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Abstract: In computable general equilibrium modeling, whether the simulation results are consistent to a 
set of valid own-price and income demand elasticities that are observed empirically remains a key challenge 
in many modeling exercises. To address this issue, the Constant Difference of Elasticities (CDE) demand 
system has been adopted by some models since the 1990s. However, perhaps due to complexities of the 
system, the applications of CDE systems in other models are less common. Furthermore, how well the 
system can represent the given elasticities is rarely discussed or examined in existing literature. The study 
aims at bridging these gaps by revisiting calibration details of the system, exploring conditions where the 
calibrated elasticities of the system can better match a set of valid target elasticities, and presenting strategies 
to incorporate the system into GTAP8inGAMS—a global computable general equilibrium model written 
in GAMS and MPSGE modeling languages. It finds that the calibrated elasticities can be matched to the 
target ones more precisely if the corresponding sectorial expenditure shares are lower, target own-price 
demand elasticities are lower, and target income demand elasticities are higher. It also verifies that for the 
GTAP8inGAMS with a CDE system, the model responses can successfully replicate the calibrated elasticities 
under various price and income shocks.
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1. Introduction 
In Computable General Equilibrium (CGE) modeling, it 
has been identified that price and income elasticities of 
demand are crucial in determining the sectorial growth 
pattern and economic impacts of various policies (Her-
tel, 2012). This suggests that while a typical Constant 
Elasticity of Substitution (CES) function is still widely 
used in modeling final consumption (Sancho, 2009; An-
nabi et al., 2006; Elsenburg, 2003), the property of having 
unitary income elasticities of demand is often considered 
as highly inflexible. Also, in a single-nest CES setting, af-
ter applying the Cournot’s aggregation, it can be shown 
that the sectorial expenditure shares will fully determine 
the variation in own-price elasticities of demand, which 
is quite restrictive as well. 
To capture the observed non-homothetic preferences 
with income elasticities of demand diverging from uni-
ty, one approach is to use the Linear Expenditure System 
(LES) such as the Stone-Geary preference (Geary, 1950; 
Stone, 1954). The LES system can be calibrated to income 
elasticities of demand compatible to a valid demand sys-
tem. In addition, with a special multi-nest structure, 
the calibrated own-price elasticities of demand can be 
matched perfectly to any valid elasticities (Perroni and 
Rutherford, 1995).1 The shortcoming of LES, however, is 
that due to constant marginal budget shares with respect 
to income, the limit property of LES is still constant-re-
turn-to-scale, and therefore the underlying income elas-
ticities of demand will approach one as income grows.
An alternative option to model non-homotheticity is to 
utilize the Constant Difference of Elasticities (CDE) de-
mand system proposed by Hanoch (1975). With implicit 
additivity, a N-commodity CDE system has N  expansion 
parameters and N  substitution parameters to achieve a 
more general functional form than the single nest CES 
case. The N  expansion parameters make it possible to in-
corporate various income elasticities of demand across 
commodities/sectors, and the income elasticities will re-
main at their given levels as income changes (“commod-
ity” and “sector” are used interchangeably in this study). 
On the other hand, compared to a single-nest CES set-
ting, the N  substitution parameters allow modelers to 
come up with a somewhat better representation for the 
target own-price demand elasticities. 
One caveat of CDE applications, paradoxically, comes 
from the constancy of each income elasticity regardless 
of income levels. While this feature might not severely 
contradict empirical evidence for developed countries, 

1 While Perroni and Rutherford (1995) focuses on homothetic pref-
erences, it points out that the multi-nest strategy achieving a perfect 
match in own-price elasticities calibration also works for non-homo-
thetic preferences.

existing studies have found that, for instance, income elas-
ticities of some food items in developing countries tend 
to decrease as income grows (Haque, 2005; Chern et al., 
2003). In some cases, economic growth may turn luxury 
goods into necessities (Zhou et al., 2012). To overcome 
this, with more income response parameters, Rimmer and 
Powell (1996) presents an implicit directly additive de-
mand system (AIDADS) that allows income elasticities of 
demand to vary logistically. Nevertheless, AIDADS has a 
narrow range of substitution across goods, and due to the-
oretical and computational reasons, AIDADS applications 
are limited to 10 commodities/sectors (Reimer and Hertel, 
2004). As a result, these applications are less common and 
more project-specific. In contrast, despite some limita-
tions, the CDE system seems to be more applicable as a 
generic setting for modeling non-homothetic preferences. 
While CGE models such as GTAP (Hertel and Tsigas, 
1997), MAGNET (Woltjer and Kuiper, 2014), GTEM 
(ABARE/DFAT, 1995; ABARE, 1996), and ENVISAGE 
(van der Mensbrugghe, 2008) have been using CDE sys-
tems in modeling final consumption behaviors, perhaps 
due to the complexities in both calibration and imple-
mentation, other CDE applications are less common so 
far. More importantly, when studying the responses of 
CGE models with non-homothetic preferences, besides 
examining the implications of income elasticities of de-
mand on future projection, the roles of own-price elas-
ticities of demand are crucial as well, since own-price 
demand elasticities could also influence projections 
and may become even more crucial under some policy 
shocks. Existing literature also points out that to ensure 
the regularity of a well-behaved demand function, cal-
ibrating a CDE system to the target elasticities that are 
valid might be infeasible (Hertel, 2012; Huff et al., 1997). 
How well the system can match those elasticities is be-
yond the discussion of most existing literature. One ex-
ception is Liu et al. (1998), which presents the differences 
between target and calibrated elasticities. Nevertheless, 
exploring sources of differences between calibrated and 
target elasticities is beyond the scope of that study.
Before studying how well the calibrated elasticities of a 
demand system can match a set of target elasticities, one 
needs to ensure that under a given baseline expenditure 
share structure, the target elasticities are valid, i.e., they 
are conformable to aggregation conditions and a negative 
semi-definite Slutsky matrix. Therefore, the demand sys-
tem under consideration will only be calibrated to a set of 
valid target elasticities. With that in mind, the study will 
answer the question both analytically and numerically: 
given a set of valid target own-price demand elasticities, 
income demand elasticities and expenditure shares, under 
what conditions will the calibrated elasticities of a CDE 
system better match the target values? The findings of this 
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study can help modelers who implement a CDE system 
explaining how well the target elasticities are represented 
in their models, and provide information for choosing 
an appropriate sectoral aggregation so that, if possible, at 
least target elasticities of interesting sectors can be better 
matched. Next, the author presents strategies for putting 
the CDE system into GTAP8inGAMS, a global CGE mod-
el written in GAMS and MPSGE using the GTAP 8 data-
base (Rutherford, 2012). MPSGE is a subsystem of GAMS 
(Rutherford, 1999), and earlier it was sometimes thought 
that despite being a powerful tool that handles the calibra-
tion of CES functions automatically, MPSGE can only be 
applied to models with CES or LES utility functions (Kon-
ovalchuk, 2006; Hertel et al., 1991). The study shows that 
the potential of MPSGE applications is far beyond what 
was previously perceived. The revised GTAP8inGAMS 
with a CDE system is tested with income and price shocks 
to verify the model response is consistent to the calibrated 
elasticities. The programs for the CDE calibration and the 
revised GTAP8inGAMS with a CDE system are provided 
in Appendix A and Appendix B, respectively,  so readers 
can use them for verification or research purposes.
The rest of the paper is organized as follows: Section 2 
briefly reviews the theories and settings of the CDE sys-
tem; Section 3 presents the calibration, performance, and 
implementation of the CDE system; and Section 4 pro-
vides a conclusion.

2. Theoretical Background
To understand what constitutes a regular (i.e., valid) de-
mand response, the section will briefly review the econom-
ic considerations for a regular demand system. A question 
that follows is: how can one evaluate the performance of a 
regular demand system in terms of representing the target 
own-price and income demand elasticities that are valid? 
To explore this, the section will discuss a demand system’s 
flexibilities in own-price and income demand elasticities 
calibration, introduce the settings of CDE system, and fi-
nally examine the implications of CDE regularity condi-
tions on the calibration performance of the system. 

2.1 Regularity and Flexibility of a Demand 
System 

Let us denote a cost (or expenditure) function by C(p,u) 
where p  is a N-dimensional price vector and u  is the 
utility. For C  to be considered as well-behaved, ∂C/∂p , 
which is the Hicksian demand vector q(p,u) , is non-
negative and homogeneous of degree zero in p , and [∂ ^

2 
C/∂p _(i )∂p _(j ) ] _(N×N ),  which is the Slutsky matrix, is negative 
semi-definite (NSD).2 The intuition of a NSD Slutsky ma-
trix is: for a given utility level u , when a good becomes 

2 For example, see p.59 and p.933 in Mas-Colell et al. (1995).

more expensive, it will be replaced by other cheaper al-
ternatives; as a result, the cost increase with the new con-
sumption bundle after the price increase will never ex-
ceed the cost increase when the bundle cannot be altered.
The Slutsky matrix [∂ ^

2C/∂p _(i )∂p _(j )] _(N×N ),  or equivalent-
ly [∂q/∂p] _(N×N ), is symmetric and each term of the 
matrix is:

  (1)

Equation (1) is the Slutsky equation, which decompos-
es the impacts of a price change on the uncompensated 
demand x _(i )(p ,w)  into the income effect and substitu-
tion effect, where w  is the income (or expenditure) lev-
el. With some algebra, the Slutsky equation can also be 
expressed as

  (2)

where σ _(i j)^(

c
), σ _(i j)^(

m, η _(i ), and θ _(j ) are compensated price elastic-
ity of commodity i , uncompensated price elasticity of 
i , income elasticity of i , and expenditure share of j , re-
spectively. If both sides of (2) are divided by θ _(j ), one can 
come up with a Slutsky matrix [σ _(i j ) ] _(N×N in the form of 
Allen-Uzawa elasticity of substitution (AUES) (Allen and 
Hicks, 1934; Uzawa, 1962) with

  (3)

It can be shown that [σ _(i j ) ] _(N×N is also symmetric, and the 
matrix is NSD if and only if [∂q/∂p] _(N×N ) is NSD. There-
fore, a demand system is regular means 1) the Slutsky 
matrix [σ _(i j ) ] _(N×N )

 is NSD; and 2) the Hicksian demand 
q  is non-negative. For CGE modeling, it is necessary to 
ensure that the demand system is globally regular (i.e., 
it should remain regular everywhere in the domain of 
price). This is because the algorithm of the solver for 
finding equilibria may begin from an initial point of price 
and quantity combination that is far from the equilibri-
um levels, and in the process of solving the model, the 
algorithm might fail if the demand system is not globally 
regular, even the system is locally regular at the equilibri-
um points (Perroni and Rutherford, 1998).
Perroni and Rutherford (1995) defined a regular-flexible 
demand system as the one that is globally regular and can 
locally represent any valid configuration of compensated 
demands and the AUES matrix [σ _(i j ) ] _(N×N. Based on an 
inductive argument, Perroni and Rutherford proved that 
a demand system derived from a special version of the 
non-separable nstage CES function is regular-flexible. 
Nevertheless, in general, testing whether other demand 
systems are regular-flexible would need to identify the 
domain of a regular flexible demand system first, which 
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is beyond the scopes of their paper and the current re-
search. Instead of matching the entire AUES matrix 
under a given expenditure share structure, this study 
will simply focus on the ability of a demand system in 
matching a valid combination of ownprice elasticities, 
income demand elasticities, and expenditure shares. 
Own-price and income elasticities are usually of first-or-
der importance in characterizing the model response, 
and are also the most ubiquitous data available for cal-
ibrating a demand system. In particular, this study will 
examine whether a global regular demand system under 
consideration is own-price and income flexible (i.e., if 
the system can be calibrated to (σ _(i i ),  η _(i ),  θ _(i ))  consistent 
to any well-behaved cost function). Following this defi-
nition, for example, the demand system derived from a 
single-nest CES cost function is neither own-price nor 
income flexible. The settings of CDE and their implica-
tions on own-price and income flexibilities will be dis-
cussed below.

2.2 The CDE Demand System 
Let us consider the expenditure function C  with a 
price vector p  and a Hicksian demand vector q , i.e., 
c _(0)=C(p _(0), u)≡{minp _(0 )q _(0 ): f (q _(0 ))≥u}  where the sub-
script 0  denotes the benchmark condition. If the func-
tion is normalized by c _(0), it becomes C(p _(0 )/c _(0 ),u)≡1 . 
With this normalization, Hanoch (1975) proposes the ex-
penditure function of a CDE demand system as follows:

  (4)

where α _(i ) and e _(i ) are the substitution parameter and ex-
pansion parameter, respectively. In this setting, the utility 
u  is only implicitly defined, and in general there is no re-
duced form representation for u . The Hicksian demand 
for commodity i  based on this setting is:

  (5)

For the CDE system, the substitution elasticity σ _(i j ) in 
AUES form is presented in Equation (6), where the ex-
penditure share is denoted by θ _(i ), and δ _(i j )=1  if i=j , oth-
erwise δ _(i j )=0 . The income elasticity of demand η _(i ) is pre-
sented in Equation (7):

  (6)

  (7)

The following aggregation conditions hold: the Cournot’s 
aggregation ∑ _(i )θ_(i )σ_(i j  )=0  and the Engel’s aggregation  
∑ _(i )θ_(i )η _(i ) =1 . Note that for each off-diagonal term,  
σ _(i j )-σ _(i k )=α _(j )-α _(k ) is invariant to i  although σ _(i j ) may vary, 
and therefore the system has a constant difference of 
(substitution) elasticities. The regularity condition for 
the system presented in Hanoch (1975) includes: β _(i ) ≥0 ; 
e _(i ) ≥0 ; 0<α _(i ) <1  or α _(i ) ≥1∀ i  and α _(I ) >1  for some I  ∈   i . 
It is worth noting that with the regularity condition, each 
own-price elasticity of demand σ _(i i)^(

c
) is always negative. 

This is because from Equation (6) and σ _(i i)^(

c
)= σ_(i i )θ_(i ), we have

  (8)

For a given vector of θ _(i ), the requirement that all α _(i )s 
should lie on the same side of one imposes a constraint 
in choosing the vector of α _(i ) such that σ _(i i)^(

c
) can match the 

target own-price demand elasticity. For instance, some 
sectors may have a very small expenditure share (θ _(i )→0) 
and so for those sectors σ _(i i)^(

c
)→- α _(i ). However, for those 

sectors, if some target own-price elasticities do not lie on 
the same side of one, it would be impossible to match 
every single σ _(i i)^(

c
) with the target elasticity value no mat-

ter what regulatory condition on α _(i ) is chosen. Therefore, 
the CDE system is not own-price flexible. Further, the 
requirement of e _(i ) ≥0  also suggests that some compro-
mise has to be made in calibrating income elasticities 
of demand. 

3. Calibration, Performance, and 
Implementation

Two CDE calibration approaches have been presented.  
The first is the three-step procedure documented in Her-
tel et al. (1991) and Huff et al. (1997). In this approach, 
own-price demand elasticities are calibrated to target lev-
els first. Taking parameters determined in the first step 
as given, income elasticities of demand are calibrated to 
target levels next, and scale parameters of the system are 
specified last. The second method is the maximum en-
tropy approach presented by Surry (1997) and Liu et al. 
(1998). Rather than calibrating the system sequentially, 
the idea of this approach is to calibrating all parameters 
simultaneously by maximizing an objective function that 
considers matching both own-price and income elastic-
ities of demand. This study will take the first approach 
as an example and explore under what circumstanc-
es the calibrated elasticities can better match the target 
elasticities, the section will examine the performance 
of CDE calibration both analytically and numerically. It 
will also demonstrate how to put the CDE system into 
GTAP8inGAMS and verify the model response is consis-
tent to the calibrated elasticities.
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3.1 Calibration
Step 1: Calibrating the own-price elasticity of demand 
σii

c 
). Let us denote the target own-price elasticity of de-

mand by σ _(i i)^(

c t
). The purpose of this step is to choose α _(i ) 

so that the “distance” between the two vectors [σ _(i i)^(

c
)]  and 

[σ _(i i)^(

c t
)]  is minimized.3 In this study, the following function 

is considered for the minimization problem:

  (9)

where ω _(i )=θ _(i ). The study will compare the performances 
of different settings in matching the target own-price de-
mand elasticities. 
Step 2: Calibrating the income elasticity of demand. Let 
us denote the target income elasticity of demand by η _(i)^(

t
) 

(η _(i)^(

t
) must satisfy the Engel’s aggregation). Given α _(i ) deter-

mined in the previous step, by choosing e _(i ), the goal is to 
calibrate η _(i ) to η _(i)^(

t
) if possible. Similar to the idea of Step 1, 

the following problem is solved:

  (10)

The condition ∑ _(i )θ _(i )η _(i )=1  is to ensure the calibrated 
elasticities satisfy the Engel’s aggregation, and following 
Huff et al. (1997), the second condition is to ensure the 
calibrated elasticities lie on the same side of one as the 
target values. 
Step 3: Calibrating the scale coefficients holding the util-
ity level equals one. With the calibrated α _(i ) and e _(i ), and 
the normalization u=1 ,  p _(0i )=1 ,  and q _(0i )=θ _(i ) (since c _(0 ) 
=  ∑ _(i )p _(0i )q _(0i ) =1), the N  scale parameters β _(i ) can be solved 
by using (4) and (5):

  (11)

Because the calibration is done sequentially, how well 
the income elasticities of demand can be matched to tar-
get levels is also affected by the calibration of own-price 
demand elasticities. In Appendix A, the study provides 
the program for the three-step strategy. The program is 
written in GAMS, and each minimization problem in 
the program is formulated as a nonlinear programming 
(NLP) problem. 

3 Without explicitly considering the distance metric, the objective 
function of this problem considered in Huff et al. (1997) is f(σ _(i i)^(

c
))=∑ _(i )

σ _(i i)^(

c  
)[ ln  (σ _(i i)^(

c
)/σ _(i i)^(

c t
))  - 1] . 

3.2 Performance 
Before putting the system into a CGE model, two inter-
esting questions are: under what circumstances does the 
calibration become more accurate, and how well are the 
target elasticities represented? The following analysis will 
answer these questions.

Proposition 3.2.1: 
The lower the expenditure share, the higher the influ-
ence of own-sector substitution parameter in deter-
mining the calibrated own-price elasticity of demand. 
On the other hand, the higher the expenditure share, 
the higher the influence of other sectors’ substitution 
parameters in determining the calibrated elasticity. 

Proof:
Since σ _(i i)^(

c
)=- α _(i ) (1- θ _(i ) ) ^

2- θ _(i ) ∑ _(k |k≠i )θ _(k )α _(k )  , with a 
lower θ _(i ) (θ _(i )   ∈   (0 ,1)), σ _(i i)^(

c
) depends more on the 

own-sector substitution parameter α _(i ), rather than 
the weighted average of other sectors’ substitution 
parameters ∑ _(k |k≠i )  θ _(k )α _(k )  . In the extreme case with 
θ _(i ) →0 , if the regularity condition is not violated, 
σ _(i i)^(

c
) can be matched to the target level σ _(i i)^(

c t
) by sim-

ply setting α _(i )=- σ _(i i)^(

c t
) since σ _(i i)^(

c
)=- α _(i ). On the  

other hand, with a higher θ _(i ), σ _(i i)^(

c
) depends more 

on the weighted average of other sectors’ substitu-
tion parameters ∑ _(k |k≠i )θ _(k )α _(k ) rather than the own-
sector substitution parameter α _(i ). In the extreme 
case with θ _(i )→1 , α _(i ) has no control over σ _(i i)^(

c
) since 

σ _(i i)^(

c
)=∑ _(k |k≠i )θ _(k )α _(k ).

Since the compensated own-price elasticities of demand 
presented in GTAP 8 are between - 1  and 0 , based on 
discussions above, considering the regularity condition 
with α _(i ) ∈   (0 ,1)  produces more accurate calibration re-
sults for sectors with smaller expenditure shares. With 
a higher sectorial resolution, more commodities/sectors 
will have smaller expenditure shares, and thus having 
α _(i ) ∈   (0 ,1)  will make it possible for producing a better 
match between calibrated and target levels for each indi-
vidual sector.

Proposition 3.2.2:
When α _(i ) ∈   (0 ,1) , calibrating the income elastici-
ty of demand to a higher level is less likely to violate 
e _(i ) ≥0 , which is part of the regularity condition. On 
the other hand, when α _(i ) ≥1  ∀   i  and α _(I ) >1  for some 
I  ∈   i , calibrating the elasticity to a lower level is less 
likely to violate e _(i ) ≥0 .

Proof:
From Equation (7), 
e _(i )={∑ _(k )θ _(k )e _(k ) [η _(i )-(α _(i )-∑ _(k )θ _(k )α _(k ))]-∑ _(k )θ _(k )e _(k )α _(k )}/(1-α _(i )). 
When α _(i ) ∈   (0 ,1) , a positive numerator for the 
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equation above is needed to ensure e _(i ) ≥0 . There-
fore, other things being equal, with a higher cali-
brated income elasticity of demand η _(i ), the numer-
ator is less likely to become negative. Similarly, for 
α _(i ) ≥1  ∀   i  and α _(I ) >1 , a lower η _(i ) is less likely to vi-
olate e _(i ) ≥0 .

If one considers α _(i ) ∈   (0 ,1) , the second proposition sug-
gests that matching the target income elasticities for the 
demand of agricultural products might be trickier, since in 
general these products tend to have lower income elastic-
ity values; as a result, the calibrated income demand elas-
ticities for these products might end up with levels higher 
than the target numbers. Nevertheless, the values of α _(i ) de-
termined in Step 1 of the calibration procedure may also 
affect how well the target income elasticities of demand 
are met, as will be explored in the next proposition. 

Proposition 3.2.3:
When α _(i ) ∈   (0 ,1) , calibrating the income elastici-
ty of demand to a target level is less likely to violate 
e _(i ) ≥0  with a smaller α _(i ). On the other hand, when 
α _(i ) ≥1  ∀   i  and α _(I ) >1  for some I  ∈   i , calibrating the 
elasticity to the target level is less likely to violate e _

(i ) ≥0  with a larger α _(i ).

Proof:
This can be verified by e _(i )={∑ _(k )θ _(k )e _(k )  [η _(i )- (α _(i )- ∑ _(k )

θ _(k )α _(k ) ) ]- ∑ _(k )θ _(k )e _(k )α _(k ) }/(1- α _(i )) . 

Continuing our previous example for commodities 
with low income elasticities of demand and with 
α _(i ) ∈   (0 ,1) , while Proposition 3.2.2 says that for 
given values of α _(i ), it is harder to calibrate the in-
come elasticity of demand to a lower value, Propo-
sition 3.2.3 suggests that if the calibrated α _(i ) is small 

enough, it is still possible to calibrate the income 
elasticity of demand to a lower level.

Proposition 3.2.4:
Commodities with substitution parameters α _(i ) close 
to one will have similar calibrated income elasticities 
of demand.

Proof:
From Equation (7), 

η_(i )=∑ _(k )θ _(k )e _(k )α _(k )/∑ _(k )θ _(k )e _(k )+1- ∑ _(k )θ _(k )α _(k )= η_(j ).

Proposition 3.2.4 shows that the calibrated α _(i ) may work 
against the calibration for income elasticities of demand. 
For instance, if there are two commodities with  α _(i ) and 
α _(j ) both approaching unity, according to the proposition, 
the calibrated income elasticities of demand η _(i ) and η _(j ) 
will be very close to each other, even if their target values 
η _(i)^(

t
) and η _(j)^(

t
) are quite different.

To show how different sectorial aggregation levels could 
affect the accuracy of elasticity calibration, the study con-
siders several different aggregation levels (Table 1).4 For 
demonstration purpose, all GTAP regions are combined 
into a single region using the aggregation routine of 
GTAP8inGAMS. In particular, wherever needed, target 
elasticities are aggregated based on expenditure shares. It 
is worth noting that the 10-sector income demand elas-
ticity estimates based on an implicit directly additive de-
mand system (AIDADS) were mapped to and used as the 
target income demand elasticities of the original GTAP 
database, and following Zeitsch et al. (1991), income de-
mand elasticities are then used to compute the own-price 

4 For all settings, there is a single aggregated region and 2 aggregat-
ed primary factors: labor and capital.

Table 1. Settings for calibration exercises with various sectorial aggregation levels.

Aggregation Level # of 
Sectors

Settings

1r3s2f 3 Combine GTAP sectors 1–14 (g01–g14) & 22–26 (g22–g26) into s01 (agriculture); 
g15–g21 & g27–g46 into s02 (manufacturing); and g47–g57 into s03 (service).

1r4s2f 4 Similar to 1r3s2f, except the service sector is disaggregated into a trade and transport 
sector (g47–g51) and a service sector (g52–g57). 

1r5s2f 5 Combine g01–g17 into s01; g18–g27 into s02; …; g48–g57 into s05.
1r8s2f 8 Combine g01–g15 into s01; g16–g21 into s02; …; g52–g57 into s08.
1r16s2f 16 Combine g01–g12 into s01; g13–g15 into s02; g16–g18 into s03; …; g55–g57 into s16.
1r29s2f 29 Combine g01–g02 into s01; g03–g04 into s02; …; g55–g56 into s28; g57 becomes s29.
1r57s2f 57 Keep the original GTAP sectors (g01–g57).
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demand elasticities of the database, as documented in 
Hertel et al. (2014).
To assess the calibration performance for each type of 
elasticity, in addition to a one-by-one comparison be-
tween calibrated and target numbers for each commod-
ity, it is informative to have an index for measuring how 
far the point of calibrated elasticities is from the point of 
target elasticities as follows:

  (12)

Depending on the type of elasticity evaluated, x _(i ) in Equa-
tion (12) could be either the own-price elasticity of de-
mand σ _(i i)^(

c
) or the income elasticity of demand η _(i ), while 

the superscript x _(i)^(

t
) denotes target value and ω _(i )=θ _(i ).

When the 57 GTAP sectors are aggregated into a 3-sec-
tor setting, even the smallest sectorial expenditure share, 
denoted by θ _(min ), approximates 12%, and with this set-
ting the largest share θ _(max ) exceeds 63%. As the sectori-
al resolution increases, the difference between θ _(max ) and 
θ _(min ) is reduced. In the most disaggregated case where 
all 57 GTAP sectors are kept, θ _(max ) is slightly above 17% 
and θ _(min ) is only 0.0002% (Table 2). Per compensated 
own-price demand elasticity targets, the range between 
the largest one σ ^(

c t
)_(max ) and the smallest one σ ^(

c t
)_(min ) increases 

as the sectorial resolution gets higher, since more disag-
gregated setting means extreme values are more likely 
to appear. In general, σ ^(

c t
)_(max ) becomes larger (|σ ^(

c t
)_(max )|  be-

comes smaller, i.e., less elastic) and σ ^(

c t
)_(min ) becomes smaller 

(|σ ^(

c t
)_(min )|  becomes larger, i.e., more elastic) as the sectorial 

resolution increases. The same story applies to the in-
come demand elasticity targets—with more disaggregat-
ed sectors, the range between η ^(

c t
)_(max ) and η ^(

c t
)_(min ) increases as 

η ^(

c t
)_(min ) becomes smaller (less elastic) and/or η ^(

c t
)_(max ) becomes 

larger (more elastic).When trying to calibrate the CDE 
system to the target own-price and income demand elas-
ticities, it is important to verify if the target own-price 
demand elasticities are compatible to an AUES matrix 
that is NSD. For instance, with the 3-sector setting, 
based on the Cournot aggregation, the three off-diago-
nal terms of the AUES matrix are fully determined once 
the own-price demand elasticities in AUES form (i.e., 
the diagonal terms of the matrix) are given, and hence 
the whole AUES matrix is identified. However, this will 
not be a valid AUES matrix since it is not NSD, which 
means the target own-price demand elasticities under 
the three-sector setting are invalid, and one cannot claim 
the CDE system is not flexible based on this setting. On 
the other hand, in the 4-sector, 5-sector, 8-sector, and 
16-sector settings, it can be shown that under each set-
ting, the target own-price demand elasticities are com-
patible to an AUES matrix that is NSD, and therefore 
the target elasticities are valid. More specifically, if one 

denote the number of sectors/commodities by n,  there 
will be n ∙(n- 1)/2 - n  free variables that are off-diag-
onal terms in an AUES matrix. Therefore, once the diag-
onal terms (compensated own-price demand elasticities 
in AUES form) are given, one can use random number 
generators to assign values for those off-diagonal terms 
(cross-price demand elasticities in AUES form), and then 
choose the combination that yields a NSD AUES matrix. 
The MATLAB subroutine for doing this job is presented 
in Appendix C.
Since with various sectorial aggregation levels, own-price 
demand elasticity targets are all between 0 and 1, to cal-
ibrate the CDE system, similar to Huff et al. (1997), the 
study chooses α _(i ) ∈   (0 ,1) , a setting that produces a more 
accurate own-price demand elasticity calibration when 
the sectorial resolution becomes higher or the sectors un-
der consideration have smaller expenditure shares, based 
on Proposition 3.2.1. The study finds that in the 4-sector, 
5-sector, 8-sector, and 16-sector settings, the calibrated 
own-price demand elasticities cannot match their target 
levels since the distance measure d _(σ ) for each of these set-
tings is nonzero. Nevertheless, in general, d _(σ ) gets smaller 
as the sectoral resolution increases (Table 2). Indeed, if 
one moves further to the 29-sector or 57-sector settings, 
a perfect match between the calibrated own-price de-
mand elasticities and their target levels is achieved since 
d _(σ )=0  in both cases. Also, as sectorial shares are small-
er, the calibrated own-price demand elasticity σ _(i i)^(

c
) will be 

closer to - α _(i ) (Appendix D). These findings can also be 
explained by Proposition 3.2.1.
The results also show that the calibrated income demand 
elasticities fail to match their target levels in the 4-sector, 
5-sector, 8-sector, and 16-sector settings (Table 2). Tak-
ing the first sector (agricultural sector) in the 4-sector 
setting for instance, the target income demand elasticity 
is 0.7300, while the calibrated level is 0.8442 (Appen-
dix D), which is almost 16% off. As discussed earlier, 
under the sequential calibration strategy considered in 
this study, calibrated income demand elasticities are de-
termined after the calibrated own-price demand elas-
ticities. Therefore, given a set of substitution parameter 
{α _(i )|α _(i ) ∈   (0 ,1)}  that specifies the own-price demand 
elasticities, from the perspective of income elasticity 
calibration, it would be trickier to target a lower income 
elasticity level such as one for an agricultural commodity 
(Proposition 3.2.2), and this explains the why the exact 
match between the calibrated and target income demand 
elasticities cannot be achieved in the 4-sector setting. 
Also, under the 5-sector setting, the calibrated income 
demand elasticity of the first sector can match its tar-
get level perfectly, and yet that level (0.5504) is even 
lower than the target demand elasticity of the first sec-
tor (0.7300) under the 4-sector setting. Note that un-
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der the 5-sector setting, the substitution parameter (α _(i )) 
of the first sector (0.2552) is much smaller than that of 
the 4-sector setting (0.4659)—a smaller α _(i ) would make 
it easier for the income demand elasticity calibration 
of commodity i  (Proposition 3.2.3). Another finding is 
when there are multiple sectors with their own α _(i ) close 
to 1 , the calibrated income demand elasticities will con-
verge to the same level, despite the fact that the target 
elasticity levels are different (Appendix D). Proposition 
3.2.4 provides the explanation to this observation. Final-
ly, with 29-sector and 57-sector settings, while the targets 
for income demand elasticities tend to be more extreme, 
a perfect match between calibrated and target levels is 
achieved with the help of smaller α _(i ) (Proposition 3.2.3).

3.3 Implementation 
With the calibrated parameters, the study demonstrates 
how to put the CDE system into the multi-region and 
multi-sector CGE model of GTAP8inGAMS. The orig-
inal CGE model is constructed based on CES technol-

ogies for both production and final consumption. It 
includes a series of mixed complementary problems 
(MCP) (Mathiesen, 1985; Rutherford, 1995; Ferris and 
Peng, 1997) written in MPSGE, a subsystem of GAMS 
(Rutherford, 1999). To implement the CDE system, the 
CES expenditure function is dropped, and by declaring 
auxiliary variables and equations in MPSGE to formulate 
relevant MCP, three sets of conditions below are incorpo-
rated into the revised model:

• The equation for total expenditure. The total expen-
diture c  for purchasing one unit of utility (Equation 
(4)) is added into the model to form a MCP with a 
complementarity variable c . Note that in Equation (4), 
c  is only implicitly defined. The purpose of this prob-
lem is to determine c  jointly with other conditions. 
As previously mentioned, in the benchmark, both the 
utility level and price indices of commodities are nor-
malized to unity.

Table 2. Summary statistics, calibration performance, and validity of the AUeS matrix.

Setting 1r3s2f 1r4s2f 1r5s2f 1r8s2f 1r16s2f 1r29s2f 1r57s2f 

Number of sectors 3 4 5 8 16 29 57 

Target values summary statistics

Sectorial expenditure share

θ _max 63.4297% 39.5532% 46.2424% 39.5532% 26.4814% 20.4395% 17.1860%

θ _min 11.7793% 11.7793% 3.4324% 2.2792% 0.0924% 0.0167% 0.0002%
Own-price demand elasticity

σ ^(

c t
)_(max )

-0.4294 -0.4294 -0.2056 -0.1942 -0.1669 -0.0936 -0.0711

σ ^(

c t
)_(min )

-0.7658 -0.7800 -0.7608 -0.7800 -0.7974 -0.7957 -0.8095

σ ^(

c t
)_(avg )

-0.6201 -0.6542 -0.5807 -0.6022 -0.6093 -0.5331 -0.5294

σ ^(

c t
)_(s td )

0.1410 0.1363 0.2064 0.1813 0.1634 0.2269 0.2220
Income demand elasticity

η ^(

c t
)_(max )

1.0502 1.0543 1.0513 1.0543 1.0987 1.0916 1.1190

η ^(

c t
)_(min )

0.7300 0.7300 0.5504 0.5387 0.4874 0.3382 0.2704

η ^(

c t
)_(avg )

0.9267 0.9569 0.8947 0.9181 0.9457 0.8851 0.8970

η ^(

c t
)_(s td )

0.1406 0.1326 0.1920 0.1708 0.1547 0.2344 0.2272

Calibration results with α_i∈(0,1)

Match each σ _(i i )?       

d _(σ )

0.3470 0.1313 0.1856 0.1427 0.0405 0.0000 0.0000

Match each η _(i i )?       

d _(η )

0.2363 0.1021 0.0041 0.0081 0.0141 0.0000 0.0000

Validity of the AUES matrix

Compatible to a NSD AUES?       
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• The equation for final demand. The equation for fi-
nal demand (Equation (5)) is coupled with its com-
plementarity variable, the activity level of final de-
mand, to form a MCP. The problem is incorporated 
into the model to solve for the final demand of each 
commodity. 

• The zero profit condition for utility. Let us denote 
the marginal cost and marginal revenue of utility (i.e., 
price of utility) by mcu  and pu , respectively.5 The 
zero profit condition of utility and the activity level of 
utility compose another MCP:

  (13)

Condition (13) states that in equilibrium, if the 
supply of utility u  is positive, the marginal cost of 
utility mcu  must equal the marginal revenue pu , 
and if mcu  is higher than pu  in equilibrium, u 
must be zero.

With the commodity price being a complementarity 
variable, the market clearing condition of each commod-
ity is also formulated as a MCP by comparing the com-
modity supply (determined by its zero profit condition) 
with the final demand shown above plus the intermediate 
demand derived from a CES cost function as the original 
GTAP8inGAMS. Similarly, with the price of utility being 
the complementarity variable, the supply of utility com-

5 mcu  in Condition (13) can be derived by taking the total deriv-
ative of Equation (4) with respect to u  and c  at a given commodity 
price vector.

bined with the demand for utility (income/pu) make 
up the MCP for the market clearing condition of utility. 
The model code is provided in Appendix B, and interest-
ed readers may refer to Rutherford (1999) and Markusen 
(2013) for details of MPSGE. 
For demonstration purposes, the study considers a set-
ting with the aggregation level of two regions, four sec-
tors, and one primary factor, and denotes this setting 
by “2r4s1f.” The two regions are USA and the rest of the 
world (ROW); four sectors are agriculture (agri), manu-
facturing (man), trade and transport (tran), and service 
(serv), following the sectorial classification for the setting 
“1r4s2f ” presented in Table 1; and the only one primary 
factor is the aggregation of all primary factors of GTAP8. 
As before, prior to conduct and evaluate the CDE cali-
bration, one needs to check if the target elasticities under 
this setting (2r4s1f) are consistent to an AUES matrix 
that is NSD, and it can be shown that this is indeed the 
case (the NSD AUES matrix can be found numerically 
based on the subroutine presented in Appendix C). With 
the 2-region and 4-sector setting, Table 3 presents the 
calibration performance for the CDE system.
Let us parameterize the revised CGE model of GTAP-
8inGAMS, based on calibrated parameters in Table 3. 
In the model, the aggregated primary factor along with 
the choice of the numeraire, which is the price for the 
aggregated primary factor, facilitate the identification of 
income effect. Now, to verify whether the CDE system is 
correctly implemented, the study will test if the outputs 
of the CGE model are consistent to the underlying cal-
ibrated elasticities under given price or income shocks. 
For example, with the shock on the price of agricultural 
product in the U.S., the first exercise changes the cost of 
final consumption for agricultural product in the U.S. ex-

Table 3. Performance of the cDe calibration under the setting “2r4s1f”

θ _i α _i e _i σ ^(

c t
)_(i i ) σ ^(

c c
)_(i i ) η _i^

t η _i^

c

Region: USA
agri 0.04909 0.85705 2.00000 -0.67034 -0.82165 0.81292 0.99981
man 0.18381 0.99999 0.00000 -0.82044 -0.81489 0.99514 1.00000
tran 0.20250 0.99999 0.00000 -0.85294 -0.79607 1.01152 1.00000
serv 0.56460 0.99999 3.37350 -0.85273 -0.43143 1.01372 1.00002
Distance     0.31937  0.04303

Region: ROW
agri 0.14694 0.39172 0.18712 -0.39520 -0.40556 0.71822 0.71822
man 0.27510 0.87997 0.18541 -0.62097 -0.63723 1.00104 1.00104
tran 0.25415 0.99999 0.00000 -0.70506 -0.71473 1.05431 1.07113
serv 0.32380 0.99999 1.13413 -0.72614 -0.63656 1.08436 1.07116
Distance     0.05206  0.01133
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ogenously to create the considered price shock.6 The goal 
is to calculate the uncompensated (Marshallian) average 
own-price elasticity for the demand of agricultural prod-
uct based on the model response, and see if the realized 
elasticity from the model output is consistent to the cal-
ibrated level. 

It is worth noting that while the target own-price 
elasticity for the demand of agricultural product is 
σ _(i i)^(

c t
)=- 0.6703 , the calibrated own-price demand elas-

ticity is σ _(i i)^(

cc
)=- 0.8217 , which again is evidence that 

the CDE system is not own-price flexible (Table 3). Be-
sides, since with a nontrivial price shock imposed on the 
CGE model, it is more convenient to derive a “realized” 
uncompensated average demand elasticity based on the 
model’s output, for comparison purposes, the study will 
also convert the calibrated own-price demand elastici-
ty σ _(i i)^(

cc
), which is a compensated point elasticity, into an 

uncompensated average demand elasticity with the same 
price shock so one can easily compare the realized level 
to the calibrated one.

The calibrated uncompensated own-price demand elas-
ticity, σ _(i i)^(

m
)=- 0.8707  (a point elasticity), can be derived 

from σ _(i i)^(

c
),  η _(i ),  and θ _(i ) based on the Slutsky equation pre-

6 For instance, in the revised CGE model of GTAP8inGAMS, a 10% 
increase in the price of agricultural product is achieved by multiplying 
both vdfm(“agri”, c, “usa”) and vifm (“agri”, c, “usa”) by 1.1.

sented in Equation (2). Let us consider the quantity in-
dex q̃ _(i )=q _(i )/θ _(i ) with the benchmark level q̃ _(0 i )=1  since 
q_(o i )=θ _(i ) (see Step 3 in Section 3.1). Because the percent-
age change in q̃ _(i ) is equivalent to the percentage change 
in q _(i ), q̃ _(i ) can replace q _(i ) in deriving the average uncom-
pensated (Marshallian) demand elasticity —with both 
price and quantity indices normalized to unity, σ _(i i)^(

ma
) can 

be expressed as:

   (14)

p _(i ) i s  the after- shock price level   

When various price shocks of agricultural product are in 
place, the values for σ _(i i)^(

ma
) (the calibrated average Marshal-

lian demand elasticity) and the realized average elastici-
ty levels σ _(i i)^(

mar
) (derived from the model output) are both 

presented in Figure 1. Note that with the exogenous price 
shocks in agricultural product, in the new equilibrium, 
one may also observe changes in prices of other com-
modities relative to their pre-shock levels, and this will in 
turn affect the equilibrium food consumption level due 
to the existence of cross-price elasticities of food demand. 
The exogenous price shock may also induce an income 
effect as reflected by the change in total (final) expendi-
ture level. Therefore, to calculate σ _(i i)^(

mar
), the consumption 

Figure 1. Average own-price elasticity for the demand of agricultural product in the U.S.

rePOrT 307 mIT JOINT PrOGrAm ON THe ScIeNce AND POLIcY OF GLObAL cHANGe

10



index q̃ _(i ) is adjusted such that it is net of the cross-price 
and income effects. The result in Figure 1 shows that, as 
expected, the larger the price shock, the more the average 
elasticity deviates from the point elasticity σ _(i i)^(

m
), which is 

the calibrated level without any price shock in the figure. 
Figure 1 also verifies that the uncompensated average de-
mand elasticity σ _(i i)^(

mar
) calculated from the model output 

replicates its calibrated counterpart σ _(i i)^(

ma
).

In the following exercise, the study examines the model 
response under various income shocks in the U.S. The 
shocks are created by changing the quantity of the ag-
gregated primary factor of the U.S., which is just the real 
GDP level of the U.S. Since GDP is not only spent on 
private consumption, to calculate the income elasticities 
of various commodities based on the model response, 
instead of using the percentage change in GDP as the de-
nominator of the elasticity, one needs to use the percent-
age change in the portion of income dedicated to private 
consumption, or equivalently, the percentage change in 
total expenditure on private consumption. Following the 
same logic as Equation (14), the average income demand 
elasticity can be written as:

   (15)

c  is  the after- shock income level

Under various levels of income shock, Equation (15) is 
used to convert the calibrated point elasticity into the 
calibrated average elasticity, which serves as the bench-
mark for the comparison between the realized average 
elasticity from model outputs and the calibrated level the 
model is given. Finally, as the previous example, the new 
equilibrium with an income shock, 

will generally accompany changes in price levels of var-
ious commodities. This means that the resulting con-
sumption levels will be contaminated by changes in pric-
es, although these changes are usually small. The study 
accounts for this price effect and removes it from the con-
sumption levels, and then for each commodity, uses the 
percentage change of the adjusted consumption level as 
the numerator of the income elasticity. Figure 2 demon-
strates that for the final consumption of agricultural 
product, the realized average income demand elasticity 
levels, as expected, replicate their calibrated counter-
parts. The two exercises presented here can be extended 
to other sectors and regions. For instance, with this 2-re-
gion and 4-sector setting, most of the calibrated income 
demand elasticities are close to one. The only exception 
is the income demand elasticity for the agricultural prod-
uct in the rest of the world, η _(i)^(

c
)=0.7182  (Table 3). For 

this elasticity, the calibrated and the realized numbers are 
matched as well (Figure 3).

Figure 2. Average income elasticity for the agricultural product demand in the U.S.
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4. Conclusion
This is the first paper to explore the circumstances under 
which the calibrated own-price and income elasticities 
of demand in a CDE demand system can be matched 
more accurately to their target levels. It finds that while 
the system is neither own-price nor income flexible, the 
elasticity match improves with lower sectorial expendi-
ture shares (or a higher sectorial resolution), lower target 
own-price demand elasticities, and higher target income 
demand elasticities. In any case, to understand the extent 
to which the elasticity targets are correctly represented 
in a CGE model, it is crucial to check whether the tar-
get elasticities are valid (i.e., compatible to a NSD Slutsky 
matrix), and disclose how well the calibrated elasticities 
match their target counterparts. Without having these 
inspections, when the calibrated elasticities deviate from 
target levels, it will not be possible to determine if that is 
due to targeting elasticity levels that are invalid, or if the 
inflexibility of the demand system is indeed the cause of 
the mismatch.

In addition, using GTAP8inGAMS, the study also incor-
porates the CDE demand system into a global CGE model 
written in MPSGE, which has not been presented before. 

Furthermore, price and income shocks are imposed on 
this revised GTAP8inGAMS, and the model responses 
successfully replicate the calibrated elasticities of the CDE 
demand system. Future studies may examine if other CGE 
applications with the CDE demand can produce results 
consistent to the calibrated elasticities, or they may inves-
tigate the flexibility and calibration performance of other 
demand systems. These issues are rarely studied, but are 
essential for reasons discussed in this research.
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Appendix A: The CDE Calibration Program7

7 This GAMS program implements the three-step procedure for calibrating the CDE system. To run it, one needs: 1) the GTAP 8 data in the 
gdx format (created by GTAP8inGAMS) with desired resolutions for regions, sectors, and primary factors; 2) the subroutine “gtap8data.gms,” 
which is also included in GTAP8inGAMS, that reads data needed in the calibration program; 3) to type “gams cdecalib” under the DOS command 
prompt—this will use the default database “2r4s1f.gdx”. The environment variable “ds” can be used to overwrite the default database setting.
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Appendix B: The CGE Model with CDE Demand for GTAP8inGAMS8

8 To run this MPSGE program “mrtmge_cde.gms,” one needs to 1) place it inside the subdirectory “model” of GTAP8inGAMS; 2) set either 
price shock or income shock within the loop; 3) set the output file name that distinguishes price shock from income shock; and 4) type, for exam-
ple, “gams mrtmge_cde --start=0.1 --end=20 --step=0.1” under the DOS command prompt. With the default setting, this will produce 20 different 
price shocks for the agricultural product—the first shock will be created by multiplying both vdfm(“agri”,c,”usa”) and vifm(“agri”,c,”usa”) by 0.1, 
and for each following shock, the multiplicand increases by 0.1 compared to that in the previous shock. 
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Appendix C: The Program Checking if Elasticity Targets are Valid
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Appendix D: Calibration Details of the CDE System

θ α ϵ _(t arget ) ϵ _(ca l ibrated ) e η _(t arget ) η _(ca l ibrated )

1r3s2f

s01 0.11779 0.69132 -0.42935 -0.64196 1.00000 0.72997 0.99993

s02 0.24791 0.99999 -0.66503 -0.74307 0.00000 0.99974 1.00000

s03 0.63430 0.99999 -0.76584 -0.34264 1.39128 1.05025 1.00001

1r4s2f

s01 0.11779 0.46593 -0.42935 -0.46570 1.69852 0.72997 0.84424

s02 0.24791 0.97108 -0.66503 -0.72013 0.00000 0.99974 1.00000

s03 0.23876 0.99999 -0.74242 -0.74450 0.00000 1.04350 1.02891

s04 0.99999 -0.77997 -0.57674 6.05841 1.05432 1.02894

1r5s2f

s01 0.03432 0.25519 -0.20559 -0.26903 0.34455 0.55041 0.55041

s02 0.11603 0.64030 -0.52076 -0.59769 0.37632 0.81865 0.81865

s03 0.10413 0.81460 -0.66544 -0.74006 0.81022 1.00727 1.00727

s04 0.28309 0.99999 -0.75108 -0.69238 1.03185 1.05134 1.04791

s05 0.46242 0.99999 -0.76079 -0.49752 1.30986 1.04581 1.04791

1r8s2f

s01 0.03352 0.21620 -0.19417 -0.23118 1.77964 0.53872 0.53872

s02 0.02279 0.52803 -0.48782 -0.52400 2.53677 0.81197 0.81197

s03 0.09404 0.60345 -0.53011 -0.57264 2.17642 0.82213 0.82213

s04 0.09783 0.77401 -0.66566 -0.70859 4.08792 1.00456 1.00456

s05 0.04364 0.79038 -0.72192 -0.75976 4.69953 1.03290 1.03289

s06 0.07051 0.78613 -0.69707 -0.73727 4.80226 1.03684 1.03683

s07 0.24214 0.99999 -0.74111 -0.72864 0.99992 1.04339 1.05016

s08 0.39553 0.99999 -0.77997 -0.55674 9.13649 1.05432 1.05018

1r16s2f

s01 0.02937 0.15660 -0.16693 -0.17214 0.28241 0.48744 0.48744

s02 0.00415 0.39182 -0.38712 -0.39206 0.63398 0.90206 0.90206

s03 0.00092 0.67054 -0.66517 -0.67008 0.82138 1.04085 1.04085

s04 0.02187 0.48840 -0.48033 -0.48546 0.43837 0.80230 0.80230

s05 0.01917 0.42077 -0.41568 -0.42078 0.38537 0.73339 0.73339

s06 0.07487 0.59054 -0.55941 -0.56517 0.42817 0.84486 0.84486

s07 0.03095 0.65777 -0.63789 -0.64312 0.63971 0.96517 0.96517

s08 0.06687 0.72478 -0.67851 -0.68417 0.76744 1.02279 1.02279

s09 0.00330 0.65472 -0.64824 -0.65318 0.84878 1.05236 1.05236

s10 0.04035 0.76068 -0.72795 -0.73328 0.78856 1.03131 1.03131

s11 0.04451 0.74928 -0.71468 -0.72006 0.80920 1.03715 1.03715

s12 0.02600 0.68584 -0.66691 -0.67208 0.80951 1.03631 1.03631

s13 0.20777 0.99999 -0.75135 -0.75945 0.89823 1.05178 1.04092

s14 0.03437 0.70394 -0.67923 -0.68450 0.68774 0.99270 0.99270

s15 0.13072 0.93955 -0.79738 -0.80402 1.60728 1.09873 1.09873

s16 0.26481 0.99999 -0.77138 -0.69341 0.67100 1.03240 1.04092

1r3s2f θ α ϵtarget ϵcalibrated e ηtarget ηcalibrated
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θ α ϵ _(t arget ) ϵ _(ca l ibrated ) e η _(t arget ) η _(ca l ibrated )

1r29s2f

s01 0.00143 0.09267 -0.09357 -0.09357 0.42740 0.33991 0.33991

s02 0.01600 0.10522 -0.11479 -0.11479 0.40249 0.33825 0.33825

s03 0.00069 0.09841 -0.09883 -0.09883 0.62831 0.43748 0.43748

s04 0.00290 0.13154 -0.13312 -0.13312 0.47413 0.39110 0.39110

s05 0.00520 0.30895 -0.30995 -0.30995 1.33837 0.83221 0.83221

s06 0.00315 0.27425 -0.27506 -0.27506 1.39632 0.84299 0.84299

s07 0.00398 0.38575 -0.38590 -0.38590 1.46331 0.89563 0.89563

s08 0.00017 0.41754 -0.41753 -0.41753 1.97351 1.05623 1.05623

s09 0.00092 0.66584 -0.66536 -0.66536 1.90474 1.04089 1.04089

s10 0.01817 0.51877 -0.51461 -0.51461 1.00120 0.81432 0.81432

s11 0.01690 0.46672 -0.46461 -0.46461 1.05382 0.80348 0.80348

s12 0.00597 0.21068 -0.21299 -0.21299 0.69651 0.54116 0.54116

s13 0.06527 0.57659 -0.55410 -0.55410 0.93506 0.82800 0.82800

s14 0.02982 0.64004 -0.62598 -0.62598 1.45830 0.95776 0.95776

s15 0.01073 0.63809 -0.63307 -0.63307 1.58403 0.98065 0.98065

s16 0.03895 0.69602 -0.67330 -0.67330 1.68759 1.00760 1.00760

s17 0.03068 0.70071 -0.68252 -0.68252 1.92233 1.04433 1.04433

s18 0.00054 0.64150 -0.64124 -0.64124 2.09503 1.07543 1.07543

s19 0.03579 0.76118 -0.73564 -0.73564 1.84873 1.03603 1.03603

s20 0.01658 0.69629 -0.68660 -0.68660 1.81666 1.02778 1.02778

s21 0.03249 0.74450 -0.72240 -0.72240 1.85417 1.03591 1.03591

s22 0.02171 0.67285 -0.66119 -0.66119 1.88490 1.03770 1.03770

s23 0.00765 0.67912 -0.67491 -0.67491 1.85026 1.03219 1.03219

s24 0.20439 0.99418 -0.75305 -0.75305 3.31501 1.05204 1.05204

s25 0.00855 0.63947 -0.63545 -0.63545 1.67133 0.99708 0.99708

s26 0.06077 0.80464 -0.75598 -0.75598 2.10861 1.06429 1.06429

s27 0.09577 0.88842 -0.79570 -0.79570 2.70728 1.09161 1.09161

s28 0.17177 0.96520 -0.77251 -0.77251 1.01877 1.03136 1.03136

s29 0.09304 0.85273 -0.76929 -0.76929 1.76577 1.03432 1.03432

s01 0.00681 0.65433 -0.65067 -0.65067 0.30974 0.99476 0.99476

s02 0.02640 0.56879 -0.55911 -0.55911 0.18143 0.83196 0.83196

s03 0.00017 0.09099 -0.09111 -0.09109 0.09240 0.36960 0.36960

s04 0.02582 0.71052 -0.69373 -0.69373 0.29289 0.99124 0.99124

s05 0.00775 0.52036 -0.51827 -0.51827 0.18304 0.80914 0.80914

s06 0.00337 0.65002 -0.64823 -0.64823 0.35438 1.03589 1.03589

s07 0.00017 0.41702 -0.41692 -0.41701 0.37516 1.05659 1.05659

s08 0.02792 0.70352 -0.68575 -0.68575 0.36117 1.04398 1.04398

s09 0.00078 0.27528 -0.27545 -0.27545 0.28216 0.87675 0.87675

s10 0.09304 0.85704 -0.76927 -0.76927 0.32303 1.03432 1.03432

s11 0.01203 0.70142 -0.69382 -0.69382 0.35690 1.04050 1.04050

s12 0.01903 0.66669 -0.65599 -0.65599 0.35670 1.03880 1.03880

s13 0.00301 0.67887 -0.67710 -0.67711 0.36430 1.04588 1.04588

rePOrT 307 mIT JOINT PrOGrAm ON THe ScIeNce AND POLIcY OF GLObAL cHANGe

24



θ α ϵ _(t arget ) ϵ _(ca l ibrated ) e η _(t arget ) η _(ca l ibrated )

s14 0.00105 0.48534 -0.48513 -0.48513 0.37597 1.05735 1.05735

s15 0.00293 0.35032 -0.35053 -0.35052 0.24937 0.83797 0.83797

s16 0.00081 0.68067 -0.68020 -0.68020 0.35220 1.03557 1.03557

s17 0.00273 0.69484 -0.69315 -0.69315 0.34460 1.03015 1.03015

s18 0.00152 0.11160 -0.11243 -0.11243 0.11440 0.43746 0.43746

s19 0.00026 0.60859 -0.60854 -0.60847 0.40425 1.08610 1.08610

s20 0.02590 0.77890 -0.75851 -0.75851 0.31258 1.01763 1.01763

s21 0.00739 0.60771 -0.60442 -0.60442 0.27705 0.95247 0.95247

s22 0.00334 0.69847 -0.69638 -0.69638 0.36011 1.04296 1.04296

s23 0.01320 0.51068 -0.50737 -0.50737 0.19535 0.82036 0.82036

s24 0.03278 0.76596 -0.74100 -0.74100 0.34384 1.03512 1.03512

s25 0.00028 0.67218 -0.67193 -0.67202 0.38674 1.06543 1.06543

s26 0.00276 0.65106 -0.64960 -0.64959 0.36712 1.04786 1.04786

s27 0.00442 0.31545 -0.31607 -0.31607 0.24823 0.82431 0.82431

s28 0.06985 0.87837 -0.80949 -0.80949 0.57418 1.11904 1.11904

s29 0.00239 0.06962 -0.07113 -0.07113 0.05907 0.27043 0.27043

s30 0.03887 0.56463 -0.55069 -0.55069 0.17756 0.82531 0.82531

s31 0.03495 0.83329 -0.80198 -0.80198 0.51806 1.11825 1.11825

s32 0.00000 0.54565 -0.54574 -0.54565 0.34258 1.01626 1.01626

s33 0.01632 0.73209 -0.72077 -0.72077 0.34887 1.03608 1.03608

s34 0.01617 0.73536 -0.72405 -0.72405 0.34810 1.03574 1.03574

s35 0.00012 0.56284 -0.56280 -0.56280 0.39380 1.07767 1.07767

s36 0.01042 0.51457 -0.51188 -0.51188 0.19225 0.81818 0.81818

s37 0.00052 0.10104 -0.10135 -0.10134 0.12667 0.45970 0.45970

s38 0.10513 0.88557 -0.78040 -0.78040 0.29993 1.03107 1.03107

s39 0.00456 0.67014 -0.66755 -0.66755 0.30611 0.99424 0.99424

s40 0.03252 0.62968 -0.61379 -0.61379 0.31758 0.99835 0.99835

s41 0.02743 0.66120 -0.64607 -0.64607 0.31057 0.99669 0.99669

s42 0.00350 0.10424 -0.10620 -0.10620 0.09453 0.38467 0.38467

s43 0.00029 0.12906 -0.12919 -0.12921 0.16415 0.56568 0.56568

s44 0.00052 0.41959 -0.41952 -0.41956 0.30542 0.94812 0.94812

s45 0.01153 0.74657 -0.73824 -0.73824 0.34381 1.03358 1.03358

s46 0.00296 0.27504 -0.27569 -0.27569 0.26158 0.83670 0.83670

s47 0.06663 0.81767 -0.76006 -0.76006 0.32874 1.03182 1.03182

s48 0.00248 0.36364 -0.36375 -0.36375 0.20224 0.76202 0.76202

s49 0.00960 0.59960 -0.59548 -0.59548 0.28551 0.95945 0.95945

s50 0.17186 0.98578 -0.77940 -0.77940 0.60041 1.06220 1.06220

s51 0.01448 0.10698 -0.11504 -0.11504 0.06992 0.32782 0.32782

s52 0.00370 0.31151 -0.31206 -0.31206 0.20503 0.74329 0.74329

s53 0.02022 0.65120 -0.64045 -0.64045 0.26986 0.95695 0.95695

s54 0.00115 0.08393 -0.08462 -0.08462 0.05940 0.28326 0.28326

s55 0.00019 0.26531 -0.26536 -0.26536 0.31734 0.94356 0.94356

s56 0.00174 0.57650 -0.57583 -0.57583 0.33148 1.00619 1.00619

s57 0.00428 0.69859 -0.69591 -0.69591 0.34315 1.02927 1.02927
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