
Water Body Temperature Model for 
Assessing Climate Change Impacts 

on Thermal Cooling
Ken Strzepek, Charles Fant, Yohannes Gebretsadik, Megan Lickley, Brent Boehlert, 

Steven Chapra, Eric Adams, Andrzej Strzepek and C. Adam Schlosser

Report No. 280
May 2015



The MIT Joint Program on the Science and Policy of Global Change combines cutting-edge scientific research with 
independent policy analysis to provide a solid foundation for the public and private decisions needed to mitigate and 
adapt to unavoidable global environmental changes. Being data-driven, the Program uses extensive Earth system 
and economic data and models to produce quantitative analysis and predictions of the risks of climate change and 
the challenges of limiting human influence on the environment—essential knowledge for the international dialogue 
toward a global response to climate change.  

To this end, the Program brings together an interdisciplinary group from two established MIT research centers: the 
Center for Global Change Science (CGCS) and the Center for Energy and Environmental Policy Research (CEEPR). These 
two centers—along with collaborators from the Marine Biology Laboratory (MBL) at Woods Hole and short- and long-
term visitors—provide the united vision needed to solve global challenges.  

At the heart of much of the Program’s work lies MIT’s Integrated Global System Model. Through this integrated 
model, the Program seeks to: discover new interactions among natural and human climate system components; 
objectively assess uncertainty in economic and climate projections; critically and quantitatively analyze environmental 
management and policy proposals; understand complex connections among the many forces that will shape our 
future; and improve methods to model, monitor and verify greenhouse gas emissions and climatic impacts.  

This reprint is one of a series intended to communicate research results and improve public understanding of 
global environment and energy challenges, thereby contributing to informed debate about climate change and the 
economic and social implications of policy alternatives.    

 Ronald G. Prinn and John M. Reilly,
 Program Co-Directors 

For more information, contact the Program office: 
MIT Joint Program on the Science and Policy of Global Change

Postal Address: 
Massachusetts Institute of Technology 
77 Massachusetts Avenue, E19-411 
Cambridge, MA  02139 (USA)

Location: 
Building E19, Room 411 
400 Main Street, Cambridge

Access:  
Tel:  (617) 253-7492 
Fax: (617) 253-9845 
Email: globalchange@mit.edu 
Website:  http://globalchange.mit.edu/



 
 

1 
 

Water Body Temperature Model for Assessing Climate Change Impacts 
on Thermal Cooling 

Ken Strzepek*†, Charles Fant*, Yohannes Gebretsadik‡, Megan Lickley*, Brent Boehlert§, 
Steven Chapra**, Eric Adams* Andrzej Strzepek* and C. Adam Schlosser* 

Abstract 

We develop and test a physically based semi-Lagrangian water body temperature model to apply 
climatological data and thermal pollution from river-based power plants to historical river flow data 
in order to better understand climate change impacts on surface water temperature and thermal 
power plant withdrawal allowances. The model is built for rapid assessment and use in Integrated 
Assessment Models. We first test the standalone model on a 190km river reach, the Delaware River, 
where we have detailed flow and temperature data. An R2 of 0.88 is obtained on hourly data for this 
initial test. Next, we integrate the standalone temperature model into a series of models—
rainfall-runoff model, water demand model, water resource management model, and power plant 
uptake and release model—for the contiguous USA (CONUS), with about 19,000 segments total. With 
this system in place, we then validate the standalone water temperature model within the system for 
16 river stations throughout the CONUS, where we have measured daily temperature data. The model 
performs reasonably well with a median R2 of 0.88. A variety of climate and emissions scenarios are 
then applied to the model to test regions of higher vulnerability to river temperature environmental 
violations, making use of output from two GCMs and six emissions scenarios focusing on projections 
out to 2050. We find that the two GCMs project significantly different impacts to water temperature, 
driven largely by the resulting changes in streamflow from the two models. We also find significantly 
different impacts on the withdrawal allowed by thermal power plants due to environmental 
regulations. Potential impacts on generation are between +3% and -4% by 2050 for the 
unconstrained emissions case and +3.5% to -2% for the stringent GHG mitigation policy (where 1% 
is equivalent to 32 TWh, or about 3 billion USD/year using 2005 electricity prices). We also find that 
once-through cooling plants are most vulnerable to climate change impacts, with summer impacts 
ranging from -0.8% to -6% for the unconstrained emissions case and +2.1% to -3.7% for the 
stringent GHG emissions case. 
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1. INTRODUCTION  

River temperatures are critical for maintaining both the integrity of the aquatic ecosystem, and 
the cooling capacity for thermoelectric power production. Temperature is often referred to as the 
most critical water parameter as it influences the growth, reproductivity and metabolism of fish, 
the ecosystem composition and productivity, the level of oxygen and carbon dioxide uptake, and 
the rate of chemical reactions (Brungs et al., 1977; MacLeod and Pessah, 1973; Graham, 1949). 
Temperature is also an important parameter for the production of energy in the United States, as 
power plants require cold water for cooling purposes and efficient production of energy. 
Presently, 91% of energy production in the United States comes from thermoelectric power 
plants (nuclear, coal, natural gas, petroleum) (EIA, 2013) and accounts for just over 40% of total 
freshwater withdrawals (Kenny et al., 2014). Since many of the withdrawals are used for cooling 
purposes, the effluent water from power plants is much warmer than the natural river 
temperature. 

Due to the harmful impacts that warm river temperatures can have on fish, water temperature 
has been regulated under the Federal Water Pollution Control Act (a.k.a. the Clean Water Act) in 
Sections 316a and 316b. Though restrictions change from state to state, generally river 
temperatures are restricted to a 2.8°C temperature increase from a pollution source (once fully 
mixed), with a fully mixed temperature not exceeding upper limits ranging between 23°C and 
29°C, location dependent. Until recently, power plants have adapted to meet these restrictions 
with technological improvements such as cooling towers or cooling ponds. However, in 2012, 
despite these improvements, power production suffered due to increased drought and heat waves. 
The Millstone nuclear power plant, for example, was forced to shut down due to water in Long 
Island Sound being too warm to cool the plant. In Illinois that year, cooling ponds were 
exceeding 37°C and the EPA granted special permission for plant operations despite exceeding 
temperature restrictions and water withdrawal limitations. As climate change worsens over the 
coming decades, we can expect a higher frequency of these events. The IPCC (2014) reports that 
we should expect warmer air temperatures, prolonged droughts, and decreased snow packs and 
flows, all of which would negatively impact the availability of cold freshwater. The extent of 
these impacts on power production, however, remains unclear. 

There are many studies that provide some useful insight into the impacts of climate on river 
temperature and/or power production. Earlier research provides simple relationships between air 
temperature, elevation and the resulting river temperature (Stefan and Preud’homme, 1993; 
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Walker and Lawson, 1993). While these methods are still useful in their simplicity, more 
complete and dynamic models have since been developed. Among these models there is a broad 
range of spatial and temporal resolution as well as complexity in terms of hydrological and 
atmospheric interactions with water temperature. There are now multiple global, large basin 
routing models (van Vliet et al., 2012a; Olivera et al., 2000; Ngo-Duc et al., 2007) which use 
variable velocity to model river runoff in the worlds 20 largest rivers. There are more highly 
resolved and physically complex models like Gooseff et al. (2005), which looks at climate 
change impacts on a river downstream of a small reservoir and accounts for kinematic wave flow 
routing, atmosphere and stream-bed heat exchange fluxes. This allows for a more in-depth 
analysis at a single location. Herb and Stefan (2010) includes wetlands and groundwater along 
with atmospheric heat transfer, and Yearsley (2012) uses a grid-based approach and includes 
propagation of uncertainty to model climate impacts on stream temperature. 

With the exception of van Vliet et al. (2012b), much of the literature on climate impacts on 
power systems is limited to individual plant analysis. Förster and Lilliestam (2010) model the 
range of thermo power production constraints under changes in stream temperature and flow. 
Chandel et al. (2011) model the impacts of climate policy and a CO2 price on freshwater use in 
thermoelectric power production. The networked aspect of river modeling is especially important 
for modeling thermal pollution as it is cumulative, i.e. upstream plants can impact downstream 
withdrawal temperatures. The methods used in van Vliet et al. (2012b), however, account for 
climate impacts on a networked river model in order to assess broad scale energy production 
vulnerability in Europe and the U.S. They incorporate an electricity production model to account 
for thermal pollution and loss of electricity production as a result of climate change. They also 
use a temperature change across the heat exchanger of 3°C, which is low—typical temperature 
changes are closer to 11–12°C (Adams and Harleman, 1979). 

In this paper, we present a physically based networked semi-Lagrangian river temperature 
transport model for the United States that runs hourly at an 8-digit HUC scale and includes 
thermal discharge from energy sources. Our standalone water temperature model follows many 
other methods such as Yearsley (2009), and we’ve adapted this method to look at specific water 
and energy systems. The model is intended to fit efficiently into an integrated assessment model 
framework for climate change impact studies. Consequently, we integrate our water temperature 
model into a series of models to quantify the climate change impact on power plant withdrawal 
and release, enforcing conservative environmental regulations. These data and methods are 
described in Section 2. In Section 3, the model validation is presented. In Section 4, we present 
the results of the climate change impact analysis. Finally, in Section 5, the main conclusions of 
the study are discussed. 

2. DATA AND METHODS 

In this section, we describe the full suite of models used in this analysis (summarized in 
Figure 1). First, a series of climate and emissions scenarios are developed to understand the 
impacts of mitigation, climate sensitivity, and GCM model structure. Second, a rainfall-runoff 
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model is employed to estimate the impacts of changes in climate to changes in surface water 
supply. Third, we develop estimates of changes in water demands, which respond to changes in 
population and climate. Fourth, these data are integrated into a water resource management 
model that systematically simulates surface-water allocation as well as reservoir storage and 
release. Fifth, these managed flows and reservoir volumes are input into the water temperature 
model. Finally, a physically based rule-of-thumb model of thermal power plant uptake and 
release is developed and implemented to estimate the power generation impact.  

 
Figure 1. Model overview diagram. 

2.1 Climate Scenarios 

For the baseline climate scenario, the model is forced by Princeton University’s publicly 
available Global Meteorological Forcing Dataset for land surface modeling (Sheffield et al., 
2006) specified at a 0.5° ! 0.5° resolution for 1980–2008. We spatially interpolate the 
climatological data within the 0.5° ! 0.5° grid to each HUC’s centroid. We assume uniform 
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conditions throughout the entire HUC. Daily minimum and maximum air temperature, Tmin and 
Tmax, respectively, are defined on a 1° × 1° scale and we adjust the interpolation accordingly. 

Climate projections and future time periods (henceforth referred to as eras) allow us to 
estimate the benefits of GHG mitigation and how those benefits evolve over time. First, we 
develop a control scenario that represents present day climate conditions but includes population 
projections. We then alter the control scenario input data by changes in future climate, and 
measure the resulting changes in output across the various scenarios. Detailed descriptions of the 
global GHG mitigation scenarios used in this analysis, along with a comparison to the 
representative concentration pathways (RCPs) and global climate projections, are provided in 
Paltsev et al. (2013) and Waldhoff et al. (2014). In short, three emission scenarios are used: a 
reference (REF) or ‘business as usual’, and two scenarios representing futures with policies that 
limit global GHG emissions such that total radiative forcing levels in 2100 are stabilized at 
4.5 W/m2 (Policy 4.5) or 3.7 W/m2 (Policy 3.7). The REF scenario has a total radiative forcing of 
10.0 W/m2 in 2100. Using the IPCC simplified equations, the REF has a total radiative forcing of 
8.8 W/m2, and is therefore similar to representative concentration pathway (RCP) 8.5. The base 
framework used to project future climate, the Community Atmospheric Model linked with the 
MIT Integrated Global Systems Model (IGSM-CAM), is presented in Monier et al. (2013, 2014), 
which also provide a summary of the simulations and details on the regional projections of 
climate change used in this study. Since the IGSM-CAM study only considers one GCM, the 
IGSM pattern scaling approach was used to develop a balanced set of regional patterns of 
climatic change for CONUS (see Monier et al. 2014 for methodological details). This approach 
preserves all the CIRA economic and emissions results, but replaces the CAM climate 
projections with projections based on the spatial patterns of alternative GCM-EHCBs. Two 
GCMs were chosen for the pattern-scaled results, each with very different patterns of change 
over CONUS: the Model for Interdisciplinary Research on Climate (MIROC3.2-medres) projects 
drying and strong warming, and the Community Climate System Model (CCSM3.0) projects 
more moisture and less warming than MIROC. Monier et al. (2014) discusses how the 
IGSM-CAM simulations compare to the pattern-scaled MIROC and CCSM projections, as well 
as the limitations of both methods. Since the IGSM-CAM climate projections are similar to the 
pattern-scaled CCSM, we present the IGSM-CAM results and the pattern-scaled MIROC results 
in this paper. 

The climate projections for each of the GHG mitigation scenarios are split into four eras: 
2025, 2050, 2075, and 2100. Each era is represented by daily climate variability (sourced from 
Sheffield et al., 2006) with changes in climate applied. For precipitation, we use a simple ratio 
method where the change in precipitation is expressed as the future monthly mean precipitation 
divided by the historical monthly mean precipitation. For temperature, we use a simple “delta” 
method, where changes in temperature are expressed as differences between the mean monthly 
modeled historical temperature and projected future temperature. The primary climate 
projections in this analysis assume a climate sensitivity of 3°C (denoted as CS3); to evaluate the 
effect of higher climate sensitivity levels, two projections assume a sensitivity of 6°C (CS6-REF 
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and CS6-Pol3.7, which use emissions from the REF and Policy 3.7 emission scenarios, 
respectively). Additionally, we run three years: the year with the median runoff, 10th percentile 
runoff, and 90th percentile runoff, calculated for each hydrologically independent basin. For the 
remainder of the paper, we name these the median, wet, and dry climate years, respectively.  

2.2 Runoff Model 

The climate projections for each emission scenario were used to develop monthly runoff 
estimates. Runoff modeling converts the climate changes into changes in surface water 
availability—important for the water resource model. Surface water runoff was modeled with the 
rainfall-runoff model CLIRUN-II (see Strzepek et al., 2011, 2013), the latest available 
application in a family of hydrologic models developed specifically for the analysis of the impact 
of climate change on runoff (first proposed by Kaczmarek, 1993). CLIRUN-II models runoff 
with a lumped watershed defined by climate inputs and soil characteristics averaged over the 
entire watershed, simulating runoff at a gauged location at the mouth of the catchment on a 
monthly time-step.  

CLIRUN-II has adopted a two-layer approach following the framework of the SIXPAR 
hydrologic model (Gupta and Sorooshian, 1985). A unique conditional calibration procedure was 
used to determine the coefficient values that characterize each of the 2,119 catchments. This 
procedure optimizes via a pattern search algorithm developed by MATLAB, minimizing the sum 
of square errors of the simulated and observed runoff. As no naturalized runoff dataset for the 
8-digit HUCs of CONUS is currently available, the observed runoff data used to calibrate 
CLIRUN-II was based on naturalized runoff data for 99 basins of CONUS from USWRC (1978). 
To calibrate each 8-digit HUC, the runoff within each of these 99 basins was allocated to the 
underlying 8-digit HUCs based on mean annual 1971 to 1980 precipitation that was spatially 
averaged from the 1/12 × 1/12 degree PRISM dataset (PRISM, 2014).  

Although we have confidence in the calibration runoff dataset at the resolution of the 99 
basins, downscaling these data to the 2,119 8-digit HUC introduces uncertainties. An alternative 
to using a calibrated rainfall runoff model would have been to rely on a routing model such as 
the Variable Infiltration Capacity (VIC) or Soil Water Assessment Tool (SWAT) tools that are 
capable of simulating runoff without calibration. The aggregated runoff outputs from these 
models could be validated and then ‘tuned’ using the 99 basin outflows, but no assurances exist 
that the runoff at the 8-digit resolution will fit naturalized observations. Efforts at the U.S. 
Geological Survey (USGS) are currently underway to develop an improved naturalized runoff 
dataset for the U.S. (e.g. Farmer and Vogel, 2012), although a CONUS-wide dataset is far from 
complete. 

2.2.1 Water Demands 
Water demands are the other side of the water balance, and are developed using 2005 data 

from USGS on annual water withdrawals and consumptive use in a range of sectors including 
irrigation, municipal and industrial (M&I) use, mining, thermal cooling, and several other sectors 
(Kenny et al., 2009). These data are available at the 3,109 counties of CONUS, which were 
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spatially averaged to the 8-digit HUC resolution using the same approach taken by the U.S. 
Forest Service in their development of the Water Supply Stress Index (WaSSI) (USFS, 2014). 
For all sectors but irrigation, we assumed that withdrawals were constant each day of the year, 
such that monthly withdrawals are apportioned from yearly values based on the number of days 
in each month.  

Base monthly 2005 irrigation withdrawals were developed by allocating the total annual 
withdrawals (from USGS) according to the total irrigation water requirements (IWRs) of the 
irrigated crop mix in each HUC. IWRs were based on the meteorological dataset described above 
(Sheffield et al., 2006), irrigated crop area estimates from the 2008 Farm and Ranch Irrigation 
Survey (USDA, 2010), and estimates of irrigation water depth requirements for each crop using 
methods developed by the U.N. Food and Agriculture Organization (FAO) (Allen et al., 1998). 
The FAO method requires estimates of potential evapotranspiration (PET), which were 
calculated using the Modified Hargreaves approach (Droogers and Allen, 2002). This procedure 
generated a base time series of 29 years (1980 to 2008) of irrigation water requirements that vary 
on a monthly basis, with the 2005 annual totals summing to USGS data for each 8-digit HUC. 
Water requirements for each of the future eras and under each emission and climate scenario 
were driven by the FAO method, which vary based on both PET and precipitation under each 
scenario. As a result, total CONUS irrigation withdrawals in each era-scenario combination vary 
from 2005 levels. 

2.3 Water Resources Management Model 

 We then simulate reservoir management and routing using a water resources systems model, 
where the simulated runoff—used as surface water supply—and projected water demands are 
used to optimize water allocation based on a prescribed set of priorities. This model is an 
adaptation of the Water Evaluation And Planning (WEAP) model (Sieber and Purkey, 2007), a 
well-established river basin system modeling software. This version was rewritten in the 
MATLAB language for computation speed and automation, but remains methodologically 
consistent with the WEAP model, described in detail in the WEAP documentation.  
 The WEAP model simulates the sequence of existing and planned reservoir activity and 
demand nodes along the system. Three demand types, or nodes, are modeled throughout the 
system, which are in competition for water dependent on the sequence (upstream/downstream). 
The node types are municipal and industrial (M&I) water use, hydropower generation, and 
irrigation withdrawal. The hydrologic boundaries used to define the basins are the 2,119 8-digit 
HUCs of CONUS. The structure of each basin is generic, prescribed with input characteristics 
that are unique to each HUC. Reservoir data, such as locations, hydropower capabilities, and the 
information needed to calculate surface area and volume are all retrieved from the Army Corps 
of Engineers (Corps, 2013). Hydropower production is calculated and calibrated to the National 
Renewable Energy Laboratory (NREL) Regional Energy Deployment System (ReEDS) model 
(Short et al., 2011). For each of the basins, the priorities of the various water users are assumed 
to be in the following order: (1) minimum flows driven by environmental and trans-boundary 
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concerns, (2) M&I water demands (including mining and thermal cooling), (3) irrigation 
demands, and (4) hydropower production. 

2.4 Model of Water-body Temperature 

The model is constructed in three parts. First we build the river network to specify the 
sequence of flow for each 8-digit HUC. Second, we build geometries and characteristics for each 
HUC’s representative river reach. The third step is to initiate river temperatures and model the 
atmospheric heat exchange for the specified time period.  

2.4.1 River Network  
To build the river network we used the Enhanced River Reach File (erf1) from USGS, which 

is the EPA’s digital record of over 60,000 river reaches in the United States, intended for 
national water-quality modeling. For each river segment, the data set contains corresponding 
parameters, outlined in Table 1. Using these parameters we build the river network. 

The river network is both a network of HUCs and rivers within the HUCs. The river segments 
are on average 16km long, and each HUC contains approximately 30 river segments. Only 6 or 7 
river segments form the main river that spans each HUC, and the rest are side branches feeding 
into the main segment. For two river segments that connect, they will have a matching Tnode 
and Fnode; each river segment runs from the Tnode (uppermost point) to the Fnode (lowermost 
point). To create the network of HUCs, we exhaustively search each HUC to find all nodes that 
connect one HUC to another, and for each HUC we store the downstream HUC 8-digit ID. We 
choose only the main river segments that connect the top of each HUC to the bottom. This 
involves tracing down each river segment, and choosing the largest flow river segment when a 
fork is encountered. Creating the network of HUCs also requires specifying the order of each 
HUC (i.e. the order it should be run). The atmospheric heat exchange component of the model 
requires upstream temperatures to be fed into the system and outputs downstream temperatures; 
therefore, the order in which the HUCs are modeled is important. If a HUC has no upstream 
HUC then its order is set to 1. For all other HUCs their order is one larger than their upstream 
HUC. If two HUCs merge into one then the order of the downstream HUC is specified to be one 
more than the highest ordered upstream HUC. The majority of the HUCs are of order 1, with 
many HUCs feeding directly into the ocean. About 15% of the HUCs are of order 2, and while 
the number of HUCs with higher orders quickly diminishes, there remain some long sequences, 
the largest being 30 HUCs long from the uppermost reach to the ocean. 

2.4.2 River Geometry 
The same erf1 data set (see Table 1) used for the network is also used to construct the 

representative river reaches. We use the data parameters for the river segments from this dataset 
that form the main river segment for each HUC.  

We construct the representative river reach dimensions. The length is the sum of all lengths of 
river segments used for the main river in the HUC. We assume each river bed is parabolic and 
solve for width, depth and cross-sectional area in terms of river reach mean flow, Q, in cubic 
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meters per second, following Leopold and Maddock (1953). The width of the river reach in 
meters, B, is defined as 

𝐵 = 2.71  𝑄!.!!"  (1) 
the mean depth of the river reach in meters, H, is defined as 

𝐻 = 0.349  𝑄!.!"#  (2) 
and the cross-sectional area in square meters, A, is defined as 

𝐴 = 2
3   𝐵  𝐷  (3) 

2.4.3 Heat Budget Model 
The initial conditions for water temperature are approximated using the Stefan and 

Preud’homme (1993) method, defined by three regionally specific constants, αs, βs, and Υs 
(henceforth referred to as Stefan-Preud’homme Constants), as well as the mean air temperature 
of the previous 7 days, 𝑇!, as follows. 

𝑇! =
!

!!!!(!!!!)
  (4) 

Temperature is then tracked within the model using a heat budget model approach (Chapra, 
1997), that simulates the surface heat exchange of a body of water as well as water sources/sinks 
through inflows from upstream basins, outflows downstream, small tributaries, and groundwater. 
The governing heat budget equation is as follows: 

 𝑉𝜌𝐶!
!"
!"
= 𝐴!𝐽 + 𝑄!"𝜌𝐶!𝑇!" − 𝑄!"#𝜌𝐶!𝑇  (5)  

where V is volume, ρ is water density, Cp is specific heat, T is temperature, t is time, As is 
surface area of the water body, J is the total heat exchange through the air-water interface, Qin 
and Qout are the flows into and out of the system, respectively, and Tin is the temperature of Qin. 
Qin includes both upstream flow into the reach as well as additional runoff from surface and 
baseflow. We assume that the runoff temperature is flowing into the reach at the temperature 
calculated using the Stefan-Preud’homme Constants, same as the initial condition temperature. 
We model this differential equation using a predictor-corrector approach as outlined in 
MacCormack (1969), which has the advantage of stability and is not plagued by numerical 
dispersion. 

In the summer, as temperature warms and solar radiation increases, stratification in temperate 
reservoirs occurs. Temperature during the season of stratification is modeled differently for 
reservoirs, where a two-layer model is used, representing both the epilimnion (top) and the 
hypolimnion (bottom) layers. For example, if the reservoir is bottom-releasing (i.e. outflow is 
occurring in the hypolimnion) then the following is used to model the reservoir temperature 
(Chapra, 1997): 

   𝑉!𝜌𝐶!
!!!
!"
= 𝐴!𝐽 + 𝑄!"𝜌𝐶!𝑇!" + 𝑣!𝐴!𝜌𝐶! 𝑇! − 𝑇!   (6) 

  𝑉!𝜌𝐶!
!!!
!"

= −𝑄!"#𝜌𝐶!𝑇! + 𝑣!𝐴!𝜌𝐶!(𝑇! − 𝑇!)   (7) 
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Where the subscripts e and h represent the epilimnion and hypolimnion, respectively; vt is the 
thermocline heat transfer coefficient; and At is the thermocline area. vt is estimated using the 
relationship developed by Snodgrass (1974). 

The surface heat exchange, J, is the sum of five energy flux components including 
evaporation (Je), conduction (Jc), water longwave radiation (Jbr), atmospheric longwave radiation 
(Jan), and solar radiation (Jsn). Each is calculated as follows. 

The river loses heat to the evaporation process. This component is therefore subtracted from 
the total heat surface flux. The evaporation term is calculated as 

𝐽! = 𝑓 𝑈 (𝑒! − 𝑒!"#)  (8) 
where f(U) is a function of wind defined as  
 𝑓 𝑈 = 19+ 0.95  𝑈!  (9) 

es is the saturation pressure, corresponding to surface temperature, which we take to be the 
average temperature of the incoming water: 

𝑒! =
!.!"#!!".!"!!(!!!,!!!)

!"#.!!!!(!!!,!!!)
  (10) 

eair is the vapor pressure of air defined as 

𝑒!"# =
!" !   !"(!)

!.!""
   (11) 

and esat is the saturation pressure defined to be 

𝑒!"# = 4.596  𝑒
!".!"!!(!)
!"#.!!!(!)  (12) 

Conduction occurs when there is a temperature difference between the river and air, and is 
accelerated with wind. The conduction term is defined as 

𝐽! = 𝑐!  𝑓 𝑈 (𝑇! 𝑛 − 1,ℎ − 1 − 𝑇 ℎ )  (13)        (12) 
If water is colder than air, this is a negative term; therefore, this term is subtracted from the 

total heat flux. 
Water longwave radiation is the energy leaving the river, primarily dependent on the river’s 

temperature. The warmer the river, the more energy lost to the atmosphere through longwave 
radiation. This term will therefore also be subtracted from total energy balance. 

Jbr  =Eσ(Tw(n−1,h−1)+273)4
  (14)  

Similarly to water longwave radiation, the energy in the atmosphere increases with 
temperature and radiates outwards. The amount absorbed by the river is a function of not only 
the amount of atmospheric longwave radiation but also the reflectivity and absorptive capacity of 
the water. It is defined as 

 𝐽!" = 𝜎 𝑇 ℎ + 273 !(𝐴 + 0.031 𝑒!"#)(1− 𝑅!) (15) 

Solar radiation is provided as a daily average in the data used for this model. In reality, solar 
radiation varies throughout the day based on variables such as solar angle and cloud coverage. 
We approximate the hourly solar radiation using a sinusoidal function, where the daily average is 
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consistent with the mean solar average for that data listed in the Princeton Dataset. We then 
approximate a reflection coefficient, Rh, based on the time of day and assumed solar angle from 
Brown and Barnwell (1987), taken from Chapra (2008). 

𝐽!" = 1− 𝑅! 𝑆𝑂𝐿(ℎ) (16) 
Each segment is modeled as ten sub-segments, equally split by segment length, each with a 

unique water temperature and modeled boundary interactions, both advection and dispersion. 
The uppermost sub-segment (i.e., the upper boundary) temperature is set to the upstream 
temperature. The middle eight sub-segments are modeled as described above and the lower 
boundary is estimated as 

 𝑇! = 2 ∗ 𝑇!!! − 𝑇!!!  (17) 

2.5 Power Plant Model 

 In order to project the effect of climate change on thermal power generation, we link a 
database of thermal power facilities (EW3 database from the Union of Concerned Scientists 
(UCS, 2012)) to the 8-digit HUC resolution. Annual Generation by the four major fuel types 
modeled is shown in Figure 2. 
 

Coal 

 

Nuclear 

 

Oil 

 

Natural Gas 

 

Figure 2. Annual generation (in TWh) for coal, nuclear, oil, and natural gas. 
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 Environmental policies regulating power plant withdrawals and releases vary state to state. 
For this study, we apply commonly used regulation types: withdrawal, near-field temperature, 
and far-field temperature. Withdrawal refers to a limit on the fraction of the flow that can be 
withdrawn from the river. The near-field temperature refers to the temperature of water near the 
release, before sufficient mixing has occurred, and far-field temperature refers to the water 
temperature further downstream of the release, after the effluent has been fully mixed. We use 
conservative regulations as follows: withdrawal is limited to less than ½ of the flow; near field 
temperatures are to not exceed 5.6°C warmer than the original water temperature after ½ of the 
of the river has mixed; and far-field temperatures are to not exceed 32°C. 
 In order to apply these regulations, we first need to estimate the water demands of the power 
plant. For once-through cooling plants, the procedure is straightforward. We can calculate the 
heat rejection in cooling water (HEAT), when the plant is running at capacity, as 

𝐻𝐸𝐴𝑇 = 𝐶𝑃(1− 𝐸 − 𝛿)/𝐸  (18) 
where HEAT is measured in kJ/s, CP is the total power plant capacity in kW, E is the thermal 
efficiency, and 𝛿 is the portion of heat lost to in-plant and stack losses (Adams and Harleman, 
1979). We assume that thermal efficiency and in-plant and stack losses are constant and refer to 
values in EPRI (2002).  
 The amount of flow needed to remove this heat is  

𝑄!"#$%! =
!"#$

!!  !  (!!"#!!)
   (19) 

where Tout is the effluent temperature and T is the water temperature in the river before the 
effluent release. We assume that the temperature coming out of the plant is 11.2°C warmer than 
the water going into the plant, thus the difference between Tout and T is 11.2. We can then 
calculate near-field and far-field temperatures at each hour and determine the amount of water 
the power plant can withdraw without violating the regulation.  
 Thermal power plants with cooling towers and cooling ponds also withdraw water to make up 
for evaporation and to avoid the buildup of salts and solids. Estimating these withdrawals is more 
complicated. For this reason, we use values of withdrawal per MWh generated as reported in 
EPRI (2002). With these rates, we can estimate the power plant demand and apply our 
withdrawal regulation. Figure 3 shows the total annual generation for each HUC by cooling 
technology. 

Finally, we calculate the fraction of regulated withdrawal over demands for each power plant. 
This fraction is used as an indicator of the climate change impacts. Note that, for once-through 
cooling plants this fraction implicitly assumes the plants prefer to generate at full capacity over 
the year. In reality, this is not the case due mostly to varying electricity demand and price, as 
well as grid system management; capacity factors for once-through plants have a calculated 
median of 0.55, with the majority of the plants ranging from 0.26 to 0.69 (the 25th and 75th 
percentiles, respectively). Nonetheless, the allowable withdrawal fraction is an accurate indicator 
of the time during the year when the plant will not violate environmental regulations, a value that 
will likely impact generation if this fraction either increases or decreases in the future. One can  
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Once-through cooling 

 

Cooling Pond 

 

Recycling / Cooling Tower 

 

Figure 3. Total annual generation (in TWh) for three cooling technologies: once-through cooling, cooling 
pond, and recycling. 

also view this value as a measure of changes in availability; i.e. if the fraction decreases, the 
plant is more likely to have restricted withdrawal when the plant is needed to generate electricity 
(as dispatched by a grid operator), thus requiring a more expensive alternative plant to generate 
the needed electricity. 

3. MODEL VALIDATION 

USGS provides river temperature output for multiple river stations throughout the U.S. This 
river temperature dataset is used to validate the model. The model is first validated and calibrated 
for a detailed river reach with measured USGS hourly flow and temperature. We use the Delaware 
River for this, where the standalone river temperature model is used. The model is next evaluated 
at 16 stations with sufficient daily temperature data, where the full model system is used, the same 
framework used to later evaluate the climate change effects and GHG mitigation benefits.  
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3.1 The Delaware River  

We validate the physical model of the rivers’ heat transfer by testing the model against a 
detailed flow model of the Delaware River. We choose a 190km reach of the Delaware that has 
well measured temperature and flow data, and no dams upstream. The section of the river that we 
use to test the model is shown in Figure 4.  

We use Princeton atmospheric data, and the USGS Delaware River hourly upstream flow data 
from 2008 to force localized climate conditions and upstream flow and temperature conditions. 
We apply an upstream river temperature boundary condition based on air temperatures and 
Stefan-Preud’homme Constants, and apply the Princeton atmospheric data for wind, humidity, 
and pressure. Running the model we obtain river temperatures at the downstream portion of the 
river segment and compare them with measured temperatures. The results are presented in 
Figure 5.  

Since the summer months (June, July and August) are of critical importance for power plant 
operations, we show the model results for summer months in Figure 6. We end up with an R2 of 
0.8764 for hourly measurements and an R2 of 0.89 for daily measurements.  

 

 
Figure 4. The left map is of the Delaware River and coastline. The right map includes the entire section of 

the river used to test the model.  
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Figure 5. Hourly water temperature results for upstream boundary temperatures using 

Stefan-Preud’homme Constants (red), downstream modeled temperatures (green) and measured 
downstream temperatures (blue).  

 
Figure 6. Summer water temperature modeling results of downstream measured temperatures (blue), 

modeled temperatures (green) and upstream boundary temperatures using Stefan-Preud’homme 
Constants (red).  
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3.2 Multi-HUC Model Testing  

We select 17 HUCs with hourly station temperature data for the whole of 2008 and compare 
our model results with the measured temperatures. In this case, we use flow outputs from the 
water resource management model described previously, which outputs managed streamflow. 
Figure 7 shows the results for these HUCs. Statistics and information about these stations are 
shown in Table 1 and the locations are shown in Figure 8. These locations represent a variety of 
locations throughout the U.S., as well as a variety of flows and hydrologic reach orders. R2 
values range from 0.68 to 0.93, with a median of 0.88. Given that these river temperatures were 
estimated at the back end of a number of models (climate, runoff, water demands, water 
management), all contributing uncertainty and error, we find that the model performs with 
reasonable accuracy.  

 

 
Figure 7. Observed (blue) and modeled (red) daily river temperatures for the 16 locations used.  

Table 1. Validation information. 

Fig Name HUC ID R2  Fig Name HUC ID R2 
(a.) Au Sable 4070007 0.91  (i.) Lower Virgin 15010010 0.68 
(b.) Lower Allegheny 5010009 0.88  (j.) Truckee 16050102 0.87 
(c.) Upper Clinch 6010205 0.93  (k.) Lower Klamath 18010209 0.84 
(d.) Namekagon 7030002 0.91  (l.) Upper Connecticut 1080101 0.75 
(e.) Deer-Steele 8030209 0.88  (m.) Lower Penobscot 1020005 0.80 
(f.) Arkansas Headwaters  11020001 0.91  (n.) Mid. Del.-Mongaup-Brodhead 2040104 0.89 
(g.) Middle North Canadian 11100301 0.89  (o.) Middle Potomac-Catoctin 2070008 0.87 
(h.) Lower Yampa 14050002 0.82  (p.) Lower Broad 3050106 0.91 
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Figure 8. Locations of the river temperatures used for validation. 

4. RESULTS 

In this section, the results from the various scenarios are presented using three major 
indicators of climate change impacts: surface water availability, water temperature, and the 
fraction of time during the year that existing thermal power plants exceed river temperature 
regulations on uptake and release. The baseline is shown first for these indicators followed by the 
changes from the baseline, and we conclude with the mitigation benefits. 

4.1 Baseline 

Baseline water temperature for four seasons of the year is shown in Figure 9 for the baseline 
median climate year. In the Dec-Jan season, mean water temperatures are close to 0°C for much 
of northern CONUS, with warmer temperatures in the south, especially in southern Florida 
where mean water temperature exceeds 20°C. The Jun-Aug season is considerably warmer, with 
most of the north and high-elevated regions exceeding 20°C, and the southern regions exceeding 
30°C. Figure 10 shows the seasonal mean flow for the baseline median climate year. In this 
figure, we see somewhat consistent flow patterns across seasons, although there are a few 
regions that are season dependent, e.g. flows in the northwest are higher in Mar-May than 
Jun-Aug.  

In order to summarize the power uptake restrictions caused by the environmental regulations 
imposed, we show the percentage of power plants as well as the total generation that falls into 
one of two categories: (i) no power plant restriction or (ii) withdrawal restriction (Table 2). As 
shown, power plants with once-through cooling technologies are most often restricted, with only 
58% of the plants having no restrictions in the baseline scenario. While plants with cooling 
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Figure 9. Mean seasonal baseline surface water temperatures at the HUC-8 scale (°C). 

 
Figure 10. Mean seasonal baseline river flows in cubic meters per second. 
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Table 2. Percentage of power plants and total generation (in TWh) in two categories based whether or 
not the power plant is restricted by the environmental regulations imposed. 

  No Restriction  Restricted 

Cooling Tech. 
Once-Through 59% 623.4  41% 359.4 
Cooling Tower 94% 2687.0  6% 112.9 
Cooling Pond 98% 242.5  2% 0.7 

Fuel Type 

Coal 77% 1218.5  23% 320.8 
Natural Gas 90% 1077.5  10% 116.1 
Nuclear 72% 165.5  28% 38.3 
Oil 88% 198.6  12% 25.7 

towers make up the majority of annual electricity generation, they are less likely to be restricted 
because they require less withdrawal for cooling. Also, note that we will not see improvements 
in the future for plants that do not have restrictions in the baseline since the allowable withdrawal 
fraction is already at the maximum—one. This means that once-through cooling plants have 
more capacity for future increases in the allowable withdrawal fraction than do plants with 
cooling towers. In terms of the fuel type, nuclear plants are most likely to be restricted, followed 
by coal plants; however, the restricted coal plants represent a larger portion of annual generation 
than nuclear. 

4.2 Future Changes 

Now we look specifically at changes in water temperature, flow, and withdrawal restriction 
for CONUS. For these, we display the differences in the results, comparing the various emissions 
scenarios to the control scenario (no changes in climate) to measure the climate change impact. 
Figure 11 shows the changes in water temperature by 2050 for two policy cases—CS3-REF and 
CS3-POL3.7—as well as the two GCMs—IGSM-CAM and MIROC. As shown, water 
temperature varies by magnitude and geographic location. CS3-REF is always warmer than the 
stringent mitigation case, CS3-POL3.7, though the variation across HUCs is driven more by 
GCM than mitigation policy—IGSM-CAM shows larger increases in temperature in the west, 
while MIROC shows larger increases in temperature in the Great Plains. These changes in water 
temperature are influenced by changes in climate as well as changes in flow.  

Figure 12 shows the projections of changes in streamflow in 2050 for the same four 
scenarios. We see that the IGSM-CAM results in considerably higher streamflow than MIROC, 
and again the geographic variation is driven more by GCM than by mitigation policy. In fact, the 
differences between mitigation policies are different in sign for the two GCMs: compared to 
CS3-REF, MIROC mostly results in streamflow increases for CS3-POL3.7, whereas 
IGSM-CAM mostly results in streamflow decreases.  

These changes in water temperature and streamflow then influence the allowable uptake for 
thermal power plants, as implemented in the power plant model described previously. Changes 
in allowable withdrawal for 2050 are shown for the same four scenarios, again as the change 
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IGSM-CAM CS3-REF 

 

IGSM-CAM CS3-POL3.7 

 
MIROC CS3-REF 

 

MIROC CS3-POL3.7 

 

 

Figure 11. Change in Temperature (°C) from the control scenario in 2050. 

IGSM-CAM CS3-REF 

 

IGSM-CAM CS3-POL3.7 

 
MIROC CS3-REF 

 

MIROC CS3-POL3.7 

 

 

Figure 12. Change in Flow (percent) from the control scenario in 2050. 



 
 

21 
 

IGSM-CAM CS3-REF 

 

IGSM-CAM CS3-POL3.7 

 
MIROC CS3-REF 

 

MIROC CS3-POL3.7 

 

 
Figure 13. Changes in withdrawal allowed for HUCs with once-through cooling technology in 2050. 

IGSM-CAM CS3-REF 

 

IGSM-CAM CS3-POL3.7 

 
MIROC CS3-REF 

 

MIROC CS3-POL3.7 

 

 
Figure 14. Changes in withdrawal allowed for HUCs with recirculating cooling technology in 2050. 
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from the control scenario for once-through cooling plants in Figure 13 and for plants with 
cooling towers in Figure 14. As expected, once-through cooling plants are more sensitive to 
changes in climate than plants with cooling towers. Also, note that the GCM projections of 
changes in flow play a major role in these values. There are less once-through cooling plants in 
the west where water is more scarce. Since IGSM-CAM is projecting a hotter and drier climate 
in the west, and a relatively cooler and wetter climate in the east, once-through cooling plants 
conditions improve in the future. MIROC projects a drier and considerably hotter climate in the 
east and mid-west, causing a substantial decrease in allowable withdrawal for once-through 
cooling plants.  

In Figure 15, we show the total changes in allowable withdrawal for all cooling technologies, 
future scenarios, and separate out the dry, median, and wet climate years. Note that the total 
generation from the plants considered is over 3,200 TWh annually. Using national energy prices 
($90/MWh, in 2005 USD), 1% of this total energy is equivalent to about 3 trillion USD/year. In 
these bar plots, we can see a clear difference between the results from IGSM-CAM and MIROC, 
showing that differences in GCM model structure play a major role in the outcome. In fact, 
comparing CS3-REF to CS3-POL3.7 in 2100, we see that IGSM-CAM projects negative effects 
from GHG mitigation, while MIROC projects positive effects, although the positive effects 
projected by MIROC are considerably larger than the negative effects from IGSM-CAM. Since 
the summer is the most likely season for negative impacts to occur, we show summer changes in  

 
IGSM-CAM CS3-REF 

 

IGSM-CAM CS3-POL4.5 

 

IGSM-CAM CS3-POL3.7 

 
MIROC CS3-REF 

 

IGSM-CAM CS3-POL4.5 

 

MIROC CS3-POL3.7 

 
Figure 15. Percent change in total withdrawal allowed weighted by annual generation, where positive is 

an increase in the allowable withdrawal and negative is a decrease. 
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allowable withdrawal in Table 3 for IGSM-CAM and Table 4 for MIROC. The changes 
projected by IGSM-CAM for the summer are mild—a result of increased flows and increased 
temperatures having opposite effects on the allowable withdrawal fraction. For once-through 
cooling, where we see the largest climate change effect, there is a GHG mitigation benefit of 
POL3.7 of about 1.3% in CS3 and 1.7% in CS6, while CS3-POL4.5 has no benefit. By fuel type, 
oil benefits the most, although oil accounts for the least annual electricity generation. Coal plants 
also benefit from POL3.7 as compared to the reference, with a benefit of 1.2% for both CS3 and 
CS6. For the MIROC results, allowable withdrawal decreases in the summer for all scenarios and 
power generation types. Again, once-through cooling benefits the most from Policy 3.7 
mitigation, by 2.3% for CS3 and 2.9% for CS6. 

Table 3. IGSM-CAM – Climate change impact on allowable withdrawal in the summer (Jun-Aug) in 2050 
for the median-climate year, where positive is an increase in allowable withdrawal and negative is a 
decrease. 

IGSM-CAM  CS3-REF CS3-pol4.5 CS3-pol3.7 CS6-REF CS6-pol3.7 

Cooling Tech. 
Once-Through -0.8% -0.9% 2.1% 3.4% 5.1% 
Cooling Tower 0.4% -0.5% 0.5% -0.3% 1.5% 
Cooling Pond 0.0% -0.3% 0.0% -0.2% 0.0% 

Fuel Type 
 

Coal -0.3% -0.9% 0.9% 1.1% 2.3% 
Natural Gas -0.1% 0.0% 0.1% -0.1% 1.9% 
Nuclear 0.1% -0.3% 1.0% 1.4% 3.4% 
Other Fossil -1.3% -1.1% 1.4% -4.7% -2.0% 

 
Table 4. MIROC – Climate change impact on allowable withdrawal in the summer (Jun-Aug) in 2050 for 
the median-climate year, where positive is an increase in allowable withdrawal and negative is a 
decrease. 

MIROC CS3-REF CS3-pol4.5 CS3-pol3.7 CS6-REF CS6-pol3.7 

Cooling Tech. 
Once-Through -6.0% -4.1% -3.7% -8.3% -5.5% 
Cooling Tower -1.8% -1.1% -1.0% -2.2% -1.5% 
Cooling Pond -0.8% -0.2% -0.1% -0.4% -0.7% 

Fuel Type 
 

Coal -4.1% -2.6% -2.4% -5.2% -3.6% 
Natural Gas -0.7% -0.4% -0.4% -1.0% -0.5% 
Nuclear -1.8% -1.2% -1.2% -2.5% -1.6% 
Other Fossil -2.5% -1.8% -1.1% -3.1% -2.1% 

4.3 Valuation of Mitigation Benefits 

Projections of power prices from ReEDS are used to value the change in thermal generation 
(see McFarland et al., forthcoming). Scenarios modeling reductions in GHG emissions assume 
that supply-side costs in the electric sector associated with shifting the generation mix are 
incorporated into the price of electricity. We consider two illustrative electricity price scenarios 
that include and exclude the marginal cost of CO2. Electricity prices inclusive of CO2 emission 
costs show higher prices under the mitigation scenarios (e.g., prices in 2050 range from 
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$115/MWh in the REF scenario to $127/MWh in the POL3.7 scenario in 2005$), whereas 
excluding emissions costs, prices are relatively similar across scenarios (e.g., 2050 prices are 
$115/MWh in REF versus $117/MWh in the POL3.7 scenario). These two price scenarios 
produce high- and low-end estimates, respectively, of the benefits of global GHG mitigation on 
U.S. thermal generation. The high price scenario, inclusive of emission costs, would best reflect 
the lost value of generation from low-emitting thermal units such nuclear or a fossil technology 
with carbon capture and storage. The low price scenario, exclusive of emission costs, would 
reflect the lost value of generation from coal, gas, or oil units without carbon capture. Note that 
these results do not consider feedbacks between thermal production, prices, and production from 
other sources—to fully capture the economic effects of changes in thermal power generation 
potential, we would iterate our model with an electricity sector-planning model such as ReEDS.  

Table 5 shows these results for the three emission scenarios under CS values of 3°C and/or 
6°C for IGSM-CAM, and Table 6 shows these results for MIROC. In 2050, under the price 
scenario including emissions costs, the annual benefits of reducing GHG emissions under the 
CS3-POL3.7 scenario are approximately $35 billion for IGSM-CAM and $36 billion for 
MIROC. Excluding emissions costs, the benefits are approximately $8.3 billion for IGSM-CAM 
and $39 million for MIROC. The 2015 to 2050 present value benefits under these two price 
scenarios for the POL3.7 scenario, discounted at 3%, are approximately $536 billion and $53 
billion, respectively, for IGSM-CAM, and $538 billion and $65 billion, respectively, for 
MIROC. The high-end estimate reflects the value of lost generation from no- or low-emitting 
thermal technologies while the low-end estimate reflects the value of emitting technologies. The 
actual benefit would reside somewhere in between and depend upon the transition pathway from 
emitting to non-emitting generation sources. 

Table 5. IGSM-CAM – National average change in thermal power revenues (millions of 2005$) from 
control in 2025 and 2050 under each of the ReEDS price scenarios. 

Price Scenario Year CS3-REF CS3-POL4.5 CS3-POL3.7 CS6-REF CS6-POL3.7 
Emission costs 

included 
2025 $2,092  $12,760  $25,438  $2,687  $27,787  
2050 $3,807  $15,855  $38,879  $7,085  $42,097  

Emission costs 
excluded  

2025 $2,092  $2,647  $3,995  $2,687  $6,171  
2050 $3,807  $5,532  $8,268  $7,085  $11,210  

 
Table 6. MIROC – National average change in thermal power revenues (millions of 2005$) from control in 
2025 and 2050 under each of the ReEDS price scenarios. 

Price Scenario Year CS3-REF CS3-POL4.5 CS3-POL3.7 CS6-REF CS6-POL3.7 
Emission costs 

included 
2025 ($2,154) $9,999  $21,059  ($3,035) $20,539  
2050 ($5,888) $10,130  $29,881  ($8,090) $28,095  

Emission costs 
excluded 

2025 ($2,154) ($12) ($60) ($3,035) ($542) 
2050 ($5,888) ($17) $39  ($8,090) ($1,594) 
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5. CONCLUSION 

We build and validate a standalone river temperature model and apply this generic model to 
the United States at the 8-digit HUC scale. We demonstrate that the standalone model performs 
well with a detailed description of flow and geometry. Next, we construct a series of models that 
represent the system at hand. A rainfall-runoff model is used to convert climate from GCM 
projections to changes in runoff. In parallel, a water demand model is implemented to develop 
water demand projections for the various scenarios. Next, a water resource planning model is 
used to simulate water allocation and management at the HUC-8 scale. The standalone water 
temperature model is applied to the streamflow and climate output to estimate surface-water 
temperatures. Finally, we compare regulated withdrawal to demands for withdrawal from 
thermal power plants in CONUS, and estimate the power generation impact of climate change 
(represented by changes in allowable withdrawal). We demonstrate that this modeling system 
performs reasonably well for a generalized 8-digit HUC river for 16 stations of daily water 
temperature across the United States.  

After developing a number of future scenarios with information from two GCMs, two climate 
sensitivities, and three mitigation policies, we run the system of models for four eras and three 
climate years: wet, median, and dry. We find that water temperatures increase by 2050 to 1–2°C 
in the CS3-REF case and 0.3–1°C in CS3-POL3.7. Temperatures in 2100 do not significantly 
increase for the stringent GHG mitigation case, CS3-POL3.7, while temperatures in CS3-REF 
increase by about 4–6°C annually. Thus, there is a strong incentive to mitigate GHG emissions in 
order to keep surface water temperatures at reasonable levels. We find that the two GCMs 
project drastically different patterns of surface water warming—IGSM-CAM projects warming 
to be more severe in the west, while MIROC projects more warming in the east and the Great 
Plains. These differences in geographic patterns between the GCMs are partially attributed to the 
patterns of changes in precipitation, which manifest to changes in streamflow across CONUS—
where IGSM-CAM projects substantial increases in streamflow in the majority of the region, and 
MIROC projects substantial decreases.  

These different geographic patterns in climate change projections for the two GCMs result in 
significant differences in thermal power plant impacts. IGSM-CAM generally projects increases 
in allowable withdrawal, and the most extreme scenarios—namely, CS6-REF—show the greatest 
benefit to thermal power generation, which rises above 5% annually in 2050. The MIROC 
projections provide a different picture of the future of thermal power generation, with substantial 
reductions in potential generation of about 5% at most in 2050, rising to more than 10% in 2100. 
We then take a more in-depth look into the impacts on the Jun-Aug season. We find that the 
hotter temperatures in the summer counterbalance most of the increases in runoff from 
IGSM-CAM, resulting in smaller changes to allowable withdrawal. For MIROC, we find that 
negative impacts in the summer are also greater, with reductions in allowable withdrawals 
reaching 6% for CS3-REF—much larger than the 0.8% for IGSM-CAM. In spite of the 
differences, the mitigation benefit of POL3.7 for the two GCMs is surprisingly close for the 
summer, at about 1.3% for IGSM-CAM and 2.3% for MIROC.  
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With the striking differences between the two GCMs used in this analysis, an obvious 
improvement would be to run the series of models with more GCMs. We believe that these two 
GCMs represent both a wet climate projection and a dry climate projection, but are not certain if 
these two GCMs represent extremes in terms of allowable withdrawal or water temperature 
changes. While adding more GCMs would provide additional points on the uncertainty 
distribution, we would still only provide the range of points, of which the probabilities are 
unknown. Another solution would be to analyze this system of models with an ensemble of 
scenarios similar to Webster et al. (2011) and Schlosser et al. (2012).  

In addition to addressing the issue of climate projection uncertainty, the models used in this 
analysis also contribute uncertainty in input data, assumptions, and model structure. One way to 
address this uncertainty is to reduce the spatial or temporal scale of the models. We can also 
replace or improve the various assumptions—e.g., the assumption of a parabolic river 
cross-sectional shape for all rivers in CONUS, which might be improved by altering the shape by 
topography or region. Another potential area of improvement is the detail at which we address 
power plant withdrawal demand and uptake. We assume a consistent change in the temperature 
of water released by once-through cooling plants. This heat would likely vary by plant and by 
capacity factor. Furthermore, water management and power plant facilities are changing over 
time, both long-term changes (i.e. investments in new facilities and retiring older ones) as well as 
short-term variations, which respond to changes in food and electricity prices, all of which vary 
throughout each year, week and day. Future research plans are already in place to address many 
of these assumptions.  

Nevertheless, this study does provide a necessary step to understanding the impacts of climate 
change on both water temperature and thermal power plant generation.  
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