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US Major Crops’ Uncertain Climate Change Risks and Greenhouse Gas Mitigation
Benefits

Ian Sue Wing,∗† Erwan Monier,‡Ari Stern,§ and Anupriya Mundra¶

Abstract

We estimate the costs of climate change to US agriculture, and associated potential benefits of abat-
ing greenhouse gas emissions. Five major crops yield responses to climatic variation are modeled
empirically, and the results combined with climate projections for a no-policy, high-warming future,
as well as moderate and stringent mitigation scenarios. Unabated warming reduces yields of wheat
and soybeans by 2050, and cotton by 2100, but moderate warming increases yields of all crops except
wheat. Yield changes are monetized using the results of economic simulations within an integrated
climate-economy modeling framework. The economic effects of uncontrolled warming on major crops
are slightly positive—annual benefits < $4B. These are amplified by emission reductions, but subject to
diminishing returns—by 2100 reaching $17B under moderate mitigation, but only $7B with stringent
mitigation. Costs and benefits are sensitive to irreducible uncertainty about the fertilization effects of
elevated atmospheric carbon dioxide, without which unabated warming incurs net costs of up to $18B,
generating benefits to moderate (stringent) mitigation as large as $26B ($20B).
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1. INTRODUCTION

What are the costs and benefits to US agriculture of mitigating greenhouse gas (GHG) emis-
sions? Agriculture has significant climate change exposure, but despite being a sector that has
long been studied (e.g., Mendelsohn et al., 1994), projections of future crops impacts and associ-
ated costs of damage remain too uncertain to provide a definitive answer. The issue is highlighted
by disagreements over the responses of US agricultural yields and profits inferred from historical
observations, and their implications for the sign and magnitude of future climate impacts.

The empirical climate economics literature provides ample evidence that yields of major US
crops are adversely affected by exposure to cumulative growing season degree day extremes
∗Department of Earth & Environment, Boston University, MA, USA.
†Corresponding author (Email: isw@bu.edu)
‡Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, MA, USA.
§NMR Group, Somerville, MA, USA.
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(Schlenker et al., 2006; Fisher et al., 2012) and temperatures above a 86◦F (30◦C) threshold
(Schlenker and Roberts, 2009; Ortiz-Bobea and Just, 2012). But the economic consequences
are contested. The robustness of accumulated heats adverse effects on farm profits (Schlenker
et al., 2006; Fisher et al., 2012) has been questioned in light of the potentially confounding influ-
ence of spatially and temporally varying non-climatic factors (Deschênes and Greenstone, 2007,
2012). When combined with earth system model (ESM) simulations of future climate, the latter
responses suggest that climatic changes experienced by 2100 would have only small impacts on
today’s agricultural system (annual losses of $4B to $16B in 2002 USD).

Additional uncertainty abounds in the future trajectory of production, and meteorological ex-
posure, of US agriculture—even for a given warming scenario. Despite improved understanding
of climate change feedbacks on land use (Hurtt et al., 2011), the future geographic distribution
and output expansion of US field crops remain indeterminate. With fixed cropping patterns and
warming trajectories, assessment using meteorological exposures from an ensemble of ESMs
can increase the range of projected impacts and the magnitude of “worst-case” losses (Deschênes
and Greenstone, 2012, and especially Burke et al., 2015). Addressing the latter uncertainty, the
Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) uses global gridded crop mod-
els (GGCMs) forced by ESM ensemble projections to quantify the range of crop shocks to crop
yields (Rosenzweig et al., 2014), which are in turn employed as input forcings to integrated as-
sessment models (IAMs) that simulate concomitant crop production, price and economic welfare
impacts (Nelson et al., 2014).

The dollar value of damages depends critically on the uncertain state of the economy in the
future decades when climate change affects crop yields. However, the ISI-MIP impact modeling
protocol’s baseline socio-economic, technological and GHG mitigation trajectories are not syn-
chronized with the assumptions used by the IAMs that simulate the representative concentration
pathway (RCP) scenarios forcing ESM projections. The key omission is the relative price effects
of the GHG mitigation measures that are necessary to realize low-radiative forcing futures. Cost-
benefit analysis requires a modeling framework that can simulate the economic effects of mitiga-
tion, the climatic consequences of the resulting emissions, the concomitant biophysical impacts
and their effects on the perturbed economy. A further limitation is that the resulting economic
impacts understate the potential benefits of GHG mitigation by including adaptation that arises
out of IAMs price-driven substitution responses—among the inputs to crop production and the
outputs of agricultural sectors, and between other goods and agriculture, and domestic and im-
ported varieties of each commodity (Nelson et al., 2014)—whose cost-reducing effects are diffi-
cult to monetize.1

This paper draws upon and extends aforementioned approaches to estimate the costs of cli-
mate change in US agriculture, and the potential benefits of GHG mitigation, in a manner that ex-
cludes adaptation and is both economically and climatically consistent. We first econometrically
model the long-run yield response of five major crops (corn, soybeans, wheat, cotton, sorghum)
to climatic variation, using data on weather, output and harvested area for ∼3000 counties in
the coterminous US over the period 1948–2010. We then combine the resulting yield responses

1 These are passive adaptations mediated by relative price changes (see Sue Wing and Fisher-Vanden, 2013).
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with ESM simulations of climate change scenarios prepared for the US Environmental Protec-
tion Agency’s Climate Change Impacts and Risk Analysis (CIRA) project (Waldhoff et al., 2015)
to estimate yield changes under a no-policy high-warming future as well as two lower-warming
emissions mitigation scenarios. We use the resulting yield shocks in conjunction with the out-
put of the computable general equilibrium (CGE) economic model used for the CIRA emissions
scenarios (MIT EPPA, see Paltsev et al., 2015) to calculate aggregate economic costs in terms of
future revenue changes in each scenario. Cost differences between the no-policy and mitigation
scenarios indicate the benefits of reducing GHG emissions.

We find that unmitigated climate change has substantial adverse effects on yields of soybeans
and wheat wheat by 2050 and cotton by 2100, but compensating beneficial impacts on corn and
sorghum yields. Climatic shocks exhibit substantial geographic variation: regions with cooler
average climates show yield increases, while those with warmer average climates show yield re-
ductions. Over time, impacts became increasingly severe at lower latitudes. If climatic changes
projected by 2100 under the reference warming scenario were to occur today, annual major crop
revenues would be largely unaffected; however, once the agriculture sector’s projected future
expansion is taken into account, the upshot is an annual net benefit of US (2010) $3B by 2050,
which falls to $1.3B by 2100. Forgoing less vigorous climate change is nonetheless costly. Both
mitigation policy scenarios have net beneficial effects—up to $1.2B by 2050 and $2B by 2100 if
climate change were to impact today’s agricultural system, or $3.3B by 2050 and almost $17B
by 2100 with the price and output level that are projected in the future. However, these results are
sensitive to the specification of the carbon dioxide (CO2) fertilization effect (CFE). The influence
of CFE on yields is thought to be positive, but this is subject to considerable uncertainty. Omit-
ting the CFE flips the sign of our impact estimates, giving rise to net agriculture sector costs as
high as $18B, with attendant amplification of mitigation benefits.

The rest of the paper is organized as follows. Section 2 summarizes our methodology for em-
pirically modeling climate-yield relationships and coupling these with ESM simulations. Section
3 presents the resulting yield responses to climate change, changes in crop output at the county
and regional levels, and monetized damages. In Section 4 we offer a summary of our findings and
discussion of their caveats.

2. METHODS

2.1 Empirical Analysis: Using Historical Observations to Infer Climate Impact on Yields

Following the recent climate-economics literature (Schlenker et al., 2006; Schlenker and Roberts,
2009; Deschênes and Greenstone, 2007, 2012; Lobell and Burke, 2010; Ortiz-Bobea and Just,
2012; Burke and Emerick, 2015) we quantify the potentially nonlinear influence of climate on
yields using semi-parametric cross section-time series regressions. Previous studies exploit the
historical co-variation between yields and weather shocks to infer the effects of future climate.
Motivated by Burke and Emerick (2015)’s finding that long-run adaptations are limited in their
ability to alleviate the short-run impacts of extreme heat, we extend their approach using a dy-
namic modeling framework that statistically distinguishes between the effects of short-run (weather)
and long-run (climate) shocks. Since farmers’ planting, management and harvesting decisions are
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based on land quality and expectations of weather, yields and meteorological variables share a
long-run equilibrium relationship. In any given year, weather shocks cause yields to diverge from
their expected long-run values, prompting farmers to revise their long-run expectations, and make
management decisions that can have persistent effects.2

To statistically identify the former equilibrium and latter disequilibrium responses we em-
ploy an error-correction model (ECM).3 Our data are an unbalanced panel of c counties over t
years, recording yields, Y (calculated as the ratio of production, Q, to harvested area, H), as well
as three-hourly observations of growing season temperature, precipitation and soil moisture, in-
dexed by v = {T, P, S} respectively. Interannual variation in log annual yield (y) is modeled
as a function of a vector of county specific effects (µ, which capture the influence of unobserved
time-invariant local characteristics such as topography and soils), a vector of climatic covariates
(within each annual growing season, the cumulative exposure over g crop growth stages to j tem-
perature intervals, ξTj,g, k precipitation intervals, ξPk,g, and l soil moisture intervals, ξSl,g), and a vec-
tor of time-varying county-level statistical controls (X).

Our model, which is derived and explained in the Appendices, is written:

∆yc,t = yc,t − yc,t−1 = log

(
Qc,t

Hc,t

)
− log

(
Qc,t−1

Hc,t−1

)
(1)

= µc +
∑
g

{∑
j

βTj,g∆ξ
T
j,g,c,t +

∑
k

βPk,g∆ξ
P
k,g,c,t +

∑
l

βSl,g∆ξ
S
l,g,c,t

}
+ ∆Xc,tγ

+θ

[
yc,t−1 −

∑
g

{∑
j

ηTj,gξ
T
j,g,c,t−1 +

∑
k

ηPk,gξ
P
k,g,c,t−1 +

∑
l

ηSl,gξ
S
l,g,c,t−1

}
+Xc,t−1λ

]
+ εc,t

and is estimated via ordinary least squares for five crops (corn, soybeans, wheat, cotton, sorghum),
indexed by i. Interannual difference terms (prefixed by ∆) model the yield impacts of transitory
disequilibrium shocks, the expression in square braces captures the long-run equilibrium rela-
tionship between yields and the covariates, and ε is a random disturbance term. Parameters to
be estimated are the disequilibrium (weather) impacts (βv), equilibrium (climate) impacts (ηv),
short- and long-run effects of non-climatic variables (γ and λ), and the error-correction parame-
ter (θ), which measuring producers’ speed of adjustment to the long-run equilibrium. The param-
eters ηv are vectors of semi-elasticities indicating the percentage by which yields shift relative
to their conditional mean levels in response to additional time spent in a given interval. The vec-
tors’ elements—the individual coefficient estimates—each capture the distinct marginal effect of
exposure within the corresponding interval (e.g., the average impact of an additional hour to 70–
80◦F versus 80–90◦F temperatures). Collectively, the elements of ηv flexibly capture v’s overall
long-run effect as a piecewise linear spline. The shape of the resulting function is identified from

2 A key example is soil amendments. With agricultural profits, analogous decisions involve inventory adjustments
(Deschênes and Greenstone, 2012).

3 See (Nichell, 1985). To our knowledge, prior climate impacts research employing ECMs (e.g., Blanc, 2012) have
not sought to explicitly partition yield variance into the effects of weather versus climate. For a general applica-
tion of ECMs to agricultural supply response, see Hallam and Zanoli (1993).
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the covariation between observed yields and meteorology within each interval, as well as the dis-
tribution of observations across intervals over the historical period of the sample. With regard to
temperature, the advantage of this approach is that it more precisely resolves the yield impacts of
extreme heat relative to the standard degree-day specification (cf. Schlenker and Roberts, 2009).
Our dataset is described in the Appendix.

Omitted from Equation 1 is the CFE. Rising CO2 concentrations are a time-varying shock that
simultaneously affects yields in all counties. However, there is near-perfect collinearity between
the CFE and long-run impacts of other beneficial influences that are strongly trending and spa-
tially homogeneous, such as total factor productivity improvements or technological progress.
Data constraints preclude quantification of the latter with accuracy sufficient to construct cred-
ible statistical controls.4 Given the potential for the long-run coefficient on CO2 concentrations
to erroneously capture these confounding secular effects, we eschew empirical estimation of the
CFE and instead incorporate its effect on our yield projections using relationships based on the
literature.

2.2 Projecting Yield Impacts of Future Climate Change

Climate change impacts are quantified by combining the fitted values of the equilibrium me-
teorological parameters (η̂v) with meteorological exposures derived from ESM simulations of
different warming scenarios. We spatially aggregate simulated 3-hourly fields of temperature,
precipitation and soil moisture to the county level (T̃ c, P̃ c and S̃c) and bin the results into the
j, k and l intervals (respectively) over crop growth stages in current and future growing seasons
to generate exact analogues of the regression covariates, ξ̃v.5 Yields under irrigated and rainfed
management regimes (indexed by v = {I, R}) exhibit different responses to precipitation and
moisture as well as elevated CO2. Accordingly, we model them separately (see Appendix D),
specifying rainfed impacts as a function of temperature, precipitation, soil moisture and ambient
CO2 concentrations (C̃), and irrigated impacts as a functions of temperature and CO2:

ψRi

(
T̃ c, P̃ c, S̃c, C̃

)
=
∑
g

{∑
j

η̂Ti,j,g ξ̃
T
j,g,c +

∑
k

η̂Pi,k,g ξ̃
P
k,g,c +

∑
l

η̂Si,l,g ξ̃
S
l,g,c

}
+ logFR

i

(
C̃
)

(2a)

ψIi

(
T̃ c, C̃

)
=
∑
g

{∑
j

η̂Ti,j,g ξ̃
T
j,g,c

}
+ logF I

i

(
C̃
)

(2b)

Here, Fm
i is a concave function that captures the differential benefits of CO2 fertilization un-

4 Absent specific indicators of technological advance (e.g. patent stocks), productivity improvements are customarily
modeled using a time trend.

5 Comparing current and future climates that are both simulated (as opposed to comparing simulated future climate
against observed current climate) is a way of minimizing the impact of potential bias in ESM projections.
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der different moisture stress conditions, based on Hatfield et al. (2011) and McGrath and Lobell
(2013). Our calibration of the CFE index is documented in the Appendix D.

The terms ψmi,c indicate the partial effects of climate on the logarithm of irrigated and rainfed
yields. Our normalized decadal index of climate impact is the yield ratio:

ψi,c = E


φ̄Rc exp


ψRi

(
T̃
Future

c , P̃
Future

c , S̃
Future

c , C̃Future
)

−ψRi
(
T̃
Current

c , P̃
Current

c , S̃
Current

c , C̃Current
)


+φ̄Ic exp
{
ψRi

(
T̃
Future

c , C̃Future
)
− ψRi

(
T̃
Current

c , C̃Current
)}


(3)

in which E is the expectation operator and φ̄vc denotes the average shares of irrigated and rain-
fed cultivation from the MIRCA dataset (Portmann et al., 2010), which we treat as remaining
fixed into the future (this assumption is discussed in the Appendix). Ψi,c is interpretable as the
climatically-attributable fractional change in a county’s average yield relative to its own condi-
tional mean.6 Accordingly, holding the current geographic distribution of harvested area constant
as well, the change in production of each crop is simply the quantity Ψi,c × Y Current

i,c .
Our simulated meteorological fields and ambient CO2 concentrations are taken from the CIRA

project (Waldhoff et al., 2015), a 15-member ensemble of simulations using the MIT Integrated
Global System Model-Community Atmosphere Model (IGSM-CAM) modeling framework (Monier
et al., 2013).7 CIRA is underlain by three consistent socioeconomic and emissions scenarios: a
reference scenario with unconstrained emissions and two climate stabilization scenarios that im-
pose uniform global taxes on greenhouse gases to limit total radiative forcing to 4.5 W m−2 and
3.7 W m−2 by century’s end. Reductions in climate damages to agriculture in moving from the
reference to the policy scenarios are interpretable as the benefits of GHG mitigation, and the as-
sociated differences in US agriculture sector output and relative prices are crucial to our cost esti-
mates (Paltsev et al., 2015). For each emission scenario, IGSM-CAM was run with different val-
ues of climate sensitivity and aerosol forcing, and different representations of natural variability,
resulting in a 60-member ensemble (Monier et al., 2015). We focus on simulations with a climate
sensitivity of 3◦C, with each scenario run as a 5-member ensemble with different representations
of natural variability in an attempt to span the potential range of natural variability. Spatially dis-
aggregating these projections to the county scale and using Equations 2 and 3 enables us to calcu-
late yield impacts at the middle and the end of the century (2036–2065 and 2086–2115) for each
combination of scenario and ensemble member. We analyze 30-year time periods over 5 ensem-
ble members with different representations of natural variability, resulting in a total of 150 years
defining changes from the present day to the middle and end of the century, in order to obtain ro-

6 If Ψi ∈ (0, 1) the shift in the mean climatic exposure reduces crop productivity, and increases it otherwise.
7 IGSM-CAM links the IGSM, an integrated assessment model coupling an earth system model of intermediate

complexity (EMIC) to a global economic model (MIT-EPPA, Paltsev et al., 2005), with the National Center for
Atmospheric Research (NCAR) Community Atmosphere Model (CAM, Collins et al., 2006).
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bust estimates of climate impacts on yield where the anthropogenic signal is extracted from the
noise associated with natural variability.

3. RESULTS

3.1 Yield Responses to Climate Change

Our long-run estimates are, for the most part, broadly consistent with current agronomic un-
derstanding of weather effects on field crop yields. Space constraints preclude detailed descrip-
tion of these results for all five crops. We highlight our findings for corn and consign the remain-
ing results in the Appendix E. Figure 1 shows corn’s meteorological yield response functions
(panel A) and the changes in exposure to weather conditions experienced by an average county
in our three scenarios circa 2050 and 2100 (panels B and C). Yields decline precipitously with
extreme temperature (Schlenker and Roberts, 2009; Burke and Emerick, 2015), but stratifica-
tion of our responses by growth phase highlights the large impact in the first half of the growing
season (Ortiz-Bobea et al., 2013)—each additional 3-hour period below 15◦C increases yields
by as much as 0.005% relative to their conditional mean, but similar exposure above 40◦C trig-
gers a reduction of more than 0.01%. Over the second half of the growing season, temperatures
cause slight yield declines below the latter threshold but a marked increase above (as much as
0.01% per 3 hours).8 A key point of divergence with prior results is our finding that yields in-
crease strongly and approximately linearly with precipitation, with trace amounts associated
with slight declines but 3-hour extreme exposures (>15 mm) increasing yields by up to 0.01%
(0.015%) in the early (late) sub-periods. The instantaneous soil moisture response exhibits a gen-
eralized inverse U shape with an apex at the conditional mean exposure, a very slight negative
influence over most of its range and sharply negative impact at the upper extreme (> 35 kg m−2),
with reduction of up to 0.004% (0.008%) in the early (late) sub-periods. Other crops’ responses
share many of these characteristics (Figs. A2–A5).9

GHG mitigation’s broad influence is to partially reverse these shifts in probability mass (the
green and blue bars). Across meteorological variables, the most common pattern is for the bars
indicating the policy scenarios to be of smaller magnitude but mostly opposite sign to those cor-

8 The positive late response to high temperature is not the result of outlying observations. Historically, corn has regu-
larly been exposed to this kind of heat, albeit in tiny amounts. In 23% of our 136,000 county x year observations,
corn was exposure to one or more 3-hour periods with T> 43◦C in the second half of the growing season, cov-
ering 2307 out of 2842 counties and all the years of our sample. Using simpler empirical models, (Blanc and
Sultan, 2015, Figs. C1–C4) uncover similar beneficial yield responses to late extreme heat in the results of ISI-
MIP GGCMs. Work remains to be done to understand the mechanisms responsible for this phenomenon, both in
GGCMs and the field.

9 We find negative and strongly nonlinear temperature sensitivity of sorghum, soybeans, and, to a lesser extent,
wheat—especially in the first half of the growing season (cf. Tack et al., 2015). For the most part, the long-run
effect of precipitation is positive or statistically insignificant over most of its range (especially in the second half
of the growing period). Exceptions are the significant negative impacts of early extreme precipitation on soy-
beans and wheat. Long-run soil moisture responses peak apex at the modal exposure, suggesting detrimental
yield impacts of soil waterlogging as well as drying, with the exception of cotton early in the growing season.
These results are generally in line with recent empirical findings. A shortcoming of our model is its omission of
freezing temperatures and the associated negative response of wheat yields, whose amelioration in a warming
climate provides an offsetting beneficial effect (Tack et al., 2015).
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Day of year 90-197 Day of year 198-305 

 

 

Figure 1. Corn empirical yield response functions (A) and the change in the distributions of average
county temperature, precipitation and soil moisture exposure circa year 2050 (B) and 2100 (C), over
growing season sub-periods. Gaps in splines correspond to omitted modal intervals. Histograms
show the differences in the distributions of exposure between the no-policy reference scenario and
the current climate, and between the 4.5 W m−2 and 3.7 W m−2 GHG mitigation scenarios and the
reference case. The vertical axes of the differenced exposure distributions have non-linear scales to
better illustrate the shifts in meteorology due to climate change.
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responding to the reference case. Crucially, such reversals are not always beneficial. In the refer-
ence scenario, exposure to low precipitation declines in both halves of the growing season circa
2100, and, relative to this outcome, GHG emission mitigation increases the average frequency of
such dry episodes, with adverse late season yield impacts. Similarly, increases in large precipita-
tion events under the reference scenario improve yields, but mitigation reduces these increases,
curtailing this particular benefit from unmitigated climate change. Finally, as indicated in the Ap-
pendix (Figure D1), a pervasive consequence of mitigation is the reduction in the CFE and its
attendant yield benefits.

3.2 Projected Changes in Crop Yields and Production

Conditions within individual counties can diverge markedly from the aforementioned average
changes in exposure. Maps of projected yield changes in Figure 2 indicate the spatial patterns of
the threat to the five major crops posed by unmitigated climate change, as well as the substantial
threat reduction due to moderate mitigation. Panel A shows the counties where crop production
is concentrated, while panels B and C illustrate the percentage changes in yields calculated using
Equation 3. All crops experience both beneficial and adverse effects, depending on the region. In
the reference scenario, wheat yields increase in the northwest and decline in the south central and
southwest regions circa 2050, a pattern that intensifies markedly toward century’s end. For the
remaining crops, the patterns of impact tend to follow the north-south temperature gradient. Soy-
bean and corn yields suffer pronounced negative impacts in the South and the Mississippi River
Valley that first lessen before turning positive with proximity to Canada. For cotton, the largest
adverse effects are dispersed across the crescent of southernmost counties, while for sorghum
negative impacts are concentrated in the southwest. The reductions in changes in climatic vari-
ables as a consequence of mitigation policies attenuate the amplitude of beneficial as well as ad-
verse yield shocks. Even a 4.5 W m−2 GHG stabilization policy limits impacts to ±10% from
baseline levels in the majority of cultivated counties. Results for the stringent 3.7 W m−2 scenario
(not shown) are similar but further accentuated.

However, the risk to agricultural supply arises out of the spatial intersection of yield shocks
and patterns of crop production in future decades when climatic changes occur. Although the lat-
ter will likely differ from today, given the challenges that attend prediction of agriculture’s future
geographic distribution (see, e.g., Ortiz-Bobea and Just, 2012; Iizumi and Ramankutty, 2015),
we follow the empirical literature in assuming that irrigated and rainfed crop cultivation will con-
tinue to follow the current geographic pattern in panel A. We summarize the impacts at the scale
of US climate regions in Table 1.

Under reference warming, circa 2050, there are increases in yields of corn and sorghum, de-
clines in wheat and soybeans, and mixed impacts on cotton in the regions where production of
these crops is concentrated. Climate impacts that manifest in one or two regions at mid-century
often spread geographically by 2100, with production in regions that suffer early adverse impacts
(e.g., the southeast, and, to a lesser extent, south central regions) often experiencing further de-
clines. Mitigation often only softens the blow in regions with the largest percentage losses, and,
paradoxically, changes in weather patterns associated with stringent emission reductions may
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Table 1. Changes in crop production (%) relative to current climate in the no-policy reference and GHG
mitigation scenarios, circa years 2050 and 2100: by US climate regions. Square braces: changes in out-
put from the reference scenario; shaded cells: losses relative to the current period (in cells with square
braces, relative to reference scenario); bold: major producing regions.

 Output 2036-2065  2086-2115 
 Share Ref 4.5 Wm-2 3.7 Wm-2  Ref 4.5 Wm-2 3.7 Wm-2 
 (%) Wheat 

Southeast 3.2 3.7 4.7 [1.0] 3.6 [-0.1]   -4.8 4.0 [8.7] 2.0 [6.8] 
Southwest 4.9 -2.9 -0.9 [2.0] -0.8 [2.1]  -3.2 -0.8 [2.3] -1.1 [2.1] 
South 30.8 -6.8 -1.4 [5.4] -2.3 [4.5]  -18.3 -2.9 [15.4] -4.5 [13.8] 
West 2.1 -1.1 -0.7 [0.4] -0.6 [0.5]  -8.1 -1.7 [6.4] -0.7 [7.4] 
Northeast 1.2 6.7 5.1 [-1.7] 4.0 [-2.7]  21.3 5.7 [-15.6] 5.1 [-16.2] 
Northwest 12.7 -5.1 -3.0 [2.1] -2.7 [2.4]  -9.7 -3.9 [5.8] -3.7 [6.0] 
Central 11.0 -6.3 0.6 [6.9] -1.0 [5.3]  -18.8 -3.0 [15.7] -2.7 [16.0] 
E.N. Central 6.2 0.5 2.1 [1.7] 1.6 [1.2]  0.7 1.4 [0.8] 1.9 [1.2] 
W.N. Central 27.9 -0.3 0.7 [1.1] 0.5 [0.8]  4.2 0.7 [-3.5] 0.3 [-4.0] 

  Soybeans 
Southeast 4.4 8.9 7.9 [-1.0] 6.5 [-2.4]   4.2 8.2 [4.0] 5.2 [1.0] 
Southwest             
South 11.6 -3.9 0.8 [4.7] -0.7 [3.2]  -23.0 -1.2 [21.9] -3.5 [19.5] 
West             
Northeast 1.8 12.1 8.1 [-4.0] 6.7 [-5.4]  38.1 9.8 [-28.4] 8.1 [-30.0] 
Northwest             
Central 41.1 -2.7 3.3 [6.0] 1.3 [4.0]  -13.0 0.2 [13.2] -0.1 [12.9] 
E.N. Central 29.4 -1.7 3.9 [5.6] 2.3 [4.0]  -4.1 2.3 [6.3] 1.1 [5.1] 
W.N. Central 11.8 -1.5 3.2 [4.6] 1.9 [3.4]  4.4 2.5 [-1.9] 0.3 [-4.1] 

  Sorghum 
Southeast 1.7 9.4 6.6 [-2.9] 6.4 [-3.1]   4.9 7.1 [2.2] 4.5 [-0.4] 
Southwest 2.6 -1.2 -2.3 [-1.0] -2.9 [-1.6]  6.9 -1.4 [-8.3] -2.9 [-9.7] 
South 70.7 6.5 2.7 [-3.9] 2.1 [-4.4]  18.1 4.9 [-13.2] 1.2 [-16.9] 
West 0.4 -3.8 -0.9 [2.8] -0.6 [3.2]  -16.0 -3.0 [13.1] -1.1 [14.9] 
Northeast 0.0 -9.8 -5.8 [4.1] -6.3 [3.5]  -25.7 -8.2 [17.5] -7.3 [18.4] 
Northwest             
Central 10.7 9.5 4.7 [-4.8] 5.4 [-4.1]  10.9 7.4 [-3.5] 4.3 [-6.6] 
E.N. Central 0.2 3.6 3.7 [0.1] 3.6 [0.0]  11.1 5.0 [-6.1] 3.2 [-7.9] 
W.N. Central 13.6 6.7 4.0 [-2.7] 3.4 [-3.3]  29.1 7.0 [-22.1] 3.0 [-26.1] 

  Cotton 
Southeast 18.2 4.8 6.5 [1.7] 4.7 [-0.2]   -10.6 7.2 [17.8] 3.9 [14.6] 
Southwest 5.2 -6.7 -3.0 [3.8] -2.6 [4.1]  -15.5 -5.3 [10.3] -5.0 [10.5] 
South 56.9 -2.8 0.7 [3.6] 0.2 [3.0]  -8.4 -1.1 [7.2] -1.4 [7.0] 
West 12.7 21.1 11.9 [-9.2] 11.2 [-9.9]  27.8 18.0 [-9.8] 12.3 [-15.5] 
Northeast             
Northwest             
Central 7.0 8.7 8.6 [-0.1] 4.9 [-3.8]  6.0 8.1 [2.0] 2.9 [-3.1] 
E.N. Central             
W.N. Central             

  Corn 
Southeast 2.4 10.2 10.8 [0.6] 8.8 [-1.4]   -15.8 10.5 [26.2] 6.4 [22.1] 
Southwest 1.5 2.1 1.6 [-0.5] 1.9 [-0.2]  22.0 3.1 [-19.0] 1.9 [-20.1] 
South 6.9 1.9 2.9 [1.0] 2.2 [0.3]  10.4 3.7 [-6.7] -0.9 [-11.3] 
West 0.3 -2.2 -0.4 [1.7] -0.6 [1.6]  -8.9 -2.1 [6.8] -1.2 [7.6] 
Northeast 2.6 11.7 8.2 [-3.5] 5.6 [-6.1]  21.4 10.5 [-10.9] 8.0 [-13.4] 
Northwest 0.3 20.2 13.3 [-6.9] 12.8 [-7.4]  28.6 17.6 [-11.0] 14.1 [-14.5] 
Central 34.9 6.6 6.1 [-0.6] 4.3 [-2.4]  0.0 5.6 [5.6] 3.9 [3.8] 
E.N. Central 34.7 6.3 4.9 [-1.4] 5.3 [-1.0]  12.5 7.2 [-5.3] 4.3 [-8.3] 
W.N. Central 16.2 7.2 4.8 [-2.4] 5.3 [-1.9]  29.3 7.6 [-21.7] 3.5 [-25.8] 

have smaller ameliorative impacts (cf. south, southeast and central sorghum and corn), likely due
to the interplay between the impact of changes in meteorological variables and the CFE. Con-
versely, climate change improves yields in the cooler northeast, northwest, and, less reliably,
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north central areas around mid-century, with declines in the pool of regions experiencing bene-
ficial weather as warming proceeds. Mitigation offsets output declines from regions experiencing
losses at the cost of curtailing gains to those benefiting from climate change. However, rarely
does mitigation transform gains under the reference into outright losses: more commonly regions
that gain experience smaller benefits.

Our projected percentage changes in aggregate yield understate those of prior studies, al-
though a clean comparison is elusive because of differences in the scenarios of future warming
and their meteorological consequences as elaborated by ESMs (cf. Table A3). Our inclusion of
the CFE accounts for some of this divergence. Re-running our projections without the CFE10

results in yield losses that are 20% larger for wheat and 300% larger for cotton, and gains that
are 100% larger for soybean and 10-15% smaller for corn and sorghum (Table A2). More conse-
quential are our findings of countervailing effects of extreme heat on corn yields (adverse early,
beneficial late), and the general importance of precipitation. The latter is particularly important
given that our estimates assume no water stress, and therefore no impact of projected changes in
precipitation or soil moisture, on the irrigated fraction of the crop in each county. Relative to the
customary method of applying a single fitted yield response function everywhere, our approach
reduces yield losses (gains) in regions experiencing precipitation and soil moisture declines (in-
creases).

3.3 Economic Costs of Agricultural Impacts and Benefits of GHG Mitigation

The implications for aggregate climate damage costs and GHG mitigation benefits are sum-
marized in Table E2. Costs (negative entries) and benefits (positive entries) are assessed by estab-
lishing two baselines from which to compute the absolute changes in output that correspond to
US-wide percentage changes. Panel A (which collapses Table 1) demonstrates that, under refer-
ence warming, adverse national average yield impacts are dominated by wheat, soybeans and, to-
ward century’s end, cotton. Conversely, corn and sorghum experience large increases in national
average yield. Panel B shows the result of a comparative static calculation of the associated costs
and benefits of climate change if crop production and prices remain at today’s levels. Output
losses (i) follow the reference pattern in Panel A, but negative impacts impacts are lessened for
wheat and reversed for soybeans by mitigation, which reduces warming to beneficial levels. The
corresponding economic impacts (ii) are expressed as changes in revenue, calculated by multiply-
ing the quantity shocks by each crop’s 1981–2010 average real farmgate price. Broadly echoing
findings in Deschênes and Greenstone (2007), climate change has a net beneficial impact which
is modest at mid-century ($1B) but becomes negligibly small by 2100. Relative to the reference,
moderate mitigation generates additional annual benefits of $1B in 2050 and $2B in 2100, while
the annual benefits of stringent migration are smaller: $0.6B by 2050 and $0.8B by 2100. Panel
B’s estimates incorporate future increases in production, and associated price changes, as sim-
ulated by MIT-EPPA’s CIRA runs. Impacts are identical in sign, but expansions in crop output

10 This is achieved simply by setting κmi = 0 in Equation A9.
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and revenue increase the magnitude of costs and benefits.11 Net annual benefits under reference
warming are still small: $3B circa 2050 and $1B circa 2100. Mitigation gives rise to modest an-
nual benefits of $3B (2050) and $17B (2100) for moderate mitigation, or $1B (2050) and $7B
(2100) for stringent mitigation.

Table 2. Aggregate annual changes in crop yields, production and associated gross costs and benefits
relative to current climate in the no-policy reference scenario, and aggregate avoided changes in crop
yields and associated costs and benefits under GHG mitigation scenarios, circa years 2050 and 2100. (A)
aggregate yield changes; (B) prices and quantities in current agricultural system; (C) prices and quantities
scaled according to future growth simulated by the MIT-EPPA model’s CIRA simulations.

 2036-2055   2086-2115 
 Ref 4.5 Wm-2 3.7 Wm-2  Ref 4.5 Wm-2 3.7 Wm-2 

 A. Average Change in Yield Relative to Current Climate (%) 
Wheat -3.5 -0.3 -0.8  -7.9 -1.3 -1.9 
Soybeans -1.6 3.5 1.8  -7.8 1.4 0.3 
Sorghum 6.7 3.0 2.6  18.1 5.3 1.7 
Cotton 2.2 3.6 2.6  -3.5 3.2 1.5 
Corn 6.4 5.3 4.8  10.4 6.6 3.8 
 B. Current Agricultural System 

 
(i) Average Change in Production Relative to Current Climate 

(106 tons) 
Wheat -2.1 -0.2 -0.5  -4.9 -0.8 -1.2 
Soybeans -1.1 2.3 1.2  -5.2 1.0 0.2 
Sorghum 1.1 0.5 0.4  2.9 0.9 0.3 
Cotton 0.1 0.1 0.1  -0.1 0.1 0.1 
Corn 14.9 12.3 11.0  24.1 15.2 8.7 

 

(ii) Impact Gross Cost (negative) or Benefit (positive) in Reference Scenario; 
Mitigation Net Benefit (positive) or Cost (negative) in Policy Scenarios 

(2010 $ M) 
Wheat -388 360 297  -887 741 673 
Soybeans -336 1050 698  -1608 1904 1664 
Sorghum 106 -58 -65  288 -204 -261 
Cotton 138 85 24  -222 424 313 
Corn 1502 -258 -390  2431 -892 -1550 
Total 1022 1180 563  2 1973 838 
 C. Projected Future Agricultural System 
 (i) Average Change in Production (106 tons) 
Wheat -5.5 -0.4 -1.1  -32.4 -4.6 -5.8 
Soybeans -2.8 5.5 2.6  -34.3 6.3 1.2 
Sorghum 2.8 1.2 0.9  19.5 5.7 1.8 
Cotton 0.2 0.3 0.2  -0.3 0.3 0.1 
Corn 37.9 29.4 24.6  158.9 100.6 57.5 

 

(ii) Impact Gross Cost (negative) or Benefit (positive) in Reference Scenario; 
Mitigation Net Benefit (positive) or Cost (negative) in Policy Scenarios 

(2010 $ M) 
Wheat -1232 1170 1011  -8395 7368 7475 
Soybeans -1065 3251 2143  -15230 18442 17125 
Sorghum 336 -199 -231  2726 -1973 -2682 
Cotton 439 229 12  -811 1539 1199 
Corn 4765 -1092 -1728  23016 -8642 -15957 
Total 3243 3360 1207  1305 16733 7160 

11 Relative to today, composite agricultural output is projected to increase by a factor of 2.5 by 2050 and 6.5 by 2100,
with real composite agricultural prices increasing by 25% and 44%, respectively.
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4. DISCUSSION AND CONCLUSIONS

By combining empirical analysis with integrated economic and climate projections, we demon-
strate that climate change effects on US crop yields are likely to be slight around mid-century but
substantially costly near century’s end. Regions where climates are already warm suffer losses,
but cooler regions enjoy gains. Declines in production are concentrated in soybeans, cotton, and
wheat, but these are partially offset by increased output of corn and sorghum. Reductions in ra-
diative forcing from GHG mitigation generally offset output declines from regions and crops that
experience losses, but at the cost of curtailing gains to those that benefit from climate change.

As summarized in Figure 3, our results suggest that the overall effect of mitigation policies
on agricultural revenues will be positive, but the magnitude is sensitive to the beneficial impacts
of CO2 fertilization. Without CFE, the impact of unmitigated climate change flips sign, incur-
ring annual net costs of $3B circa 2050 and $18B circa 2100.. This amplifies the positive effect
of emission reductions, increasing the benefits by $1.4B (2050) and $10B (2100) for moder-
ate mitigation, and by $1.1B (2050) and $13B (2100) for stringent mitigation. These estimates,
which should be considered upper bounds on the costs of climate change impact and correspond-
ing emissions reduction benefits, highlight the critical importance of assumptions regarding the
CFE. They are also somewhat larger than, but in the same general range as, climate change dam-
ages generated by prior studies (see Table A2), though simple comparisons of total dollar values
are not appropriate given the use of different impact endpoints (land values, agricultural prof-
its, non-monetized yields, or affected crops) and climate change projections, as well as the lack
of accounting for the CFE. As a case in point, the study most closely related to ours—Beach
et al. (2015)—employs a crop model forced by the CIRA IGSM-CAM simulations to construct
gross-of-CFE changes in corn, soybean and wheat yields and which are then applied as exoge-
nous shocks in a partial equilibrium simulation of the US agriculture and forestry sector. Yield
impacts are mostly positive in the reference scenario and become more beneficial with stringent
mitigation, over 2015–2100 increasing cumulative agricultural surplus by (2005) $45B—or an
average annual mitigation benefit of $0.5B.

Our analysis represents an advance over current approaches to quantifying the costs and ben-
efits of climate change. We use projections of the future state of the agricultural economy using
CGE model output whose simulated growth rates of agricultural output and prices are consis-
tent with the economic expansion, general equilibrium price and quantity effects of mitigation
policies, and concomitant GHG emissions, radiative forcing and meteorological changes that
determine the shocks to crop yields in the decades in which these impacts occur. By contrast,
empirical studies’ comparative statics valuation of impacts as changes in agricultural revenues
or profits under current production and prices can dramatically understate costs (see Table E2).
Modeling studies that simply impose GGCM-simulated yield changes onto economic models risk
being inconsistent with future economic conditions, GHG emissions, and the climatic forcing of
yield shocks that we argue is essential to consistent estimation of costs and benefits. However, the
critical feature of such model-based economic consequence analyses is the additional uncertainty
they introduce by simulating the moderating effects of adaptation via market mediated price and
quantity adjustments (cf. Beach et al., 2015). Although adaptation will almost surely occur, its
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Figure 3. Annual costs (negative entries) and benefits (positive entries) of climate change impacts and
mitigation on US agriculture with and without CO2 fertilization, circa 2050 and 2100. (A) Impacts by
crop (total shown at bottom). (B) Costs and benefits of 4.5 W m−2 and 3.7 W m−2 stabilization policies
by crop (total shown at bottom).

associated indirect economic costs and benefits are poorly characterized and difficult to estimate,
yet require accurate quantification to avoid potential double-counting when estimating the net
benefit of mitigation. Our deliberately conservative approach is therefore to exclude the effects
of future adaptation from our cost-benefit calculations. Instead, we value the impact of climate
change under the economic conditions likely to prevail at the instant such a shock occurs, before
producers and consumers have an opportunity to react (Fisher-Vanden et al., 2013).

Nevertheless, several caveats to our analysis remain. Our narrow focus on well-documented
impact pathways omits myriad indirect climate-related changes in crops’ growing environment
(e.g., ozone concentrations, diseases, pathogens and weeds) on which the literature provides less
guidance regarding yield responses. Space constraints preclude a full uncertainty analysis of the
underlying economic assumptions in the MIT EPPA model and the climate system response, and
particularly the CFEs yield benefits, which were difficult to bound (see Appendix D). The de-
pendence of yield changes on the assumption of perfect water application in currently irrigated
areas highlights the sensitivity of our cost benefit projections to the availability of water resources
sufficient for irrigation as crop production expands out to century’s end. The latter, while driven
by shifting precipitation patterns, requires hydrological analysis (e.g., future water infrastructure
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and efficiency assumptions, changes in runoff and discharge, competition with growing municipal
and industrial demands, groundwater resource development and depletion) to determine how, and
where, it might influence our results. Finally, the CGE model that we use resolves future changes
in aggregate agricultural activity, not individual crops. Research is ongoing to address these is-
sues.

More broadly, our results illustrate the potential of reduced-form empirical analysis as an al-
ternative to GGCMs in evaluating climate change impacts on agriculture (Rosenzweig et al.,
2014; Nelson et al., 2014). Although crop models incorporate both detailed process-based un-
derstanding of crop physiology and the ameliorating effects of a plethora of management op-
tions, concerns regarding their accuracy in capturing crop yields’ responses to meteorological
change (Hertel and Lobell, 2014) have been slow to prompt extensive testing, especially at the
geographic scales examined here.12 Our methodology can usefully be applied to model the re-
lationships between GGCM simulated yields and their climatic drivers, and thereby facilitate
head-to-head comparisons that can lead to more robust estimates of impact response, future yield
shocks, and associated economic costs and benefits.
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APPENDIX A: Theoretical Foundation
Hallam and Zanoli (1993) apply Nichell (1985)’s theoretical dynamic model to agricultural

supply response. Following their exposition, consider a farmer who pursues a long-run equilib-
rium level of yield, y∗. She chooses the actual level of yield, y, over an infinite horizon [t,t+1,...,
t+τ ,...,∞] so as to jointly minimize the divergence from the optimum, and the interannual vari-
ability due to random weather shocks. In period t, these twin objectives are captured by the fol-
lowing forward-looking quadratic loss function:

L =
∞∑
τ=0

ρτ
[
ϕ1

(
yt+τ − y∗t+τ

)2
+ (yt+τ − yt+τ−1)2 − 2ϕ2 (yt+τ − yt+τ−1)

(
y∗t+τ − y∗t+τ−1

)]
(A1)

where ϕ1,ϕ2>0 are loss coefficients and ρ ∈ (0, 1) is the discount factor. The terms in square
braces are: first, losses that increase quadratically as yields diverge from the optimal level; sec-
ond, quadratic interannual adjustment costs (on which losses are normalized); and third, the at-
tenuation of loss that occurs if the direction in which the farmer adjusts is toward the optimum.

Minimization of L is accomplished by taking first-order conditions with respect to yt+τ , which
results in the following second-order difference equation:

ρ
(
yt+τ+1 − ϕ2y

∗
t+τ+1

)
−(1 + ρ+ ϕ1)

(
yt+τ − ϕ2y

∗
t+τ

)
+
(
yt+τ−1 − ϕ2y

∗
t+τ+1

)
= ϕ1 (ϕ2 − 1) y∗t+τ

(A2)

The solution to Equation A2 is the farmer’s optimal policy. Nichell (1985) shows that when
ϕ2=0 the result is a partial adjustment rule in which the difference in yield from one period to
the next is a fraction Θ of the gap between the actual and optimal levels of yield in the previous
period:

yt − yt−1 = Θ [yt−1 − y∗t ] (A3)

As Θ → 1 the farmer approaches instantaneous full adjustment. In general, y∗t represents a
moving target which is latent and unobserved by the econometrician. Nichell (1985) investigates
a range of plausible stylized representations of its law of motion, including a random walk with
drift:

y∗t+τ = Γ0 + y∗t+τ−1 (A4a)

and a second-order autoregressive model with a unit root:

y∗t+τ = Γ0 + Γ1y
∗
t+τ−1 + Γ2y

∗
t+τ−2 (A4b)

In both cases the solution to Equation A2 is an autoregressive distributed lag (ARDL) specifi-
cation:

yt = Λ0 + Λ1y
∗
t + Λ2yt−1 + Λ3y

∗
t−1 (A5)
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which in turn can be recast in the error correction model (ECM) form:

∆yt = Ω0 + Ω1∆y
∗
t + Ω2

[
yt−1 − y∗t−1

]
(A6)

This is the basis for our empirical approach.
Equation ]refeqA6 elucidates how a simple long-run response can combine with contempora-

neous random shocks to generate realistic yield series. For simplicity, suppose that target yield is
related to a vector of exogenous predictor variables, z, by the linear relationship:

y∗t = ztΥ (A7)

in which Υ denotes a vector of coefficients. At the end of periods t-1 and t, the subsequent
harvests expected yield is given by:

Et−1yt = Ω0 + Ω2 (Et−1zt − zt−1) Υ + Ω3 (yt−1 − zt−1Υ) (A8a)

Etyt+1 = Ω0 + Ω2 (Etzt+1 − zt) Υ + Ω3 (yt − ztΥ) (A8b)

It is customary to model farmers expectations as rational, in the sense that on average their
guesses about the future are accurate and not systematically biased. Under this assumption, Eτ−1
yτ = yτ and Eτ−1 zτ = z, which is the long-run average value of the predictors (e.g., climate).
Then, at t, subsequent yield is a function of observed past yield, predictors variables’ long-run
average, and their current interannual variability:

yt+1 = 2Ω0 (1 + Ω2) + (1 + Ω2)
2 yt−1 + 2Ω1 (1 + Ω2) zΥ− (Ω1 + Ω2Ω3) ∆ztΥ (A9)

− (Ω1 + Ω2Ω3) (2 + Ω2) zt−1Υ
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APPENDIX B: Econometric Strategy
Using the nomenclature in the main text, the standard empirical modeling approach is to es-

timate a static fixed effects regression model that identifies the effect of weather shocks’ impact
from their contemporaneous covariation with yield (Schlenker and Roberts, 2009; Ortiz-Bobea
et al., 2013; Tack et al., 2015):

yc,t = ˜̃αc +
∑
g

{∑
j

˜̃ηTj,gξ
T
j,g,c,t +

∑
k

˜̃ηPk,gξ
P
k,g,c,t +

∑
l

˜̃ηSl,gξ
S
l,g,c,t

}
+Xc,t

˜̃
λ+ ˜̃uc,t (B1)

where a double tilde over a parameter identifies it as a static estimator, ˜̃α denotes county fixed
effects and ˜̃u is the corresponding static error term. The substantial temporal persistence ex-
hibited by yields over the last half-century is symptomatic of year-to-year adjustment of farm-
ers’ management decisions to weather shocks—as anticipated by Equation A3 above. The key
concern is that failure to capture this adjustment might bias estimates of the effects of yields of
long-run meteorological changes associated with shifts in the climate, as the parameters in Equa-
tion B1 represent a mix of short- and long-run responses. Taking differences of Equation B1 over
long periods, Burke and Emerick (2015) demonstrate persistent adverse impacts of extreme heat,
raising questions as to whether farmers long-run adaptations to climate change will be sufficient
to sustain yields. A common way of introducing dynamics explicitly is via an ARDL specifica-
tion that includes lags of both the dependent and independent variables, e.g.

yc,t = αc+ωyc,t−1+
∑
g

{∑
j

βTj,gξ
T
j,g,c,t +

∑
k

βPk,gξ
P
k,g,c,t +

∑
l

βSl,gξ
S
l,g,c,t

}
+Xc,tγ+uc,t (B2)

Taking Equation B2 directly to the data generally results in biased and inconsistent estimates
because of collinearity between the lagged dependent variable and the fixed effects (Nickell,
1981) but in the long time domain panels used by Schlenker and Roberts (2009); Ortiz-Bobea
and Just (2012) and this study, the bias is likely to be small. The equivalence of Equations B2
and A5 can be exploited to rearrange the former into an ECM, with the analogue of Equation A7
given by

y∗c =
∑
g

{∑
j

ηTj,gξ
T
j,g,c +

∑
k

ηPk,gξ
P
k,g,c +

∑
l

ηSl,gξ
S
l,g,c

}
+Xcλ

The result is Equation 1 in the text, in which short-run responses are identified from interan-
nual variation and long-run responses are identified from from the covariation between lagged
variables. The parameters of Equations 1 and refeqB2 are related by θ = ω − 1, ηv = (βv −
δv)/(1 − ω) and λ = (γ − ζ)/(1 − ω). The fixed effects account for unobserved factors that de-
termine the average growth rate of yields over the sample period. Similar to Equation A3 and A6,
the term in square braces is the instantaneous yield gap—the divergence between the realization
of yield at the prior harvest and producers’ equilibrium expectations of the long-run climatically-
determined level of yield. Intuitively, if weather remained unchanged from the previous year (i.e.,
all the ∆ξT = ∆ξP = ∆ξS = 0), the change in yield relative to the previous year would be
a fraction θ ∈ (0, 1) of the current yield gap, generated by farmers’ adjustments that are not
directly observed. However, weather is not constant, and this exerts an additional short-run in-
fluence on the interannual change in yield. The ECM thus captures the way in which past yield,
climate, and weather-driven deviations from equilibrium target yield drive the historical evolution
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of county yield series, similar to Equation A9. The caveat is that this benefit comes at the cost
of inability to incorporate secular count x year effects to control for the influence of unobserved
shocks that are both localized and time-varying (e.g., changes in land prices), which Deschênes
and Greenstone (2012) find to be central to the significance of temperature’s influence.
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APPENDIX C: Data
Historical Production and Harvested Area: We obtained annual county-level production and

harvested area over the period 1948-2010 for corn, wheat, soybeans, sorghum and cotton from
the US Dept. of Agriculture Quickstats database. There are numerous limitations to these data.
Crucially, they do not consistently distinguish irrigated and rainfed production by county, but
rather tabulate the total the acreage and production under both management regimes. Also, histor-
ical wheat production series combine winter and spring wheat.

Historical Weather Exposure: weather inputs to our empirical analysis are calculated from the
Global Land Data Assimilation System (GLDAS) forcing files of 3-hourly assimilated temper-
ature and precipitation observations, and simulated soil moisture, all on a 1◦ grid (Rodell et al.,
2004). These variables were bilinearly interpolated to US county boundaries and counts of 3-hour
exposure were accumulated over each annual growing season, which for simplicity we assume is
represented by the fixed 7-month window April-October. To capture potentially large shifts in the
effects of heat and moisture with different crop growth stages, we split the growing season into
sub-periods of equal length (day of year 90-197 and 198-305). For each stage within a county-
year pair we compute the counts of 3-hour observations that fall within intervals of temperature,
precipitation and soil moisture. For example, given a 3-hourly temperature time series for county
c in year t, subset to sub-period g, T c,t〈g〉, the corresponding covariate for the jth temperature in-

terval with support
(
T j, T

j
)

is given by ξTj,g,c,t = N
[
T j < T c,t < T

j
]
, where N is the count of

observations meeting the interval’s criteria.
Statistical controls: Consistent annual data series of county characteristics were not available

for the long time-horizon of our sample. We were able to construct a single control over this pe-
riod: an index of potential irrigation. Our dependent variable is an average of irrigated and non-
irrigated yields, which raises the possibility of bias of unknown magnitude in our estimates rel-
ative to the true impact of meteorology. Furthermore, our ability to control statistically for irri-
gation is hampered by paucity of historical data on crop water applications. Following Hansen
et al. (2011, 2014), our solution is to treat irrigation as a latent variable whose yield impact is
inferred from the partial covariation between yields and irrigation potential. Data on irrigation
infrastructure are collected from the US Army Corps of Engineers’ National Inventory of Dams
(NID), which records facilities’ location, primary purpose, storage capacity and in-service dates.
We restrict our attention to dams whose primary purpose is listed as irrigation, and assign the
storage of each facility to the county in which it is located for all years subsequent to its date of
construction. Cross-county and year-on-year differences in dam capacity additions generate an
infrastructure series that exhibits substantial spatial and temporal variation. Our annual irrigation
variable is constructed by interacting each county’s dam capacity with each year’s accumulated
January-October precipitation. The result is an indicator of a county’s cumulative quantity of wa-
ter that is stored and potentially available for application to crops locally over the course of each
year’s growing season.
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APPENDIX D: Crop Impact Projections
In a perfect world, yield responses to meteorology under irrigated and rainfed management

regimes are statistically identified using separate instances of Equation 1:

∆yc,t = µmc +
∑
g

{∑
j

βT,mj,g ∆ξTj,g,c,t +
∑
k

βP,mk,g ∆ξPk,g,c,t +
∑
l

βSl,g∆ξ
S,m
l,g,c,t

}
+∆Xc,tγ

m (D1)

+θm

[
ymc,t−1 −

∑
g

{∑
j

ηT,mj,g ξ
T
j,g,c,t−1 +

∑
k

ηP,mk,g ξ
P
k,g,c,t−1 +

∑
l

ηS,ml,g ξSl,g,c,t−1

}
+Xc,t−1λ

m

]
+εmc,t

However, the crucial limitation of our dataset is we only have consistent historical county-
level series of average yields, which are calculated from the sums of irrigated and rainfed crop
output and acreage:

Yc,t =
(
QI
c,t +QR

c,t

)
/
(
HI
c,t +HR

c,t

)
(D2)

The dependent variable in Equation 1 is therefore:

∆yc,t = ∆ log
(
QI
c,t +QR

c,t

)
−∆ log

(
HI
c,t +HR

c,t

)
(D3)

which, by the property of the logarithmic differential can be restated:

∆yc,t ≈ φI,Qc,t ∆ logQI
c,t + φR,Qc,t ∆ logQR

c,t − φ
I,H
c,t ∆ logHI

c,t − φ
R,H
c,t ∆ logHR

c,t (D4)

where φm,Qc,t and φm,Hc,t are the instantaneous fractions of total output and harvested area at-
tributable to cultivation under regime m.

In principle the regime-specific parameters (ηv,m) are identified if we make two key assump-
tions. The first is that for a given crop in each county, the divergence between the instantaneous
fractions of output and acreage in each management regime is not “too” large, allows us to re-
place the weights in Equation A6 with average fractions for the I and R terms: φv,Qc,t ≈ φv,Hc,t ≈
φvc,t where φIc,t + φRc,t = 1. The first difference of average yield is then the weighted sum of irri-
gated and rainfed components:

∆yc,t ≈ φIc,t
(
∆ logQI

c,t + ∆ logHI
c,t

)
+ φRc,t

(
∆ logQR

c,t −∆ logHR
c,t

)
= φIc,t∆y

I
c,t + φRc,t∆y

R
c,t

(D5)

The second assumption is that irrigated and rainfed producers’ adjust to equilibrium at similar
rates (θI ≈ θR ≈ θ). Then, substituting Equation A3 into Equation A7, the long-run terms in
Equation 1 can be decomposed as:

ηTj,gξ
T
j,g,c,t−1 = φIc,tη

T,I
j,g ξ

T
j,g,c,t−1 + φRc,tη

T,R
j,g ξ

T
j,g,c,t−1 (D6a)

ηPk,gξ
P
k,g,c,t−1 = φIc,tη

P,I
k,g ξ

P
k,g,c,t−1 + φRc,tη

P,R
k,g ξ

P
k,g,c,t−1 (D6b)

ηSl,gξ
S
l,g,c,t−1 = φIc,tη

S,I
l,g ξ

S
l,g,c,t−1 + φRc,tη

S,R
l,g ξ

S
l,g,c,t−1 (D6c)

However, data constraints pose an insurmountable obstacle to direct operationalization of
Equation D3. Comprehensive geographic coverage of the distribution of irrigated and rainfed
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cultivation is available only circa year 2000 (MIRCA), generating observed weights (φIc,t and φRc,t)
that lack the temporal variation necessary for identification. Consequently we retain specification
of Equation 1 for our empirical model. The foregoing analysis nonetheless has important impli-
cations for construction of yield projections. If we assume the limiting case of perfect crop water
application that completely shields irrigated production from water stress, then in Equation D1
precipitation and soil moisture are unlikely to exert significant long-run effects on irrigated yields
independent of the driving force of irrigation capacity. We may therefore attribute eq. (1)’s com-
posite precipitation and soil moisture responses entirely to rainfed production: ηP,Rk,g ≈ ηPk,g,
ηS,Rl,g ≈ ηSl,g and ηP,Rk,g = ηS,Rl,g = 0, while treating rainfed and irrigated crops’ orthogonal temper-
ature responses as statistically indistinguishable: ηT,Ij,g = ηT,Rj,g = ηTj,g. This partitioning motivates
our impact response functions Equations 2 and 3.

Crop yield responses to CO2 concentrations are highly uncertain. Our impacts are estimated
based on rates of yield response to doubled CO2 (FR2×CO2

i ) summarized by (Hatfield et al.,
2011, Table 1). To capture the progressive saturation of yield increases with increasing CO2, we
specify crop-specific logarithmic functions that use as a base value the 1980–2010 average CO2

concentration (370 ppm):

Fm
i = 1 + κmi · FR

2×CO2
i · (logC − log 370) / log 2 (D7)

Our calibration also incorporates current understanding of the CFE’s dependence on mois-
ture stress. We assume that the fertilization rates in Hatfield et al. (2011) are typical of rainfed
crops experiencing moderate drought stress, which corresponds to an average growing season
precipitation-potential evapotranspiration ratio (P/PET) of 0.5, while irrigated crops are treated as
unstressed (P/PET ≥ 1) and, consequently, subject to smaller improvements in yield. This differ-
ential is captured by the scaling parameter κmi , whose value is unity (<1) for rainfed (irrigated)
crops. We model the attenuation of yield benefits with irrigation as the ratio of the CFE under wet
conditions to that under dry conditions, using crop-specific estimates from (McGrath and Lobell,
2013, Table 3). The parameters of Equation D7 are summarized in Table D1.

Table D1. Parameterization of the CO2 fertilization effect.

Fractional increase
in rainfed yields with

doubled CO2

(FR2×CO2
i )

Ratio of irrigated to
rainfed yield response

(κIi )

Corn 0.04 0.063

Sorghum 0.08 -0.1863

Cotton 0.44 0.4462*

Soybeans 0.36 0.4462

Wheat 0.31 0.1707

* Assumed identical to soybeans.

The implications of Equation A9 for the CFE in the paper are shown in Figure D1. Our cali-
brated CFE response functions are in generally good agreement with the FACE experiments and
Amthor et al. (2001), but are systematically smaller than the responses for corn and sorghum as-
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sumed by global gridded crop models.
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Figure D1. The CO2 fertilization effect: comparison of our approach with the literature. ∗ indicate esti-
mates from chamber studies.
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APPENDIX E: Additional Results

Day of year 90-197 Day of year 198-305 

Figure E2. Wheat empirical yield response functions (A) and the change in the distributions of average
county temperature, precipitation and soil moisture circa year 2050 (B) and 2100 (C), over growing
season sub-periods. Gaps in splines correspond to omitted modal intervals. Histograms show the
differences in the distributions of exposure between the no-policy reference scenario and the current
climate, and between the 4.5 W m−2 and 3.7 W m−2 GHG mitigation scenarios and the reference case.
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Day of year 90-197 Day of year 198-305 

 

 

Figure E3. Soybean empirical yield response functions (A) and the change in the distributions of average
county temperature, precipitation and soil moisture circa year 2050 (B) and 2100 (C), over growing
season sub-periods. Gaps in splines correspond to omitted modal intervals. Histograms show the
differences in the distributions of exposure between the no-policy reference scenario and the current
climate, and between the 4.5 W m−2 and 3.7 W m−2 GHG mitigation scenarios and the reference case.
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Day of year 90-197 Day of year 198-305 

Figure E4. Sorghum empirical yield response functions (A) and the change in the distributions of average
county temperature, precipitation and soil moisture circa year 2050 (B) and 2100 (C), over growing
season sub-periods. Gaps in splines correspond to omitted modal intervals. Histograms show the
differences in the distributions of exposure between the no-policy reference scenario and the current
climate, and between the 4.5 W m−2 and 3.7 W m−2 GHG mitigation scenarios and the reference case.
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Day of year 90-197 Day of year 198-305 

 

Figure E5. Cotton empirical yield response functions (A) and the change in the distributions of average
county temperature, precipitation and soil moisture circa year 2050 (B) and 2100 (C), over growing
season sub-periods. Gaps in splines correspond to omitted modal intervals. Histograms show the
differences in the distributions of exposure between the no-policy reference scenario and the current
climate, and between the 4.5 W m−2 and 3.7 W m−2 GHG mitigation scenarios and the reference case.
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Table E1. Aggregate annual changes in crop yields, production and associated gross costs and benefits
relative to current climate in the no-policy reference scenario, and aggregate avoided changes in crop
yields and associated costs and benefits under GHG mitigation scenarios, circa years 2050 and 2100,
assuming no CO2 fertilization effect. (A) aggregate yield changes; (B) prices and quantities in current agri-
cultural system; (C) prices and quantities scaled according to future growth simulated by the MIT-EPPA
model’s CIRA simulations.
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Table E2. Prior Estimates of Climate Change Impacts on US Agriculture. Note that none of these studies
takes into account the effect of CO2 fertilization.
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