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Electricity Investments under Technology Cost Uncertainty  
and Stochastic Technological Learning  

Jennifer Morris*†, Mort Webster* and John Reilly*  

Abstract 

Given that electricity generation investments are expected to operate for 40 or more years, the decisions 
we make today can have long-term impacts on the electricity system and the ability and cost of meeting 
long-term environmental goals. This research investigates socially optimal near-term electricity 
investment decisions under uncertainty in future technology costs and policy by formulating a 
computable general equilibrium (CGE) model of the U.S. as a two-stage stochastic dynamic program. 
The unique feature of the study is a stochastic formulation of technological learning. Most studies that 
include technological learning utilize deterministic learning curves in which a given amount of 
investment, production or capacity leads to a given cost reduction. In a stochastic framework, 
investment in a technology in the current period depends on uncertain learning that will result and 
lower future costs of the technology. Results under stochastic technological learning suggest that 
additional near-term investment relative to what is optimal under no learning can be justified at 
technological learning rates as low as 10–15%, and at the 20–25% rates commonly found in literature 
for advanced non-carbon technologies, significant additional near-term investment can be justified. We 
also find it can be socially optimal to invest more in non-carbon technology when the rate of learning 
is uncertain compared to the case where the learning rate is certain. Increasing marginal costs produce 
an asymmetric loss function that under uncertainty leads to more near-term non-carbon investment in 
attempt to avoid the situation of high non-carbon costs and an external economic environment that 
creates high demand for non-carbon technology. 
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1. INTRODUCTION  
Given that electricity generation investments are expected to operate for 40 or more years, the 

decisions we make today can have long-term impacts on the electricity system and the ability 
and cost of meeting long-term environmental goals. A key factor impacting optimal near-term 
investments is technological learning. If near-term investments can lower the future costs of 
non-carbon technologies (e.g. through learning-by-doing or scale effects), then there is greater 
incentive to make more non-carbon investments in the near-term. Studies of electricity 
investment decisions that include learning for technology costs are typically deterministic, most 
utilizing learning curves in which a given amount of investment or production or capacity leads 
to a given level of cost reduction (e.g. Kypreos and Bahn, 2003; van der Zwaan et al., 2002; 
Messer, 1997; Loulou et al., 2004; Seebregts et al., 1999; Morris, 2002; Mattsson and Wene, 
1997; Berglund and Soderholm, 2006; Kypreos and Barreto, 2000). However, here we advance 
the literature on technological learning by examining optimal investment in a stochastic 
framework where investment in the technologies changes the probabilities of future technology 
costs—i.e. the learning pay-off is uncertain. We do so by formulating a computable general 
equilibrium (CGE) model of the U.S. as a two-stage stochastic dynamic program. 

We investigate socially optimal near-term electricity investment decisions that maximize 
expected economy-wide consumption given uncertainty in future technology costs and learning, as 
well as uncertainty in the future external economic environment that will affect demand for a 
technology. Here, we simulate this second uncertainty as a climate policy that impacts the demand 
for non-carbon technology by affecting the cost of conventional fossil technology through a carbon 
price. If a climate policy is implemented during the early- or mid-lifetime of a power plant, it 
greatly affects how cost-effective it is to run that plant and could even require the plant to shut 
down, which would undermine the case to build that plant in the first place. Even in the absence of 
policy, market forces alone also create uncertainty in the cost of conventional fossil generation and 
therefore uncertainty in the demand for non-carbon technology and the solvency and strategy of 
near-term investments. Such external economic uncertainty coupled with uncertainty in technology 
costs and technological learning, makes near-term decision-making quite difficult, suggesting the 
value of a formal decision-making under uncertainty approach.  

In Section 2, we describe model and decision-making under uncertainty method, and describe 
the uncertainties in Section 3. Section 4 explores results under non-carbon cost uncertainty 
without technological learning. Section 5 then details the stochastic technological learning 
formulation, describes results with this learning formulation and explores sensitivity to the 
technological learning rate. We offer conclusions in Section 6.  

2. THE MODEL 

The problem we wish to consider is how the uncertain resolution of learning about a specific 
technology in the future affects investment decisions in that technology in the near term. 
Following a classic dynamic programming setup, we formulate the problem as a two-stage finite 
horizon problem, with uncertainty about technology costs and learning and the external 
economic environment resolved in the second period.  
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The DP objective is to choose actions to maximize total expected discounted social welfare in 
the economy over the planning horizon. In terms of the Stage 1 (near-term) decisions, the goal is 
to maximize current period consumption plus discounted expected future consumption. Utilizing 
the Bellman equation (Bellman, 1957) the objective function is: 

!" = $%&'( )" *", &" + -./ !"01 *"01 *", &", 2" -   (1) 

where: 
t is decision stage, 
V is total value, 
S is state (electric power capacity level of each technology and cumulative emissions level), 
C is economy-wide consumption (welfare),  
x is decision set (non-carbon share of new electricity and amount of emissions reductions), 
θ is uncertainty set (probabilities assigned to Stage 2 non-carbon technology cost and Stage 2 

policy) 
γ is discount factor = (1 − discount rate). Discount rate = 4%. 

In the DP, there is uncertainty (θ) in both the future cost of the non-carbon technology and the 
future economic environment (demonstrated in this work as the future emissions policy), as 
described in Section 3. Two decisions are made (so xt in Equation 1 is a vector with two elements): 
(1) the non-carbon technology’s share of new electricity in each stage (i.e. how much of the new 
capacity built should consist of non-carbon technologies?), and (2) Stage 1 reductions of electricity 
emissions (i.e. is it worth it to begin reducing emissions now in anticipation of future policy?).  

A significant departure from previous work is that we represent these investment decisions 
within an economy-wide model because we believe feedbacks are important. We develop a 
single region computable general equilibrium (CGE) model approximating the U.S. in terms of 
overall size and composition of the economy that highlights choices between fossil and 
non-fossil electricity generation investment decisions. There is a single representative consumer 
that makes decisions about household consumption. There are six production sectors: crude oil, 
refined oil, coal, natural gas, electricity and other. Other, which includes transportation, industry, 
agriculture, services, etc., comprises the vast majority of the economy. The factors of production 
included are capital, labor and natural resources (crude oil, coal and natural gas). The base CGE 
model follows the structure of the MIT Economic Projection and Policy Analysis model (Chen 
et al., 2016; Paltsev et al., 2005), and is incorporated into the stochastic dynamic programming 
framework of Morris et al. (2014) and Morris (2013).  

The underlying social accounting matrix (SAM) data is based on GTAP 5 (Hertel, 1997; 
Dimaranan and McDougall, 2002) data recalibrated to approximate 2010, which is used as the 
base year for the model. The model is written in General Algebraic Modeling System (GAMS) 
format and is formulated in MPSGE (Rutherford, 1999). Carbon dioxide (CO2) emissions are 
associated with fossil fuel consumption in production and final demand. 

Two electricity generation technologies are represented: conventional and non-carbon. There 
is a single conventional electric technology that uses coal and natural gas as its fuel.1 The 

                                                
1 Conventional electricity aggregates all generation in the base year, including nuclear, hydro and other generation. 
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non-carbon electricity generation technology produces no carbon emissions and is more 
expensive, representing advanced non-carbon technologies like wind, solar, carbon capture and 
storage (CCS), and advanced nuclear. These technologies have little or no market penetration at 
present, but could take significant market share in the future under some energy price or climate 
policy conditions. The electricity produced from the generalized non-carbon technology is a 
perfect substitute for conventional electricity. It initially has a higher cost than conventional 
generation, which is set in the model by a markup, which is the cost relative to the conventional 
generation against which it competes in the base year. The base markup is set to 1.5, indicating 
that the non-carbon technology is 50% more expensive than conventional electricity. As the 
prices of inputs change endogenously over time, so too does the relative cost of the technologies.  

The CGE model is dynamic, running from 2010 to 2030 in 5-year time steps. The processes 
that govern the evolution of the economy and its energy characteristics over time are: (1) capital 
accumulation, (2) fossil fuel resource depletion, (3) availability of non-carbon electricity 
technology, (4) population growth, and (5) energy efficiency improvements. The first three 
processes are endogenous while the last two are exogenous. Of particular importance for the 
uncertainty work is capital vintaging, which is applied to the electricity sector and reflects the 
irreversibility of decisions. Capital vintaging tracks the amount of electricity generation capacity 
available from previous years, remembering for each “vintage” (i.e. time period of installation) 
the technical features of the capacity (i.e. amount capital vs. labor vs. fuel, etc.).  

This CGE model is then incorporated into the two-stage stochastic dynamic program (DP) to 
create the DP-CGE model. The deterministic CGE model is a myopic recursive–dynamic model 
that solves for each time period sequentially. For a given period, the original CGE model 
chooses an electricity technology mix (and all other outputs) based on the current-period 
maximization of consumption. However, here we are interested in the technology mix in each 
period that maximizes the current period consumption plus the expected future consumption, and 
so utilize the dynamic programming framework to take that into account.  

The underlying CGE model continues to run in 5-year time steps, but the time horizon is 
divided into two decision stages for the DP. Stage 1 includes CGE periods 2015 and 2020 while 
Stage 2 includes 2025 and 2030 (and 2010 is the benchmark year). In each stage, the DP decisions 
are made for the two CGE periods included in that stage. In the underlying CGE model, the 
decision-maker is a hypothetical central planner of the economy. Although the optimal electricity 
mix is solved as if from the perspective of a central planner, one can think of it as the aggregate 
result of individual and identical firms maximizing their own profits according to their production 
functions, input costs and the policy constraints imposed by the central planner. The first decision 
about the non-carbon technology’s share of new electricity in each stage is exogenously imposed 
on the CGE model to explore a wide range. The second decision to reduce Stage 1 emissions via a 
“self-imposed” emissions cap provides a price signal in the CGE model that affects the operation 
of existing electricity capacity as well as the optimal share of the non-carbon technology in new 
electricity. Including this second decision in the DP provides a price signal (the shadow price, i.e. 
carbon price, of the self-imposed emissions constraint) for the CGE model to endogenously react 
to by changing the operation of vintage capacity to reduce near-term emissions. Ultimately this 
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emissions reduction decision variable affects choices of coal vs. natural gas, conventional vs. 
non-carbon, and building new vs. altering the operation of existing capacity. 

The DP-CGE model is solved in two steps. First, the CGE model is run for each stage for each 
possible scenario (each combination of decision and uncertainty realization), calculating the total 
consumption for each stage. The decisions and uncertainty realizations are exogenously imposed 
on the CGE model, which then endogenously chooses all other output quantities, including the 
shares of natural gas and coal generation. Second, backward induction is performed by the DP 
using the consumption values for each stage and the probabilities of the uncertainty realizations. 
The DP follows the classic act-then-learn framework: Stage 1 decisions are made under uncertainty 
in technology cost and policy, which are revealed before the Stage 2 decision is made. In effect, the 
CGE model performs intraperiod optimization and the DP performs interperiod optimization.  

3. UNCERTAINTIES 
Market demand for non-carbon technology is determined by both its internal cost and how the 

external economic environment affects costs of competing fossil technologies. Uncertainty in 
both of these factors is explored. Within the CGE model, the decision of which technologies to 
build is driven by the relative costs of the technologies. As mentioned previously, the cost of the 
non-carbon technology is initially set in the model by a markup, which is the cost relative to the 
conventional fossil generation against which it competes. The markup is initially set to 1.5, indicating 
that the non-carbon technology is 50% more expensive than conventional fossil electricity in the 
base year of the model. To model uncertainty in the Stage 2 cost of the non-carbon technology, the 
markup is also set at the beginning of Stage 2 and its value made uncertain. Any change in the 
markup from Stage 1 to Stage 2 is driven by the cost of the non-carbon technology, as the cost of 
the base conventional generation is held constant for the markup calculation. The DP-CGE model 
uses a discrete approximation of the continuous uncertainty in future cost of the non-carbon 
technology. Specifically, a discrete three-point distribution is assumed with three non-carbon 
technology cost scenarios: (1) a markup of 1: non-carbon generation costs the same as conventional 
generation (MU1); (2) a markup of 1.5: the non-carbon generation continues to cost 50% more 
than conventional generation (MU1.5); and (3) a markup of 3: the non-carbon generation costs 
triple conventional generation (MU3). These markup values are informed by recent studies that 
have conducted expert elicitations of the costs of advanced generation technologies. These studies 
elicit technology costs for 2030 (which can be used for the Stage 2 markup in the DP-CGE model). 
Looking at the cumulative probability distribution for CCS capital costs from Chan et al. (2010), 
we can estimate the 5th, 50th and 95th percentiles. Putting the capital costs numbers into an LCOE 
calculation (Morris et. al 2010) provides markup values for those percentiles. The 5th, 50th and 95th 
percentile markups are 1.06, 1.63, and 2.82. Baker et al. (2009) also provides a combined 
probability distribution of the expert elicitations for CCS. Markups estimated from figures in that 
paper are 1.075, 1.35, and 1.45 for the 5th, 50th and 95th percentile. For other studies that do not 
provide a cumulative probability distribution, we can look at the probability range of expert 
judgments and translate into markups using the Morris et al. (2010) LCOE calculation. For 
nuclear, estimating values from!Anadon et al. (2012) gives markups ranging from 0.68 to 4.01. 
For solar, estimating values Bosetti et al. (2012) gives markups of 0.67 to 4.18.  
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With these studies in mind (summarized in Table 1), it is assumed that markups of 1, 1.5 and 
3 are reasonable approximations for the 5th, 50th and 95th percentiles for the cost of the 
generalized non-carbon technology for this model. Using the extended Pearson-Tukey discrete 
approximation method (Keefer and Bodily, 1983), the base probabilities of high (MU3), medium 
(MU1.5) and low (MU1) outcomes are assigned to be 0.185, 0.63, and 0.185 respectively. 
Additional mean-preserving probability spreads are also explored. In Section 5, stochastic 
technological learning is then incorporated by having the Stage 1 non-carbon generation shares 
determine the probabilities of the Stage 2 non-carbon technology cost scenarios.  

At the same time that the cost of non-carbon technology is uncertain, the external economic 
environment causes the cost of competing fossil technologies to be uncertain as well, which in 
term creates uncertainty in the demand for non-carbon technology. Here we simulate this 
external uncertainty as a climate policy that impacts the demand for non-carbon technology by 
affecting the cost of conventional fossil technology through a carbon price. Uncertain fossil fuel 
prices, fossil resources, fossil extraction technology, other regulations affecting fossil 
technology, and other factors create to differing degrees the same external uncertainty we 
demonstrate with a climate policy. We make the Stage 2 emissions policy uncertain. The 
potential policies are defined as caps on the cumulative emissions from the electric power sector 
from 2015 to 2030. A discrete three-point probability distribution with three policy scenarios is 
assumed: (1) no policy; (2) an emissions cap of 20% below cumulative no policy emissions 
(−20% Cap); and (3) an emissions cap of 40% below cumulative no policy emissions (−40% 
Cap). In order to focus on technology cost and learning uncertainty, for this paper each policy is 
assumed to be equally likely and assigned a probability of 1/3 (for a deeper exploration of policy 
uncertainty, see Morris et al., 2014).  

Table 1. Markups derived from expert elicitation studies. 

  CCS CCS Solar Nuclear 
  (Chan et al., 2010) (Baker et al., 2009) (Bosetti et al., 2012) (Anadon et al., 2012) 

5th percentile OR Min 1.06 1.075 0.67 0.68 
50th percentile 1.63 1.35     
95th percentile OR Max 2.82 1.45 4.18 4.01 
Note: The percentiles apply to both CCS estimates while the Min and Max apply to solar and nuclear. 

Table 2. Uncertain non-carbon cost scenarios. 

Scenario 
Probability of Stage 2 Markup 

Expected Markup Variance 1 1.5 3 
MU uncert 1 0.058 0.800 0.143 1.69 0.335 
MU uncert 2 0.185 0.630 0.185 1.69 0.463 
MU uncert 3 0.328 0.440 0.233 1.69 0.560 
MU uncert 4 0.328 0.440 0.233 1.69 0.605 
MU uncert 5 0.403 0.340 0.258 1.69 0.680 
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4. RESULTS UNDER NON-CARBON COST UNCERTAINTY WITHOUT 
TECHNOLOGICAL LEARNING 
First we explore the impact of uncertainty in the cost of the non-carbon technology without 

technological learning. Four policy scenarios are considered: (1) certain −40% cap, (2) certain 
−20% cap, (3) certain no policy, and (4) uncertain policy in which each policy is assumed to be 
equally likely (1/3 probability each)2. For each of these four policy scenarios, eight non-carbon 
cost scenarios are considered. The first three scenarios assume that the Stage 2 non-carbon 
cost—the markup (MU)—is known with certainty to either be 3, 1.5, or 1. The remaining five 
non-carbon cost scenarios assume uncertainty in the markup at different mean-preserving 
spreads (see Table 2). Each of these five scenarios result in the same expected markup (e.g. 
preserve the mean of the distribution), but different variances. In this way, we can isolate the 
effect of greater uncertainty, distinct from the effects of higher or lower average costs. 

In the results of this section, the Stage 2 cost of the non-carbon technology and the Stage 2 
policy (external economic environment) affect Stage 1 decisions through two main avenues. 
First, they influence the amount of non-carbon technology desired in Stage 2, which may be 
constrained if the non-carbon growth rate from Stage 1 to Stage 2 is limited. In this work we 
assume that the maximum rate of non-carbon growth between stages allows the share of 
non-carbon in new investment to increase by no more than 50 percentage points from Stage 1 to 
Stage 2 (for example, if 20% of investment is in the non-carbon technology in Stage 1, then the 
max non-carbon share in Stage 2 is 70%). If the non-carbon technology will be lower cost in 
Stage 2, more non-carbon investment in Stage 1 is desirable because it will allow a greater share 
in Stage 2. This increased non-carbon investment could lead to lower Stage 1 emissions, even 
though otherwise it would be desirable to emit more in Stage 1 and less in Stage 2 when it is less 
costly to do so. Second, the uncertainty factors affect the costs of emissions reductions in Stage 
2, which in turn affects the optimal level of action in Stage 1. If it is going to be costly to reduce 
emissions in Stage 2 because the cost of non-carbon generation is high, then it will be desirable 
to reduce more emissions in Stage 1 in order to reduce the Stage 2 emissions reduction burden. 
On the other hand, if the cost to reduce emissions in Stage 2 is going to be low because 
non-carbon generation is low cost, then fewer reductions need to be pursued in Stage 1. 

Table 3 shows the optimal Stage 1 electricity investment and emissions reduction strategies 
under the different non-carbon cost scenarios and policy scenarios. In all cases, new electricity 
investments are responsible for approximately 40% of all generation. These results are explored 
in the following sections. 

4.1 Deterministic Non-Carbon Technology Cost 

First, let us focus on the scenarios when the non-carbon cost is known with certainty and is 
either higher (MU3) or lower (MU1) than the base assumption of 1.5. In order to meet the stringent

                                                
2 The case in which there is a 1/3 probability of each policy is used to illustrate the impact of policy uncertainty. One 

should bear in mind that is just one example and that different assumptions about the probability distribution will 
impact results, as demonstrated in Morris et al. (2015). 
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Table 3. Optimal Stage 1 strategies under non-carbon cost and policy scenarios. 
   Markup Scenario 
Policy 
Scenario 

Stage 1 Decision Certain 
MU3 

Certain 
MU1.5 

Certain 
MU1 

MU uncert 
1 

MU uncert 
2 

MU uncert 
3 

MU uncert 
4 

MU uncert 
5 

Certain  
−40% Cap 

Share of New 
Investment 

Non-carbon 15% 35% 65% 35% 35% 35% 35% 35% 
Gas 78% 51% 18% 51% 51% 51% 51% 51% 
Coal 7% 14% 17% 14% 14% 14% 14% 14% 

Reductions Emissions -35% -24% -16% -24% -24% -24% -24% -24% 

Certain  
−20% Cap 

Share of New 
Investment 

Non-carbon 0% 5% 45% 5% 5% 0% 0% 0% 
Gas 82% 65% 30% 65% 65% 82% 82% 82% 
Coal 18% 30% 25% 30% 30% 18% 18% 18% 

Reductions Emissions -13% -6% -9% -6% -6% -13% -13% -13% 

Certain  
No Policy 

Share of New 
Investment 

Non-carbon 0% 0% 45% 0% 0% 0% 0% 0% 
Gas 63% 63% 30% 63% 63% 63% 63% 63% 
Coal 37% 37% 25% 37% 37% 37% 37% 37% 

Reductions Emissions 0% 0% -9% 0% 0% 0% 0% 0% 

Policy 
Uncertainty  
(1/3 Probability 
Each Policy)  

Share of New 
Investment 

Non-carbon 5% 20% 55% 20% 20% 15% 15% 15% 
Gas 7% 17% 21% 17% 17% 15% 15% 15% 
Coal 88% 63% 24% 63% 63% 70% 70% 70% 

Reductions Emissions -24% -18% -11% -18% -18% -18% -18% -18% 

 Note: The MU uncert scenarios are defined in 2. They all have the same mean and are ordered by increasing variance (i.e. higher probabilities of the low and 
high cost outcomes). MU uncert 2 uses the base Pearson-Tukey probabilities.
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−40% cap when the non-carbon technology is expensive (MU 3), it is best to rely on natural gas 
and to consume less electricity overall due to the high prices of electricity (since both non-carbon 
and conventional generation are expensive). In that case, in Stage 1 it will be optimal to invest in 
15% non-carbon, 78% natural gas and 7% coal generation and reduce emissions by 35% below 
reference. Significant Stage 1 emissions reductions are optimal in this case because emissions 
reductions are more costly in Stage 2 due to the high non-carbon cost. Therefore, lower Stage 1 
emissions ease the burden of reducing emissions in Stage 2. When the markup is 1.5, the optimal 
Stage 1 decision is a new electricity investment mix of 35% non-carbon, 51% natural gas and 14% 
coal and emissions reductions of 24%. When the markup is 1, more non-carbon investment is 
optimal in Stage 1—65% non-carbon, 18% natural gas and 17% coal, and 16% emissions 
reductions. Fewer Stage 1 emissions reductions are required in this case since emissions can be 
easily reduced in Stage 2 by using an abundance of low-cost non-carbon generation, which will not 
be limited in growth because sufficient investment was made in Stage 1.  

In the −20% cap and no cap scenarios, a markup of 3 leads to no non-carbon investment and a 
markup of 1 leads to 45% non-carbon investment in Stage 1. Even when there is no policy, if the 
Stage 2 markup is 1 it is optimal to make significant investments in non-carbon generation in 
Stage 1 to enable further expansion in Stage 2. Relying more on low-cost non-carbon electricity 
in Stage 2 frees up coal and natural gas resources for use in other sectors at a lower price (since 
the demand for these resources from the electricity sector decreases).  

In the uncertain policy scenario, defined here as 1/3 probability of each policy, when the 
markup is 3 the optimal Stage 1 investment in non-carbon is 5%, in contrast to 15% under the 
−40% cap case and 0% under the other policy cases. Similarly, the optimal Stage 1 emissions 
reductions are 24%, in contrast to 35% reduction under the −40% cap and 13% reduction under 
the −20% cap. This hedging strategy protects against the particularly high risk associated with 
there being a −40% cap and a markup of 3, which would make it very expensive in Stage 2 to 
meet the cap (if enforced) due to costly or uneconomical non-carbon generation. The 24% 
emissions reduction hedge in Stage 1 helps to ease the burden of expensive emissions reductions 
in Stage 2 that may be required depending on the policy ultimately implemented. When the 
markup is 1.5, the optimal Stage 1 decision is an electricity mix of 20% non-carbon, 63% natural 
gas and 17% coal and emissions reductions of 18%. When the markup is 1, the optimal Stage 1 
strategy is 55% non-carbon, 24% natural gas and 21% coal and 11% emissions reductions. In 
that case, Stage 1 non-carbon investment has value regardless of the policy that is ultimately 
implemented because it allows non-carbon investment to grow without limit in Stage 2 if it turns 
out to be low-cost. Fewer Stage 1 emissions reductions are required in that case since emissions 
can be easily reduced in Stage 2 by using an abundance of low-cost non-carbon. 

4.2 Uncertain Non-Carbon Technology Cost  

Next, let us consider the scenarios in which the non-carbon cost is uncertain (also in Table 3). 
If it is certain there will be a −40% cap or certain there will be no cap, non-carbon cost 
uncertainty does not affect the optimal Stage 1 strategy. For a wide range of distributions with 
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different variances, the strategy is the same as when the markup is 1.5 with certainty. Similarly, 
if it is known that there will be a −20% cap or if the policy is uncertain with 1/3 probability each, 
lower variance distributions (MU uncert 1, 2) result in the same strategy as when the markup is 
known to be 1.5. However, the higher variance probability distributions of cost (MU uncert 3, 4, 
5) result in less non-carbon—0% (instead of 5%) in the −20% cap case and 15% (instead of 
20%) in the uncertain policy case. In these cases, the probability that the markup is 3 is too high 
to warrant as much investment in non-carbon in Stage 1. It is a safer bet to invest in less 
non-carbon in Stage 1 (since using non-carbon in Stage 2 many not be reasonable depending on 
the realized cost).  

These results show very weak or no impact from uncertainty in the non-carbon cost on the 
optimal Stage 1 strategy. Most cases with non-carbon cost uncertainty result in the same strategy 
as the strategy when a 1.5 markup is certain (i.e. the “middle” strategy). There are some 
instances when that is not the case and the non-carbon cost uncertainty results in less non-carbon 
investment in Stage 1 than the “middle” strategy, but only 5% less. Other probability 
distributions for the non-carbon cost markup that are not mean-preserving may impact the Stage 
1 strategy, but this would be caused in part by the higher or lower expected costs. Ultimately, the 
effect of non-carbon cost uncertainty, in terms of the causal mechanisms discussed here, is small. 

5. RESULTS UNDER NON-CARBON COST UNCERTAINTY WITH STOCHASTIC 
TECHNOLOGICAL LEARNING 
The previous section showed that, without technological learning, uncertainty in the 

non-carbon cost has a very weak effect on the Stage 1 optimal decisions, given the experimental 
design explored. There is, however, another potential mechanism through which such uncertainty 
can have an impact: learning-by-doing and scale effects can alter the value of near-term 
investment by accounting for additional benefits. If there is technological learning, such that the 
expected future cost of the technology decreases as the amount of near-term investment in that 
technology increases, then near-term investments could reduce future costs, providing greater 
flexibility and ease in meeting future policy. In this section, we explore how the inclusion of 
technological learning, in a stochastic setting, influences near-term optimal investment decisions.  

Specifically, we explore the following question: how does the optimal Stage 1 strategy change 
when the amount of non-carbon investment in Stage 1 affects the probabilities of the non-carbon 
cost markup in Stage 2? In contrast to the deterministic learning curves commonly found in the 
literature, here we investigate technological learning in a stochastic framework in which a given 
amount of capacity investment changes the probabilities of future technology costs.  

5.1 Stochastic Technological Learning Formulation 

The representation of stochastic technological learning in the model is informed by 
learning-by-doing (LBD) curves (also known as experience curves), which represent how the 
cost of a technology declines as a function of cumulative production or capacity. For electricity 
generation technologies, LBD curves are often developed for categories of technologies based on 
cumulative installed capacity (Clarke et al., 2008). LBD formulations are founded upon the 
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concept that technology improves and costs decline as cumulative experience with the 
technology increases and repetition and familiarity leads to greater efficiency. Empirical research 
using data on cumulative installed capacities and technology costs has been used to develop 
learning curves for electricity technologies (e.g., Ibenholt, 2002; Colpier and Cornland, 2002; 
Yeh and Rubin, 2007). Such studies can be used in this work to calibrate the technological 
learning parameters to reflect the empirical relationship between cumulative installed capacity 
and technology cost reductions.  

In the LBD literature, LBD curves are often expressed as power functions, for example: 
Cq = C0 * q-b  (2) 

where Cq is the cost per unit q, C0 is the cost for the first unit, q is the cumulative capacity or 
production (experience over time) and b is a so-called experience index. The value 2−b is called 
the progress ratio (PR). If an experience curve shows a progress ratio of 85 percent it means that 
cost declines by 15 percent for each doubling of cumulative capacity. Some studies use the term 
learning rate (LR), defined as (100-PR). Studies show that progress ratios vary significantly 
across technologies. For energy technologies, studies have shown that the progress ratio varies 
from 80 to more than 100 percent3 (Neij, 1997). 

Here, we propose a model of stochastic technological learning in which the Stage 1 
non-carbon shares affect the probabilities of the Stage 2 non-carbon cost scenarios. For the 
three-point discrete distributions used here, the model is parameterized so that as the amount of 
Stage 1 non-carbon increases, the probability of a low Stage 2 markup (P0

L) increases, and the 
probability of a high Stage 2 markup (P0

H) decreases. Specifically, 

P{MU=1} = P0
L + BS1 * πL (3) 

P{MU=3} = P0
H + BS1 * πH (4) 

P{MU=1.5} = 1 - P{MU=1} - P{MU=3} (5) 
where BS1 represents the Stage 1 non-carbon share, which corresponds to a cumulative non-carbon 
capacity at the end of Stage 1. For a starting distribution, using the extended Pearson-Tukey method, 
P0

L and P0
H are 0.185. The values of the technological learning parameters πL  and πH  can then 

be calibrated to be consistent with the LBD literature.  
Calibration requires several informational components: technology cost in 2010, capacity in 

2010 and 2020, and a progress ratio. Because the model defines the cost of the non-carbon 
technology in terms of a markup over the conventional technology, those informational 
components are required for both a conventional and a non-carbon technology. For our 
calculations we use natural gas generation for the conventional technology and renewables for 
the non-carbon technology. Natural gas is assigned a progress ratio (PR) of 90% (consistent with 
e.g. Colpier and Cornland, 2002; McDonald and Schrattenholzer, 2001) and renewables are 
assigned a PR of 80% (consistent with e.g. Ibenholt, 2002; van der Zwaan and Rabl, 2003; 
                                                
3 A progress ratio of over 100% reflects costs increasing despite growing capacity, and is typically explained by 

improvements made in areas such as performance, efficiency, safety, etc. 
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McDonald and Schrattenholzer, 2001). 2010 capacity and projected 2020 capacity for gas and 
renewable generation are from EIA (2013). 2010 costs for gas and renewables are defined as the 
levelized cost of electricity (LCOE), which is the price of electricity per kWh taking into account 
capital, operating, fuel, and other costs. LCOE for renewables is set such that the markup of 
renewables over gas is 1.69, matching the expected markup using the base Pearson-Tukey 
probabilities. The LCOE for 2020 for gas and renewables is then calculated—using the learning 
curve, not the model.4 Based on the amount of capacity added since 2010 and the progress ratio, 
the 2020 LCOE is reduced compared to the 2010 LCOE.  

Figure 1 shows the change in costs for the technologies that result from this simple learning 
curve calculation. More renewable capacity is expected to be added during that time period than 
natural gas capacity and renewables also have a higher learning rate (20% vs. 10%), which 
results in the renewable cost decreasing by 6.2% and the natural gas cost decreasing by 1.6%. 
Typical LBD studies focus on the cost reduction of a single technology (e.g., line A in Figure 1), 
but here we are focused on the reduction in the cost of the non-carbon technology relative to the 
cost of conventional generation. Dividing the 2010 cost for renewables by the 2010 cost for 
natural gas yields the markup of 1.69. Dividing the 2020 projected cost for renewables by the 
2020 projected cost for natural gas yields a markup of 1.61, representing a 4.5% decrease in the 
relative cost of the non-carbon technology from 2010 to 2020.  

The change in the markup from 1.69 to 1.61 corresponds to renewable generation capacity 
increasing from 126 gigawatts (GW) to 154 GW. In the DP-CGE model, different Stage 1 
non-carbon investment decisions will result in different levels of cumulative non-carbon capacity  

  
Figure 1. Changing costs of technologies using learning curve. 

                                                
4 This learning curve approach does not explicitly account for changing input prices over time (e.g. fuel, capital, 

labor, etc.).  
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at the end of Stage 1. For example, a 25% share of non-carbon in Stage 1 investment corresponds 
to approximately 155 GW of capacity in 2020. Since the base Pearson-Tukey probabilities and 
zero non-carbon investment in Stage 1 result in an expected markup of 1.69, 25% non-carbon 
investment in Stage 1 should be calibrated to result in markup probabilities that have an expected 
markup of 1.61. So the technological learning parameters (πL  and πH) should be set such that the 
expected markup when you chose 25% non-carbon in Stage 1 is 1.61. A set of parameter values 
that achieve this are πL  = 0.3 and πH  = 0.1. The resulting model of stochastic technological 
learning is illustrated in Table 4 using representative Stage 1 investment decisions. Less 
non-carbon investment in Stage 1 leads to higher probabilities of MU3 while more non-carbon 
investment in Stage 1 leads to higher probabilities of MU1.  

In the DP-CGE model, Stage 1 decisions about electricity technologies and emission 
reductions must be made without knowing which of the three non-carbon costs will be realized 
in Stage 2, but rather with expectations about which costs are most likely and an understanding 
that the cost will be driven by near-term investments in non-carbon generation.  

Table 4. Stochastic technological learning: probability of Stage 2 non-carbon cost markup given Stage 1 
non-carbon share. 

Stage 1 Non-carbon Share 
Stage 2 Non-Carbon Cost Markup 

Expected Markup 1 1.5 3 
0% 0.185 0.630 0.185 1.69 
5% 0.198 0.623 0.180 1.67 

10% 0.210 0.615 0.175 1.66 
15% 0.223 0.608 0.170 1.64 
20% 0.235 0.600 0.165 1.63 
25% 0.248 0.593 0.160 1.61 
30% 0.260 0.585 0.155 1.60 
35% 0.273 0.578 0.150 1.58 
40% 0.285 0.570 0.145 1.57 
45% 0.298 0.563 0.140 1.55 
50% 0.310 0.555 0.135 1.54 
55% 0.323 0.548 0.130 1.52 
60% 0.335 0.540 0.125 1.51 
65% 0.348 0.533 0.120 1.49 
70% 0.360 0.525 0.115 1.48 
75% 0.373 0.518 0.110 1.46 
80% 0.385 0.510 0.105 1.45 
85% 0.398 0.503 0.100 1.43 
90% 0.410 0.495 0.095 1.42 
95% 0.423 0.488 0.090 1.40 

100% 0.435 0.48 0.085 1.39 
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5.2 Results with Stochastic Technological Learning 

Table 5 shows the optimal Stage 1 strategies for four policy scenarios when technological 
learning is modeled, along with the optimal strategies from the previous section without 
technological learning or cost uncertainty. In the table, the expected markup for the technological 
learning cases can be used to identify the effective probabilities for the markups in Table 4. The 
inclusion of technological learning does not change the Stage 1 strategy for the deterministic 
policies of −20% cap or no cap. However, if a −40% cap is known with certainty or if the policy 
is uncertain with each policy equally likely, technological learning drastically changes the 
strategy. For the deterministic −40% cap scenario, a 95% non-carbon share and a 19% emissions 
reduction are optimal in Stage 1 (vs. 35% non-carbon and 24% emissions reductions in the 
absence of technological learning). When the policy is uncertain, a 65% non-carbon share and a 
20% emissions reduction are optimal (vs. 20% non-carbon and 18% emissions reductions in the 
absence of technological learning). In these cases, the incremental cost of more non-carbon 
investment in Stage 1 is offset by the additional benefit of reducing the probability of having a 
markup of 3 under a −40% cap policy, which would be very costly (if enforced).  

Table 5. Optimal Stage 1 strategies with stochastic technological learning for the non-carbon technology. 
 Expected 

Markup (MU) 
Share of New Investment Emissions 

Reductions Non-Carbon Coal Gas 
Certain −40% Cap 

Certain MU3 3.00 15% 7% 78% -35% 
Certain MU1.5 1.50 35% 14% 51% -24% 
Certain MU1 1.00 65% 17% 18% -16% 
Uncert MU No Learn* 1.69 35% 14% 51% -24% 
Uncert MU Learn 1.40 95% 3% 2% -19% 

Certain −20% Cap 
Certain MU3 3.00 0% 18% 82% -13% 
Certain MU1.5 1.50 5% 30% 65% -6% 
Certain MU1 1.00 45% 25% 30% -9% 
Uncert MU No Learn* 1.69 5% 30% 65% -6% 
Uncert MU Learn 1.67 5% 30% 65% -6% 

Certain No Policy 
Certain MU3 3.00 0% 37% 63% 0% 
Certain MU1.5 1.50 0% 37% 63% 0% 
Certain MU1 1.00 45% 25% 30% -9% 
Uncert MU No Learn* 1.69 0% 37% 63% 0% 
Uncert MU Learn 1.69 0% 37% 63% 0% 

Policy Uncertainty (1/3 Each Policy) 
Certain MU3 3.00 5% 7% 88% -24% 
Certain MU1.5 1.50 20% 17% 63% -18% 
Certain MU1 1.00 55% 21% 24% -11% 
Uncert MU No Learn* 1.69 20% 17% 63% -18% 
Uncert MU Learn 1.49 65% 18% 17% -20% 

Note: Uncert MU No Learn assumes base Pearson-Tukey probabilities and corresponds to the MU uncert 2 case in 
Table 2. 
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In both the −40% cap and uncertain policy cases, the strategy with technological learning 
involves more non-carbon investment than when it is known for certain that the markup will be 1 
(95% vs. 65% for −40% cap and 65% vs. 55% for policy uncertainty). With the stochastic 
technological learning, the justification for the additional Stage 1 non-carbon investment is to 
bring the expected non-carbon cost down for Stage 2. You would not make the additional 
investments if you were certain the cost would be low regardless of actions. In other words, if 
low future costs are “free”, you do not need to do as much in Stage 1. However, if you can pay to 
increase the probability of low future costs by investing more now, it may be worth it to do so. 
Lower future costs provide greater flexibility and ease in meeting future policy. This flexibility is 
particularly valuable as the probability of a stringent emissions cap increases.  

Similarly, if technological learning is deterministic, less non-carbon investment is optimal in 
Stage 1. Under deterministic technological learning, near-term investments determine the actual 
future markup instead of the probabilities of future markups. Deterministic technological 
learning is modeled by taking the expected markups from the stochastic technological learning 
formulation (Table 4) and assuming that markup value occurs with certainty if the necessary 
amount of Stage 1 investment is made. For the uncertain policy case, the optimal decision with 
deterministic technological learning is 25% non-carbon investment, lower than the 65% that is 
optimal with stochastic technological learning. If you know exactly how your investments will 
reduce future costs, you will only invest the minimum amount needed to achieve the desired cost 
reduction. In the stochastic case, you do not know how effective your investments will be at 
reducing future costs, and you have incentive to invest more in order to increase the chances of a 
low-cost outcome. This is true because increasing marginal costs produce an asymmetric loss 
function such that one should try to avoid the situation of high non-carbon costs and an external 
economic environment that creates high demand for non-carbon technology (e.g. a stringent 
emissions cap). With uncertain learning, more near-term non-carbon investment is the best way 
to lower the probability of ending up in that particularly undesirable situation.  

Ultimately, whether or not more near-term investment is justified depends on expectations 
about the non-carbon cost distribution, which is determined by the technological learning 
parameters, as well as the expected future economic environment (e.g. future policy). Balancing 
these expectations provides the optimal hedge strategy.  

5.3 Sensitivity to Stochastic Technological Learning Rate 

In this section sensitivity analysis is conducted on the technological learning parameters πL  and 
πH  in order to further explore the impact of technological learning on the results. The parameters 
πL  and πH  determine the probabilities of the markups that result from different Stage 1 non-carbon 
decisions (see equations 3–5). These two parameters determine the magnitude of the technological 
learning—higher values lead to larger impacts on the probabilities and larger reductions in the 
expected markup for a given Stage 1 non-carbon decision.  

The magnitude of the technological learning can be translated to learning rates (i.e. the 
percent reduction in cost for each doubling of cumulative capacity). The base technological 
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learning parameters used in the previous section (πL  = 0.3 and πH  = 0.1) were calibrated to 
learning-by-doing literature estimates of learning rates of 20% for non-carbon generation 
and10% for conventional generation. In the same manner, we can identify technological learning 
parameters that correspond to different learning rates for the non-carbon technology (holding the 
conventional generation learning rate at 10%). Table 6 illustrates values of parameters πL  and 
πH  that correspond to learning rates covering the typical range in the literature.5 The higher the 
learning rate, the more expected costs are reduced.  

Using these parameter values we can explore how different learning rates affect the optimal 
Stage 1 decisions. First, consider the scenario when policy is known for certain to be a −40% cap 
(Figure 2). The 0% learning rate is equivalent to no technological learning—the cost stays 
constant regardless of the non-carbon investment in Stage 1. As the learning rate increases, more 
non-carbon is optimal in Stage 1. This is because with higher learning rates, Stage 1 non-carbon 
investments are more valuable as they have larger impacts on the probabilities of future markups 
and result in larger reductions in the expected markup. Essentially, higher technological learning 
rates mean you get “more bang for your buck” of non-carbon investment in Stage 1, and 
therefore there is incentive to invest more in non-carbon generation. With high enough 
technological learning rates (20–30%), the optimal share of non-carbon in Stage 1 increases to 
95%, which makes the probability of MU=1 very high (47–73%), and the probability of MU=3 
very low (1.4%–9%). The same effect, though weaker, is seen when the policy is uncertain 
(defined here as 1/3 probability of each policy) (Figure 3).  

For a −40% cap, the optimal Stage 1 non-carbon share differs from the strategy without 
technological learning at a learning rate of 10%. A learning rate of 15% leads to a different 
decision when the policy is uncertain. Both of these rates are lower than most estimates from the 
literature of learning rates for advanced non-carbon technologies, which typically fall around  
20–25%. At those learning rates, technological learning has a significant impact on the optimal 
Stage 1 non-carbon share under these two policy scenarios.  

Under a −20% cap, a learning rate of at least 25% is required to change the optimal Stage 1 
non-carbon share, which jumps from 5% to 95%. With a 25% learning rate, 95% non-carbon 

Table 6. Technological learning parameters and learning rates (LR). 

πL  πH  LR 
0.000 0.000 0% 
0.001 0.001 5% 
0.050 0.050 10% 
0.100 0.100 15% 
0.300 0.100 20% 
0.540 0.100 25% 
0.575 0.180 30% 

 
                                                
5 There are other sets of parameter values that result in different probability distributions, but the same expected 

markup and therefore the same learning rates. The parameter values in Table 6 are therefore examples of values 
that correspond to a set of learning rates.  
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! !
Figure 2. Stage 1 shares of new electricity under 

a −40% Cap with different learning rates. 
Figure 3. Stage 1 shares of new electricity under 

policy uncertainty (1/3 probability each policy) 
with different learning rates. 
 

investment in Stage 1 results in about a 70% chance of a MU=1, a 9% chance of MU=3, and an 
expected markup of 1.29. At these probabilities, the cost of investing in more non-carbon in 
Stage 1 than is necessary to meet the cap is outweighed by the potential value of a markup of 1, 
which would allow compliance with the −20% cap at lower policy cost than if the markup turned 
out to be 1.5 or 3. Even when it is certain there will be no cap, a high enough learning rate 
encourages Stage 1 non-carbon investment. In that case, a learning rate of 30% changes the 
optimal Stage 1 non-carbon share from 5% to 95%. The cost of investing in non-carbon in Stage 
1 that is otherwise unnecessary is outweighed by the potential value of a markup of 1, which in 
this case would allow electricity to be generated from non-carbon at the same cost as 
conventional generation, thereby freeing up coal and gas resources for other uses in the economy 
at lower prices and increasing overall economic consumption and therefore social welfare.  

6. CONCLUSIONS 
Formally taking uncertainties into account in decision-making helps identify near-term 

investment strategies that hedge against the risks created by uncertainty. This work utilizes a 
unique modeling framework that represents decision-making under uncertainty with learning and 
the ability to revise decisions over time in a CGE model that represents the entire economy and 
can measure social welfare impacts. In the case of electricity investments under technology cost 
uncertainty and uncertainty in the future external economic environment (model here as 
uncertainty in future climate policy), the optimal hedging strategy involves investing in more 
non-carbon generation in the near-term than is otherwise necessary to meet near-term goals 
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alone. The amount of near-term investment depends on the probabilities of future outcomes and 
the ability to learn so that near-term investments reduce expected future technology costs. Morris 
et al. (2014) showed that in many cases of policy uncertainty Stage 1 investments in non-carbon 
generation make economic sense because they lower the expected costs of emissions reductions 
in Stage 2 and take into account potential constraints on the non-carbon technology growth rate 
between periods. A priori, one might expect uncertainty in the non-carbon technology cost to 
affect Stage 1 non-carbon decisions for the same two reasons, but that turned out not to be the 
case. At least for the cost and policy scenarios explored, cost uncertainty alone does not have a 
strong effect on Stage 1 strategy. 

However, including stochastic technological learning in which the share of non-carbon 
investment in the near-term affects the probabilities of future technology costs introduces a third 
motivation for near-term non-carbon investment: the ability to lower the expected cost of the non-
carbon technology in the future. Through learning and scale effects, the cost of technologies may 
decline with increased cumulative capacity. Depending on the rate of technological learning, as 
well as the expectations about future demand for the technology (driven by the future economic 
environment, such as future climate policy), the value of reducing expected future costs can 
provide strong motivation for additional non-carbon investment in the near-term. Results here 
suggest that under stochastic technological learning, additional near-term investment relative to 
when there is no learning can be justified at technological learning rates as low as 10–15%, and at 
the 20–25% rates commonly found in literature for advanced non-carbon technologies, significant 
additional near-term investment can be justified. Further, as the probability of high demand for the 
non-carbon technology increase (e.g. because the probability of a stringent cap increases), the 
value of near-term investments that reduce the expected future non-carbon cost also increases. 
Investors should account for this value when making investment decisions.  

From a modeling perspective, the inclusion of stochastic technological learning is a valuable 
step beyond the traditional learning-by-doing curves. While LBD curves capture the fact that 
changes in technology cost come at the expense of investments in the technology, they fail to 
capture the uncertainty surrounding how much investments will reduce future costs. The 
formulation presented here captures both of these effects, capturing the uncertain impact of 
investments on future costs by having investments affect the probability distribution of future 
costs. We find it can be socially optimal to invest more in non-carbon technology when the rate 
of learning is uncertain compared to the case where the learning rate is certain. The uncertain 
nature of technological learning encourages increased investments in order to lower the 
probability of a high cost outcome and increase the probability of a low cost outcome. Increasing 
marginal costs produce an asymmetric loss function that under uncertainty leads to more 
near-term non-carbon investment in attempt to avoid the situation of high non-carbon costs and 
an external economic environment that creates high demand for non-carbon technology. 

These results have policy implications. In the model setup, the benefits of technological 
learning are fully realized and taken into account by the central planner in identifying the optimal 
near-term strategy. However, in a more realistic industry structure where there is competition 
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and assuming technological learning benefits spillover to competitors or are not fully captured by 
the private sector investors, there may be underinvestment in non-carbon technologies compared 
to what is socially optimal. In this case, there may be need for government policy to encourage 
private investment in non-carbon technologies. Policies requiring the use of non-carbon 
technologies, demonstration projects, or tax incentives could be used in the near-term to 
encourage private investment in non-carbon technologies, and could help lower the expected cost 
of those technologies in the future.  
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