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Abstract

I present work on the relationship between inorganic atmospheric aerosol impacts and
their precursor emissions from the United States of America. The inorganic aerosol
ions nitrate (NO–

3), sulfate (SO2–
4 ), and ammonium (NH+

4 ) form from emissions of
nitrogen oxides (NOx), sulfur dioxide (SO2), and ammonia (NH3). Emissions of NOx
and SO2 in the US have recently decreased, by 42% and 62% respectively for annual
totals between 2005 and 2012, in response to economic, political, and technological
developments. Under such large changes, the processes of aerosol formation may
behave nonlinearly. The sensitivity of aerosol impacts to future emissions reductions
– the change in a metric per unit change in emissions – can be very different from
the sensitivity to past reductions. In this thesis, I use a chemical transport model
to examine the sensitivities, changes in sensitivities, and the importance of nonlinear
interactions for both health and climate impacts of inorganic aerosols.

The first section of this thesis focuses on surface concentrations of inorganic fine
particulate matter (PM2.5), a relevant metric for human health. In winter, PM2.5

across the central US is primarily composed of ammonium nitrate, whose formation
is highly dependent on thermodynamics. The recent NOx and associated total nitrate
(HNO3+NO–

3) reductions have made aerosol formation in this region limited by total
nitrate availability. Future NOx emissions reductions will thus have a much larger
impact than they would have in the past. In summer, SO2–

4 aerosols dominate PM2.5.
The reduced NOx emissions lead to higher peroxide concentrations and faster aqueous
SO2 oxidation, without increasing sulfate wet deposition to the same degree. With
faster oxidation, a larger fraction of the emitted SO2 forms sulfate and particulate
matter, increasing the sensitivity of surface aerosol concentrations to SO2 emissions
even as emissions themselves have decreased. These results suggest that NOx and
SO2 emissions reductions will continue to improve US air quality.

The second section of this thesis focuses on sensitivities of the direct radiative
effect (DRE) of inorganic aerosols to US emissions, a key quantity for studying climate
impacts. The DRE and changes in DRE in winter are largest over the ocean. The
summertime DRE includes a long tongue of advected aerosols over the Atlantic as well



as a broad area of large DRE over the eastern US. As with surface concentrations,
sensitivity of DRE to NOx and SO2 emissions increased between 2005 and 2012,
while sensitivity to NH3 emissions decreased. A simple scaling estimate of the DRE
in the 2012 case from the 2005 DRE and sensitivities overestimates the magnitude
of the DRE by 10.3 mW m−2 in January and 21.4 mW m−2 in July. These values
are equivalent to underestimating the SO2 emissions reductions by 13.6% and 10.6%,
respectively. These processes cause small errors for climate studies that assume scaling
of aerosol radiative effects for current conditions, but greater errors could occur under
future emission changes.
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Title: Ellen Swallow Richards Professor of

Atmospheric Chemistry and Climate Science

Thesis Supervisor: Noelle E. Selin
Title: Associate Professor of Data, Systems, and Society,

and Atmospheric Chemistry
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Chapter 1

Introduction

1.1 Motivation

The chemistry of gases is central to atmospheric chemistry, but liquid and solid parti-

cles matter as well – as evidenced by clouds. These liquid and solid particles suspended

in air are collectively called aerosol1 and are a key focus of modern atmospheric chem-

istry. Part of the reason for that focus is that atmospheric particles can affect human

health on national and international scales. Another reason is that particles scatter

and absorb light, impacting climate. I will address both of these motivations in this

thesis.

That particulates harm human health has been known for decades. In one of

the earliest epidemiological studies, Lave and Seskin (1973) showed a strong associ-

ation between mortality rate and air quality through a cross-sectional study of 117

metropolitan areas in the US between 1960 and 1961. They found that an increase

of 10 µgm−3 in mean particulate concentrations was associated with a mortality rate

increase of 0.41 per 10,000. Of the variables considered for statistical regression, mean

particulate levels were the third-largest determinant of mortality, behind the popula-

tion fraction above 65 years of age and the non-white population fraction. Dockery

et al. (1993) conducted a prospective cohort study within six US cities to establish
1The terms ‘aerosols’, ‘particulates’, and ‘particulate matter’ are commonly used to refer to the

particles specifically (as opposed to the liquid/solid/gas combination) and I will use all of these
terms equivalently.
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a stronger link between long-term particulate exposure and mortality. They found

that total fine particulate concentrations (particles with a diameter less than 2.5 µm,

abbreviated as PM2.5) were the variable most directly associated with mortality rates.

These and other studies have established that PM2.5, due to its ability to penetrate

all the way into the alveoli of the lungs, is one of the most important atmospheric

pollutants to control in order to limit mortality and morbidity. The WHO estimates

that fine particulates cause 800,000 premature deaths per year worldwide (Cohen

et al., 2006).

Similarly, the research linking atmospheric particulates to climate is decades old.

Aitken (1882) first started measuring particle concentrations and their relation to vis-

ibility and cloud and fog formation. Ångström (1929) describes the link between net

insolation and atmospheric dust concentrations, and McCormick and Ludwig (1967)

even cites anthropogenic pollutants as one cause of the decline in global tempera-

tures starting in the 1950s. In this thesis, I will focus on the direct radiative effect

of primarily scattering aerosols. Other areas of aerosol-climate research include the

effects of aerosols on cloud formation, brightness, and lifetime (Twomey, 1974; Al-

brecht, 1989) and absorbing, carbonaceous aerosols and their chemistry (Koch and

Del Genio, 2010; Bond et al., 2013).

Aerosols in the atmosphere may have been directly emitted as their liquid or solid

species (primary emission) or formed within the atmosphere from gaseous species

(secondary formation). Aerosols can be further divided into carbonaceous aerosols

(containing carbon); mineral dust and sea salt (containing alkali and trace metals);

and inorganic aerosols. The inorganic aerosols are particles formed from the ions

nitrate (NO–
3), sulfate (SO2–

4 ), and ammonium (NH+
4 ). These ions are commonly used

in introductory chemistry to study acid-base reactions, and similar reactions form

aerosols. The secondary formation can be direct, as with ammonium nitrate:

NH3(g) + HNO3(g)←→ NH4NO3(s)

12



or it can involve water, as in the absorption of ammonia:

NH3(g) + H2O(l)←→ NH3 · H2O(aq)←→ NH+
4 (aq) + OH−(aq).

These acid-base reactions are all reversible and hence controlled by thermodynamics.

Because species can readily transfer between gas and aerosol states, it is useful to

refer to all species of a given oxidation state collectively. ‘Total nitrate’ thus refers

to all N(V) species, i.e. the combination HNO3(g) + NO−
3 (aer); ‘total ammonia’ to

N(−III) = NH3(g) + NH+
4 (aer); and ‘total sulfate’ S(VI) = SO2−

4 (aer) + HSO−
4 (aer).

These ‘total’ quantities are conserved as thermodynamic equilibrium is established,

and changes in local temperature and relative humidity only affect the partitioning

of the totals between their gas and aerosol phases.

The acid-base reactions described above explain how particles form from total ni-

trate, sulfate, and ammonia present in the atmosphere. However, ammonia is the only

one of these species directly emitted into the atmosphere in large amounts. Sulfate

can be directly emitted by fossil fuel combustion, but the majority of anthropogenic

atmospheric sulfur comes from sulfur dioxide (SO2). Nitrate is formed from nitro-

gen oxides, NOx = NO + NO2, which are produced during combustion and other

high-temperature industrial processes. To link fine particulate matter impacts on

human health and climate to emissions, we have to understand both the kinetics that

form nitrate and sulfate from SO2 and NOx as well as the thermodynamics that form

aerosol species from their gaseous precursors.

In linking human health and climate impacts of aerosols to anthropogenic emis-

sions, and especially the emissions of a single country or region, we must also consider

emissions coming from other sources and the resulting state of the atmosphere. For

example, anthropogenic NOx emissions could decrease the oxidation rate of dimethyl

sulfide (DMS, (CH3)2S), which is the primary non-volcanic, non-anthropogenic source

of atmospheric sulfur. To focus on the impacts of a change in emissions from a given

source – say, from a new regulation – we ask the question “given the current mix

of emissions and atmospheric state, what is the effect of an additional amount of

emissions from this source?”. That additional effect, the sensitivity to emissions, is

13



the focus of this thesis. Built into the definition of sensitivity is its dependence on a

given baseline of emissions and resulting atmospheric chemical concentrations.

Sensitivity is a useful concept in health, economic, and policy studies. One exam-

ple of a sensitivity has already been given: the sensitivity of mortality rates to PM2.5

exposure. In the study by Lave and Seskin (1973), the sensitivity is (.41 per 10,000)

per (10 µgm−3) and appears as a coefficient in their statistical regression equations.

They also express this sensitivity2 as a 0.53% decrease in mortality rate per 10%

decrease in mean PM2.5. When these numbers are multiplied by the sensitivity of

PM2.5 concentrations to emissions, i.e. the decrease in mean PM2.5 per decrease in

emissions, the result is the sensitivity of the mortality rate to the emissions. This is

the number that gauges the effectiveness of a regulation, or the benefits of a change

in fuel sources, because it directly relates the effects that are important (mortality)

to the levers that humans can control (anthropogenic emission rate). In addition, the

sensitivity of mortality rate to PM2.5 concentrations should be independent of the

sensitivity of PM2.5 concentrations to emissions (it doesn’t matter how the PM2.5 was

produced, just that someone was exposed to it) so these two aspects of the policy-

relevant sensitivity can be studied independently.

As mentioned, the sensitivity is specific to the baseline chosen for emissions and

atmospheric state. This implies that sensitivities can change as emissions change –

that is, the system can be nonlinear. This further implies that the effectiveness of

a policy, as measured by the sensitivity of outcomes to emissions, can also change

as emissions and background state shift. The initial shift could be changes in an-

other country’s anthropogenic emissions; changes in natural emissions; meteorological

changes in background state; or climatic changes in background state. The end result

is that the most effective policy to enact today may not be the most effective policy

to enact in 5 or 10 years. Determining where and by how much the sensitivities have

changed is thus a key step in making informed decisions.

Between 2005 and 2012, US emissions of NOx and SO2 decreased by 42% and 62%,

2They refer to this %-per-% expression as an ‘elasticity’, which is also the terminology within
economics.
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respectively. The decline in emissions has been attributed to several factors, including

a transition from coal to natural gas for electricity generation; the recession following

the Financial Crisis of 2009; and the enforcement of the Tier 2 vehicle emissions

controls (Russell et al., 2012). Decreases of this magnitude could lead to a nonlinear

system response and to a change in sensitivities between 2005 and now.

1.2 Outline

In this thesis, I use a chemical transport model to explore how the decline in US

emissions can cause a change in the sensitivity of PM2.5 concentrations to US NOx,

SO2, and NH3 emissions. For human health impacts, I calculate the sensitivities of

surface-level, total PM2.5 concentrations. For climate impacts, I combine the chemical

transport model output with a radiative transfer model to develop radiative sensi-

tivities. Throughout, I try to identify the processes that contribute most to the

sensitivities and to the changes thereof.

The thesis is roughly divided into three parts. First, I discuss the computational

model used (chapter 2) and compare the different conceptual models of sensitivity

(chapter 3). These chapters define the overall framework for the sensitivity calcu-

lations applied in later chapters. Next, I apply this framework to surface PM2.5

concentrations (chapter 4). Here, some of the key mechanisms behind changes in

sensitivity are identified. Afterward, I turn to radiative forcing and climate impacts

of PM2.5 (chapter 5). Finally, I conclude this thesis (chapter 6) with a discussion of

the importance and application of these results and how the work may be extended.

The key results of chapter 4 have already appeared in the peer-reviewed literature

(Holt et al., 2015). The key results of chapter 5 have been summarized in a paper

about to be submitted for publication (Holt et al., 2016).

15
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Chapter 2

Methods

The sensitivity of species concentrations to emissions is most readily explored using

computer simulations. This is not the only possible approach; for example, Ansari

and Pandis (1998) and West et al. (1999) combine measurements with thermodynamic

equilibrium models to estimate sensitivities. However, the thermodynamic approach

can only produce sensitivities of aerosol concentrations to total nitrate, sulfate, and

ammonia concentrations, not to precursor emissions. Simulations also do not need to

be used in isolation. Pinder et al. (2008) and Dennis et al. (2008) generate statistical

indicators of aerosol behavior from simulations and then apply those indicators to

measurements to produce a hybrid sensitivity. These authors note that their approach

is unable to generate sensitivities to NOx emissions, and these emissions decreased by

42% between 2005 and 2012. Since emissions changed so much over such a short time,

the aerosol response may have been nonlinear and measurement-derived sensitivity

estimates would be inaccurate.

There is a diversity of modeling software available for simulating atmospheric

chemistry. These models can be broadly grouped into three categories: box models,

chemical transport models, and earth system/climate-chemistry models. Box models

represent a homogeneous atmospheric boundary layer over a domain, with only one

or a few distinct boxes. These models are useful for understanding atmospheric pro-

cesses. Vayenas et al. (2005) use such a model to show how the different deposition

rates of nitrate aerosol and nitric acid gas impact the total aerosol concentrations.
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Chemical transport models (CTMs) divide their domains into a number of grid cells,

allowing them to represent transport of chemical species across regions. The res-

olution of CTMs ranges from global models of 15∘ cells (MacLeod et al., 2011) to

regional and local models of 2 km cells (Thompson and Selin, 2012). CTMs focus on

the reactions of atmospheric chemical species and thus use prescribed meteorological

fields (temperature, wind speed, precipitation, etc.) from climate or weather model

forecasts or from meteorological reanalysis. Earth system models simulate meteorol-

ogy and chemistry simultaneously and are thus able to represent impacts of chemical

species on temperature, precipitation, cloud brightness, and other factors. However,

these additional features require much more computational resources than CTMs.

The type and resolution of a model limits what scientific questions the model can

answer.

Estimating sensitivities in a consistent, policy-relevant way requires some care in

the experimental design. ‘Design’ here includes deciding how to vary emissions to

both calculate sensitivities and to represent the recent changes in sensitivities. It

also includes accounting for model bias, determining what resolution is sufficient,

and identifying the key processes driving the changes. In addition, there are multiple

conceptions of the ‘sensitivity’, each with an associated implicit model of the response

to emissions.

This chapter discusses the particular CTM used for this work and the design of

simulations performed with that CTM. The CTM’s features are described in section

2.1. Simulations using the default settings are compared to observations of speciated

aerosol concentrations over the US and also to other CTM performance studies in

section 2.2. Section 2.3 describes the emissions inventory used in the model and

specifies the emissions-scaling approach used for the sensitivity experiments that are

the primary focus of this thesis.
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2.1 Chemical transport model

I used the GEOS-Chem chemical transport model (Bey et al., 2001; Liu et al., 2001)

version 9-021. This model simulates ozone-NOx-hydrocarbon-aerosol chemistry (Park

et al., 2004). The thermodynamic module ISORROPIA II (Fountoukis and Nenes,

2007), which determines the aerosol fractions of NO–
3 and NH+

4 , was incorporated

into GEOS-Chem by Pye et al. (2009). While GEOS-Chem was originally developed

to study global ozone distributions, it has expanded our understanding of regional

atmospheric chemistry in the US (Henze et al., 2009; Heald et al., 2012; Walker

et al., 2012; Zhang et al., 2012a) and atmospheric composition impacts on climate

(Leibensperger et al., 2012a,b; Mickley et al., 2012; Heald et al., 2014).

GEOS-Chem combines the chemistry mechanism mentioned above with the God-

dard Earth Observing System (GEOS) meteorological analysis. The analysis used for

my simulations, GEOS-5.2.0, comes from the NASA Global Modeling and Assimila-

tion Office. This analysis has a native horizontal resolution of 0.5∘ latitude by 0.67∘

longitude and 72 hybrid-𝜎 layers extending to 0.01 hPa. For the chemistry, the top

36 layers (upwards of 78.5 hPa, roughly 17.8 km) are re-gridded into 11 stratospheric

layers. In both the native model and the chemical model, the bottom 32 layers (up

to 150.4 hPa, 13.7 km) vary with the surface pressure. The meteorological fields have

3-hour resolution for two-dimensional quantities (e.g. surface latent heat flux) and

6-hour resolution for three-dimensional quantities (e.g. temperature). The GEOS-

5.2.0 fields have an unusually low night-time boundary layer (Liu and Liang, 2010)

that results in a high bias in non-photochemical species concentrations such as NO–
3.

Walker et al. (2012) corrected this issue by defining a friction velocity-based minimum

boundary layer height.

My simulations use both a global domain and a nested domain. The global domain

has 2∘×2.5∘ horizontal resolution, a timestep of 30 minutes for chemical reactions, and

a timestep of 15 minutes for tracer transport. The global simulations provide bound-

ary conditions for the nested domain. The nested domain has the native 0.5∘×0.67∘

1Available at http://geos-chem.org/
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resolution of the meteorological fields and spans 140∘-40∘ W and 10∘-70∘ N. Nested

simulations use timesteps of 20 minutes for reactions and 10 minutes for transport.

Concentrations of key species are saved every 3 hours for most simulations, though

the results presented are mostly monthly averages.

A key reaction for inorganic aerosols is the hydrolysis of N2O5. The rate of this

reaction is important both for the nitrate produced and its effects on NOx lifetime.

NOx, ozone and hydroxyl concentrations in the northern extra-tropics are particularly

sensitive to the hydrolysis rate (Macintyre and Evans, 2010). The reaction rate has

been shown to depend on aerosol nitrate and water content (Bertram and Thornton,

2009; Bertram et al., 2009; Chang et al., 2011) with higher nitrate concentrations

limiting the further production of nitrate. An estimate of this limitation is included

in this version (9-02) of GEOS-Chem.

Another relevant new feature of GEOS-Chem is interactive soil NOx emissions.

In addition to increasing the accuracy of the dependence of soil emissions on precip-

itation, soil moisture, and temperature, the soil NOx module responds dynamically

to the nitrogen loading on the soil (Hudman et al., 2012). This nitrogen loading

includes both atmospheric deposition and the application of fertilizers. Thus while

anthropogenic, non-agricultural NOx emissions can be specified within the model, the

natural and agricultural NOx emissions cannot.

2.2 Model validation

This section evaluates the simulations that use default (i.e. 2005 base case) settings

against two surface measurement networks in the US. The first network, the Intera-

gency Monitoring of Protected Visual Environments (IMPROVE), reports speciated

fine aerosol concentrations at a number of national parks across the US. The second

network, the EPA Chemical Speciation Network (CSN), includes speciated concen-

trations at both rural and urban sites.

GEOS-Chem has previously been evaluated against ozone and hydrocarbon con-

centrations (Bey et al., 2001); wet and dry deposition networks (Liu et al., 2001;
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Zhang et al., 2012a); aerosol component concentrations from ground sites (Heald

et al., 2012; Walker et al., 2012); aerosol species from satellite retrievals (Ford and

Heald, 2012); and aerosol optical depth from ground sites and satellite retrievals

(Drury et al., 2010). It has also been compared to other chemical transport model

predictions of aerosol concentrations in the AeroCom inter-comparison (Myhre et al.,

2013). The evaluations reported here thus focus on the species and time periods most

relevant to the current work.

2.2.1 Measurement networks

The IMPROVE network is a system of monitors at national parks across the US and

is described by Malm et al. (1994). These monitors measure elements, inorganic ions,

and carbonaceous characterization of fine aerosols, providing 24-hour average samples

once every 3 days. Because of their placement within national parks, IMPROVE sites

are ideal for studying background, regional-scale air composition, away from the direct

influence of urban pollution. For the model-measurement comparison, the nitrate and

sulfate concentrations from Module B are used as well as ammonium at the few sites

with ammonium measurements. For January and July of 2005, 163 sites provide

nitrate and sulfate data and 10 sites provide ammonium data.

The US Environmental Protection Agency (2014a) Chemical Speciation Network

(CSN)2 reports daily-average measurements of fine aerosol composition. Different

sites have different data collection frequencies and record measurements either once

every 3 days or once every 6 days. The CSN includes sites in towns and cities across

the US; unlike the IMPROVE network, it is expected to measure urban-influenced

air composition. For January and July of 2005, there are 253 CSN sites reporting

concentrations for nitrate, sulfate, and ammonium.

2This has also been referred to as the Speciation Trends Network or Status and Trends Net-
work (STN). The CSN is actually the combination of the EPA-funded STN sites plus additional,
externally-funded, quality-controlled sites.
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Jan N MB ME RMSE
NO–

3 IMP 1549 1.36 1.75 3.30
NO–

3 CSN 1252 1.82 3.06 4.71
SO2–

4 IMP 1551 -0.10 0.65 1.07
SO2–

4 CSN 1260 -0.84 1.27 1.75
NH+

4 IMP 109 0.63 0.71 0.92
NH+

4 CSN 1259 0.24 0.88 1.39

Table 2.1: Model-measurement comparison statistics for January. The column
marked ‘N’ is the total number of valid measurements for the month across the US.
The other columns, all in units of µgm−3, are the mean bias, mean gross error, and
root mean square error.

Jan FB FE NMB NME MNB MNE 𝑟2

NO–
3 IMP 35.7 107.8 120.8 155.2 407.6 449.5 42.8

NO–
3 CSN 25.8 79.3 61.1 102.5 122.4 154.8 15.3

SO2–
4 IMP 17.8 62.7 -7.9 52.9 85.9 119.5 42.6

SO2–
4 CSN -43.0 59.2 -31.9 48.8 -23.2 50.3 27.5

NH+
4 IMP 50.4 58.1 66.7 74.9 117.3 123.8 29.1

NH+
4 CSN 8.5 48.7 14.6 53.3 39.9 68.7 20.8

Table 2.2: More model-comparison statistics for January. All statistics here are pre-
sented as percentages. The statistics are fractional bias, fractional gross error, nor-
malized mean bias, normalized mean error, mean normalized bias, mean normalized
error, and coefficient of determination (squared Pearson correlation).

2.2.2 Model-measurement comparison

Tables 2.1, 2.2, 2.3, and 2.4 provide summary statistics of the model-measurement

comparison. Figures 2-1 and 2-2 show the comparison as scatterplots of model con-

centrations versus IMPROVE and CSN measurements, respectively. For all of these

statistics, the modeled concentrations are taken as the values from the model grid

cell containing the measurement site. The 3-hourly model output is averaged over

the same single day as each measurement, providing as close a match in space and

time as possible, following the recommendations of Simon et al. (2012). The resulting

statistics thus appear weaker than when monthly averages are used, but they are

actually much more robust indicators of model performance.

Our simulation agrees well with SO2–
4 measurements. Compared to January IM-

PROVE measurements, the modeled SO2–
4 concentrations have small bias (NMB=-
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Jul N MB ME RMSE
NO–

3 IMP 1381 0.22 0.43 1.02
NO–

3 CSN 1237 0.64 1.06 1.93
SO2–

4 IMP 1381 -0.58 1.15 2.14
SO2–

4 CSN 1245 -0.96 1.90 2.89
NH+

4 IMP 27 -0.05 0.69 0.81
NH+

4 CSN 1235 0.26 0.74 1.07

Table 2.3: As in table 2.1 for July.

Jul FB FE NMB NME MNB MNE 𝑟2

NO–
3 IMP -6.7 94.7 81.8 156.7 135.5 198.0 13.7

NO–
3 CSN 18.8 88.4 91.4 151.1 148.4 192.7 7.2

SO2–
4 IMP -2.2 42.7 -20.1 39.9 15.0 49.5 70.9

SO2–
4 CSN -14.6 39.8 -18.5 36.7 -0.8 41.0 57.7

NH+
4 IMP -6.6 39.9 -2.5 35.4 4.9 39.9 38.6

NH+
4 CSN 27.0 49.7 16.3 46.3 137.0 155.1 49.3

Table 2.4: As in table 2.2 for July.

7.9%) but with modest correlation (𝑟2=42.6%). In the northern Midwest, however,

modeled January SO2–
4 is low (NMB=-45%). In addition, the modeled January

SO2–
4 concentrations are considerably lower than the CSN measurements (NMB=-

31.9%). For July SO2–
4 , the spatial correlation is much higher (𝑟2=70.9%,57.7% for

IMPROVE,CSN). In addition, the bias compared to CSN measurements is smaller

than in January (NMB=-18.5%), but the bias compared to IMPROVE measurements

is larger (NMB=-20.1%).

Modeled NO–
3 concentrations are often much larger than the measurements. Com-

pared to January IMPROVE measurements, there is a high bias (NMB=107.8%) but

a similar correlation as with SO2–
4 measurements (𝑟2=42.8%). Part of this high bias

is linked to the low bias of modeled SO2–
4 in the Midwest. The bias is lower for July

NO–
3 concentrations (NMB=81.8% compared to IMPROVE) but the correlation is

also smaller (𝑟2=13.7%). The correlation with winter measurements provides some

confidence that the major processes of nitrate formation are being captured by the

model, but all of our results must take into account the model’s high nitrate bias.

There are few NH+
4 measurements to compare to, but model performance for

this species is encouraging. In January, model bias is high compared to IMPROVE
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Figure 2-1: Scatterplot comparison of model and IMPROVE concentrations for each
species. Each dot is a single measurement at a single site.

(NMB=66.7%) and modest compared to CSN (NMB=14.6%). The correlation is

modest compared to both networks (𝑟2=29.1%,20.8% for IMPROVE,CSN). In July,

the correlations are higher (𝑟2=38.6%,49.3% for IMPROVE,CSN) and the bias com-

pared to IMPROVE is smaller (NMB=-2.5%).

The high bias of GEOS-Chem aerosol NO–
3 has been explored previously (Walker

et al., 2012; Heald et al., 2012; Zhang et al., 2012a) but our comparison highlights a

few interesting details. The modeled winter concentrations have a higher correlation

with the rural IMPROVE measurements than with the more urban CSN measure-

ments but the bias is larger as well. The spatial and temporal agreement with rural

measurements suggests that the model captures the large-scale spatial structure of

nitrate formation but overestimates HNO3 production or underestimates its atmo-

spheric removal.

Simon et al. (2012) compare published performance statistics from a range of
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Figure 2-2: As in figure 2-1 but for the CSN measurements.

chemical transport models (not including GEOS-Chem). They find that modeled

SO2–
4 is unbiased (NMB < 15%), whereas NO–

3 is biased high in winter (NMB 0% to

50%) and low in summer (-15% to -75%). Squared correlations for SO2–
4 and NH+

4

are between 25% and 60%, compared to 10%-45% for NO–
3. Comparing their results

to our statistics indicates that GEOS-Chem has a higher bias in winter NO–
3 than is

typical but otherwise has a comparable performance to other models.

In chapter 4, the behavior of ammonium nitrate in the northern Midwest is high-

lighted. Over this region, the NMB of modeled NO–
3 compared to IMPROVE mea-

surements is 109% and 𝑟2 = 42%, showing that GEOS-Chem estimates NO–
3 in this

area better than in the national average. While sulfate biases are generally smaller

than nitrate, modeled SO2–
4 is low in this area. Using the thermodynamic module of

GEOS-Chem, increasing model SO2–
4 in this area would bring the NO–

3 bias down to

97%. Modeled NO–
3 is thus better simulated in this region, where its behavior is most

important to our analysis, than in other parts of the US.
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2.3 Emissions

GEOS-Chem uses emissions from the EDGAR and RETRO global inventories, along

with several regional inventories (e.g. China, Europe). The regional inventories are

scaled from their reference year according to national energy use statistics (van Donke-

laar et al., 2008). The base simulation uses the reference year for the US regional

inventory, 2005. This inventory, the EPA National Emissions Inventory for 2005

(NEI05), includes emissions of NOx, SO2, NH3, several hydrocarbon species, and pri-

mary organic and inorganic aerosols. The summer NH3 emissions reported in NEI05

are scaled according to Zhang et al. (2012a) and are consistent with process-based

NH3 emissions inventories (Pinder et al., 2006).

While the EPA only produces a full emissions inventory every few years, they

provide national, annual total emissions estimates for every year (US Environmental

Protection Agency, 2014b). Table 2.5 shows the emissions (total without wildfires) of

several species for 2005, 2012, and the percent change (2012/2005 - 1). Only NOx and

SO2 emissions are changed between the 2005 and 2012 simulations as these are the

largest changes among the various species. However, the 25.5% decrease in CO could

also affect our results. This species only affects aerosol formation indirectly through

oxidant concentrations, so its impacts should be smaller than the 25% decrease would

suggest. I discuss the possible influence of CO and other organic emissions on my

results in chapter 6. Since starting this work, the EPA has revised some of their

emissions estimates, resulting in a smaller decline in NOx emissions and a larger

decline in CO emissions between 2005 and 2012 than has been used for this study.

Thus my simulations use -42% changes in NOx and -62% changes in SO2 rather than

the listed -33% and -64%.

I created two groups of simulations, based around high and low emissions, to test

the influence of large-scale emissions reductions on PM2.5 sensitivity. In the high

emissions base case, the default emissions for 2005 are used, including NEI05 for US

emissions. In the low emissions base case, the total anthropogenic emissions of each

species is decreased by the percentage given in table 2.5. Then, for each base case,
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Primary Primary
NOx SO2 NH3 CO VOC PM2.5 PM10

2005 20,261 14,490 3,799 80,646 15,885 4,919 20,497
2012 13,512 5,175 4,079 60,103 14,636 5,015 19,390(︀

2012
2005
− 1

)︀
× 100 -33.3 -64.3 +7.4 -25.5 -7.9 +2.0 -5.4

Table 2.5: US annual emissions (total without wildfires) in thousands of short tons
for the years 2005 and 2012 along with the percentage change.

NOx, Gg N SO2, Gg S NH3, Gg N
Jan 48.2 57.8 8.0
Jul 43.8 56.4 36.9

Table 2.6: Perturbations in US anthropogenic emissions of each species applied in the
sensitivity simulations.

emissions of a given species were increased or decreased by a fixed amount, given in

table 2.6. These perturbation have the same spatial and temporal structure as the

base-case emissions. Their magnitude is based on a 10% change of the 2005 base case

emissions for each month. The concentrations from these additional simulations are

then used in the finite difference estimates of sensitivities for each base case.

Different simulations have different national total emissions but keep the same

spatial and temporal structure as NEI05. This approach has two potential shortcom-

ings. First, the emissions changes are due to factors that extend across economic

sectors. A decrease in the use of coal for electricity generation would not impact

transportation SO2 emissions, for example. This would shift both the spatial and

temporal (the diurnal and weekly cycles) structure of emissions. Second, emissions

changes need not occur uniformly across the country. For these reasons, the scaling

approach applied here is best suited to analyzing broad, continental-scale changes

in the factors that control aerosol formation, such as thermodynamic limitation and

oxidation rates. Fortunately, Fioletov et al. (2011), Russell et al. (2012), and Tong

et al. (2015) show that NO2 and SO2 concentrations in different regions, as well as

emissions from different sectors, are consistent with this scaling approach.
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Chapter 3

Sensitivities and nonlinearities

An atmospheric chemistry model like GEOS-Chem is complex. It has a wide variety

of input parameters that can be varied in any given simulation, such as chemical rate

constants, meteorological fields, and emission rates. There are also many different

metrics that can be applied to summarize simulation output. Thus it is important to

clarify the terms “sensitivity” and “nonlinearity” and how they describe the model’s

response. Just as there are multiple ways to define sensitivity, there are multiple ways

to estimate it as well, and the choice of method impacts the meaning of the results.

In this chapter, I compare different approaches to defining and estimating sen-

sitivities. To make this comparison, the content of this chapter revolves around a

system more abstract and general than my particular simulations. This system and

the term “sensitivity” are defined in section 3.1. In section 3.2 I describe four different

methods for estimating sensitivities. The applicability of these methods are compared

in section 3.3.

3.1 Definitions

Atmospheric chemistry models simulate the distribution of several chemical species

in space and time. The concentrations 𝐶𝑗(x, 𝑡) of species 𝑗 are the primary output

fields of the model. (‘Fields’ here refers to the fact that the quantities vary in space

and time.) Other key aspects of the model are input fields such as wind velocities
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and emission rates; initial and boundary fields for the concentrations; and input

parameters such as chemical rate constants. The model is defined by a differential

equation that is first-order in time:

𝜕𝐶𝑗

𝜕𝑡
= 𝑅𝑗(x, 𝑡;C,E;K), 𝐶𝑗(xbnd, 𝑡) = 𝐵𝑗(xbnd, 𝑡), 𝐶𝑗(x, 0) = 𝐼𝑗(x). (3.1)

The source terms 𝑅𝑗 represent advection, diffusion, surface deposition and emission,

and chemical production and loss of species 𝑗. Hence, this term can depend explicitly

on space and time; on the concentrations of all species; and the various input fields

E(x, 𝑡) and parameters K. On the boundary of the domain, where x = xbnd, the

concentrations and concentration gradients are specified by the boundary condition

values 𝐵𝑗. At the start of a simulation, the initial concentration values 𝐼𝑗 must also

be specified. The resulting species concentrations 𝐶𝑗 depend on space, time, and all

output fields and parameters.

Sensitivities to parameters and sensitivities to fields are subtly different. For input

parameters, which have no spatial or temporal variation, the sensitivity is the partial

derivative

𝑆𝑗,𝑘(x, 𝑡) =
𝜕𝐶𝑗(x, 𝑡)

𝜕𝐾𝑘

. (3.2)

Specifically, this is ‘the sensitivity of output 𝐶𝑗 at (x, 𝑡) to parameter 𝐾𝑘’. This phras-

ing is important as I will be describing sensitivities related to multiple outputs and

inputs, though the phrase can be shortened if the particular output or input is im-

plicit. The sensitivity to this parameter states that if a new simulation were run with

the parameter increased to 𝐾𝑘 + ∆𝐾𝑘, the concentrations would be approximately

𝐶 ′
𝑗(x, 𝑡) ≈ 𝐶𝑗(x, 𝑡) + 𝑆𝑗,𝑘(x, 𝑡) ·∆𝐾𝑘.

For input fields, the sensitivity is given by the variational derivative (Gelfand and

Fomin, 1963)

𝑆𝑗,𝑘(x, 𝑡;y, 𝑠) =
𝛿𝐶𝑗(x, 𝑡)

𝛿𝐸𝑘(y, 𝑠)
. (3.3)

This would be called ‘the sensitivity of output 𝐶𝑗 at (x, 𝑡) to the field 𝐸𝑘 at (y, 𝑠)’.

If a new simulation were run with the value of this field increased by ∆𝐸𝑘(y, 𝑠) then

30



the concentrations would be

𝐶 ′
𝑗(x, 𝑡) ≈ 𝐶𝑗(x, 𝑡) +

∫︁
𝑑y 𝑑𝑠 𝑆𝑗,𝑘(x, 𝑡;y, 𝑠) ·∆𝐸𝑘(y, 𝑠).

The need to integrate over the changes in inputs, rather than multiply, is one of the

defining features of the variational derivative. It also distinguishes sensitivities to

parameters from sensitivities to fields.

The sensitivity describes the system response to small variations in the inputs

around a particular baseline. For larger variations in inputs, the accuracy in using

the sensitivity to estimate system response depends on higher-order derivatives. If

these derivatives all vanish for some input, then the system is ‘linear’ in that input.

In a linear system, the equations above for 𝐶 ′
𝑗 become exact, regardless of the size of

the variations in inputs. A less strict condition is that these equations hold when only

one parameter is varied, in which case the system is ‘semi-linear’ in that parameter.

A simple emission-loss system demonstrates these concepts. The system is defined

by
𝑑𝐶

𝑑𝑡
= 𝐸(𝑡)− 𝑘𝐶, 𝐶(0) = 𝐼

where 𝑘 is a loss rate, 𝐸(𝑡) is a variable source, and 𝐼 is the initial value. The system

output is 𝐶(𝑡) and it has two input parameters 𝑘, 𝐼 and one input field 𝐸. This

system has the analytic solution

𝐶(𝑡) = 𝐼𝑒−𝑘𝑡 +

∫︁ 𝑡

0

𝑑𝑠𝐸(𝑠) · 𝑒−𝑘(𝑡−𝑠)

and its various sensitivities are

𝑆𝐶,𝑘(𝑡) =
𝜕𝐶(𝑡)

𝜕𝑘
= −𝑡 · 𝐼𝑒−𝑘𝑡 −

∫︁ 𝑡

0

𝑑𝑠𝐸(𝑠) · (𝑡− 𝑠)𝑒−𝑘(𝑡−𝑠)

𝑆𝐶,𝐼(𝑡) =
𝜕𝐶(𝑡)

𝜕𝐼
= 𝑒−𝑘𝑡, 𝑆𝐶,𝐸(𝑡; 𝑠) =

𝛿𝐶(𝑡)

𝛿𝐸(𝑠)
= 𝑒−𝑘(𝑡−𝑠)Θ(𝑡− 𝑠).

Here, Θ(𝑡− 𝑠) is the step function, which is zero if 𝑡 < 𝑠 and one if 𝑡 ≥ 𝑠.

The sensitivities for this emission-loss model quantify some of the intuitive features

of the system. A large loss rate 𝑘 will produce low concentrations, so the sensitivity to

𝑘 is negative. Because of the loss rate, the influence of emissions and concentrations in
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the remote past on current concentrations is small. This waning influence is reflected

in the exponential decay of 𝑆𝐶,𝐼 and 𝑆𝐶,𝐸 with time. This system is semi-linear in 𝐼

and 𝐸 but nonlinear in 𝑘; if 𝑘 is fixed, then the system is fully linear. The linearity

expresses the fact that a given increase in emissions leads to the same increase in

concentrations, regardless of the baseline emission rate. That is, the difference in

concentrations between emission rates of 100 and 101 is the same as the difference in

concentrations between 20 and 21 or 1000 and 1001. This is in contrast to CH4, for

example, whose atmospheric lifetime depends on concentrations. While this system

is simple, it shows both how sensitivities are (in principle) calculated and how input

parameters and fields must be treated differently.

3.2 Methods for estimating sensitivities

Sensitivities can be directly and explicitly calculated in the simple, concrete example

system provided in the previous section. In more complicated systems – both large

computational models and real phenomena – the sensitivity to inputs can only be

estimated. In this Section I describe four methods for estimating sensitivities: finite

differences, complex step, direct decoupling, and model adjoint. These four methods

have different levels of accuracy, theoretical limitations, and computational resource

burdens, and I compare these methods at the end of this Section. In addition, their

results have subtly different meanings; these meanings and their implications are

explored in section 3.3.

3.2.1 Finite difference

The finite difference method is the most general way to estimate sensitivities to input

parameters. The partial derivative in equation (3.2) is replaced by the finite difference

𝑆(𝐾0) ≈
𝐶(𝐾0 + ∆ℎ)− 𝐶(𝐾0 −∆ℎ)

2∆ℎ
.

All that is required for this estimate of the sensitivity is that we can measure the

output at both 𝐾0−∆ℎ and 𝐾0 + ∆ℎ. Because values on either side of 𝐾0 are used,
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this is referred to as the central finite difference. Typically, the output would also be

measured at the baseline value of 𝐾0, resulting in three measurements. The one-sided

finite differences

𝑆(𝐾0) ≈
𝐶(𝐾0 + ∆ℎ)− 𝐶(𝐾0)

∆ℎ
≈ 𝐶(𝐾0)− 𝐶(𝐾0 −∆ℎ)

∆ℎ

can also be used.

The accuracy of the finite difference method as an estimate of sensitivity is re-

lated to the size of the deviation ∆ℎ and to higher-order derivatives of the function.

Formally, if 𝐶 is three times continuously differentiable with respect to the input

parameters, then the central finite difference has an accuracy⃒⃒⃒⃒
𝑆 − 𝐶(𝐾0 + ∆ℎ)− 𝐶(𝐾0 −∆ℎ)

2∆ℎ

⃒⃒⃒⃒
≤ (∆ℎ)2 · 1

3!
max
|𝛼|=3

max
K∈𝐵
|𝐷𝛼𝐶(K)|.

The last term on the right-hand side denotes the maximum of all third-order deriva-

tives of 𝐶 in an area containing all three values 𝐾0 − ∆ℎ,𝐾0, 𝐾0 + ∆ℎ. Since this

estimate is proportional to (∆ℎ)2, it is second-order accurate. The one-sided finite

differences have an accuracy⃒⃒⃒⃒
𝑆 − 𝐶(𝐾0 + ∆ℎ)− 𝐶(𝐾0)

∆ℎ

⃒⃒⃒⃒
≤ ∆ℎ · 1

2!
max
|𝛼|=2

max
K∈𝐵
|𝐷𝛼𝐶(K)|

which is only first-order. The higher accuracy of the central finite difference makes

it preferable to the one-sided difference in many applications, despite requiring an

additional measurement. If 𝐶 is only twice differentiable, then the central finite

difference is only first-order accurate like the one-sided difference; if 𝐶 is only once

differentiable, then neither difference is guaranteed to be accurate.

The above equations for the accuracy of the finite difference rest on the assumption

that the outputs vary smoothly with the inputs. Real systems are not guaranteed

to behave smoothly, exhibiting chaotic behavior, phase transitions, and other critical

phenomena. In addition, complicated models – even deterministic computational

models – have noise and uncertainty. If each of the measurements represent the ‘true’

value of the output plus noise 𝜖, then an extra term 𝜖/∆ℎ is added to the central finite

difference accuracy and 2𝜖/∆ℎ to the one-sided difference. Choosing the size of ∆ℎ
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when designing an experiment thus requires balancing the accuracy of the sensitivity

estimate (∼ (∆ℎ)2) and the limitations of noise (∼ (∆ℎ)−1). Crucially, the accuracy

of the finite difference estimate cannot always be increased by using smaller ∆ℎ.

The finite difference method can sometimes be extended to calculating sensitiv-

ities to input fields. In a computational model, the input field effectively becomes

a set of input parameters: one for every spatial and temporal grid point the field

is defined on. However, two additional simulations are required for each parameter

when using central finite differences (one simulation with one-sided differences). If

there are 𝑁 space-time points for the field, then 2𝑁 simulations are required to cal-

culate sensitivities to an input field. This approach can work for models that can be

run quickly. For example, Muller and Mendelsohn (2007, 2009); Muller et al. (2011);

Muller (2011) apply finite differences to a source-receptor model of air quality, gen-

erating sensitivities to 6 emitted species from 10,000 spatial points (US counties and

point sources). For larger models, the resource requirements are too great to apply

this approach directly.

A different approach to sensitivities to input fields is to use scaling parameters.

The input field is deconstructed into specified base fields:

𝐸(x, 𝑡) =
∑︁
𝑘

𝐾𝑘 · 𝐸𝑘(x, 𝑡), ∆𝐸(x, 𝑡) =
∑︁
𝑘

∆𝐾𝑘 · 𝐸𝑘(x, 𝑡).

This replaces the input field 𝐸 with additional input parameters 𝐾𝑘. Caiazzo et al.

(2013); Fann et al. (2009) use this approach, treating the base fields 𝐸𝑘 as the dis-

tribution of sources from a given economic sector (e.g. electric power generation,

road transportation). I also use this approach, with the base fields being all anthro-

pogenic sources of a given species. Changes in the parameters 𝐾𝑘 then reflect overall

increases or decreases in that economic sector, whether due to economic downturn

or new national emission regulations. Unfortunately, this approach cannot easily ad-

dress changes in the spatial or temporal distribution in a sector’s emissions, as might

come from regional regulations.
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3.2.2 Complex step

The complex step method employs a similar approximation as the finite difference

method but using complex numbers as inputs. This approach was made computa-

tionally tractable by Squire and Trapp (1998); see Constantin and Barrett (2014) for

a review of applications.

Suppose the output 𝐶 is infinitely differentiable in a parameter 𝐾 for values of

𝐾 within the radius of convergence 𝛿 around a baseline value 𝐾0. Then 𝐶 is exactly

equal to its Taylor series in this same area:

𝐶(𝑥) =
∞∑︁
𝑗=0

1

𝑗!

𝑑𝑗𝐶

𝑑𝐾𝑗
(𝐾0) · (𝐾 −𝐾0)

𝑗 =
∞∑︁
𝑗=0

𝑎𝑗(𝐾 −𝐾0)
𝑗.

The real function 𝐶 can be extended to a unique complex function

𝜂(𝑧 = 𝑥 + 𝑖ℎ) =
∞∑︁
𝑗=0

𝑎𝑗(𝑧 −𝐾0)
𝑗

for any value of 𝑧 = 𝑥 + 𝑖ℎ within the radius of convergence. In particular:

𝜂(𝐾0 + 𝑖∆ℎ) =
∞∑︁
𝑗=0

𝑎𝑗(𝑖∆ℎ)𝑗

Re{𝜂(𝐾0 + 𝑖∆ℎ)} =
∑︁
𝑗 even

𝑎𝑗

(︂
𝑗

𝑗/2

)︂
(−1)𝑗/2(∆ℎ)𝑗

𝐶(𝐾0) = 𝑎0 = Re{𝜂(𝐾0 + 𝑖∆ℎ)} − (∆ℎ)2 ·
∑︁
𝑗≥2

𝑗 even

𝑎𝑗

(︂
𝑗

𝑗/2

)︂
(−1)𝑗/2(∆ℎ)𝑗−2

Im{𝜂(𝐾0 + 𝑖∆ℎ)} =
∑︁
𝑗 odd

𝑎𝑗

(︂
𝑗

𝑗−1
2

)︂
(−1)(𝑗−1)/2(∆ℎ)𝑗

𝑆(𝐾0) =
Im{𝜂(𝐾0 + 𝑖∆ℎ)}

∆ℎ
− (∆ℎ)2 ·

∑︁
𝑗≥3
𝑗 odd

𝑎𝑗

(︂
𝑗

𝑗−1
2

)︂
(−1)(𝑗−1)/2(∆ℎ)𝑗−3.

Evaluating the function using a single, complex input thus provides a second-order

estimate of both the value of 𝐶 and its sensitivity to the parameter.

The theoretical limitations of the complex step method are related to the differ-

entiability of the function. A real-valued function of real-valued inputs can only be

associated with a complex function if the real function is infinitely differentiable (an-
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alytic). This is a much more stringent requirement than the single differentiability

of the finite difference method. This restriction is compounded when multiple input

variables are considered. In addition, the complex function associated with the real

function is only well-defined within a radius of convergence around 𝐾0. It can be

extremely difficult to prove that a given system has this analytic behavior and find

its radius of convergence; in practice, these facts have to be assumed to be true to

proceed.

The complex step method requires formulating a model in a way that allows

for complex inputs, which can be a practical limitation to its use. If each of the

calculations within the model is based on an analytic function, then the end result

should also be analytic. Basic operations (e.g. addition and multiplication) extend

naturally to complex numbers, but other operations (e.g. logarithms and inverse

trigonometric functions) require different algorithms for dealing with complex-valued

inputs. Checking and replacing such algorithms in large computational models can

be onerous and error-prone, but these changes do not fundamentally change how the

model represents transport, deposition, or other physical processes. Thus the complex

step method is unintrusive, in terms of changing how the model operates, compared

to the direct decoupled and adjoint methods detailed below.

One feature of the complex step method is that it can use much smaller values of

∆ℎ than is available for the finite difference method. In the finite difference method,

the results from two model runs are subtracted from each other. The baseline values

from each run cancel but the numerical noise does not. The inability to cancel out the

noise leads to an error term proportional to 1/∆ℎ, restricting ∆ℎ from being made

too small. In the complex step method, only one model run is used and the noise

primarily affects the value of 𝐶(𝐾0); there is no ‘cancellation error’ in estimating

the sensitivity. As a result, ∆ℎ can be made very small, increasing the accuracy of

the estimates of both 𝐶(𝐾0) and 𝑆. This is fortunate because ∆ℎ now impacts the

estimated value of 𝐶(𝐾0). In the complex step method, ∆ℎ both can be made small

(to increase the accuracy of the sensitivity estimate) and it has to be made small (to

make the estimate of the actual value accurate).
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In terms of resource use, the complex step method is similar to the finite differ-

ence method, requiring an additional model run for each sensitivity. However, since

small values of ∆ℎ are needed and real-valued quantities are replaced by complex-

valued ones, applying the complex step method replaces single-precision, real vari-

ables with double-precision, complex ones. This change in variables quadruples the

memory needed to run the model and to store the results. In addition, some core

algorithms are, counterintuitively, less accurate for double-precision variables than for

single-precision, especially those algorithms that have to be fundamentally altered to

handle complex variables. On modern, massively parallel computer architectures, the

additional resource use is not a large deterrent to using the complex step method,

but it can be an issue for high-resolution models with many chemical species.

3.2.3 Direct decoupled

Whereas the finite difference and complex step methods estimate sensitivities post

facto from simulations, the direct decoupled method treats the sensitivity as an addi-

tional dynamical quantity within the model. Taking a partial derivative of equation

(3.1) with respect to a parameter 𝐾𝑘 gives

𝜕

𝜕𝑡
𝑆𝚥,𝑘(x, 𝑡) =

𝜕

𝜕𝐾𝑘

𝑅𝑗(x, 𝑡;C,E;K) =
𝜕𝑅𝚥

𝜕𝐾𝑘

+
∑︁
ℓ

𝜕𝑅𝚥

𝜕𝐶ℓ

· 𝑆ℓ,𝑘.

That is, the sensitivities 𝑆𝚥,𝑘 satisfy a dynamical equation similar to that of 𝐶𝚥. The

first term on the right-hand side is nonzero when 𝐾𝑘 is a physical parameter such as

wind speed or reaction rate constant. The second term represents coupling between

the various chemical species. For example, if 𝐶𝚥 reacts with 𝐶𝚥′ with a rate constant

𝜅, then there are corresponding terms

𝑅𝚥 = −𝜅𝐶𝚥𝐶𝚥′ ,
∑︁
ℓ

𝜕𝑅𝚥

𝜕𝐶ℓ

· 𝑆ℓ,𝑘 = −𝜅𝐶𝚥′ · 𝑆𝚥,𝑘 − 𝜅𝐶𝚥 · 𝑆𝚥′,𝑘

in the dynamical equation for the sensitivity 𝑆𝚥,𝑘. When these terms are present, the

sensitivity for species 𝐶𝚥 is affected by the sensitivities for all other species 𝐶𝚥′ . In

short, reactions spread sensitivities across all species in the model.
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An additional level of complexity is added when some species, such as the inor-

ganic aerosol components, are in chemical equilibrium with each other. Consider an

equilibrium

C𝚥 + C𝚥′
𝜅−⇀↽− C𝚥′′ , 𝜅 =

𝐶𝚥′′

𝐶𝚥𝐶𝚥′
.

The partial derivative of the equilibrium expression with respect to a parameter 𝐾𝑘

satisfies

1

𝜅

𝜕𝜅

𝜕𝐾𝑘

=
𝐶𝚥𝐶𝚥′

𝐶𝚥′′
· 𝜕

𝜕𝐾𝑘

𝐶𝚥′′

𝐶𝚥𝐶𝚥′
=

𝐶𝚥𝐶𝚥′

𝐶𝚥′′
· 𝐶𝚥𝐶𝚥′ · 𝑆𝚥′′,𝑘 − 𝐶𝚥′′ · (𝑆𝚥,𝑘𝐶𝚥′ + 𝐶𝚥𝑆𝚥′,𝑘)

(𝐶𝚥𝐶𝚥′)2

=
𝑆𝚥′′,𝑘

𝐶𝚥′′
− 𝑆𝚥,𝑘

𝐶𝚥

− 𝑆𝚥′,𝑘

𝐶𝚥′
.

This equation shows that the sensitivities of the equilibrium species are also in equi-

librium with each other. The term on the left-hand side is obviously nonzero if the

parameter 𝐾𝑘 is directly related to the equilibrium constant, but it can also be nonzero

for other reasons. In particular, atmospheric aerosols are often highly concentrated,

non-ideal solutions and 𝜅 can depend on species concentrations. Zhang et al. (2012b)

describe how non-ideal solutions can be treated within the DDM framework from

both theoretical and computational perspectives.

The direct decoupled method has not, to my knowledge, been used to calculate

sensitivities to fields except by using the scaling parameter approach.1 The variational

derivative of equation (3.1) is

𝜕

𝜕𝑡
𝑆𝑗,𝑘(x, 𝑡;y, 𝑠) =

∑︁
ℓ

𝜕𝑅𝑗

𝜕𝐶ℓ

𝑆ℓ,𝑘(x, 𝑡;y, 𝑠) +
𝜕𝑅𝑗

𝜕𝐸𝑘

· 𝛿(x− y, 𝑡− 𝑠) (3.4)

where 𝛿(x− y, 𝑡− 𝑠) is the Dirac delta-function.2 This delta-function term primarily

determines the initial condition

𝑆𝑗,𝑘(x, 𝑠;y, 𝑠) =
𝜕𝑅𝑗

𝜕𝐸𝑘

(x, 𝑠) · 𝛿(x− y)

without otherwise affecting the dynamics of the sensitivities. There are computational

1See Hakami et al. (2003); Hakami (2004) for applications of scaling parameters within DDM.
2The delta-function is actually a ‘generalized distribution’ that is zero whenever (x, 𝑡) ̸= (y, 𝑠)

but infinite at that point in such a way that its integral over space and time is one.
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obstacles to evolving sharply-peaked functions (such as field sensitivities) in time.

However, these obstacles have been addressed by work on heat transfer and other key

differential equations. Equation (3.4) is (again, to my knowledge) the first description

of a method for applying the direct decoupled method to field sensitivities.

There are several advantages to using the direct decoupled method to estimate

sensitivities. First, while the above equations appear complicated, incorporating them

into existing models can be relatively straightforward. Chemical transport models are

already designed to solve advection-reaction-diffusion equations for many chemical

species simultaneously, so the dynamical sensitivities are added on to an existing

framework. Second, the resulting sensitivities are exact, at least in theory. Unlike

the finite difference and complex step methods, there is no additional parameter

∆ℎ to be chosen. Third, this basic method can be extended to a wide variety of

input parameters. In many models, physical parameters such as wind speeds and

rate constants are defined in externally-produced files. It may be inconvenient or

unwise to attempt to vary these inputs in the ways required by the two previous

methods. Using the direct decoupled method, the sensitivities to these parameters

can be calculated without having to directly alter the files that specify them. Finally,

this approach can be directly extended to higher-order sensitivities (Hakami, 2004)

without much additional resource use. I will return to this point momentarily.

One disadvantage of the direct decoupled method is the additional resources re-

quired to calculate sensitivities. The reaction term in the above equation suggests

that the sensitivities to a given parameter have to be computed for all chemical

species, not just those desired for later study. Two chemical species may not react

directly with each other but their sensitivities become coupled through a chain of

reactions. Thus calculating sensitivities to a parameter using the direct decoupled

method doubles the number of dynamical quantities and hence approximately dou-

bles the memory requirements. However, the actual implementation of the above

equation involves a matrix factorization of 𝜕𝑅𝑗/𝜕𝐶𝑘, which tends to be the limit-

ing computational constraint. Yang et al. (1997) finds that including sensitivities

to 20 parameters increases the model run time by only 80%. Fortunately, the same
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factorization applies to sensitivities of all orders (Hakami, 2004). Thus higher-order

sensitivities do not add much to CPU demands or total model run time but they do

multiply the memory demands. Due to these memory demands, the direct decoupled

method is more cumbersome for models with large numbers of active chemical species

(e.g. GEOS-Chem, 90 species) than for models with fewer active species (e.g. CB05

in CAMx, 50 species).

3.2.4 Model Adjoint

The adjoint method, like the direct decoupled method, uses a dynamical equation

for the sensitivity. In contrast to the three previous approaches, however, the ad-

joint method focuses on ‘inverse’ sensitivities and naturally extends to sensitivities

to input fields. The key quantity in the adjoint method is the sensitivity of current

concentrations to previous concentrations. This quantity is a matrix of variational

derivatives

(A(y, 𝑠;x, 𝑡))𝚥,𝚥′ =
𝛿𝐶𝚥(x, 𝑡)

𝛿𝐶𝚥′(x− y, 𝑡− 𝑠)

where the primary dependent variables (y, 𝑠) denote the distance from the secondary

variables (x, 𝑡). In particular, as 𝑠 increases, 𝑡 − 𝑠 decreases and A represents a

dependence on quantities further and further back in time. For this reason, A is

referred to as an ‘inverse’ or ‘backwards’ sensitivity, whereas the results of the previous

sections are ‘forward’ sensitivities.

Deriving the equation that the inverse sensitivity satisfies is difficult; see Errico

(1997); Plessix (2006) for details and computational implementations. The result is

𝜕𝐴𝚥,𝚥′

𝜕𝑠
(y, 𝑠;x, 𝑡) =

∑︁
𝚥′′

𝐴𝚥,𝚥′′(y, 𝑠;x, 𝑡) ·
𝜕𝑅𝚥′′

𝜕𝐶𝚥′
(x− y, 𝑡− 𝑠)

+

∫︁
𝑑z𝐴𝚥,𝚥′(z, 𝑠;x, 𝑡) ·

𝛿𝑅𝚥′(x− z, 𝑡− 𝑠)

𝛿𝐶𝚥′(x− y, 𝑡− 𝑠)
.

The first term on the right-hand side is related to chemical reactions between species.

A reaction C1
𝑘−→ C2 resulting in a rate −𝑘𝐶1 of loss from species 1 and gain to species
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2 contributes

𝜕𝐴1,1

𝜕𝑠
= −𝑘(𝐴1,1 − 𝐴1,2),

𝜕𝐴2,1

𝜕𝑠
= −𝑘(𝐴2,1 − 𝐴2,2),

𝜕𝐴1,2

𝜕𝑠
=

𝜕𝐴2,2

𝜕𝑠
= 0

to the various terms of A. The integral in the dynamical equation for A looks obtuse.

Fortunately, only functionals of 𝐶𝚥′ – advection and diffusion – contribute to this

term. Their contributions to the sensitivities are3

𝑅𝚥′(x, 𝑡) = −∇x · (u𝚥′(x, 𝑡)𝐶𝚥′(x, 𝑡)) +∇x · (D𝚥′(x, 𝑡) · ∇x𝐶𝚥′(x, 𝑡))

𝜕𝐴𝚥,𝚥′

𝜕𝑠
(y, 𝑠;x, 𝑡) = −u𝚥′(x− y, 𝑡− 𝑠) · ∇y𝐴𝚥,𝚥′(y, 𝑠;x, 𝑡)

+∇y · (D𝚥′(x− y, 𝑡− 𝑠) · ∇y𝐴𝚥,𝚥′(y, 𝑠;x, 𝑡)).

When these terms are added back into the above equation, the result is an advection-

reaction-diffusion equation for the inverse sensitivities:

𝜕𝐴𝚥,𝚥′

𝜕𝑠
+ u𝚥′(x− y, 𝑡− 𝑠) · ∇y𝐴𝚥,𝚥′ −∇y · (D𝚥′(x− y, 𝑡− 𝑠) · ∇y𝐴𝚥,𝚥′)

=
∑︁
𝚥′′

𝐴𝚥,𝚥′′(y, 𝑠;x, 𝑡) ·
𝜕𝑅𝚥′′

𝜕𝐶𝚥′
(x− y, 𝑡− 𝑠).

(3.5)

The sensitivities to input fields and input parameters can be calculated from A:

𝑆𝚥,ℓ(y, 𝑠;x, 𝑡) =
𝛿𝐶𝚥(x, 𝑡)

𝛿𝐸ℓ(y, 𝑠)
= 𝐴𝚥,𝚥′(x− y, 𝑠;x, 𝑡) · 𝜕𝑅ℓ

𝜕𝐸ℓ

(y, 𝑠)

𝑆𝚥,𝑘(x, 𝑡) =
𝜕𝐶𝚥(x, 𝑡)

𝜕𝐾𝑘

=
∑︁
𝚥′

∫︁
𝑑y 𝑑𝑠𝐴𝚥,𝚥′(y, 𝑠;x, 𝑡) ·

𝜕𝑅𝚥′

𝜕𝐾𝑘

(x− y, 𝑡− 𝑠).

The sensitivity A defined above is a useful theoretical quantity but it cannot

be calculated in practice. For a model with 𝑆 species and 𝑁 spatial points there

are 𝑆2𝑁2𝑀(𝑀 + 1)/2 components of A at the 𝑀 th time step. As with the direct

decoupled method, the sensitivities of different species become coupled through chains

of reactions. Due to advection and diffusion, the concentration of one species at

one location can depend on the concentration of a different species at a different

location. Finally, the sensitivities depend on the trajectory of the system through

3These equations apply to unbounded domains. For bounded domains, there are additional terms
that incorporate the sensitivities to boundary conditions.
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time, potentially going back arbitrarily far. Therefore none of the ∼ (𝑆𝑁𝑀)2 terms

in A can be ignored except in very specific systems. For models with any level of

spatial or temporal resolution (𝑁,𝑀 large), it is infeasible to calculate A directly.

Instead, the adjoint method calculates the sensitivity of an ‘objective function’

to various inputs. In data assimilation, the objective function might be the model-

measurement mismatch

𝐽 =
∑︁
𝑖,𝑗

(︀
𝐶𝑗(x𝑖, 𝑡𝑖)− 𝐶meas

𝑖,𝑗

)︀2
whereas in regulatory analysis, it might be the national, annual exposure to a specific

pollutant

𝐽 =

∫︁
𝑑x 𝑑𝑡𝐶0(x, 𝑡).

The objective function is a scalar function or functional of the model outputs; it

produces a single number from the output of a single model run. The sensitivity of

the objective function to a specific concentration is

𝐵𝚥(x, 𝑠) =
𝛿𝐽

𝛿𝐶𝚥(x, 𝑇 − 𝑠)
=

∑︁
𝚥′

∫︁
𝑑y 𝑑𝑡

𝛿𝐽

𝛿𝐶𝚥′(y, 𝑡)
· 𝛿𝐶𝚥′(y, 𝑡)

𝛿𝐶𝚥(x, 𝑇 − 𝑠)

=
∑︁
𝚥′

∫︁
𝑑y 𝑑𝑡

𝛿𝐽

𝛿𝐶𝚥′(y, 𝑡)
· 𝐴𝚥′,𝚥(y − x, 𝑠 + 𝑡− 𝑇 ;y, 𝑡)

where 𝑇 denotes the end of the simulation. Applying equation (3.5) to 𝐵𝚥 gives

𝜕𝐵𝚥

𝜕𝑠
(x, 𝑠)− u𝚥(x, 𝑇 − 𝑠) · ∇x𝐵𝚥(𝑥, 𝑠)−∇x · (D𝚥(x, 𝑇 − 𝑠) · ∇x𝐵𝚥(𝑥, 𝑠))

=
∑︁
𝚥′′

𝐵𝚥′′(𝑥, 𝑠) ·
𝜕𝑅𝚥′′

𝜕𝐶𝚥

(x, 𝑇 − 𝑠).
(3.6)

This is an advection-diffusion-reaction equation like equation (3.5). However, B has

only one index for each species, location, and time whereas A had two indices; the

number of components is reduced from (𝑆𝑁𝑀)2 to 𝑆𝑁𝑀 . Again, the sensitivity of
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the objective function to an input follows from B:

𝑆𝚥(x, 𝑠) =
𝛿𝐽

𝛿𝐸𝚥(x, 𝑇 − 𝑠)
= 𝐵𝚥′(y, 𝑡) ·

𝜕𝑅𝚥′

𝜕𝐸𝚥

(x, 𝑇 − 𝑠)

𝑆𝑘 =
𝜕𝐽

𝜕𝐾𝑘

=
∑︁
𝚥′

∫︁
𝑑y 𝑑𝑠𝐵𝚥′(y, 𝑠) ·

𝜕𝑅𝚥′

𝜕𝐾𝑘

(y, 𝑇 − 𝑠).

The adjoint sensitivities have several key features. First, they are inverse sensi-

tivities. In equation (3.6), the velocity is flipped compared to typical advection. The

sensitivities “swim upstream”, seeking out the key factors upwind of the current loca-

tion. Second, like with the direct decoupled method, the adjoint sensitivities satisfy

an advection-diffusion-reaction equation and can be integrated into an existing model

framework. Third, the adjoint sensitivities to input fields are the primary quantities,

whereas sensitivities to input parameters can be cumbersome to calculate. This is the

only method designed specifically to study field sensitivities, making adjoint modeling

a uniquely powerful tool.

The computational resource demand of an adjoint model is related to how these

equations are applied. Before calculating the sensitivities, the model first has to be

run forward, using the baseline inputs, and the matrices 𝜕𝑅𝚥′/𝜕𝐶𝚥 saved. Afterwards,

the adjoint model (equation (3.6)) is run and the sensitivities B are output. In terms

of memory, the matrices have 𝑆2𝑁𝑀 components and the sensitivities have 𝑆𝑁𝑀 .

Thus the adjoint model requires an order of magnitude more memory than the forward

model (11 GB per simulation week in GEOS-Chem (Henze et al., 2007)). In terms of

CPU time, the backward model takes ∼ 2 − 10 times as long to run as the forward

model (Henze et al., 2007). Finally, the 𝜕𝑅𝚥′/𝜕𝐶𝚥 matrices are not typically explicitly

calculated in forward models. Automated differentiation software has made the task

of computing these matrices in large models feasible, but creating an adjoint of a

model is still a difficult enterprise. Due to these constraints, only certain modeling

groups have created adjoint versions of their models.
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3.3 Comparison of estimates

The four approaches just described give subtly different insights into the systems

they analyze. The direct decoupled and adjoint methods provide an exact sensitivity

whereas the finite difference and complex step methods provide a sensitivity esti-

mate. (The complex step method can provide a very accurate estimate, but it is still

an estimate.) Conversely, only the finite difference method uses additional, fully non-

linear simulations; the other methods can only estimate the actual system response

to changes in inputs based on the value of the sensitivity. This difference affects the

generality of the results. In addition, the adjoint method calculates the sensitivity of

an objective function. Sensitivities of one objective function (e.g. population-average

exposure) can differ considerably from those of another objective function (e.g. at-risk

population exposure), also affecting the generality of adjoint models.

Each method is suited to different numbers of inputs and outputs. The adjoint

method focuses on field sensitivities (many inputs) but has to limit its scope to

a single objective function (one output). The finite difference and complex step

methods provide sensitivities for all chemical species (many outputs) but for only one

input parameter per simulation (one input). The direct decoupled method calculates

sensitivities to several input parameters at once but is typically limited in both the

number of parameters and the number of active chemical species (several inputs,

several outputs).

These four methods also require different modifications to the underlying model.

The finite difference method can be employed without changing critical code but input

files have to be altered and managed. The complex step method requires changing

variable types and checking that each subroutine of the model is complex-compatible.

The direct decoupled method can be built on the existing advection-diffusion-reaction

framework but the calculation of the reaction Jacobian 𝜕𝑅𝚥/𝜕𝐶𝚥′ must be added to the

base code. The adjoint method requires calculating and saving the reaction Jacobian

as well as running the model backwards in time.

From these considerations, I have chosen to use the finite difference method for this
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work. The fundamental policy questions are about how impacts (either population

exposure to pollution or aerosol radiative effects) respond to emissions. The adjoint

method could be used to describe the impacts of emissions from a particular area,

which my parameter-scaling, finite-difference approach cannot. However, the adjoint

approach would then not be able to show spatial resolution in the impacts. Some

of my key results – nitrate condensation in the Midwest, radiative effect differences

between land and ocean – could not be directly addressed with the adjoint approach.

The complex step method for GEOS-Chem was developed concurrently with the work

in this thesis (Constantin and Barrett, 2014) and could become a key tool in future

work.
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Chapter 4

Surface aerosol concentrations

Reproduced in part with permission from J. Holt, N. E. Selin, and S. Solomon.

Changes in inorganic fine particulate matter sensitivities to precursors due to large-

scale US emissions reductions. Environmental Science and Technology, 49(8):4834-

4841, 2015. Copyright 2015 American Chemical Society.

4.1 Introduction

Fine particulate matter (PM2.5) adversely affects cardiovascular and respiratory func-

tioning (Pope, 2000) and is a key focus of air quality policies such as the National

Ambient Air Quality Standards (NAAQS). Designing effective policies requires knowl-

edge of how near-surface concentrations of PM2.5 respond to changes in precursors -

its sensitivity to emissions.

Studies of health and economic impacts of emissions often apply estimates of

PM2.5 sensitivities to parameterize how air quality responds to emissions. Muller and

co-workers (Muller and Mendelsohn, 2007; Muller et al., 2011; Muller, 2011) use the

integrated assessment model APEEP to calculate marginal damages (in US dollars

per ton) by increasing emissions from one source by one ton and tracing impacts

on human health, agriculture, and other vulnerable structures. The base case in

APEEP uses the EPA 2002 National Emissions Inventory (NEI02), but Muller et al.

(2011) implements the 2005 inventory (NEI05). Fann et al. (2012, 2013) use the
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CAMx Particle Source Apportionment Technology to attribute PM2.5 concentrations

to emissions from each economic sector. Their simulations use NEI05 and projections

for 2016 based on proposed air quality rules. Similarly, Fann et al. (2009) use NEI02

with projections for 2015 as the emissions inventory for EPA Response Surface Model

of air quality (US Environmental Protection Agency, 2006). In these studies, the

projections based on then-proposed rules exhibit 30% decreases in national NOx and

SO2 emissions between 2001 and 2010 (US Environmental Protection Agency, 2006).

These emissions actually decreased by 34% and 53%, respectively, and NH3 emissions

increased by 17%. Whether sensitivities calculated using older (2002 and 2005) emis-

sions, or even past estimates of current emissions, are sufficiently accurate for health

and economic impact assessment depends on the nonlinear response of PM2.5.

Several chemical mechanisms affect how PM2.5 forms from its precursor emissions.

NH3 is the primary basic species, forming ammonium (NH+
4 ) in particles to neutralize

acidic nitrate (NO–
3) and sulfate (SO2–

4 , formed from SO2). PM2.5 sensitivities to NH3

emissions are large, and it has been argued that reducing NH3 is a cost-effective

strategy to reduce PM2.5 (Ansari and Pandis, 1998; Takahama et al., 2004; Pinder

et al., 2007; Makar et al., 2009; Henze et al., 2009; Paulot and Jacob, 2013). Sulfate is

not volatile like NH3 and HNO3, but it influences the ambient acidity and hence how

much HNO3 can condense into NO–
3. PM2.5 concentrations can even increase as SO2–

4

concentrations decrease, by allowing more HNO3 to condense (Ansari and Pandis,

1998; West et al., 1999). However, multiple reactions oxidize SO2 into SO2–
4 , and each

reaction responds differently to NOx and hydrocarbon concentrations (Manktelow

et al., 2007; Leibensperger et al., 2011).

In this chapter, I evaluate the influence of large NOx and SO2 emissions changes

(comparable to those that occurred in the US between 2005 and 2012) on PM2.5

sensitivities and identify the most important nonlinear processes. Lower NOx emis-

sions lead to higher SO2 sensitivities across the US and to higher NOx sensitivities

in winter in cold, humid regions such as the northern Midwest. Lower NOx and SO2

emissions also yield smaller sensitivities to NH3. Our results suggest that the benefits

of NOx reductions could be much larger now that emissions are lower, especially in
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winter (when NH3 emissions were thought to be dominant). We also show that SO2

controls are still effective, despite >60% reductions nationally. The potential changes

identified highlight the need to review the sensitivities used in health, economic, and

policy studies and consider a multipollutant approach to air quality policy.

4.2 Methods

The configuration of the chemical transport model used for these results was described

in Chapter 2. To summarize, I ran GEOS-Chem for January and July using 2005

meteorology for each emissions case. The emissions cases include base cases with US

total anthropogenic emissions matching either the 2005 or 2012 EPA totals. For each

of the three precursor species, emissions of that precursor were either increased or

decreased by a fixed amount over the 2005 or 2012 reference to generate 6 more cases

for each year. The total emissions in the reference cases and the changes applied to

each precursor are provided in Table 4.1.

2005 total 2012 total Perturbation
Jan Jul Jan Jul Jan Jul

NOx, Gg N 626.9 582.8 424.5 399.2 48.2 43.8
SO2, Gg S 424.7 417.1 245.5 242.2 57.8 56.4
NH3, Gg N 139.9 451.8 140.6 454.8 8.0 36.9

Table 4.1: Anthropogenic emissions (in kilotonnes, kt = 1× 106 kg = Gg) of inorganic
PM2.5 precursors over the North American domain. The first two groups show total
emissions – including Canada and Mexico – in the 2005 and 2012 base cases. The last
group shows the change in US emissions that was applied to calculate the sensitivities,
and is identical to table 2.6.

Similarly, the different ways to calculate and express sensitivities were compared

in Chapter 3. For surface concentrations, I calculate PM2.5 sensitivities as the unnor-

malized finite difference

𝑆(𝑐) =
PM2.5(𝐸(𝑐) + ∆𝐸)− PM2.5(𝐸(𝑐)−∆𝐸)

2×∆𝐸
(4.1)

where 𝑐 is the reference year (2005 or 2012) with national-total emissions mass 𝐸(𝑐);

∆𝐸 is the mass change in emissions; and PM2.5(𝐸) is the PM2.5 concentration in the
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simulation with emissions 𝐸. Emissions of other species are fixed at their baseline

values for that case. The resulting sensitivities have units of ngm−3 kt−1, where kt

denotes 1000 metric tonnes (1× 106 kg or 1 Gg) of emissions.

4.3 Results

The results of these simulations are divided into two parts. The first subsection de-

scribes the PM2.5 concentrations in the 2005 and 2012 base cases, highlighting the

improvements in air quality that have already been made. The second subsection

describes the PM2.5 sensitivities in these cases, showing how different emissions re-

ductions may further improve air quality.

4.3.1 Fine particulate concentrations

The individual components and total inorganic PM2.5 concentrations are shown in

figures 4-1 and 4-2 for January and July, respectively. The concentrations in the base

cases for high (2005) and low (2012) emissions are the first two columns; the third

column is their difference, shown to highlight the changes.

January PM2.5 peaks in the northern Midwest and is elevated over the eastern

US. Northern Midwest PM2.5 is primarily composed of NH+
4 and NO–

3. Only in the

southeastern US is SO2–
4 a majority of the PM2.5 concentrations. National average

NO–
3, NH+

4 , and PM2.5 concentrations in the low emissions case are 7.7%, 9.5%, and

11.6% lower than in the high emissions case, respectively. However, these decreases

are not uniform across the US. The area around Kentucky, Ohio, and Virginia shows

higher aerosol NO–
3 in the low emissions case than in the high emissions case. Higher

NO–
3 is offset by lower SO2–

4 , so total PM2.5 concentrations are <0.15 µgm−3 higher

in the low emissions case than the high emissions case.

July PM2.5 concentrations are generally lower than in winter but still higher over

the eastern US than the western US. The largest mass contribution to summer PM2.5

comes from SO2–
4 , followed by NH+

4 . SO2–
4 , NH+

4 , and total PM2.5 are all ∼40% lower

in the low emissions case than in the high emissions case, compared to 62% lower
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Figure 4-1: Surface-level mass concentrations of each component of PM2.5 and the
total (bottom row) in the reference cases. The left and middle columns show the 2005
and 2012 cases, respectively; the right column shows their difference.

SO2 emissions. Some urban and regional areas (San Diego, New Orleans, Atlanta,

Houston/Eastern Texas, Philadelphia/New Jersey, North Carolina, Illinois-Indiana-

Ohio) show substantial summer aerosol NO–
3 concentrations, up to 5 µgm−3. Aerosol

NO–
3 levels in these regions are lower in the low emissions case by 30.5% on average,

compared to 42% lower NOx emissions. However, model-measurement correlations

of summer NO–
3 concentrations are small (𝑟2 = 13.7%, 7.2% compared to IMPROVE

and CSN, respectively).
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Figure 4-2: As in figure 4-1, but for July.

4.3.2 Particulate sensitivities to emissions

Here we describe the sensitivities of PM2.5 to the different precursor emissions, as

computed using equation 4.1. The resulting monthly-mean maps are shown in figures

4-3 and 4-4 for January and July, respectively.

January PM2.5 is most sensitive to NH3 emissions in both the high and low

emissions cases. Sensitivity to NH3 peaks in the northern Midwest at values of

112 ngm−3 kt−1 in the high emissions case. In comparison, maximum winter sen-

sitivities to NOx and SO2 are 0.1 and 10.5 ngm−3 kt−1, respectively, over land. Over

the southeastern US and the mid-Atlantic coast, winter sensitivities to SO2 are

prominent and can be up to 10% of the (local) sensitivity to NH3. We find slight

(<0.35 ngm−3 kt−1) negative sensitivities to winter SO2 emissions near the eastern
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Great Lakes. The high sensitivities to SO2 emissions off the Atlantic coast are im-

portant for aerosol radiative effects and will be explored more in Chapter 5.

The differences in January sensitivities between the high and low emissions cases

show two policy-relevant features. First, sensitivities to NH3 are much smaller in the

low emissions case: 29% smaller in the national average and up to 72% smaller in

the northern Midwest. In contrast, January sensitivities to NOx are larger in the

low emissions case: 210% larger in the national average. The changes in NH3 and

NOx sensitivities are also highly spatially correlated (𝑟2 = 95%). Second, average

sensitivities to January SO2 emissions are 48% larger in the low emissions case over

land. There are some local exceptions, such as the northeast US, that show slightly

smaller sensitivities in the low emissions case, as well as the coastal region’s large

reduction in sensitivity.
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Figure 4-3: Sensitivity of surface-level inorganic PM2.5 mass concentrations to Jan-
uary emissions of NOx (top), SO2 (middle), and NH3 (bottom) emissions. The units
for NOx emissions are ngm−3 (ktN)−1; for SO2 and NH3 emissions, the denominators
are kt SO2 and kt NH3.
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In contrast to January, the July sensitivities to different precursors have a smaller

range of magnitudes. July PM2.5 sensitivities to SO2 emissions (figure 4-4, middle

row) are high across the eastern US and peak in the Ohio River Valley. Sensitivities to

SO2 are larger in the low emissions case than the high emissions case at nearly every

grid point: 24% larger in the national average and up to 98% larger in the eastern US.

In the high emissions case, summer sensitivities to NH3 emissions are large around the

Great Lakes region, eastern Pennsylvania, and a few urban regions. These regions

also have high summer sensitivities to NOx emissions, though the magnitudes are

different: peak summer sensitivities to NH3 and to NOx in the Great Lakes region are

15.3 and 0.14 ngm−3 kt−1, respectively. Summer sensitivities to NH3 are 45% smaller

on average in the low emissions case than the high emissions case.

Summer sensitivities to NOx emissions are evident around the Great Lakes and a

few localized areas on the Atlantic and Gulf coasts. Unlike NH3, the sign of changes in

sensitivity to summer NOx emissions varies: the Great Lakes region and some urban

areas have larger sensitivities in the low emissions case, whereas the southeastern US

has smaller sensitivities. In grid cells where sensitivity to NOx is larger in the low

emissions case, it is 25% larger on average; in cells where the sensitivity is smaller, it

is 17% smaller on average. The summer sensitivities to NOx and to NH3 are spatially

correlated (𝑟2 = 82% in the 2005 case) whereas the changes in sensitivities are not.

4.4 Underlying processes

We investigated several processes that could contribute to differences in PM2.5 sen-

sitivities between the high and low emissions cases. In this section, we focus on two

particularly important aspects. First, the thermodynamics of ammonium nitrate for-

mation determines winter sensitivities throughout the Midwest. Second, the kinetics

of SO2 oxidation help explain changes in sensitivity to both NOx and SO2 emissions

across the eastern US in both seasons. In section 4.4.3, we describe how well a linear

model based on the high emissions case sensitivities predicts the PM2.5 concentrations

in the low emissions case, showing how sensitivity changes impact the performance
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Figure 4-4: As in figure 4-3, but for July emissions.

of a simplified model.

4.4.1 Thermodynamics of ammonium nitrate formation

Cold and humid environments, such as the northern Midwest in winter, promote

condensation of NH3 and HNO3 into PM2.5. NH+
4 and NO–

3 concentrations are high in

this region (figure 4-1) as are sensitivities to NH3 and NOx emissions (figure 4-3). The

differences in NOx and NH3 sensitivities between the high and low emissions cases

are highly correlated (𝑟2 = 95%) and opposite. In addition, PM2.5 concentrations

in this region are similar in the high and low emissions cases – 18 and 16 µgm−3,

respectively.

To focus on thermodynamic effects, we used ISORROPIA II (Fountoukis and

Nenes, 2007), the thermodynamic module in GEOS-Chem, to explore how PM2.5

concentrations vary with total available HNO3 and NH3. SO2–
4 concentration, tem-

perature, and relative humidity are fixed at their average values between 89 and 97∘
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W and 39.75 and 45.25∘ N: 1.23 µgm−3, -8.4 ∘C, and 83%. Figure 4-5 shows total

PM2.5 under these conditions. There is a line at which the system is neutral with

respect to NH3, i.e. where there is exactly enough NH3 to fully neutralize both

the SO2–
4 and NO–

3, and this neutrality line distinctly separates nitrate-limited and

nitrate-saturated regimes. Below the line, PM2.5 concentrations depend strongly on

HNO3 concentrations (nitrate-limited); above the line, PM2.5 concentrations depend

only on NH3 concentrations (nitrate-saturated). Also shown are the NH3 and HNO3

concentrations from the high and low emissions cases, demonstrating why there is a

large change in sensitivity: the high emissions case is nitrate-saturated, so that large

changes in emissions yielded little change in PM2.5 , whereas the low emissions case

is nitrate-limited, implying far greater sensitivity to NOx emissions. A broad area in

the northern Midwest presents conditions for which the line between nitrate-limited

and nitrate-saturated is sharp, and nitrate limitation occurs to some degree across

the US in the winter low emissions case.
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Figure 4-5: Total PM2.5 concentrations as a function of total available ammonia and
nitrate as calculated by ISORROPIA II. The temperature, relative humidity, and total
sulfate concentration (-8.4 ∘C, 83%, 1.23 µgm−3) are fixed at values representative of
the northern Midwest in January. The dashed gray lines show the average total
ammonia and nitrate concentrations for the region (high emissions for NH3, high and
low emissions for HNO3). The solid gray line is the neutrality line, at which the total
ammonia can fully neutralize both the sulfate and the available nitrate.
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The transition to a nitrate-limited regime affects daily air quality as well as the

monthly average. Figure 4-6 shows the fraction of daily-average PM2.5 concentrations

above a given threshold value, using grid cells over the same northern Midwest domain

used to generate figure 4-5. The 2012 case has fewer exceedances than the 2005 case

for any threshold concentration. In particular, 1.8% of the grid cell-days exceed the

NAAQS 24-hour average value of 35 𝜇g m−3 in the 2005 case, compared to 1.2% in the

2012 case. Since inorganic aerosols are only a fraction of PM2.5 , a threshold of 20 𝜇g

m−3 might be more appropriate for the inorganic aerosols alone. For that threshold,

the fraction of exceedances are 13% and 9%. For grid cell-days that exceed 20 𝜇g m−3

in the 2005 case, the average PM2.5 reduction in the 2012 case is 13.2%, compared

to the domain and monthly average reduction of 12.9%. Thus emissions reductions

have led to improvements in daily air quality metrics as well as the monthly average.
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Figure 4-6: Fraction of grid cell-days with daily-average concentrations above the
given threshold. These values are for the same northern Midwest domain as used in
figure 4-5.

4.4.2 Kinetics of SO2 oxidation

The oxidation rate of SO2 into SO2–
4 determines whether PM2.5 forms before SO2 is

transported or deposited and hence directly affects PM2.5 sensitivities to SO2 emis-

sions. SO2 oxidation occurs in both gas and aqueous phases (Seinfeld and Pandis,

2012). Gas-phase oxidation involves the reaction of SO2 with hydroxyl radicals (OH).
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In the aqueous phase, SO2 diffuses into cloud droplets where it reacts with other solu-

ble gases (mostly hydrogen peroxide, H2O2) to form SO2–
4 . If cloud droplets evaporate

instead of precipitate, SO2–
4 remains as PM2.5. GEOS-Chem outputs the production

rate of SO2–
4 from the gas-phase reaction and from three additional reactions (aque-

ous H2O2, aqueous O3, and on sea salt particles) individually, allowing the formation

pathway to be explored in detail.

The rate and location of SO2 oxidation depends on whether the OH or H2O2 re-

action dominates. NOx concentrations determine relative concentrations of OH and

the hydroperoxy radical HO2, which reacts with itself to form H2O2. Lower NOx con-

centrations promote less OH and more H2O2, favoring aqueous SO2 oxidation. More

complex organic peroxy radicals can also produce H2O2, and their concentrations also

increase as NOx concentrations decrease.

We explored oxidation changes in the high and low emissions cases by examining

the ratio of aqueous H2O2 oxidation to total oxidation (figure 4-7). The low emissions

case has a larger fraction of aqueous-phase SO2 oxidation, as expected from lower NOx

concentrations, in most of the domain in January and over much of the eastern US in

July. The largest difference are around the Ohio River Valley, where H2O2 oxidation is

(61%, 53%) of total oxidation in (January,July) in the high emissions case and (74%,

63%) in the low emissions case. Table 4.2 lists the percent changes in column burdens

of several species, averaged over the eastern US (east of 99∘ W). Concentrations of

tropospheric H2O2 are (3.5%, 6.1%) higher in (January, July) in the low emissions

case than in the high emissions case while OH concentrations are (2.3%, 3.7%) lower,

supporting the link between NOx emissions and SO2 oxidation.

H2O2 OH HO2 NO NO2 O3
Jan 3.49 -2.25 2.67 -0.24 -0.86 0.18
Jul 6.06 -3.69 1.50 -0.01 -0.02 -1.15

Table 4.2: Percent changes in various oxidation-relevant species from the high emis-
sions case to the low emissions case. The values being compared are averages over
the eastern US (east of 99∘ W) of tropospheric column burdens (up to 40 hPa) of the
species.

We also investigated whether increased aqueous-phase oxidation would lead to
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Figure 4-7: Ratio of aqueous oxidation by H2O2 to total SO2 oxidation. Here, the
oxidation rate is taken as the total kg S produced within the tropospheric column
(up to 40 hPa) over the month of the simulation. The denominator of this fraction
includes gas-phase OH oxidation; aqueous H2O2 oxidation; aqueous O3 oxidation; and
O3 oxidation on sea salt particles.

faster SO2 and SO2–
4 rainout due to more sulfur chemistry occurring within cloud

droplets. The wet deposition rate is a measure of the speed of rainout. We have

estimated this rate as the ratio of the monthly-total wet deposition to monthly-

average column burden. Wet deposition rates of SO2–
4 are larger in the low emissions

case than in the high emissions case by 12% and 15% in January and July, compared

to 74% and 16% larger rates of aqueous H2O2 oxidation. In addition, the differences

in PM2.5 sensitivities to SO2 emissions between the high and low emissions cases are

moderately spatially correlated (𝑟2 = 30%) with the differences in the H2O2 fraction

of oxidation. Thus, while slightly faster rainout occurs under lower NOx emissions, it

cannot compensate for the increase in aqueous oxidation.

We did not include the 25% decrease in CO emissions between 2005 and 2012

in our simulations. CO reacts with OH to form HO2 as the counterpart to NO +

HO2 −→ NO2 + OH. Lower CO emissions would lead to a larger OH/HO2 ratio, less

H2O2 production, and more gaseous SO2 oxidation. Thus, lower CO emissions could

partially offset the shift to more aqueous-phase SO2 oxidation in our simulations.

However, Duncan et al. (2010) suggest that much of the US is now in a NOx-limited

ozone formation regime and hence that NOx exerts more control on HOx partitioning
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(and thus the SO2 oxidation pathway) than CO does.

4.4.3 Linearity of the system

Since PM2.5 sensitivities in the high and low emissions cases differ, this implies (by

definition) that a constant-sensitivity model will have some error. Figure 4-8 shows

the PM2.5 concentrations that would be predicted for the low emissions case, given

the high emissions case sensitivities and concentrations. That is, it shows how a

linear extrapolation from a few simulations, each slightly varying NEI05 emissions,

would predict the results of the low emissions simulation. This kind of extrapolation is

sometimes necessary as emissions inventories take years to compile and high-resolution

air quality models are too computationally expensive to run over the entire range of

potential emissions.
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Figure 4-8: Modeled PM2.5 concentrations in the low emissions base case. The first
column shows the full model results, as in figures 4-1 and 4-2. The second column
is the linear extrapolation based on the concentrations and sensitivities in the high
emissions case. The error in applying the linear extrapolation is highlighted as the
fractional difference (third column) and deviation from the 1:1 line in a scatterplot
comparison (fourth column). In the scatterplots, only points within the US are plot-
ted.

The linear model shows deviations of 10% from the actual simulation in the central

and southeast US in January. In July, the constant-sensitivity model deviates by 15%

in most of the eastern US and by up to 25% in the mid-Atlantic coast. Elsewhere,

the constant-sensitivity model is reasonably accurate. The constant-sensitivity model
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consistently overestimates the concentrations, translating into an underestimate of the

benefits of emissions reductions.

We have emphasized the errors in the constant-sensitivity model but the 15-25%

overestimates of PM2.5 come from applying a linear model to roughly 50% changes

in two of the three emitted species. The general agreement between the constant-

sensitivity model and the full simulation is mainly due to the assumed lack of change

in NH3 emissions. The large differences in NH3 sensitivities between the high and

low emissions cases have no impact on the model predictions if NH3 emissions stay

constant. If NH3 emissions were lowered from the low emissions case, however, then

PM2.5 reductions would be much smaller than predicted from the constant-sensitivity

model.

4.5 Discussion

Our study shows large differences in the sensitivities of PM2.5 concentrations to pre-

cursor emissions between two sets of simulations representing a 2005 baseline (high

emissions) and a 2012 analogue (low emissions). We find that winter NOx reductions

represent a potential new opportunity for improving air quality, due to PM2.5 being

more nitrate-limited under low emissions over much of the US, particularly the Mid-

west. Lower NOx emissions also promote aqueous-phase SO2 oxidation, increasing

the sensitivity of PM2.5 to SO2. Sensitivities to NH3 emissions are lower in the low

emissions case, primarily as a direct response to a less acidic atmosphere.

Results for winter in the northern Midwest are driven by the thermodynamic

behavior of ammonium nitrate aerosols and are well-constrained for the meteorological

conditions (i.e., cold and moist) that prevail there, where concentrations are highest.

Figure 4-5 shows that nitrate availability will play a major role in determining PM2.5

in this region in the near future. Accounting for the high NO–
3 bias of the model can

only push the system further into the nitrate-limited regime. Nevertheless, the large

absolute sensitivities to winter NOx emissions through NO–
3 formation are subject to

the model bias. Several studies (Walker et al., 2012; Heald et al., 2012; Zhang et al.,
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2012a) have shown that the standard GEOS-Chem simulation overestimates HNO3

and aerosol NO–
3 concentrations compared to both CASTNet and CSN measurements.

There is evidence that certain types of NO–
3 measurements are biased low due to

HNO3 volatilization from filters (Pakkanen et al., 1999; Schaap et al., 2004; Pathak

et al., 2009), but adjusting for this does not always provide significant improvement

(Squizzato et al., 2013). Studies with other air quality models (notably CAMx (Pinder

et al., 2007) and CMAQ (Pinder et al., 2008; Dennis et al., 2008)) have emphasized

the potential impact of NH3 emissions controls on PM2.5 concentrations, suggesting

that our results are broadly consistent across models.

There are several possible sources of the nitrate bias in GEOS-Chem and other

chemical transport models. The dependence of the rate of N2O5 hydrolysis on aerosol

water, nitrate, chloride, and organic content is uncertain, and nitric acid concentra-

tions can be highly sensitive to the overall hydrolysis rate (Macintyre and Evans,

2010; Dennis et al., 2008; Bertram et al., 2009; Wen et al., 2014). Hydrolysis within

GEOS-Chem includes limitation by nitrate, but this is a topic of ongoing research

(Bertram et al., 2009; Wen et al., 2014; Chang et al., 2011; Simon et al., 2010; Hudson

et al., 2007). GEOS-Chem produces more HNO3 from organic species reactions than

other chemical mechanisms at low NOx concentrations but performs comparably at

high NOx (Archibald et al., 2010). Heald et al. (2012) explore several other potential

sources of bias, but no solution has yet been found. However, our thermodynamic

analysis increases our confidence that the importance of NOx emissions to winter

PM2.5 is not an artifact of this model bias.

Model resolution can also affect model performance. Our simulations have a reso-

lution of 55 km, compared to the 36 or 12 km resolution typical of regulatory models.

Li et al. (2015) show differences in GEOS-Chem simulations of US PM2.5 at the

nested and global resolutions. The maximum values for the three inorganic com-

ponents are lower at low resolution, but the largest change (29%) is for SO2–
4 and

changes are most substantial near cities. Thompson et al. (2014) show that PM2.5

within CAMx changes by 10% across model resolutions from 4–36 km. Punger and

West (2013) found that CMAQ simulations produce PM2.5 mortality estimates 11%
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higher at 36 km resolution than at 12 km. Much coarser resolutions (>100 km) show

lower PM2.5 concentrations, but the relative changes are much larger for other compo-

nents of PM2.5 than nitrate, sulfate, and ammonia. Our 55 km resolution is therefore

sufficient for studying the regional response of inorganic PM2.5 to large, nation-wide

changes in emissions, and the computational efficiency of the lower resolution allowed

us to explore sensitivities (requiring several simulations for each case).

The change in sensitivity to NH3 emissions has several implications. First, NH3

emissions controls have been identified as a potentially cost-effective way to improve

air quality (Pinder et al., 2007). We do not analyze the costs of emissions controls

(though the costs of SO2 and NOx controls have likely changed from the redistribution

of sources) but the impacts of NH3 emissions controls could be much smaller than

previously estimated. Second, previous studies comparing modeled and measured

PM2.5 in the US (Henze et al., 2009; Heald et al., 2012; Zhang et al., 2012a; Dennis

et al., 2008) have highlighted our generally poor understanding of the magnitude and

seasonality of NH3 emissions. Decreased sensitivity to NH3 would limit the adverse

effects of inaccurate emissions on model performance.

An alternative approach to our sensitivity analysis is to vary emissions based

on economic sector (e.g., Caiazzo et al. (2013)). However, simultaneous emissions

changes in multiple sectors will not have the impact on PM2.5 expected from changes

in each sector individually. The changes in sensitivities presented here will help iden-

tify which sectors could be expected to have strong interactions. For example, broad

agricultural NH3 and NOx emissions can determine the neutralizing and oxidizing

capacity of the background atmosphere and hence the impact of given coal SO2 emis-

sions on PM2.5 .

Through this analysis, we find that lower NOx and SO2 emissions lead to larger

sensitivity to SO2; smaller sensitivity to NH3; and larger sensitivity to winter NOx

emissions in the US. These interactions provide new avenues for effective air quality

regulations and emphasize the need to consider multiple pollutants simultaneously.
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Chapter 5

Direct radiative effects

Note: The work in this chapter is being submitted for publication in Journal of

Geophysical Research – Atmospheres.

5.1 Introduction

Aerosols scatter and absorb solar radiation, affecting the energy budget of the earth

system and thereby affecting climate. Scattering aerosols are primarily hygroscopic

and include the inorganic ions sulfate, nitrate, and ammonium; hydrophilic organic

carbon; and fine sea salt. Absorbing aerosols include coarse (and dehydrated) sea salt

and dust as well as elemental carbon. In addition to direct interactions with radiation,

aerosols affect cloud albedo (Twomey, 1974), cloud lifetime (Albrecht, 1989), and

precipitation type (Rosenfeld et al., 2008). These direct and indirect effects contribute

to changes in climate.

Radiative impacts can be quantified in a number of ways. Here, I use the same

terminology as Heald et al. (2014): the direct radiative effect (DRE) of an atmospheric

species is the instantaneous change in tropospheric radiation that would occur if that

species were removed, without allowing the rest of the climate system to adjust.

The DRE can be computed directly by using multiple radiative transfer evaluations.

In contrast, the radiative forcing (RF) of an atmospheric species is the change in

DRE since the pre-industrial era. This can be further split into the instantaneous
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RF (IRF), which keeps all other climate components fixed, and the adjusted RF

(ARF), which allows stratospheric temperatures and downwelling radiation to adjust.

The most recent IPCC report (IPCC, 2013), based on the work of Lohmann et al.

(2010), suggests using a ‘radiative forcing perturbation’ in which all atmospheric and

land surface components (but not sea surface temperatures or sea ice) are allowed

to respond. The goal in all of the adjusted forcings is to separate components of

the climate system that respond quickly from slower ‘feedback’ mechanisms. These

differences in terminology are presented here so that previous studies can be compared

with the proper context.

The radiative effects of certain emissions have been well-studied, especially CO2.

Myhre et al. (1998) gives simple relationships between concentrations of CO2 and

other greenhouse gases and their ARF. At concentrations of 400 ppm, the CO2 ARF

is 1.9 Wm−2 and its sensitivity to concentrations is 0.013 Wm−2 ppm−1. Matthews

et al. (2009) shows that for timescales beyond 20 years, the sensitivity of global-mean

temperatures to cumulative carbon emissions in their model is roughly constant,

primarily due to cancellation between decreasing carbon uptake rates and decreasing

radiative forcing sensitivity to CO2 as emissions increase. The recent IPCC report

(Collins et al., 2013) gives a best estimate of 1.5–2.0 KPgC−1 for the medium-term (∼

20 year) global mean surface temperature sensitivity to cumulative carbon emissions.

These numbers provide context for the radiative effects of other emissions, as CO2 is

by far the dominant long-term forcing agent.

The radiative effects of tropospheric O3 precursor emissions are more complex than

for CO2. Naik et al. (2005) looked at changes in both O3 concentrations and CH4 life-

time due to reductions in NOx emissions from nine global regions, including both the

spatial and temporal patterns of the forcing. They find that the global-mean sensi-

tivity of IRF to North American NOx emissions is 0.12 and −0.29 mW m−2/TgN yr−1

for O3 and CH4, respectively.1 West et al. (2007) expanded on this work by looking at

30% global anthropogenic emissions reductions of CH4, NOx, CO, and non-methane

1The signs of these sensitivities are important; the O3 sensitivity is positive because NOx reduc-
tions lead to O3 reductions and hence reduce the O3-related forcing, but they increase CH4 lifetime
and hence increase CH4-related forcing.
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volatile organic carbon species (NMVOC) and found global-average IRF sensitivities

of 2.1, −0.25, 2.2 and 0.52 mW m−2/Tg yr−1, respectively. Stevenson et al. (2013)

reviewed the ARF due to changes in O3, CH4, and CO2 in the Atmospheric Chem-

istry and Climate Model Intercomparison Program models, including using 6 models

for attribution of ARF to global anthropogenic precursor emissions. They find net

ARF sensitivities of 2.77, −3.48, 0.370 and 0.754 mW m−2 to global emissions of CH4,

NOx, CO, and NMVOC, respectively. They also note an additional 127 mW m−2 of

forcing – 13% of the total ARF – due to nonlinear interactions between emissions,

especially the change in CH4 atmospheric lifetime. In contrast, Shindell (2005) find

that nonlinearities in ozone formation did not strongly impact the IRF of O3 and CH4

in their model because of this quantity’s strong relation to near-tropopause, remote

O3 concentrations.

The impacts of emissions on aerosol DRE have also been studied. Unger et al.

(2006) report that the total DRE of ozone precursor emissions may actually be dom-

inated by their influence on SO2 oxidation rates. For projected emissions between

1995 and 2030, they find that changes in ozone precursors increase the DRE of O3

by 0.35 Wm−2 over India and China, but also magnify the negative DRE of sulfate

by −0.61 Wm−2 in the same area. The global average changes are much smaller,

reflecting the local nature of these pollutants. Shindell et al. (2009) found a similar

magnification of the ARF2 from CH4, CO, and NOx emissions when their effects on

aerosols are included. Shindell et al. (2008) performs similar gas-and-aerosol experi-

ments focusing on three economic sectors in both North America and developing Asia.

Their sector approach precludes an estimate of the sensitivity to a single species, but

they do show how North American industry and power sector emissions induce large

but opposite DREs from aerosol and gaseous species. Unger et al. (2010) used a

similar sector-based approach, emphasizing the evolution of IRF with time.

Relatively few studies have used experiments that allow for direct sensitivity cal-

culations. Shindell et al. (2009) finds that the ARF sensitivity to global emissions

2It is not explicitly stated whether they studied the IRF or the ARF, but their comparison to
IPCC AR4 values suggest ARF.
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is 3.0, 0.26, −3.6, −12.0 and −14.0 mW m−2/Tg yr−1 for CH4, CO, NOx, SO2, and

NH3, respectively. They also show that including aerosol effects in ARF calculations

increases the magnitude of the sensitivity to emissions (positive sensitivity for CH4

and CO, negative for NOx) relative to gas-only effects. For regional impacts, Saikawa

et al. (2009) explored changes in Chinese emissions between 2000 and 2030 in different

economic scenarios. The sensitivity of global-mean ARF to Chinese SO2 emissions,

−3.5 mW m−2/Tg yr−1, is roughly constant across scenarios.

Large changes in emissions can lead to nonlinear responses that are not represented

in climate models without interactive chemistry. In particular, the Representative

Concentration Pathways (RCPs) developed for the recent IPCC report are matched to

emissions inventories for 2000-2005 and use integrated assessment model projections

from 2005 onward (Vuuren et al., 2011). The RCPs, and by extension many of the

most up-to-date climate projections, may be missing these large, recent changes in

US aerosol precursor emissions. Leibensperger et al. (2012b) combine GEOS-Chem

simulations with a general circulation model, comparing results with and without US

aerosol precursor emissions. They find that US precursor emissions decrease surface

temperatures in the eastern US, with the largest effects on extreme temperatures

in summer and fall. Precursor emissions also decrease cloud cover and soil moisture

availability in the eastern US. Climate impacts studies that are concerned with human

heat stress (e.g. Frumhoff and McCarthy (2007)) or drought and agriculture (Trnka

et al., 2004; Luo et al., 2005; Tang et al., 2010) may need to consider these recent

changes in precursor emissions and their radiative effects.

In chapter 4 I showed how recent US emissions changes impacted the processes of

inorganic aerosol formation. These same processes also affect aerosol radiative prop-

erties and hence the aerosol DRE. There are two factors that make the response of

DRE to emissions distinct from that of surface concentrations. First, optical prop-

erties of aerosols depend much more strongly on relative humidity than the health

effects do. High humidity can promote aerosol condensation, but only the dry aerosol

mass is considered detrimental to human health. Particle size is critical to optical

properties, so aerosol water content directly affects the radiative effect. Second, we
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could focus entirely on concentrations over the US when considering air quality, but

much of the radiative effects occur over the oceans.

This study extends the sensitivity calculations in Holt et al. (2015) to inorganic

aerosol DRE. Section 5.2 briefly describes the chemical transport and radiative trans-

fer models used. Section 5.3 presents the resulting estimates of the DRE, along with

the sensitivity of the DRE to emissions. Section 5.4 explores the meaning and impli-

cations of these changes in sensitivities.

5.2 Methods

The goal of this work is to understand how US emissions of the inorganic aerosol

precursors NOx, SO2, and NH3 impact aerosol radiative effects. The impact of NOx

emissions is quantified as the sensitivity

Sens(NOx) =
DRE(NOx

0 + ∆NOx)−DRE(NOx
0 −∆NOx)

2∆NOx
(5.1)

and similarly for SO2 and NH3 emissions. Here, NOx
0 represents a base level of

emissions and ∆NOx represents an additional amount of emissions. We calculated

sensitivities centered around estimates for the base years of 2005 and 2012, with a

focus on differences in sensitivities between these two cases.

The sensitivities defined above require both chemical and radiative quantities

under a suite of emissions. Section 5.2.1 describes the chemical transport model used

and the emissions applied. Section 5.2.2 broadly describes the radiative transfer model

and our approach to estimating DRE. Section 5.2.3 compares our DRE estimation

method to a fully coupled version of GEOS-Chem.

5.2.1 Chemical transport model GEOS-Chem

We used the GEOS-Chem model (Bey et al., 2001; Liu et al., 2001) version 9-023.

This model simulates ozone-NOx-hydrocarbon-aerosol chemistry and transport (Park

3Available at http://geos-chem.org/
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et al., 2004). GEOS-Chem has previously been used to explore both regional atmo-

spheric chemistry in the US (Henze et al., 2009; Heald et al., 2012; Walker et al., 2012;

Zhang et al., 2012a) and atmospheric composition impacts on climate (Leibensperger

et al., 2012a,b; Mickley et al., 2012; Heald et al., 2014).

Our results are from nested-grid simulations over the United States, allowing high

spatial resolution of aerosol concentrations. In GEOS-Chem nested-grid simulations,

a specified domain is modeled using the native resolution of the driving meteorological

fields (Chen et al., 2009). In our simulations, the GEOS-5.2.0 meteorology was used

with a resolution of 0.5∘ latitude by 0.67∘ longitude. The North American domain

covers 140∘–40∘ W and 10∘–70∘ N. Boundary conditions come from global simulations

at 2∘×2.5∘ resolution. The vertical grid for the chemistry includes 36 hybrid-𝜎 tropo-

spheric layers extending up to 78.5 hPa (roughly 17.8 km) and 11 stratospheric layers

extending up to 0.01 hPa. The timestep is 20 minutes for reactions and 10 minutes

for transport.

The primary dataset used for US emissions is the EPA National Emissions Inven-

tory for 2005 (NEI05). In the simulations used for sensitivity analysis, these emissions

are scaled by a fixed fraction at every point; only the national, monthly total emis-

sions are varied with no change in spatial or temporal structure. The EPA provides

national, annual total emissions estimates for every year (US Environmental Protec-

tion Agency, 2014b) in addition to the national inventories every 3 years. To create

the 2012 base case, we scaled US emissions within NEI05 to match the 42% and 62%

decreases in national total NOx and SO2 emissions between 2005 and 20124. Table

2.5 shows the domain-total emissions of each species in the 2005 and 2012 base cases

as well as the change in emissions applied to calculate sensitivities. In addition to

NOx and SO2, CO emissions also decreased by 25.5% between 2005 and 2012, and we

discuss the possible impact of this species on our results in section 5.4.

4Since starting this work, the EPA has revised its emissions estimates, resulting in a smaller
decline in NOx (33%) and a slightly larger decline in SO2 (64%).
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5.2.2 Radiative transfer model RRTMG

To calculate aerosol DRE, we used the shortwave component of the Rapid Radiative

Transfer Model for GCMs, version 3.9 (RRTMG, Iacono et al. (2008)). We use

RRTMG as an off-line, post-processing tool, estimating DRE from monthly-average

inorganic aerosol burden. However, RRTMG has also been integrated into GEOS-

Chem by Heald et al. (2014) (hereafter H14) to compute radiative fluxes on-line with

chemical transport. The next section compares our off-line approach to their on-line

model results.

The primary outputs we use from the GEOS-Chem simulations are the monthly-

average inorganic aerosol concentrations. The three components nitrate, sulfate, and

ammonium are assumed to have the same optical properties, so we use the total dry

aerosol mass concentrations (units of µg aerosol (mol dry air)−1, derived from ppbv)

for each simulation. Concentration values are saved in the 38 lowest model layers,

which extend up to 40 hPa (∼22 km).

For aerosol optical properties, we use a similar approach to the one detailed in

H14. This approach treats aerosol optical properties for radiative transfer in the same

manner as the photolysis module in GEOS-Chem. Briefly, aerosol optical properties

are interpolated from a look-up table of extinction coefficient, single-scattering albedo,

and 32 phase function coefficients to the relative humidity of the model grid cell.

The look-up tables store these data for seven different relative humidities and 281

wavelengths from 250 to 4000 nm. The look-up tables are generated from a Mie

scattering code (Mishchenko et al., 1999) and the Global Aerosol Data Set (Köpke

et al., 1997) refractive indices for water-soluble species. These optical properties

are aggregated to the 14 wavenumber bins used by RRTMG, weighted by the solar

spectrum from ASTM E490-00a (2014).

The key solar input to RRTMG is the cosine of the solar zenith angle, 𝜇. For each

latitude and month, we calculate the daytime-mean solar declination of the sun over

that month. This daytime-mean accounts for points that are perpetually daytime or

perpetually nighttime. (None of the points in the 10–70∘ N domain are perpetually
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daytime or nighttime for all of January or July.) This average declination is then used

to make a typical ‘day’ for that latitude and month. The radiative transfer model

is run for 12 times between sunrise and maximum sun height with 12 corresponding

𝜇 values. Pressure, temperature, and gas and aerosol concentrations are fixed at

their monthly-average values for each time. The radiative fluxes and DRE values we

show are the averages over these 12 points multiplied by the daytime-fraction for the

month.

Additional inputs to RRTMG are either set as defaults or read directly from the

GEOS-5.2.0 meteorology used for the simulations. Meteorological inputs include pres-

sure, temperature, specific humidity, and surface albedo. For absorbing gas concen-

trations, we use the default values typical of midlatitude summer for ozone, oxygen,

methane, and nitrous oxide. For carbon dioxide, we use a constant mixing ratio of

380 ppm typical of the year 2005. Water vapor concentration is calculated from the

meteorological specific humidity. The surface albedo field from GEOS-5.2.0 is the

energy-weighted average, appropriate for the shortwave spectral range. We apply the

same albedo for direct and diffuse radiation in the UV/visible and near-IR ranges.

5.2.3 Off-line calculation validation

In this work, we used RRTMG as an off-line, post-processing tool rather than as an

on-line radiative transfer module. In doing so, some of the inputs to RRTMG that

would be instantaneous values have to be replaced with time-averaged inputs. The

resulting off-line estimate thus has some level of error and bias relative to the on-line

calculation.

There are three differences between the off-line approach used here and the on-line

approach used by H14. First, the off-line approach uses fewer external data sources.

H14 use climatological, horizontally and vertically varying profiles of absorbing gases;

we use the midlatitude summer profiles for all points. Similarly, H14 use spectrally-

varying albedo, where we use the energy-weighted averages from GEOS-5. Second,

our approach uses monthly-mean values for meteorological quantities and aerosol

concentrations. This reduces the number of radiative transfer calculations required,
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All Land Ocean
On-line Off-line On-line Off-line On-line Off-line

JFM -0.84 -0.87 -0.80 -0.85 -0.88 -0.88
AMJ -1.38 -1.36 -1.49 -1.48 -1.29 -1.27
JAS -1.11 -1.03 -1.36 -1.21 -0.92 -0.89
OND -0.72 -0.72 -0.75 -0.73 -0.70 -0.71
Annual -1.01 -1.00 -1.10 -1.07 -0.94 -0.94

Table 5.1: Domain-average DRE (W m−2) in the validation dataset. ‘On-line’ refers
to the data from H14; ‘off-line’ refers to the post-processing approach used here.

but misses the effect of any covariance between concentrations and time of day. Third,

the DRE in our approach is estimated as the difference between an atmosphere with

gases and inorganic aerosols and an atmosphere with only gases. The DRE in H14

is the difference between an atmosphere with all species (gases and aerosols) and

one without the aerosol species of interest. These differences in approaches lead to

differences in estimates of DRE.

To quantify these differences, we applied our off-line approach to the monthly-

average data provided by H14. We focus on the North American domain and di-

vide the year (2010) into quarters: Jan/Feb/Mar, Apr/May/Jun, Jul/Aug/Sep, and

Oct/Nov/Dec. Figures 5-1 and 5-2 compare the monthly-average DRE values from

the on-line and off-line approaches as spatial maps and scatterplots, respectively.

Table 5.1 lists the corresponding domain-averaged values.

There are two regions in which off-line DRE values do not quite match the on-line

values. One region is north-central Canada in June and July. This region corresponds

to a biomass burning event (wildfire) that occurred in 2010, leading to high concen-

trations of both inorganic and carbonaceous aerosols. In this region, the off-line DRE

can be as large as -20 W m−2. The on-line DRE values, which include the competing

effects of absorption and scattering, are rarely below -7 W m−2. The other region of

mismatch is at high latitudes in spring. Large solar zenith angles and high-albedo ice

and snow provide a much different radiative environment than seen at lower latitudes.

Under these conditions, even primarily scattering aerosols can have a positive DRE

because these aerosols increase the chance of absorption of light by the surface and
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Figure 5-1: Inorganic aerosol DRE (W m−2) from the data of H14. The first column
shows their results with on-line radiative transfer calculations. The second column
shows the results from our off-line approach. The third and fourth columns show the
absolute and fractional differences between these results. The data here have been
aggregated into quarters of the year, with the annual average at the bottom.

by other aerosols. The post-processing approach reproduces some positive values, but

not as many as the on-line approach.

The off-line approach shows overall agreement with the on-line calculations. We

have found two sets of conditions – high absorbing aerosol concentrations and high-

latitude spring – for which the approach is limited. However, the situations presented

by these conditions are unlikely to be strongly affected by changes in US emissions.

The off-line DRE estimates are too small over the US by 10-20%. This underestimate

is relatively consistent across seasons, suggesting that it may be due to the neglect

of other species (either aerosols or gases) rather than issues with averaging over a

daily cycle. For the purposes of this work, i.e. calculating the sensitivity of inorganic

aerosol DRE to US emissions, the off-line approach seems sufficient.
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Figure 5-2: Comparison of the on-line (horizontal axis) and off-line (vertical axis)
inorganic aerosol DRE. Each grid cell monthly average corresponds to a point, and
the data are divided into quarters of the year (JFM=Jan/Feb/Mar, etc.). The dashed
gray line is the 1:1 line. In the JAS averages, off-line DRE values extend to -20 W
m−2 due to a biomass burning event in late June and early July.

5.3 DRE and its sensitivity to emissions

In this section, we present estimates of the monthly-average inorganic aerosol DRE

over the North American domain. We will first describe the DRE in the 2005 and 2012

base cases, including its spatial structure. Then we will cover the DRE sensitivities

to emissions, with emphasis on domain-averaged quantities. Throughout this section,

‘DRE’ will mean the top-of-atmosphere radiative effect of inorganic aerosols relative

to a gas-only atmosphere unless explicitly specified otherwise.
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5.3.1 Base-case DRE

There are seasonal variations in both the value of the DRE in each case and in the

differences between the 2005 and 2012 cases. In January, the largest DRE values

occur over the southeastern US and southern Mexico (figure 5-3, top row). The DRE

magnitude decreases quickly between the east coast and central Atlantic. However,

the largest differences in January DRE between the 2005 and 2012 cases occur over the

ocean. In July, large values of DRE occur over much of eastern North America, and

there is a clear tongue of advection across the Atlantic (figure 5-3, bottom row). The

July differences in DRE between the 2005 and 2012 cases extend a similar distance

across the ocean as in January, but these differences now include much more of the

nearby land surface.

-4.0 -3.0 -2.0 -1.0  0.0 -.8 -.4  .0  .4  .8 -24 -12   0  12  24

-6.4 -4.8 -3.2 -1.6  0.0 -1.60 -.80  .00  .80 1.60 -40 -20   0  20  40

Base-case DRE, W m-2
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l

Figure 5-3: Inorganic aerosol DRE (W m−2) in the 2005 and 2012 base cases for
January and July, along with the absolute and fractional differences between the
cases.

Table 5.2 lists the domain-average DREs in the base cases and their differences,

including over land and over ocean. The DRE over land is larger than over ocean in

the summer, and vice versa in winter. There is remarkably little change in DRE over

land in winter compared to summer, whereas the changes in ocean DRE in winter

and in summer are comparable.

The changes in DRE are associated with changes in concentrations of each aerosol

species throughout the atmosphere. These changes are shown in figure 5-4, averaged
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Jan Jul
2005 2012 Diff % diff 2005 2012 Diff % diff

Total -1.22 -1.16 59.4 -4.9 -2.20 -2.04 160.4 -7.3
Land -1.06 -1.02 42.5 -4.0 -2.38 -2.12 262.1 -11.0
Ocean -1.31 -1.24 69.8 -5.3 -2.09 -2.00 98.4 -4.7

Table 5.2: Domain-average DRE in the base-case simulations. The 2005 and 2012
values are in W m−2; the differences are in mW m−2.

over land and over ocean. In January, the decreases in sulfate concentrations are

limited to the lower troposphere, below about 600 hPa. The July decreases extend

up to the tropopause. Ammonium concentrations show a similar pattern, but with

July decreases limited to 400 hPa and below. Nitrate concentrations near the surface

are actually larger in the 2012 case than 2005, except for July over land. Nitrate

concentrations throughout the atmosphere are also larger in the 2012 case. This

is most notable in summer, where nitrate concentrations near the tropopause are

large. The total aerosol mass in each model layer (when averaged over this domain)

is smaller in the 2012 case than the 2005 case except between about 350 and 150 hPa

over ocean in July and over land in both January and July. As a result, total column

burden and column AOD decrease from 2005 to 2012.

5.3.2 DRE sensitivities

For each base emissions case, we use six additional simulations with increased or

decreased emissions of NOx, SO2, or NH3. The sensitivity values presented here are

calculated using equation 5.1. The numerator in that expression is the average top-

of-atmosphere DRE over the North American domain. The denominator is the total

change in mass of US anthropogenic emissions, measured as mass of N for NOx and

NH3 and mass of S for SO2. These sensitivities are plotted in figure 5-6.

In January, the sensitivity to NOx emissions has the largest relative change be-

tween the 2005 and 2012 scenarios. The domain-average sensitivity to NOx is larger

by a factor of 5 in the 2012 case than the 2005 case. Most of the increase in sensi-

tivity is over land, though sensitivity over ocean increases as well. Sensitivity to SO2
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emissions increases as well: by 14.6% over land and 2.7% overall. These increases in

sensitivity to NOx and SO2, which are the precursors to nitric and sulfuric acid, are

consistent with a decrease in sensitivity to NH3, the precursor to the base ammonium

hydroxide. DRE sensitivity to NH3 decreases by 15.1% over land and 12.0% overall.

In July, the sensitivities to SO2 and NH3 show larger relative differences between

the 2005 and 2012 cases than they did in January. These changes are concentrated

over land, with sensitivity to SO2 increasing by 17.9% and sensitivity to NH3 decreas-

ing by 24.3%. Sensitivity to NOx increases as well – by 23.0% over land – but not as

dramatically as the quintupling seen in January.

5.4 Discussion

The relative changes in sensitivities between the 2005 and 2012 cases indicates how

accurate a simple scaling of aerosol radiative effects to emissions would be. Using the

DRE from the July 2005 case; the sensitivities to each emission from that case; and

the changes in emissions from 2005 to 2012, a simple scaling predicts a DRE value

21.4 mW m−2 larger than the actual DRE from the July 2012 case. Zeroing out all

US emissions, based on 2005 sensitivities, gives a residual DRE of -1.83 W m−2. A

rough estimate of the ‘attributable’ DRE from US emissions is the 2005 DRE minus

this value, or -374.5 mW m−2. Thus the error from scaling the domain-average net

radiative flux is about 5.7% of the total DRE attributable to US emissions. This is

equivalent to underestimating the reduction in July SO2 emissions by 30.6 GgS, or

10.6% of US emissions in July 2005. In winter, simply scaling to US emissions gives a

DRE value 10.3 mW m−2 too large, which is 7.1% of the possible change in DRE and

equivalent to an additional 39.3 GgS reduction in SO2 emissions (13.6% of January

2005 US emissions).

These results can be compared to those from Holt et al. (2015) for surface concen-

trations in the context of air quality. Scaling the US-average surface concentrations

from 2005 to 2012 using the sensitivities from the 2005 case results in overestimates

of surface concentrations of 8.7% and 5.9% of the ‘US-attributable’ concentrations in
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January and July, respectively. The US SO2 emission equivalents are 342 GgS (118%

of 2005) in January and 32 GgS (11% of 2005) in July. In other words, the reductions

in wintertime fine particulate matter between 2005 and 2012 likely could not have

been achieved with SO2 reductions alone. The fractional overestimates in scaling

are thus similar for DRE and surface concentrations, but how these overestimates

translate into specific emissions reductions is different for these two impacts.

The large increase in sensitivity to winter NOx emissions implies that a future

scaling of DRE to NOx emissions would be more inaccurate than the results shown

above. If NOx emissions decreased by another 50 GgN beyond 2012 levels (17.6% of

2012 emissions), the differences in estimates based on scaling from 2005 values and

from 2012 values is 13.0 mW m−2, 9.0% of the attributable DRE and equivalent to

48.3 GgS (44.0% of 2012 US emissions). Therefore as SO2 emissions decrease and

NOx sensitivities increase, the error made in not including NOx sensitivity changes

becomes larger than the uncertainty expected for US SO2 emissions.

The sensitivity of DRE to precursor emissions can be divided in two parts: the

sensitivity of DRE to column aerosol burden, and the sensitivity of column burden

to precursor emissions. Symbolically,

Sens(DRE,Emissions) = Sens(DRE,Burden)× Sens(Burden,Emissions).

The fractional changes in sensitivities then (nearly) add together to give the total

sensitivity:

∆Sens(DRE,Emissions)
Sens(DRE,Emissions)

≈ ∆Sens(DRE,Burden)

Sens(DRE,Burden)
+

∆Sens(Burden,Emissions)
Sens(Burden,Emissions)

.

(5.2)

These fractional changes are listed in table 5.3. Note that the sensitivity of DRE to

column burden is also referred to as the normalized radiative forcing (e.g. by Hay-

wood and Boucher (2000)). This decomposition of sensitivities thus approximately

separates the nonlinearities of chemical formation and transport of aerosols from the

nonlinearities of radiative transfer.

In July, the fractional changes in sensitivity of DRE to burden are relatively small
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Sensitivity Jan Jul
of quantity: DRE: Burden: DRE: DRE: Burden: DRE:
to variable Emissions Emissions Burden Emissions Emissions Burden

Species
NOx, GgN 397.7 35.3 267.9 21.3 0.3 21.0
SO2, GgS 2.7 2.6 0.1 11.2 0.5 10.6
NH3, GgN -12.0 3.0 -14.6 -16.9 2.2 -18.7

Table 5.3: Fractional changes in sensitivities between 2005 and 2012 cases, %. The
column labels specify the sensitivity of the top quantity to changes in the bottom
variable. For example, the second column is the sensitivity of DRE to changes in
aerosol column burden. The three columns correspond to the three terms in equation
5.2.

for each emitted species; changes in column burden account for most of the changes

in overall sensitivity. This is consistent with a fixed, linear relationship between DRE

and inorganic aerosol burden and a constant normalized radiative forcing.

In January, however, changes in sensitivity of DRE to burden are larger than they

were in July and make a noticeable contribution to the overall sensitivity of DRE to

precursor emissions. In particular, the changes in DRE sensitivity to SO2 emissions

are almost entirely due to changes in the DRE-burden relationship. Finally, note

that changes in the various sensitivities to NOx and SO2 emissions are all of the same

sign, but changes in sensitivities to NH3 emissions are not. The same decrease in

total mass of NH3 emissions leads to smaller changes in total burden and total DRE

in the 2012 case than in the 2005 case. However, DRE became more impacted by a

given change in column burden. For NH3 emissions, the changes in these sensitivities

partially cancel rather than add.

Three mechanisms could be causing changes in the DRE-burden sensitivity. First,

a change in the horizontal structure of aerosol burden could change the domain-

average DRE-burden sensitivity. A targeted decrease in aerosols at points where

they have the largest effect (e.g. over low-albedo oceans) would change the domain-

average DRE-burden sensitivity. The January DRE-burden sensitivity does change

much more over ocean than over land, with maximum changes of about 4%. Second,

a change in vertical structure would also change the domain-average DRE-burden

80



sensitivity for the same reason: a disproportionate decrease in aerosols where they

are most radiatively effective. In January, the aerosol concentration response to

emissions is limited to the lower troposphere (800 hPa and below), whereas in July

the response can reach 600 hPa and above. Third, the relationship between DRE

and column burden could be intrinsically nonlinear because of a high optical depth.

Inorganic aerosol optical depths in January peak at around 0.25 in January. While

not particularly large, this value could be enough to induce a nonlinear radiative

response when combined with the low solar zenith angles of winter. All three of these

mechanisms are possible explanations for changes in DRE sensitivity to emissions

beyond the nonlinear responses in concentrations alone.

All of the quantities presented here involve the aerosol direct radiative effect, not

the aerosol direct radiative forcing. For a radiative forcing calculation, fluxes in the

present-day (PD) and pre-industrial (PI) atmospheres are compared. For radiative

effect, atmospheres with and without aerosols are compared. Figure 3 of H14 shows

spatial maps of the DRE and DRF for 2010 from their simulations. Overall, DRF

is uniformly small over the western US, eastern Pacific, and most of the northern

Atlantic; most of the aerosol DRE in these areas is due to natural aerosols. In global

averages, the DRF and DRE values for nitrate and ammonium are similar, whereas

the DRF for sulfate is about half of the DRE. In sensitivity calculations, fluxes from

two present-day atmospheres are being compared for both DRE and DRF, so the

DRE and DRE sensitivities to precursor emissions are identical.

Part of this difference between DRF and DRE is due to pre-industrial precursor

emissions being much lower than present-day emissions. Another part is due to pre-

industrial oxidant concentrations being different from present-day. Tsigaridis et al.

(2006) find an overall 74% increase in O3; a factor of 4 increase in NOx; and a 48%

increase in H2O2 between the PI and PD atmospheres. Naik et al. (2013) show that

OH concentrations in the northern midlatitudes increased by 35% near the surface

and decreased by 11% in the upper troposphere between PI and PD. A decrease in

upper-tropospheric SO2 oxidation would lead to a longer SO2 atmospheric lifetime,

but could also lead to less rainout once sulfate is produced. Such effects on lifetime
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lead to a different spatial distribution of aerosols in the PI atmosphere in addition to

lower total burdens and make comparing DRE and DRF values difficult. However,

the results from H14 suggest that the DRF in the eastern US would be similar to

but smaller than the DRE values shown here, whereas DRF in the western US and

Pacific is small.

In this work, we focus on the response of inorganic aerosols to the direct precursors

NOx, SO2, and NH3. However, US emissions of carbon monoxide decreased by 25.5%

between 2005 and 2012. Carbon monoxide and other volatile organic species affect

the concentrations of tropospheric ozone, hydrogen peroxide, and hydroxyl radicals,

which are all oxidizers of SO2. Duncan et al. (2010) suggest that decreased NOx

emissions led to increased sensitivity of ozone production rates to NOx. Hence, NOx

would have a larger influence on the SO2 oxidation pathway than carbon monoxide

or other organic species. However, their results are from satellite measurements over

land, where direct oxidation of SO2 by ozone is negligible compared to other pathways.

Oxidation by ozone is much more substantial over oceans. The changes in aerosol

DRE over ocean in winter are primarily due to changes in sulfate concentrations, and

these concentrations could be affected by changing carbon monoxide emissions.

5.5 Conclusion

In this study we extended the sensitivity analysis from Holt et al. (2015) to radiative

impacts of US inorganic aerosol precursor emissions. We combined outputs from the

chemical transport model GEOS-Chem with offline calculations of radiative transfer

with RRTMG. From the 2005 National Emissions Inventory, we scale US precursor

emissions of NOx, SO2, and NH3 to match 2012 total emissions to create a year 2012

case. Emissions of these species were then increased and decreased around each base

case, and the differences are used to calculate sensitivities. All simulations used a

nested grid over the North American domain (140∘–40∘ W, 10∘–70∘ N), boundary

conditions from a global simulation, and meteorology from January or July of 2005.

We estimate that top-of-atmosphere, inorganic aerosol, direct radiative effects over
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the North American domain decreased by 59 and 160 mW m−2 in January and July,

respectively, between 2005 and 2012. The majority of the change in summer DRE is

over land, whereas DRE over ocean plays a larger role in the change in winter.

Between the 2005 and 2012 scenarios, sensitivities to NOx and SO2 emissions

increase while sensitivity to NH3 emissions decrease, consistent with the sensitivities

of surface PM2.5 concentrations. In particular, sensitivity to January NOx emissions

increases by a factor of 5 between the 2005 and 2012 cases. The sensitivity of DRE to a

precursor is typically larger over land than over ocean; the exception is SO2 in January.

Changes in sensitivity are also concentrated over land, although sensitivity of DRE

over ocean to January NOx emissions shows an appreciable increase in magnitude

between 2005 and 2012.

We find that simply scaling the DRE to total emissions based on the 2005 sen-

sitivities leads to a domain-average DRE that is too large by 21.4 mW m−2 in July

and 10.3 mW m−2 in January. These values are 5.7% and 7.1% of the estimated US-

attributable DRE. Fractional overestimates of a similar size are seen in US-average

surface aerosol concentrations. These DRE overestimates are also equivalent to ad-

ditional SO2 emissions reductions of 39.3 GgS (13.6% of 2005) in January and 30.6

GgS (10.6% of 2005) in July. The increased sensitivity to NOx emissions, especially

in winter, suggests that further scaling would be more inaccurate.

The sensitivity of DRE to emissions can be separated into the sensitivities of

DRE to aerosol burden and of aerosol burden to emissions. We find that in July,

the majority of changes in DRE-emissions sensitivity can be attributed to changes

in burden-emissions sensitivity. This perspective is consistent with a constant nor-

malized radiative forcing. In January, however, the DRE-burden sensitivity can be

an appreciable portion of the overall change. The changes in DRE-burden sensitiv-

ity could be due to nonlinearities in radiative transfer or to changes in horizontal or

vertical structure of the aerosol burden.

Analysis of near-term or regional climate impacts often relies on the available

global climate model runs, many of which are based on the RCPs. These RCPs

may not include the full extent of US NOx and SO2 emissions reductions over the last
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decade. Our results show how well simply scaling aerosol radiative effects to precursor

emissions, without adjusting for changes in chemistry and transport, might predict

aerosol DRE around North America. Analyses that could be strongly influenced by

aerosol DRE should consider using datasets forced by more recent emissions estimates.
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Figure 5-4: Vertical profiles of concentrations (mixing ratios, in ppbv) in the base
cases. The top and bottom rows show January and July; the left and right columns
are averages over land and over ocean. The blue, orange, and green lines show nitrate,
sulfate, and ammonium concentrations. Dark, filled circles denote 2005 values and
lighter, empty circles denote 2012. The profiles are averages over 101∘-51∘ W and
25∘-47∘ N; this domain is pictured in figure 5-5.
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Figure 5-5: The domain used for the profiles in figure 5-4 with coastlines and country
borders for orientation.
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Figure 5-6: Domain-average DRE sensitivities to each precursor emission and for each
month. In each plot, the three pairs of bars show averages over the full domain, over
land, and over ocean. Within each pair, the left value is the sensitivity from the 2005
case and the right bar from the 2012 case. The numbers printed above each pair are
the fractional (%) changes from 2005 to 2012. The units are given as W m−2 (TgN)−1

for NOx and NH3 and W m−2 (TgS)−1 for SO2.
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Chapter 6

Conclusions

6.1 Discussion

The work presented in this thesis was aimed at understanding how sensitivities to

emissions may have changed over the last decade. From a scientific perspective,

changes in sensitivity reflect nonlinearities in the behavior of the system. These

nonlinear interactions give a system its complexity, so they are often the main focus

of research. From a policy perspective, sensitivities help describe how effective a

policy will be. To maintain effective policy, one must therefore understand how and

why the sensitivities change.

This work has explored the sensitivities of two quantities – surface PM2.5 concen-

trations and aerosol direct radiative effect – to US emissions. Specifically, I studied

inorganic aerosols, composed of NO–
3, SO2–

4 , and NH+
4 , and their immediate precursors

NOx, SO2, and NH3. The physical processes that caused the changes in sensitivities

were determined through analysis of the thermodynamics, chemical kinetics, and ra-

diative aspects of the aerosol.

One key result of this work is that NO–
3 may now play a much larger role in both

air quality and climate forcing than it did in 2005. Modeled surface aerosols in the

winter northern Midwest transitioned from NH3-limited to NO–
3-limited as emissions

were decreased, with a corresponding rise in sensitivity to NOx emissions. Even in

summer, some urban areas could be experiencing higher aerosol NO–
3 concentrations.
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In the colder mid-troposphere, aerosol NO–
3 readily forms even in summer, leading to

a broad area of relatively high sensitivity of aerosol DRE to NOx emissions.

Another key result is that SO2 oxidation has shifted towards more aqueous H2O2

oxidation and increased in rate. In our low-emissions (2012) simulations, OH con-

centrations are lower and H2O2 concentrations are higher than in the high-emissions

simulations. The fraction of SO2 oxidation that occurs via the aqueous H2O2 path

is also increased. Since aqueous oxidation is generally faster than gas-phase oxida-

tion, the overall oxidation rate also increased. Thus, while SO2–
4 concentrations have

decreased, sensitivities to SO2 emissions have generally increased, both for surface

PM2.5 concentrations and DRE. Because NOx concentrations strongly control HOx

partitioning, this result represents a crucial interaction between NOx and SO2 emis-

sions.

A consequence of these results is that sensitivities to NH3 emissions are much

lower in the low-emissions case than in the high-emissions case. With lower SO2–
4 and

total nitrate concentrations, less of the atmosphere is ammonia-limited in terms of

aerosol formation. However, sensitivity to NH3 emissions could still be considered

high, especially in winter, since the per-ton sensitivities to NH3 are typically an order

of magnitude larger than for NOx and SO2. The impact of NH3 emissions controls

would be smaller now than 10 years ago, but such controls may still be an effective

way to improve air quality.

Various events led to the decline in US emissions between 2005 and 2012. Rus-

sell et al. (2012) cites the 2009 recession (global economics); a shift in electricity

generation from coal to natural gas (national economics); and new vehicle emissions

standards (direct policy action) as contributors to the decline. There are thus a va-

riety of exogenous and endogenous contributors in addition to the direct impact of

policy. The speed of the change in emissions emphasizes the need to understand and

frequently re-evaluate what we think the sensitivities – and hence policy impacts –

are. This is true not just for air quality and human health, but also for climate

impacts, especially on the regional scale.
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6.2 Future work

There are several ways this work can be expanded upon. One straightforward way is

to include more variation in optical properties as aerosol composition varies. Each of

the inorganic ions in the aerosol have slightly different refractive indices, which are

all very different from the refractive index of water. The species also have different

hygroscopicities, so aerosol water content also varies with composition. Allowing the

optical properties to change in response to changing composition could lead to some

subtle but measurable differences in the resulting DRE.

Throughout, the focus was on inorganic aerosols and their direct precursor emis-

sions, as these quantities are directly linked. Changes in, and sensitivities to, CO

and volatile organic carbon emissions were thus ignored. These species act opposite

to NOx in determining HOx partitioning and overall oxidant concentrations. While

the study of Duncan et al. (2010) suggests that changes in NOx emissions would cur-

rently have a larger influence on oxidants, it would be useful to have a more direct

verification of that behavior within this modeling framework.

Organic aerosols have also been ignored in this work, analogous to CO and VOC

emissions. Organic aerosols, and especially secondary organic aerosols (SOA), are

the focus of much of current atmospheric chemistry. SOA is directly linked to VOC

emissions and depends on the speciation of those emissions. A thorough analysis

of SOA sensitivities would thus introduce many more parameters than the three

(NOx,SO2,NH3 emissions) I have used. Natural emissions also influence SOA more

than they do inorganic aerosol, so SOA sensitivities may need to be calculated un-

der a range of such natural emissions. The atmospheric lifetime of SOA is linked

to its solubility, its carbon:oxygen ratio, and thus to oxidant concentrations, so NOx

emissions would still need to be included in SOA sensitivities. In addition to these

complications, SOA formation itself is still highly uncertain and may not be repre-

sented well in any given chemical transport model. The methodology I have used in

this work could in principle be applied to organic aerosols as well, but it would be

extremely difficult.
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In calculating sensitivities and creating different scenarios, I used a straightfor-

ward scaling of total anthropogenic US emissions. This approach provides a good

conceptual picture of the regional impacts of the decline in emissions. However, it

does not represent any specific change in economics or policy that would be employed

in reality. Emissions from different economic sectors have different temporal and spa-

tial distributions. They also have different chemical speciation. For example, it may

be unphysical to independently vary power plant SO2 and NOx emissions; it may also

be unphysical to simultaneously vary power plant SO2 and transportation SO2 emis-

sions1. Another type of sensitivity analysis, using adjoint models or another approach

that produces field sensitivities, would be more suitable to studying the impacts of

specific changes in emissions.

To isolate the changes in chemistry that lead to the changes in sensitivities, I used

fixed meteorology from two months of 2005. However, aerosol NO–
3 concentrations

vary strongly with temperature. Soil emissions of NOx and NH3 and marine emissions

of DMS also vary with surface temperature, as well as other meteorological factors

(e.g. wind speed, photosynthetically active radiation). In addition, the increase in

SO2 oxidation rate depends on the frequency and location of non-precipitating clouds.

With the most fundamental mechanisms identified, it would be productive to explore

the importance of meteorological and climate variability in these sensitivities.

The climate impacts work of this thesis was limited to the aerosol direct radiative

effect, a quantity that can be computed within the framework of a chemical transport

model. Within a full climate model, the influence of the recent emissions decline may

turn out to be broader. The direct radiative effects of changing aerosol concentrations

would influence soil moisture and evaporation; surface energy balance; and temper-

atures throughout the atmospheric column through radiative adjustment. Changing

aerosol concentrations would also appear as indirect effects on the brightness and

lifetime of clouds. These aspects of the climate impacts can only be assessed with a

1That different economic sectors have different emissions profiles is an even more fundamental
issue for SOA sensitivities than for inorganic aerosols. Transportation is a large component of US
NOx emissions, but the associated VOC emissions depend on the type of vehicle driven. Whether
commercial transport (trucks) and personal transport (cars) are varied independently is therefore a
much larger issue for SOA than for inorganics.
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model of atmospheric circulation, not just one with transport of chemicals.

6.3 Final notes

The work presented in this thesis involved the application of a framework of sensitivity

analysis to questions of atmospheric chemistry. Sensitivity analysis is useful because

it can help provide answers to questions about the benefits (or disbenefits) of changes

in emissions, whether those changes are policy-driven or not. In addition, sensitivity

analysis describes the behavior of a system. The sensitivities of an air quality metric

and a climate forcing metric are shown to have changed in less than a decade. I hope

that both the air quality and climate communities appreciate the importance and

rapidity of this change and can be prepared for more like it in the future.
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Appendix A

Normalizing sensitivities

Throughout this work, I have been using the term ‘sensitivity’ to refer to the (exact

or approximate) partial derivative

𝑆0 =
𝜕𝑓

𝜕𝑥

where 𝑥 is an input variable and 𝑓(𝑥) is an output variable. For surface PM2.5 concen-

tration sensitivity to NOx emissions, the resulting units for 𝑆0 are µgm−3 (GgN)−1,

where the mass of emissions in the denominator is the change in total US anthro-

pogenic NOx emissions in a given month.

This definition of the sensitivity is straightforward to calculate and can be readily

compared between different estimation methods. However, it lacks the context needed

to be able to directly compare sensitivities across species, locations, and times. For

example, the sensitivity of surface PM2.5 concentrations in the northern Midwest to

winter NH3 emissions is much larger than the sensitivity to winter SO2 emissions or

to summer NH3 emissions. However, the actual amount of winter NH3 emissions is

also much smaller than the other two; that 1 Gg decrease in winter NH3 emissions

represents a much larger fraction of the total anthropogenic emissions.

From a policy perspective, a regulation for a given industry may mandate a specific

emissions reduction, and the sensitivity 𝑆0 given above provides a measure of the

effectiveness of that mandate. In contrast, an emissions control device for commercial

vehicles may reduce emissions by a fixed fraction. In that case, 𝑆0 does not directly
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provide a measure of the policy effectiveness. The fractional change in emissions could

also be more closely related to the economic costs of the change in emissions. A 200 kt

reduction in the 1300 kt of winter NOx emissions may seem difficult, but there was a

400 kt reduction between 2005 and 2012. A 200 kt reduction in the 170 kt of winter

NH3 emissions, in contrast, is physically impossible. The normalized sensitivity may

allow for an easier comparison between sensitivities to sources and species that have

very different total emissions. It could thus be argued that a policy-relevant sensitivity

would use the fractional change in emissions as the denominator:

𝑆1 =
𝜕𝑓

(𝜕𝑥)/𝑥
= 𝑥

𝜕𝑓

𝜕𝑥
= 𝑥 · 𝑆0.

For the surface concentration example, the units of 𝑆1 would be µgm−3 or µgm−3 /%.

By a similar argument, using the fractional change in concentrations

𝑆2 =
(𝜕𝑓)/𝑓

𝜕𝑥
=

1

𝑓

𝜕𝑓

𝜕𝑥
=

𝑆0

𝑓

could also lead to a more policy-relevant sensitivity. Areas where PM2.5 concentrations

are already low are much less likely to have high sensitivities to emissions; there simply

isn’t as much room for change. People in these areas may still be interested in seeing

which actions would most improve or degrade their air quality, though. Figures such

as 4-3 and 4-4 do not make that comparison easy, as changes in those low-sensitivity

areas are hard to identify.

Finally, these normalizations can be combined, resulting in

𝑆3 =
(𝜕𝑓)/𝑓

(𝜕𝑥)/𝑥
=

𝑥

𝑓

𝜕𝑓

𝜕𝑥
=

𝑥

𝑓
𝑆0.

This quantity is common in economics, where it is referred to as the ‘elasticity’. This

quantity is fully dimensionless, though often written with units of % /%. Because it

is dimensionless and scale-free, this definition of sensitivity can be used to compare

a diverse set of inputs and outputs.

To say that a system has constant sensitivity means different things for different

normalizations for sensitivity. The constant-sensitivity (‘linear’) models associated
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with each of the above definitions are:

𝑓 0(𝑥) = 𝑆0 · (𝑥− 𝑥0) + 𝑓0

𝑓 1(𝑥) = 𝑆1 · ln(𝑥/𝑥0) + 𝑓0

𝑓 2(𝑥) = 𝑓0 · exp
(︀
𝑆2(𝑥− 𝑥0)

)︀
𝑓 3(𝑥) = 𝑓0 · (𝑥/𝑥0)

(𝑆3)

where 𝑥0 is some reference value for 𝑥 and 𝑓0 = 𝑓(𝑥0) is the reference value for 𝑓 . If

there are physical constraints on the variables, then that leads to limitations in what

kind of constant-sensitivity model can be used. Some such constraints are:

∙ 𝑓 > 0. PM2.5 concentrations cannot be negative, so any model of PM2.5 con-

centrations should not give negative results. This is automatically true of 𝑓 2

for all values of 𝑥, and true of 𝑓 3 for positive values of 𝑥. It may or may not

be true of 𝑓 0 depending on the specific sensitivity and base values. For 𝑓 1, this

constraint implies that 𝑥 cannot be much smaller than 𝑥0 if 𝑆1 > 0.

∙ Positive and negative sensitivities. If we know a priori that the sensitivity is

strictly positive, then the constraint 𝑓 > 0 is easy to satisfy. If the sensitivity

can have either sign, then the constraints for some models change. A negative

𝑆0 means that 𝑥 cannot be too large or else 𝑓 0 < 0; a negative 𝑆3 means that

𝑓 3 explodes as 𝑥 decreases.

∙ Behavior of 𝑓 near 𝑥 = 0. Model 𝑓 1 cannot be applied to small values of

𝑥. Model 𝑓 3 can be applied, but only if 𝑆3 is positive and we know that

𝑓(𝑥 = 0) = 0. In these two sensitivities, it is imperative to specify whether 𝑥

refers to anthropogenic or total emissions; we expect that 𝑓(𝑥 = 0) > 0 if 𝑥

refers to anthropogenic emissions only. In contrast, the models 𝑓 0 and 𝑓 2 are

unchanged by this distinction, as the difference 𝑥− 𝑥0 is unchanged.

As these examples should show, the question of whether one normalization of sen-

sitivity is more appropriate than another depends critically on both what questions
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one hopes to answer with the results and what can be assumed about the behavior

of the system.

The last item in the list above highlights a fundamental tension in choosing which

normalization to use. As mentioned before, the fractional change in anthropogenic

emissions might be policy-relevant. However, the mass balance within the system

depends most directly on total emissions. One could say that the most physically-

relevant sensitivity would not be normalized. For this reason, I found that I was only

able to understand and describe the mechanisms that control sensitivities and their

changes over time by studying the non-normalized sensitivities.

For the numerator, non-normalized sensitivities seemed most appropriate for the

particular impacts studied here. The work of Dockery et al. (1993) and others suggests

that mortality and morbidity rates associated with PM2.5 decline linearly as PM2.5

concentrations decrease, even down to low concentrations.1 Similarly, climate impacts

can be expected to depend most closely on the total energy imbalance of the earth

system, rather than the relative imbalance at a particular location.

1Nonlinear exposure-response behavior has been noted by Pope et al. (2011) and others, but
mostly for concentrations higher than expected for US ambient air pollution.
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