolidate the 18
AEZs into six broader zones that distinguish, for each of the three
climate regions, AEZs with favorable growing season length (more
than 60 days) and those with less favorable growing conditions
(growing period less than 60 days). The six broad zones are: AEZ-
G1, tropical with a short growing period; AEZ-G2, tropical with
a long growing period; AEZ-G3, temperate with a short growing
period; AEZ-G4, temperate with a long growing period; AEZ-G5,
boreal with a short growing period; and AEZ-G6, boreal with a long
growing period.

Goodness of fit statistics for specification S1polyint applied to
each broad AEZ group (S1polyint-AEZ) are reported in Table 10 (see
Appendix A for detailed regression results). The NRMSE indicates
that, in general, the statistical model fits the data best for the AEZ-
G1 and AEZ-G2 subsamples. Overall, the average NRMSE is larger
for the AEZ group regressions than for the global regressions, but
only for the GEPIC, LPJ-GUESS, and pDSSAT models. These results
indicate that there are only small differences in performance for
the AEZ and global models. However, the fact that the AEZ groups
do not change over time as climate changes is a concern in using
this subsampling strategy.

5.3.2. Average summer temperature brackets
We also consider estimating the statistical model for grid cells

grouped by average summer temperatures, which avoids issues
associated with AEZs’ inertia to climate change. We  divide the
sample into eight average summer temperature brackets in 5 ◦C
increments, except that the lowest bracket captures all tempera-
tures below 5 ◦C and the highest bracket includes all temperatures
above 40 ◦C.

Goodness of fit statistics for specification S1polyint esti-
mated separately for each average summer temperature bracket
(S1polyint-AST) are reported in Table 11 (detailed regression
results are provided in Appendix A). For some models, the bins
do not contain enough observations (due to the exclusion of
grid cells with less than 10 observations) and regression results
and statistics are therefore not available. The model fits the data
best when the average summer temperature is between 20 ◦C
and 25 ◦C (bracket 25) and between 25 ◦C and 30 ◦C (bracket
30). Overall, the average NRMSE is slightly smaller using the
temperature bracket subsamples rather than the global sample
for the LPJ-GUESS, LPJmL and PEGASUS models. For the pDSSAT
and GEPIC models, using the global sample appears on average
preferable.

Subsampling by temperature brackets does not provide
unequivocally better estimates for our crop yield statistical model
than the global specification. When considering predictions at a
regional level, subsamples estimates are preferable. However, the
application of subsample specific estimates is more restrictive and
cumbersome than the global estimates, so the global specification
is still preferable for a global application.

Table 10
NRMSE statistics for S1polyint-AEZ (dependent variable: Yield) and S1polyint specifications (dependent variable: Yield).

Models S1polyint-AEZ S1polyint

AEZ-G1 AEZ-G2 AEZ-G3 AEZ-G4 AEZ-G5 AEZ-G6 Overall

GEPIC 0.067 0.051 0.072 0.096 0.041 0.058 0.063 0.060
LPJ-GUESS 0.066 0.045 0.053 0.053 0.035 0.046 0.047 0.045
LPJmL 0.031 0.020 0.034 0.058 0.043 0.063 0.041 0.043
pDSSAT 0.063 0.062 0.061 0.063 0.064 0.067 0.063 0.055
PEGASUS 0.014 0.016 0.047 0.056 0.036 0.039 0.037 0.037

Note: Overall statistics are calculated by weighting results for each AEZ group by the number of observations in each group.
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Table  11
NRMSE statistics for the S1polyint-AST (dependent variable: Yield) and S1polyint specifications (dependent variable: Yield).

Models S1polyint-AST S1polyint

<5 10 15 20 25 30 35 >40 Overall

GEPIC 0.006 0.093 0.040 0.053 0.077 0.066 0.072 0.074 0.064 0.060
LPJ-GUESS 0.012 0.012 0.029 0.040 0.044 0.050 0.062 0.090 0.044 0.045
LPJmL 0.003 0.033 0.054 0.046 0.029 0.030 0.048 0.036 0.043
pDSSAT 0.010 0.043 0.055 0.054 0.055 0.073 0.060 0.056 0.055
PEGASUS 0.046 0.034 0.042 0.033 0.039 0.076 0.036 0.037

Note: Overall statistics are average statistics weighted by observation; Statistics are not reported for some temperature-GGCM combinations due to lack of data.

6. Concluding remarks

The goal of this analysis is to provide a simple simulation tool to
allow researchers to predict the impact of climate change on maize
yields. To this end, we used an ensemble of crop yield simulations
from five GGCMs included in the ISI-MIP Fast track experiment,
which simulate the impact of weather on maize yields under
various climate change scenarios. We  then estimated a response
function for each crop model.

As shown in the ISI-MIP simulations, the different GGCMs do not
necessarily agree on the extent of the impact of climate change on
crop yields. As none of the models is deemed better than another at
projecting future yields, it is important to consider predictions from
many models to account for uncertainty in the impact of climate
change on crop yields. Consequently, this study provided response
function estimates for several crop models.

This study evaluated a large set of weather variables, includ-
ing temperature and precipitation, non-linear transformations and
interactions between temperature and precipitation, and other
composites based on these variables. Our results showed that speci-
fications that included temperature and precipitation separately, in
quadratic forms and a temperature-precipitation interaction term
performed relatively well and specifications that included more
complicated composite terms resulted in only small improvements
in the ability of the model to predict crop yields.

Our validation exercises showed that out-of-sample maize
yield predictions are reasonably accurate, especially with respect
to long-term trends. The analysis also showed that prediction
accuracy was lowered when the training sample excluded yield
responses to weather variables outside the range of values used to
estimate the model. For this reason, our statically models were esti-
mated using data that encompass the range of plausible changes in
temperature and precipitation over the twenty-first century.

In robustness analyses, we considered transforming the depend-
ent variable, more precisely representing the growing season,
and estimating the statistical model separately for alternative cli-
matic regions. None of these modifications resulted in significant
improvements relative to the parsimonious base specification.

Based on these findings, this study provides simple emulators
for five crop models that predict changes in maize yields based on
changes in precipitation and temperature, and simple transforma-
tions of these variables. These emulators provide a quick and easy
way for researchers to estimate changes in maize yields under user-
defined changes in climate and will be useful for climate change
impact assessments and other purposes.
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