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Abstract
We present probabilistic projections of 21st century climate change over Northern Eurasia

using the Massachusetts Institute of Technology (MIT) Integrated Global System Model

(IGSM), an integrated assessment model that couples an Earth system model of intermediate

complexity with a two-dimensional zonal-mean atmosphere to a human activity model.

Regional climate change is obtained by two downscaling methods: a dynamical downscaling,

where the IGSM is linked to a three-dimensional atmospheric model, and a statistical

downscaling, where a pattern scaling algorithm uses climate change patterns from 17 climate

models. This framework allows for four major sources of uncertainty in future projections of

regional climate change to be accounted for: emissions projections, climate system parameters

(climate sensitivity, strength of aerosol forcing and ocean heat uptake rate), natural variability,

and structural uncertainty. The results show that the choice of climate policy and the climate

parameters are the largest drivers of uncertainty. We also find that different initial conditions

lead to differences in patterns of change as large as when using different climate models.

Finally, this analysis reveals the wide range of possible climate change over Northern Eurasia,

emphasizing the need to consider these sources of uncertainty when modeling climate impacts

over Northern Eurasia.

Keywords: probabilistic climate projections, uncertainty, climate change, regional climate

change, Northern Eurasia, climate sensitivity, natural variability, climate models, emissions

scenarios

1. Introduction

Northern Eurasia accounts for 60% of the land area north

of 40◦N and includes roughly 70% of the Earth’s boreal

forest and more than two-thirds of the Earth’s permafrost [1].

As a result, the region is a major player in the global

carbon budget. Over the past century, Northern Eurasia has

experienced dramatic climate change, such as significant

increases in temperature, growing season length, floods and

Content from this work may be used under the terms of

the Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the

title of the work, journal citation and DOI.

droughts [2, 3]. These changes have large environmental and
socioeconomic impacts including forest fires [4], permafrost
thaw [5], extensive land-use change and water management
projects [1]. Further climate change could lead to significant
releases of greenhouse gas (carbon dioxide and methane) to
the atmosphere caused by severe permafrost thaw, increasing
forest fires, changes in lake and wetland dynamics and
changes in land cover. This implies a potential positive
feedback cycle. For this reason, it is imperative to quantify the
full range of possible climate change over Northern Eurasia.

There is a large uncertainty in future projections
of global climate change (see literature review in [6])
and regional climate change [7–9] associated with the
uncertainty in, among others, internal variability [10–12],
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climate sensitivity [13–15], model uncertainty [16, 17],

and scenario uncertainty [18, 19]. Other attempts to derive

probabilistic forecasts of regional climate change include [20,

21]. When it comes to climate change impacts over Northern

Eurasia, recent studies include rising methane emissions [22],

vegetation change [23, 24], agroclimatic potential [25] and

near-surface permafrost degradation [26]. However, these

studies, along with many others focused on Northern Eurasia

or other regions, generally rely on a small ensemble of climate

simulations that does not cover the full range of uncertainty. In

particular, such studies do not consider all the major sources

of uncertainty in future projections of climate change, and

thus are likely to underestimate the range of climate change

and its impacts over the region.

In this study, we attempt to simulate possible future

climate change over Northern Eurasia, by computing prob-

abilistic projections of 21st century surface air temperature

and precipitation changes and considering four major sources

of uncertainty, namely: (i) uncertainty in the emissions

projections, using different climate policies; (ii) uncertainty

in the climate system response, represented by different

values of climate parameters (climate sensitivity, strength

of the aerosol forcing, ocean heat uptake rate); (iii) natural

variability, obtained by initial condition perturbation; and

(iv) structural uncertainty using different climate models. Our

focus is the Northern Eurasian Earth Science Partnership

Initiative (NEESPI) domain, which extends from 15◦E in the

west to the Pacific coast in the east and from 40◦N in the south

to the Arctic ocean coast in the north.

2. Methodology

2.1. Modeling framework

This work uses the Massachusetts Institute of Technology

(MIT) Integrated Global System Model (IGSM) [27, 6],

an integrated assessment model that couples an Earth

System Model of Intermediate Complexity (EMIC), with

a two-dimensional zonal-mean atmosphere, to a human

activity model. The IGSM includes a representation of

terrestrial water, energy, and ecosystem processes, global

scale and urban chemistry including 33 chemical species,

carbon and nitrogen cycle, thermodynamical sea ice, and

ocean processes. The IGSM has been used in EMIC

intercomparison exercises [28, 29] as well as to perform

probabilistic projections based on uncertainties in emissions

and climate parameters [6, 19]. In version 2.2, the IGSM

uses a two-dimensional mixed layer anomaly diffusive ocean

model. In version 2.3, the IGSM uses a three-dimensional

dynamical ocean model based on the MIT ocean general

circulation model [30, 31]. Different versions of the ocean

model exist with different values of the diapycnal diffusivity,

which leads to different rates of ocean heat uptake. In the

IGSM2.3, heat and freshwater fluxes are anomaly coupled

in order to simulate a realistic ocean state. Observed wind

stress from six-hourly National Centers for Environmental

Prediction (NCEP) reanalysis [32] is used to more realistically

capture surface wind forcing over the ocean. For any given

model calendar year, a random calendar year of wind stress

data is applied to the ocean in order to ensure that both

short-term and interannual variability are represented in the

ocean’s surface forcing. Different random sampling can be

applied to simulate different natural variability [33].

Regional climate change is then obtained from IGSM

simulations using two downscaling methods. A dynamical

downscaling method relies on the MIT IGSM–CAM

framework [33] that links the IGSM version 2.3 to

the National Center for Atmospheric Research (NCAR)

Community Atmosphere Model (CAM) version 3.1 [34].

New modules were developed and implemented in CAM to

allow climate parameters to be changed to match those of

the IGSM. In particular, the climate sensitivity of CAM is

changed using a cloud radiative adjustment method [35]. In

the IGSM–CAM framework, CAM is driven by greenhouse

gas concentrations and aerosol loading computed by the

IGSM model, as well as by IGSM sea surface temperature

(SST) anomalies. Because the IGSM–CAM relies on one

single atmospheric model and because the cloud radiative

adjustment method used to change the climate sensitivity

does not provide enough difference in the patterns of regional

climate change (unlike the perturbed physics approach),

we explore the uncertainty in regional patterns of change

using a pattern scaling approach based on projections

from different climate models. This statistical downscaling

method is based on a Taylor-expansion pattern scaling

algorithm [17] that extends the latitudinal projections of the

IGSM two-dimensional zonal-mean atmosphere by applying

longitudinally resolved climate patterns from observations

and from climate model projections from the Coupled Model

Intercomparison Project phase 3 (CMIP3). The representation

of feedbacks in the pattern scaling method is limited to the

choice and the configuration of the CMIP3 models. This

two-pronged approach simulates regional climate change at

2◦ × 2.5◦ resolution based on IGSM probabilistic projections.

It has been used successfully in previous work on the United

States [9].

2.2. Description of the simulations

In this study, we analyze two emissions scenarios cor-

responding to a median unconstrained emissions (UCE)

scenario where no policy is implemented after 2012 and a

stabilization scenario where greenhouse gases are stabilized

at 550 ppm CO2 (660 ppm CO2-equivalent) by 2100. The

stabilization scenario corresponds to the level 2 stabilization

(L2S) described in [36]. The UCE and L2S scenarios are

similar to, respectively, the Representative Concentration

Pathways RCP8.5 and RCP4.5 scenarios [18]. A more

in-depth comparison with the RCP scenarios can be found

in [33].

First, probability density functions of climate parameters

(climate sensitivity, strength of the aerosol forcing, ocean heat

uptake rate) are computed by running a large ensemble of the

20th century climate with the IGSM and comparing the output

with observations, while accounting for errors in observation

and natural variability [37]. Then, for each emissions scenario,

2
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a 400-member ensemble simulation with the IGSM2.2

is run with Latin hypercube sampling (LHS) of climate

parameters from their probability density functions [6, 19].

The uncertainty in the carbon cycle is also taken into

account by varying the rate of carbon uptake by the ocean

and terrestrial ecosystem. This approach is in line with the

development of prior distributions used to run large ensemble

of future climate projections, described in [38]. Pattern scaling

is then applied to each IGSM2.2 ensemble member based on

the patterns of climate change of 17 CMIP3 climate models,

following [17]. The resulting meta-ensemble is viewed as

a ‘hybrid frequency distribution’ (HFD) that integrates the

uncertainty in the IGSM ensemble and in the regional patterns

of climate change of different climate models. Each model is

weighed equally, similarly to [16].

Additional simulations are conducted with the

IGSM–CAM framework in order to complement the statistical

downscaling with simulations using a three-dimensional

atmospheric model. To limit the number of IGSM–CAM

simulations, we use one particular version of the IGSM2.3

with an ocean heat uptake rate that lies between the mode

and the median of the marginal posterior probability density

function obtained with the IGSM in [13]. Then we choose

three values of climate sensitivity (CS) that correspond to

the 5th percentile (CS = 2.0 ◦C), median (CS = 2.5 ◦C),

and 95th percentile (CS = 4.5 ◦C) of the marginal

posterior probability density function with uniform prior

(integrated over the net aerosol forcing). The values of climate

sensitivity agree well with the conclusions of the Fourth

Assessment Report (AR4) of the Intergovernmental Panel

on Climate Change (IPCC), which finds that the climate

sensitivity is likely to lie in the range of 2.0–4.5 ◦C [39].

The value of the net aerosol forcing is then chosen from

the bivariate marginal posterior probability density function

with uniform prior for the climate sensitivity-net aerosol

forcing (CS-Faer) parameter space [33], with the objective to

provide the best agreement with the observed 20th century

climate change. The values for the net aerosol forcing are

−0.25 W/m2, −0.55 W/m2 and −0.85 W/m2, respectively,

for CS = 2.0 ◦C, CS = 2.5 ◦C, CS = 4.5◦. These three sets

of climate parameters are shown [33] to reproduce the median,

and the 5th and 95th percentiles of the probability distribution

of 21st century global mean temperature change obtained

in the IGSM ensembles previously mentioned [6]. We refer

to these simulations are low, median and high IGSM–CAM

simulations. Finally, 5-member ensembles were carried out

for each choice of climate parameters and emissions scenarios

using different initial conditions and random wind sampling

(referred to as initial conditions in the remainder of the paper).

Further details on the IGSM–CAM simulations used in this

study can be found in [33].

In total, this study is based on 13 600 IGSM–HFD

simulations and 30 IGSM–CAM simulations, providing an

unprecedented ensemble of simulations using both dynamical

and statistical downscaling. It should be noted that the

probabilities of future climate projections presented in this

study are dependent on the choice of climate model due to

structural irreducible errors [38]. From here on, we refer to

IGSM–HFD simulations corresponding to the 5th, median

and 95th percentile of the NEESPI mean distribution of

temperature or precipitation as, respectively, low, median and

high IGSM–HFD simulations.

3. Results

Figure 1 shows 21st century time series of NEESPI

mean surface air temperature and precipitation anomalies

from present day for the IGSM–CAM and IGSM–HFD

simulations. Even though the low, median and high

simulations for each downscaling method are obtained from

different distributions (NEESPI mean for IGSM–HFD and

climate sensitivity for IGSM–CAM), the NEESPI means

simulated by the two methods show a good agreement,

especially for temperature. For precipitation, the IGSM–CAM

tends to simulate stronger increases in precipitation than the

IGSM–HFD simulations, most notably for the stabilization

scenario. That is because the IGSM–HFD takes into account

multiple models, some with lesser tendencies for increases

in precipitation over Northern Eurasia than CAM. Overall,

both downscaling methods show a large range of future

warming (from 4.5 to 10.0 ◦C and from 2.0 to 4.0 ◦C

for, respectively, the unconstrained and the stabilization

scenario) and moistening (from 0.2 to 0.5 mm/day and from

0.05 to 0.25 mm/day for, respectively, the unconstrained

and the stabilization scenario) over the NEESPI region.

The stabilization scenario is always associated with a

significant reduction in future climate change compared to

the unconstrained emissions scenario. It should be noted

that all of the IGSM–HFD simulations exhibit warming

and moistening for both emissions scenarios, indicating

the robustness of these tendencies amongst the CMIP3

climate models over the region. In addition, the IGSM–CAM

simulations exhibit a much larger year-to-year variability

than the IGSM–HFD, even in the mean of the 5-member

ensemble based on different initial conditions. That is because

the variability in the IGSM–HFD is solely driven by the

IGSM two-dimensional atmosphere, thus underestimating

local variability over the NEESPI region. The envelope of

the 30 detrended IGSM–CAM simulations, which shows the

unforced natural variability, shows a good agreement with

the observed variability in NEESPI mean temperature and

precipitation anomalies from 2000 to 2010. Finally, figure 1

reveals that the separation between the climate change and

the unforced natural variability occurs at different times for

temperature and precipitation, for each emissions scenario,

and for the low, median and high simulations. In particular, the

emergence of the anthropogenic signal from the noise occurs

sooner for temperature than precipitation, and sooner for the

unconstrained emissions than for the stabilization scenario.

For the unconstrained emissions scenario, the warming

emerges between 2020 and 2030 (based on both IGSM–CAM

and IGSM–HFD low, median and high simulations) and the

moistening between 2035 and 2055. For the stabilization

scenario, the warming emerges between 2020 and 2040 and

the moistening as early as 2030 and not quite yet by 2100 for

the IGSM–HFD simulations.

3
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Figure 1. IGSM–CAM and IGSM–HFD changes in NEESPI mean surface air temperature under (a) UCE scenario and (b) L2S scenario
and in NEESPI mean total precipitation under (c) UCE scenario and (d) L2S scenario from the 1991–2010 base period. Light gray (dark
gray) denotes the full range (90% probability interval) of the IGSM–HFD simulations while the white line shows the median. Blue, green
and red lines show the 5-member ensemble mean of the IGSM–CAM simulations for the low, median and high values of climate sensitivity
chosen in this study. The orange dashed lines show the minimum and maximum changes over all detrended (by removing the 5-member
ensemble mean for each value of climate sensitivity) IGSM–CAM simulations, thus representing the envelope of natural variability. The
black lines represent observations, the Goddard Institute for Space Studies (GISS) surface temperature (GISTEMP) [41] and the 20th
Century Reanalysis V2 precipitation [42].

Another analysis comparing NEESPI mean changes

in temperature and precipitation between the IGSM–CAM

and IGSM–HFD is presented in figure 2. We compare

IGSM–HFD frequency distributions of NEESPI mean

temperature and precipitation changes for various periods

of the 21st century with respect to present day to the

range obtained from the IGSM–CAM simulations. Figure 2

further demonstrates the broad agreement between the two

downscaling methods and the large range of plausible future

warming and moistening over Northern Eurasia. A further

analysis (not shown) reveals that the frequency distributions

generally display a positive skewness and kurtosis (relative to

the normal distribution). The positive skewness and kurtosis

increase as the projections extend into the 21st century,

and are larger for the unconstrained emissions scenario.

The IGSM–CAM simulations also exhibit positive skewness,

although it is more pronounced than for the IGSM–HFD.

This can be explained by the fact that the IGSM–CAM

simulations only consider one value of ocean heat uptake rate

and that the marginal posterior probability density function

with uniform prior for the climate sensitivity-net aerosol

forcing (CS-Faer) parameter space for this particular value of

ocean heat uptake rate is itself skewed [33]. Figure 2 also

illustrates the overestimation of precipitation increases from

the IGSM–CAM compared to the IGSM–HFD. In addition, it

shows that the full range of the IGSM–CAM simulations in

the earlier part of the 21st century, largely driven by natural

variability, can be as wide as the full range of the IGSM–HFD

simulations. This suggests that the role of natural variability

in driving the range of probable NEESPI regional changes

is not negligible, especially for projections over the next few

decades.

The regional patterns of change over the NEESPI

region simulated by the IGSM–CAM and IGSM–HFD

approaches are then investigated. Figures 3 and 4 show

maps of, respectively, 21st century changes in temperature

and precipitation for the low, median and high simulations.

Regional patterns of temperature changes agree well

between the IGSM–CAM and IGSM–HFD, with the largest

warming in the northern parts of the NEESPI region. For

precipitation, there is also a broad agreement in the pattern of

drying/moistening between the two downscaling approaches,

with some drying in Eastern Europe and the southern

parts of the NEESPI region and moistening in the northern

4
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Figure 2. Hybrid frequency distributions (line plots) of changes in NEESPI mean surface air temperature and NEESPI mean total
precipitation from the 1991–2010 base period along with the range obtained from the IGSM–CAM simulations (box plots). The box plots
represent the changes obtained from the IGSM–CAM 5-member ensemble mean simulations with the low, median and high climate
sensitivity while the horizontal line shows the minimum and maximum changes obtained among all individual IGSM–CAM simulations.
Changes for different periods are shown with different colors: 2021–2040 mean (blue), 2041–2060 mean (green), 2061–2080 mean (orange)
and 2081–2100 mean (red).

parts. The IGSM–CAM simulations show similar patterns of

temperature and precipitation changes, with larger magnitudes

for higher climate sensitivities and emissions. This is because

the IGSM–CAM relies on a single atmospheric model

and because figures 3 and 4 show the average over the

five initial conditions. Averaging over the different initial

conditions filters out most of the natural variability, leaving

only the human induced climate response, which displays

similar patterns of change even with different values of

climate sensitivity [35]. On the other hand, the IGSM–HFD

simulations show larger differences in the patterns of change

because they consider multiple models and thus include

structural uncertainty.

Figure 5 shows the impact of the initial conditions within

the IGSM–CAM framework. Maps of 21st century changes in

temperature and precipitation for the median simulation under

the stabilization scenario and for different initial conditions

reveal the significant role of natural variability in future

climate projections over Northern Eurasia. With different

initial conditions, the simulations show similar magnitudes

in temperature and precipitation changes but very different

patterns. The location of the maximum warming can differ
significantly, from European Russia (initial condition 3) to
Eastern Siberia (initial condition 5). Precipitation patterns
are also strongly influenced by the initial conditions, with
a significantly different extent of the drying pattern found
over Eastern Europe and the southern parts of the NEESPI
region. The location of the maximum moistening can vary
widely, from Scandinavia (initial condition 4) to Northern
China (initial condition 2). The impact of the model pattern
in the IGSM–HFD approach is analyzed by plotting the
median simulation under the stabilization scenario and the
four surrounding simulations, corresponding to the 50.02th,
50.01th, 49.99th and 49.98th percentiles of the NEESPI
mean distribution (figure 6). The NEESPI mean of these five
simulations is virtually identical and each simulation could
be considered as the median. However, the associated pattern
of change is often very different because the corresponding
model used in the pattern scaling method is different.
This leads to differences in temperature patterns similar
to the initial condition analysis, with different locations of
the maximum warming. For precipitation changes, the five
IGSM–HFD simulations show less discrepancies than the

5
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Figure 3. Maps of changes in surface air temperature for the period 2081–2100 relative to the 1991–2010 base period for both
IGSM–CAM and IGSM–HFD simulations. For IGSM–CAM simulations, the 5-member ensemble mean for the high (HIGH), median
(MED) and low (LOW) climate sensitivity are shown for the UCE and L2S scenarios. For the IGSM–HFD, the simulations corresponding to
the 5th percentile (LOW), median (MED) and 95th percentile (HIGH) of the hybrid frequency distribution of NEESPI mean changes are
shown for the UCE and L2S scenarios. The IGSM run number and model pattern are listed for the IGSM–HFD simulations plotted.

Figure 4. Same as figure 3 but for precipitation.
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Figure 5. Maps of IGSM–CAM changes in surface air temperature and total precipitation for the period 2081–2100 relative to the
1991–2010 base period for the 5 simulations with different initial conditions for the median (MED) climate sensitivity and L2S scenario.

Figure 6. Maps of IGSM–HFD changes in surface air temperature and total precipitation for the period 2081–2100 relative to the
1991–2010 base period corresponding to the median (50th) of the hybrid frequency distribution of NEESPI mean changes, along with the
four simulations bounding the median (50.02th, 50.01th, 49.99th and 49.98th) for the L2S scenario. The IGSM run number and model
pattern are listed for the IGSM–HFD simulations plotted.

7



Environ. Res. Lett. 8 (2013) 045008 E Monier et al

initial condition analysis, largely because three out of the five

simulations rely on the same model, and because the other

two are based on models that seem to have similar patterns

of precipitation changes over Northern Eurasia. This is a

surprising result that shows that the uncertainty in regional

climate change simulated by ensembles based on initial

condition perturbation and multimodel ensembles seems to

compare well over Northern Eurasia.

4. Summary and conclusion

In this study, we present probabilistic projections of climate

change over Northern Eurasia (NEESPI region) using the

MIT IGSM downscaled via both a dynamical method (the

IGSM–CAM framework) and a statistical method (pattern

scaling). The analysis of the very large ensemble of

simulations (a total of 13 630 simulations) shows that the

uncertainty in the choice of policy and in the climate

response (climate sensitivity, strength of the aerosol forcing

and ocean heat uptake rate) results in a wide range of probable

outcomes. It further shows that simulations with different

initial conditions can lead to different patterns of change (even

in the 20-year mean changes), as different as using different

models. This is especially true for lower values of climate

sensitivity and emissions scenarios with stringent stabilization

of greenhouse gases. In addition, the precipitation change

signal for the low simulation and stabilization scenario has

not emerged from the noise even by 2100. The role of

the uncertainty in natural variability shown in this study is

in agreement with [11] that shows that natural variability

contributes substantially to the uncertainty in climate change

projections. This result also suggests that, for simulations

with a relatively small warming (low climate response and

small greenhouse gas radiative forcing), an ensemble based on

initial condition perturbation could potentially be used within

a single model as a substitute for a multimodel ensemble, even

for end-of-century projections. However, this study suggests

that at the scale of Northern Eurasia, the choice of policy

is the largest source of uncertainty, followed by the climate

parameters. This is in agreement with the findings of [9]

for the United States. This findings is especially true for

long-term projections that extend past 2050. Generally, the

temporal changes in the contributions of the various sources

of uncertainty are consistent with the works of [7] and [8].

It should be mentioned that this study suffers from

limitations, such as the relatively low resolution of the

IGSM–CAM and IGSM–HFD simulations or the absence

of possible feedbacks (e.g., land-use change, aerosol–cloud

interactions. . . ). Also, not all sources of uncertainty are

considered, such as the uncertainty arising from different

model resolution or the uncertainty involved in the pattern

scaling method itself. Nevertheless, in light of these

projections, it appears obvious that Northern Eurasia is at

risk of substantial climate warming if mitigation policies

are not implemented. Based on recent observed trends,

such warming could lead to further widespread permafrost

degradation and more intense and frequent forest fires [4], and

potentially result in the release of large amounts of carbon

and methane [40]. The simulations with different emissions

scenarios, values of climate parameters, initial conditions and

models show consistent patterns of drying in the southern

parts of the NEESPI region, especially over Eastern Europe,

and moistening over the rest of the region. These pronounced

features indicate potential predictability in future precipitation

changes over the region.

Overall, we recommend that when investigating climate

change impacts over Northern Eurasia, studies consider at

least the four sources of uncertainty analyzed in this study,

namely: (i) uncertainty in the emissions projections, using

different climate policies; (ii) uncertainty in the climate

system response, represented by different values of climate

parameters; (iii) natural variability, using different initial

conditions; and (iv) structural uncertainty using different

climate models. Furthermore, we suggest that probabilistic

projections be used to drive impact models, even though

we realize it would require large computing capabilities

and would put a larger burden on impact modeling groups.

Nonetheless, in light of this study, it appears evident that

uncertainty in regional climate change projections is still large

and should be accounted for systematically when estimating

regional climate impacts. Because uncertainty in future

climate projections is conditional on the methodological

choice to derive probabilistic distributions and is affected

by the model used, any impact analysis should explore

the sensitivity of its results to different methodologies and

models.
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