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The growth in global methane (CH4) concentration, which had
been ongoing since the industrial revolution, stalled around
the year 2000 before resuming globally in 2007. We evaluate
the role of the hydroxyl radical (OH), the major CH4 sink, in the
recent CH4 growth. We also examine the influence of system-
atic uncertainties in OH concentrations on CH4 emissions inferred
from atmospheric observations. We use observations of 1,1,1-
trichloroethane (CH3CCl3), which is lost primarily through reac-
tion with OH, to estimate OH levels as well as CH3CCl3 emis-
sions, which have uncertainty that previously limited the accuracy
of OH estimates. We find a 64–70% probability that a decline in
OH has contributed to the post-2007 methane rise. Our median
solution suggests that CH4 emissions increased relatively steadily
during the late 1990s and early 2000s, after which growth was
more modest. This solution obviates the need for a sudden statis-
tically significant change in total CH4 emissions around the year
2007 to explain the atmospheric observations and can explain
some of the decline in the atmospheric 13CH4/12CH4 ratio and
the recent growth in C2H6. Our approach indicates that signifi-
cant OH-related uncertainties in the CH4 budget remain, and we
find that it is not possible to implicate, with a high degree of con-
fidence, rapid global CH4 emissions changes as the primary driver
of recent trends when our inferred OH trends and these uncer-
tainties are considered.

methane | hydroxyl | inversion | methyl chloroform | 1,1,1-trichloroethane

Methane (CH4), the second most important partially anthro-
pogenic greenhouse gas, is observed to vary markedly in its

year to year growth rate (Fig. 1). The causes of these variations
have been the subject of much controversy and uncertainty, pri-
marily because there is a wide range of poorly quantified sources
and because its sinks are ill-constrained (1). Of particular recent
interest are the cause of the “pause” in CH4 growth between
1999 and 2007 and the renewed growth from 2007 onward (2–7).
It is important that we understand these changes if we are to bet-
ter project future CH4 changes and effectively mitigate enhanced
radiative forcing caused by anthropogenic methane emissions.

The major sources of CH4 include wetlands (natural and agri-
cultural), fossil fuel extraction and distribution, enteric fermenta-
tion in ruminant animals, and solid and liquid waste. Our under-
standing of the sources of CH4 comes from two approaches:
“bottom up,” in which inventories or process models are used
to predict fluxes, or “top down,” in which fluxes are inferred
from observations assimilated into atmospheric chemical trans-
port models. Bottom-up methods suffer from uncertainties and
potential biases in the available activity data or emissions fac-
tors or the extrapolation to large scales of a relatively small
number of observations. Furthermore, there is no constraint on
the global total emissions from bottom-up techniques. The top-
down approach is limited by incomplete or imperfect observa-

tions and our understanding of atmospheric transport and chem-
ical sinks. For CH4, these difficulties result in a significant mis-
match between the two methods (1).

The primary CH4 sink is the hydroxyl radical (OH) in the
troposphere, although smaller sinks also exist, such as methan-
otrophic bacteria in soils, oxidation by chlorine radicals in the
marine boundary layer, and photochemical destruction in the
stratosphere. Predictions of the magnitude and variability of
OH in the current generation of atmospheric models have been
shown to be diverse (8). Furthermore, because of its short life-
time, it is difficult to infer global OH concentrations using
direct observations. Therefore, indirect observational methods
are needed. The most commonly used approach has been to
infer global OH concentrations from observed trends in 1,1,1-
trichloroethane (CH3CCl3), whose primary sink is also reac-
tion with OH in the troposphere (9–13). Recent work using this
approach indicated that OH changes could have played a role in
the pause in CH4 that occurred after 1998 (3, 14).

Previous studies have shown that OH trends inferred using
CH3CCl3 could be highly sensitive to systematic errors in the
assumed emissions trends, particularly in the 1980s and early
1990s when emissions were changing rapidly (15). Some authors
have attempted to reduce this source of uncertainty by including
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Fig. 1. (Top) NOAA observations of CH4. (Middle) INSTAAR observations
of δ13C-CH4. (Bottom) The AGAGE observations of CH3CCl3. Each plot shows
the northern hemisphere (NH) and southern hemisphere (SH) means, and
shading indicates the assumed 1-sigma model and measurement uncertainty
as defined in SI Materials and Methods.

CH3CCl3 emissions as part of the inversion (12). However, these
studies assumed that emissions uncertainties were Gaussian and
uncorrelated between years, potentially reducing the impact of
systematic errors in the a priori emissions model. Furthermore,
with a few exceptions (16), most work has derived OH separately
to CH4 and its global 13C/12C source signature, limiting the
propagation of uncertainty in OH through to the derived CH4

fluxes. The inability to quantify CH3CCl3 systematic emissions
uncertainties may be particularly problematic in recent years
when, as a result of its production and consumption ban under
the Montreal Protocol, reported consumption has dropped to
very low levels, but evidence of continued emissions can still be
seen in atmospheric observations (Fig. S1) (17, 18). Therefore,
the assumptions that were used in early estimates of CH3CCl3
emissions, which were based on industry surveys at a time when
CH3CCl3 was widely used (19), are unlikely to hold in recent
decades.

In contrast to previous approaches, the method used in this
paper explicitly includes a model of the CH3CCl3 emissions
processes in the estimation scheme. Information regarding the
global emissions of long-lived trace gases, such as CH3CCl3,
can be derived simultaneously with their atmospheric sinks by
jointly considering factors such as the long-term trend in concen-
tration and the interhemispheric gradient (20). We extend this
approach here by including the uncertain emissions and atmo-

spheric model parameters jointly in a hierarchical Bayesian esti-
mation framework that is informed by atmospheric data from
multiple species. This method ensures that uncertainties in each
component are propagated throughout the system. A full list of
model parameters explored in the inversion is given in Table S1.

To focus on the uncertainties in the CH3CCl3 emissions
model, we chose to use a computationally efficient “box model”
of atmospheric transport and chemistry that included two tropo-
spheric boxes and one stratospheric box. Previous authors have
noted that the use of atmospheric box models with annually
repeating transport can cause erroneous fluctuations in derived
OH concentrations over periods of around 3 y or less, particu-
larly during periods when emissions of CH3CCl3 were relatively
large (15). However, recent studies have shown that, at least in
recent years when atmospheric CH3CCl3 gradients are small,
OH inversions based on box models agree very closely (to within
∼1%) with 3D model inversions using analyzed meteorology (13)
or that OH variations derived using box models can be used to
simulate realistic CH3CCl3 trends using 3D models (14). There-
fore, in this paper, we primarily focus on longer-term OH trends,
and we expect that our findings for recent decades would not be
substantially different if a more complex model was used.

The atmospheric and emissions model parameters were con-
strained in a multispecies inversion using monthly mean observa-
tions of atmospheric CH3CCl3 from both the Advanced Global
Atmospheric Gases Experiment (AGAGE) (21) and National
Oceanic and Atmospheric Administration (NOAA) (4, 13) net-
works along with NOAA CH4 data and 13C-CH4 observations
from the University of Colorado’s Institute of Arctic and Alpine
Research (INSTAAR) (22, 23) (Fig. 1). Colocated AGAGE and
NOAA observations were found to exhibit somewhat different
long-term CH3CCl3 trends. Therefore, two sets of inversions
were performed based on the CH3CCl3 observations from each
network (Fig. S2). The AGAGE CH4 observations were not
used in the main part of this study, because they were found
to agree very closely with NOAA data but cover a shorter time
period. Additional details about the observations are provided
in SI Materials and Methods, and the site locations are shown in
Table S2.

Results
Rows 1 and 2 in Fig. 2 show the simultaneously derived OH
concentrations and CH3CCl3 emissions inferred from indepen-
dent application of our approach using the AGAGE or NOAA
observations. A comparison between the observations and the
model is shown in Fig. S3. The median solution shows a relatively
small OH trend in the 1980s and 1990s [with smaller interannual
variability than previous CH3CCl3 inversions (11, 12, 24)] fol-
lowed by an upward trend in OH concentration on the order of
10% from the late 1990s to 2004 (11± 13 and 9± 12% increases
for AGAGE and NOAA, respectively, between 1998 and 2004).
This trend is of a similar size to those highlighted in previous
studies using CH3CCl3 (14, 24). Post-2004, our median estimate
shows a decline in OH. This finding would suggest that at least
some fraction of the post-2007 CH4 growth could be attributable
to declining OH. By carrying out a set of linear regressions on
the post-2007 OH estimates from our a posteriori ensemble of
model states, we find a 70 or 64% probability that OH exhibited
some level of negative trend during this period when AGAGE
or NOAA data, respectively, were used (the mean differences
between the 2004 and 2014 OH concentrations were −8 ± 11%
and −11 ± 11%, respectively). In addition to this trend are sev-
eral features of our OH inversion that are important to note.
First, significant uncertainties remain in the global OH concen-
tration, such that it is possible to draw a “constant OH” line that
is consistent with the observation-derived OH within its uncer-
tainties. Second, small differences in the CH3CCl3 trend and
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SFig. 2. (Row 1) Inferred tropospheric annual mean OH concentration. (Row

2) Global CH3CCl3 emissions. (Row 3) Global CH4 emissions. (Row 4) Global
13C/12C source isotope ratio of CH4. The blue lines and shading show quan-
tities inferred when AGAGE CH3CCl3 data were used, and the red lines and
shading show those inferred using NOAA CH3CCl3 data. Lines indicate the
medians, and the shading shows the 16th to 84th percentiles (∼±1 sigma).
The green and gray lines in rows 1 and 2 show estimates from previous
studies that used the same observations but different methodologies and
emissions (13, 24). Inset in row 2 zooms in on the CH3CCl3 emissions from
2000 to 2014. The black lines in rows 3 and 4 show the methane and iso-
topologue changes inferred when interannually repeating OH was used.
The gray shading shows the approximate start and end of the methane
pause. Numerical values of the quantities in this figure are available in
Dataset S1.

interhemispheric gradient measured by the two independent net-
works lead to variations in the derived OH concentration and
CH3CCl3 emissions. However, these differences are small com-
pared with the other uncertainties in the system.

Differences between our derived CH3CCl3 emissions and
those assumed previously (Fig. 2, row 2) explain part of the dis-

crepancy between our OH trends and those derived in previ-
ous studies (Fig. 2, row 1), although other factors, such as the
treatment of the ocean sink, also contribute (SI Materials and
Methods). Our global CH3CCl3 emissions estimates differ from
the previous estimates shown in Fig. 2 in that they have been
adjusted in the inversion to be consistent with atmospheric obser-
vations (and in particular, the interhemispheric CH3CCl3 mol
fraction gradient) instead of being imposed based on bottom-up
models or an assumed rate of decline (13, 24). The CH3CCl3
emissions derived in our inversion indicate that there was ongo-
ing release of CH3CCl3 to the atmosphere, at least through 2014,
despite national reports indicating that use of this substance
ceased in 2013 (25). Analysis of high-frequency AGAGE data
confirms that emissions persisted throughout this period upwind
of some monitoring sites (Fig. S1).

In addition to our multispecies inversion, we carried out an
inversion for OH concentrations and CH3CCl3 emissions using
only CH3CCl3 observations (Fig. S4). We find that the OH con-
centrations and variability derived in this analysis lead to a sim-
ilar result to the multispecies inversion, indicating that the con-
straint on OH is primarily from CH3CCl3 rather than CH4 and
its 13C/12C ratio. Therefore, the timing of the rise and fall in
inferred OH has not been significantly influenced by “knowl-
edge” of the pause and renewed growth in CH4.

Our multispecies inversion allows us to propagate information
on the derived OH concentration and its uncertainty through to
estimates of CH4 emissions. We find that, similar to OH concen-
tration, it is possible to draw a “constant CH4 emissions” line
within the derived uncertainties (Fig. 2, row 3). However, the
median solution suggests a relatively steady upward trend from
the mid-1990s to the mid-2000s followed by a period of smaller
growth. We note that our result does not require a sudden, statis-
tically significant increase in CH4 emissions in 2007, as suggested
elsewhere, to explain the observations (5–7, 26, 27). Instead, it is
implied that the rise in atmospheric mole fractions in 2007 is con-
sistent with the decline in OH concentrations post-2004 overlaid
on a gradual rise in CH4 emissions with some additional interan-
nual variability on the order of 10 Tg y−1.

Row 3 in Fig. 2 also shows an inversion where OH is con-
strained to be interannually repeating. In this scenario, CH4

emissions remain at a relatively low level throughout the 2000s
compared with the varying OH inversions until around 2007,
when they sharply increase. Compared with the 5-y period before
2007, emissions from 2007 to 2011 (inclusive) were 22± 9 Tg y−1

higher in this scenario [similar to other studies that had assumed
constant OH (28)]. In contrast, for the inversions with the OH
changes derived from AGAGE or NOAA CH3CCl3, this differ-
ence was found to be 4± 23 or 9± 22 Tg y−1, respectively.

In our inversion, we determine the global 13CH4/12CH4

source signature that would be required to match the observed
atmospheric δ13C-CH4 (SI Materials and Methods) considering
changes in OH and global CH4 emissions (Fig. 2, row 4). The
observations and modeling framework provide relatively weak
constraints on this term, such that the uncertainties on annual
13CH4/12CH4 source ratios are around an order of magnitude
larger, at around 1h, than the changes that would be required
to match the observed trends, which are of the order of 0.1h.
Furthermore, we find that, because of the very long timescales
over which methane isotopologues respond to source or sink
perturbations (29), our derived source ratio values are signifi-
cantly autocorrelated, meaning that, in our inversion, the derived
annual values cannot be considered fully independent of one
another (Fig. S5).

Discussion
We have presented an inversion that derives global OH concen-
trations simultaneously with CH3CCl3 and CH4 emissions and
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the 13CH4/12CH4 source ratio using atmospheric observations of
CH3CCl3, CH4, and δ13C-CH4. Our median solution shows that
OH increased from the late 1990s to 2004 before declining until
2014, albeit with an uncertainty that is of similar magnitude to
the change. The median solution suggests that OH changes have
contributed to the recent pause and growth in CH4 as reflected
in the median CH4 emissions, which only change slowly after the
late 1990s. In contrast, our constant OH inversion shows a rela-
tively sudden emissions increase in 2007. It is interesting to note
that these two sets of derived emissions agree relatively well dur-
ing the 1990s (at levels of ∼560 Tg y−1) and after 2010 (∼600
Tg y−1), but the trajectory of the transition is different, with
most of the increase occurring in the late 1990s if OH is allowed
to change but primarily around 2007 if it is not. However, it is
also important to note that the median solution of the constant
OH inversion falls within the 1-sigma range of the “varying OH”
inversions.

Notwithstanding the uncertainties, our findings are in contrast
to recent work in which a 3D model of atmospheric transport and
chemistry predicted only a gradual decrease in methane lifetime
over the last three decades and therefore, that emissions changes
were primarily responsible for the CH4 growth (7). We also pro-
vide an alternative perspective to another study that attributed
much of the recent growth in CH4 and δ13C-CH4 to tropical
wetland emissions based partly on the finding that there was no
clear signal of an OH change in other reduced chemical trac-
ers (CH3CCl3 had not been considered) (6). Other authors have
investigated and ruled out OH changes as being the sole driver of
recent trends in studies that used δ13C-CH4 and ethane (C2H6)
to assign the growth in methane to livestock and oil and gas
extraction, respectively (5, 26).

Forward model simulations with our derived OH and a con-
stant 13C-CH4 source show a decline in atmospheric δ13C-CH4

post-2006, showing that OH trends likely contributed to the
recent δ13C-CH4 trends in our inversion (Fig. S6). Although
the precise contribution of OH to the observed trend is diffi-
cult to isolate from other influences, it is likely that our derived
changes are not sufficient to explain the entire recent decline
in δ13C-CH4 and that some change in the source signature has
also occurred as has been suggested previously (26). However,
as described above, the uncertainties on the source signature in
our inversion are much larger than the required change in source
signature, making the precise identification of a change in one or
more source sectors difficult.

Some recent studies have pointed to an “upturn” in global con-
centrations of ethane (C2H6), coincident with the recent rise in
CH4 (5, 30, 31), which may imply an increase in CH4 emissions
caused by an increase in oil and gas extraction. Column-averaged
measurements in the background atmosphere reveal trends in
C2H6 between 2007 and 2014 of 23 (95% confidence interval =
18, 28) and −4 (95% confidence interval = −6, −1) pmol
mol−1 y−1 in the northern and southern hemispheres, respec-
tively (5). Because C2H6 is primarily removed from the atmo-
sphere via reaction with OH, we also expect changes in OH to
have an impact on C2H6 concentrations, even if emissions have
not changed. By running our model forward with constant C2H6

emissions [which were tuned to match the mean northern and
southern hemispheric observed mole fractions (5)] (Fig. S7) and
our derived OH concentrations, we find that it is possible to
explain a global background C2H6 growth rate of 9 (95% confi-
dence interval = −11, 30) and 3 (95% confidence interval = −4,
11) pmol mol−1 y−1 in the northern and southern hemispheres,
respectively, from 2007 to 2014. The timing of transition from
declining to growing C2H6 mol fractions in the northern hemi-
sphere coincides within 1 or 2 y with change from growing to
declining OH in our inversion (Fig. S7). Therefore, it is possible
that some of the recent upturn in northern hemispheric C2H6 is

also caused by changes in OH concentration. Our constant emis-
sions simulation does not match the continued downward trend
in southern hemispheric C2H6, although the uncertainties in our
estimates overlap with the observed trend.

As we stress above, it is important to note the magnitude of the
uncertainties in our inversions, which we believe are more com-
prehensive than previous work, because they incorporate sev-
eral systematic factors, particularly relating to CH3CCl3 emis-
sions. If OH changes and their uncertainty are not considered,
a sudden and statistically significant increase in CH4 emissions
after 2006 is required to fit the observations. Although we can-
not rule out this scenario, in our inversions in which the recent
CH3CCl3 budget is objectively considered, a trajectory in which
CH4 emissions have changed more gradually during the late
2000s is also plausible. Our study highlights that without care-
ful consideration of the CH4 sink and its uncertainty, it would
be possible to draw misleading conclusions regarding the emis-
sions trend when long-term records of background atmospheric
observations are used. Our median estimate suggests an impor-
tant role for OH in the recent CH4 pause and growth overlaid on
a relatively gradual increase in CH4 emissions over the last two
decades.

Materials and Methods
Atmospheric mole fractions were simulated using a box model atmosphere,
which accounted for mixing between the two tropospheric hemispheres,
and exchange with the stratosphere. Loss of CH3CCl3 and CH4 occurred
primarily through reaction with OH in the model troposphere [with the
potential for differences in the northern and southern OH concentrations
(32)]. The model also included a first-order loss of each compound in the
stratosphere (all stratospheric losses were considered to contribute to a
single stratospheric loss rate), first-order sinks for CH4 in the troposphere
because of reaction with chlorine and uptake by methanotrophs in soils
(1), and an ocean uptake for CH3CCl3 according to previous ocean model
estimates (33). Isotopic fractionation of CH4 was assumed to occur for each
sink based on recent estimates (34–37). Emissions of CH3CCl3 were estimated
using a model that took as an input consumption or use of CH3CCl3. Uncer-
tain parameters in the atmospheric and emissions model were estimated in
the inversion along with estimates of the annual hemispheric CH4 surface
flux and 13CH4/12CH4 source signature and global annual OH concentration.
By exploring some of the major unknown parameters in this multispecies
framework, the influence of uncertainties in each parameter and the atmo-
spheric data could be propagated through the system (Table S1 shows a
list of model parameters). The AGAGE, NOAA, and INSTAAR data (Fig. 1)
were used to constrain the model parameters using a hierarchical Bayesian
framework, which was solved using a Markov Chain Monte Carlo (MCMC)
algorithm (38). The MCMC approach iteratively explores model states, ran-
domly accepting or rejecting proposed parameter values with a probability
dependent on the ratio of posterior probability density of the “current” and
proposed states. The outcome is a chain of parameter values that spans the
posterior probability density functions. Atmospheric data from a subset of
the three networks were used where predominantly “background” (unpol-
luted) air masses were sampled and time series of the order of a decade or
more were available. The delta notation for observations of 13C/12C ratio in
CH4 is defined as

δ = 1,000
(

R

Rstd
− 1

)
, [1]

where R is the 13C/12C ratio in CH4, and Rstd refers to a reference ratio (39);
values are quoted in per mille (h). Additional details are provided in SI
Materials and Methods.
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