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Abstract: Drought is one of the most destructive natural disasters causing serious damages to human society, 
and studies have projected more severe and widespread droughts in the coming decades associated with 
the warming climate. Although several drought indices have been developed for drought monitoring, most 
of them were based on large scale environmental conditions rather than ecosystem transitional patterns to 
drought. Here, we propose using the ecosystem function oriented Normalized Ecosystem Drought Index 
(NEDI) to quantify drought severity, loosely related to Sprengel’s and Liebig’s Law of the Minimum for 
plant nutrition. Extensive eddy covariance measurements from 60 AmeriFlux sites across 8 IGBP vegetation 
types were used to validate the use of NEDI. The results show that NEDI can reasonably capture ecosystem 
transitional responses to limited water availability, suggesting that drought conditions detected by NEDI 
are ecosystem function oriented. The widely used Palmer Drought Severity Index (PDSI), on the other 
hand, does not have a clear relationship with ecosystem responses to drought conditions because ecosystem 
adaptation ability is not considered in PDSI calculation. 

1 This report is a chapter of Kuang-Yu Chang's doctoral dissertation. 
2 Department of Land, Air and Water Resources, University of California, Davis, California, USA.
3 Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
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1. Introduction
Drought is one of the most devastating natural disasters 
that can cause serious agricultural, economic and so-
cial impacts in the world (Wilhite, 2000). Several studies 
project increased aridity over land and more widespread 
droughts associated with the future warming climate 
(Mpelasoka et al., 2008; Feyen, 2009; Seager et al., 2007; 
2009; Dai, 2011). Therefore, it is imperative to define a 
proper drought measure that can objectively quantify 
drought characteristics, such as onset, severity and dura-
tion. Current drought measures often identify droughts as 
the departures of soil water balance from normal condi-
tions—such as the Palmer Drought Severity Index (PDSI) 
(Palmer, 1965), the self-calibrating PDSI (Wells et al., 
2004) and the Soil Moisture Deficit Index (SMDI) (Nara-
simhan and Srinivasan, 2005)—or as the deviations from 
normal precipitation patterns, such as the Standardized 
Precipitation Index (SPI) (McKee et al., 1993) and the 
Standardized Precipitation Evapotranspiration Index 
(SPEI) (Vicente-Serrano et al., 2010; Beguería et al., 2014). 
Although the drought indices cited above can provide 
practical information for drought monitoring, those ap-
proaches are based on large-scale, controlled environmen-
tal conditions rather than specific ecosystem responses to 
limited water availability. Therefore, drought conditions 
identified by those drought indices may misrepresent actu-
al ecosystem behavior, since ecosystems can have various 
adaptation and acclimation mechanisms against limited 
water availability (Lu and Zhuang, 2010; Liu et al., 2011). 
These mechanisms are related to the issue that a particular 
ecosystem found at any location may represent an assem-
blage of species that are in their fundamental ecological 
niche (Peterson, 2003), which already includes historical 
climatological conditions such as periodic droughts. Here, 
we propose an ecosystem-function-oriented Normalized 
Ecosystem Drought Index (NEDI) to quantify drought 
severity. This method is based on detecting variational sig-
nals in normalized evapotranspiration strength1 through 
a modified Variable Interval Time Averaging (VITA) 
technique traditionally used for turbulence studies (Black-
welder and Kaplan, 1976). The general concept is inspired 
by Sprengel’s and Liebig’s Law of the Minimum for plant 
nutrition (van der Ploeg et al., 1999). We examined the 
applicability of NEDI with evapotranspiration field mea-
surements from 60 eddy covariance towers across 8 dif-
ferent vegetation types defined by the International Geo-
sphere–Biosphere Programme classification (IGBP). The 
drought conditions suggested by PDSI were also analyzed 
in the same fashion to compare the differences between 
NEDI and PDSI.

1 Normalized evapotranspiration strength is defined as the ratio 
between evapotranspiration and potential evapotranspiration.

2. Methodology

2.1 Normalized Ecosystem Drought Index 
(NEDI) 

Similar to Vicente-Serrano et al. (2010), we use the dif-
ference between monthly precipitation (P) and month-
ly potential evapotranspiration (PET) to estimate water 
availability (W) in ecosystems. However, we represent 
water supply with total precipitation collected in the pre-
vious month instead of the value in the current month to 
account legacy effects for precipitation become an avail-
able water source. Therefore, the water availability for the 
month i can be represented as

which is positive with water surplus and vice versa, ne-
glecting groundwater storage and runoff. The monthly 
NEDI is then defined by normalizing the Wi series with 
the maximum water surplus or deficit value shown in the 
Wi series for each ecosystem, which can be represented as

The NEDI defined above can quantify the water availabil-
ity at each site from –1 (driest condition) to 1 (wettest 
condition). 
The Thornthwaite PET (Thornthwaite, 1948), which re-
quires only the mean monthly surface air temperature and 
latitude, was used to estimate the monthly water demand 
required for NEDI calculation. Although limitations have 
been found in using the Thornthwaite PET (Jensen et al., 
1990; Donohue et al., 2010; van der Schrier et al., 2011), 
Dai (2011) showed that using the more sophisticated Pen-
man-Monteith PET only exhibits limited effects in the 
PDSI calculation. Therefore, the Thornthwaite PET was 
used in our calculation to bypass the extensive amount of 
data required for using the Penman-Monteith PET.

2.2 Modified Variable Interval Time 
Averaging (VITA)

Based on a running variance concept, the VITA tech-
nique (Blackwelder and Kaplan, 1976) has been widely 
applied to detect turbulence characteristics in unsteady 
flows. The localized variance used in VITA for each time 
interval T is calculated as

where p and t stands for detection parameter and obser-
vation time, respectively. When the streamwise velocity 
is used for the detection parameter, turbulence patterns 
are then identified if rapid changes are detected in the lo-
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calized variance, suggesting the existence of high velocity 
fluctuations. 
We extend this running variance concept to ecosystem 
drought monitoring by labeling the detection parame-
ter with the corresponding NEDI, then sorting by NEDI 
values in place of the time domain used in the original 
VITA. This modified VITA is defined as

where i and N are the ith NEDI and the analyzed window 
size, respectively. The crop coefficient K c , defined as the 
ratio between actual evapotranspiration and potential 
evapotranspiration (Doorenbos and Pruitt, 1977; Al-
len et al., 1998) and the water use efficiency (WUE) de-
fined as the Net Ecosystem Exchange (NEE) divided by 
the actual evapotranspiration, were used as detection 
parameters for ecosystem drought because Kc represents 
a nondimensional measure for evapotranspiration, and 
WUE represents the ability of ecosystems to assimilate 
carbon given their water use. Therefore, if rapid changes 
in Kc are detected by the modified VITA technique, the 
corresponding NEDI are then recorded as thresholds for 
ecosystem transitional responses to drought conditions. In 
order to prevent Kc from being unrealistically high, espe-
cially when Thornthwaite PET is calculated as zero during 

wintertime, an upper bound for Kc is assigned to 3. The 
analysis window size was selected as 10 points to smooth 
out high frequency variations in the raw data. Different 
sets of Kc upper bounds and window sizes were tested, and 
the results were similar to the values presented here.

VITA is used to test for drought as a limiting factor follow-
ing the general concept of Sprengel’s and Liebig’s Law of 
Minimums for plant nutrition (van der Ploeg et al., 1999). 
Here ecological drought is defined as when drought is 
the dominant factor limiting ecosystem function, as in-
dicated in this case by Kc and WUE although this method 
could be used with other quantifiable ecosystem values. 
When drought is not the limiting factor, other variables 
will then control Kc and WUE, so variability in the form 
of increased variance will appear, and be detected by 
VITA. The threshold for when the variance increases 
thus represents the NEDI threshold.

3. Data

3.1 AmeriFlux dataset

The half-hourly based eddy covariance datasets across 60 
AmeriFlux sites from 1991 to 2015 are used in this study.2 
These sites encompass a variety of vegetation types and 
climatic conditions (Table 1). 

2 http://ameriflux.lbl.gov

Table 1. The AmeriFlux sites used in this study.

Site name Lat. Long. Vegetation type (IGBP) Data period Source

ARM SGP Main (US-ARM) 36.61 -97.49 Croplands 12/31/2000–01/27/2013 Fischer et al. (2007)

Audubon Research Ranch (US-Aud) 31.59 -110.51 Grasslands 06/07/2002–09/26/2011 Qi et al. (2000)

Bartlett Experimental Forest (US-Bar) 44.06 -71.29 Deciduous broadleaf forest 12/31/2003–01/14/2013 Richardson et al. (2007)

Blodgett Forest (US-Blo) 38.90 -120.63 Evergreen needleleaf forest 06/02/1997–10/10/2007 Goldstein et al. (2000)

Bondville (US-Bo1) 40.01 -88.29 Croplands 08/25/1996–12/30/2010 Meyers & Hollinger 
(2004)

Bondville Companion (US-Bo2) 40.01 -88.29 Croplands 05/13/2004–12/28/2008 Bernacchi et al. (2005)

Brooks Field Site 10 (US-Br1) 41.97 -93.69 Croplands 01/01/2005–11/09/2011 Cammalleri et al. (2014)

Brooks Field Site 11 (US-Br3) 41.97 -93.69 Croplands 01/01/2005–11/09/2011 Sakai et al. (2016)

Canaan Valley (US-CaV) 39.06 -79.42 Grasslands 01/06/2004–11/18/2010 Yang et al. (2007)

Chestnut Ridge (US-ChR) 35.93 -84.33 Deciduous broadleaf forest 05/11/2005–01/13/2011 Cammalleri et al. (2014)

Duke Forest Open Field (US-Dk1) 35.97 -79.09 Grasslands 01/01/2001–12/31/2008 Katul et al. (2003)

Duke Forest Hardwoods (US-Dk2) 35.97 -79.10 Mixed forest 01/01/2001–12/31/2008 Katul et al. (2003)

Duke Forest Loblolly Pine (US-Dk3) 35.98 -79.09 Evergreen needleleaf forest 01/01/1998–12/31/2008 Katul et al. (2003)

Florida Everglades Shark River Slough 
Long Hydroperiod Marsh (US-Elm)

25.55 -80.78 Permanent wetlands 07/22/2008–12/31/2013 Schedlbauer et al. (2012)

Florida Everglades Taylor Slough 
Short Hydroperiod Marsh (US-Esm)

25.44 -80.59 Permanent wetlands 01/01/2008–12/31/2013 Schedlbauer et al. (2012)

Flagstaff Managed Forest (US-Fmf) 35.14 -111.73 Evergreen needleleaf forest 07/29/2005–12/31/2010 Dore et al. (2010)

Fort Peck (US-FPe) 48.31 -105.10 Grasslands 01/01/2000–12/28/2008 Cammalleri et al. (2014)
(continued on next page)
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Site name Lat. Long. Vegetation type (IGBP) Data period Source

Freeman Ranch Mesquite Juniper 
(US-FR2)

29.95 -98.00 Woody savannas 01/01/2005–12/29/2008 Heinsch et al. (2004)

Freeman Ranch Woodland (US-FR3) 29.94 -97.99 Woody savannas 07/17/2004–12/31/2012 Heinsch et al. (2004)

Flagstaff Unmanaged Forest (US-Fuf) 35.09 -111.76 Evergreen needleleaf forest 09/06/2005–12/31/2010 Dore et al. (2008)

Flagstaff Wildfire (US-Fwf) 35.45 -111.77 Grasslands 06/15/2005–12/31/2010 Dore et al. (2008)

GLEES (US-GLE) 41.36 -106.24 Evergreen needleleaf forest 10/01/2004–12/31/2012 Zeller & Nikolov (2000)

Great Mountain Forest (US-GMF) 41.97 -73.23 Mixed forest 05/19/1999–12/31/2004 Lee et al. (2001)

Harvard Forest (US-Ha1) 42.54 -72.17 Deciduous broadleaf forest 10/28/1991–12/31/2014 Moore et al. (1996)

Howland Forest Main (US-Ho1) 45.20 -68.74 Evergreen needleleaf forest 01/01/1996–12/31/2009 Hollinger et al. (1999)

Fermi Agricultural (US-IB1) 41.86 -88.22 Croplands 03/28/2005–12/31/2011 Matamala et al. (2008)

Fermi Prairie (US-IB2) 41.84 -88.24 Grasslands 10/06/2004–12/31/2011 Matamala et al. (2008)

Kansas Field Station (US-KFS) 39.06 -95.19 Grasslands 06/16/2007–12/31/2012 Cochran et al. (2016)

Konza Prairie (US-Kon) 39.08 -96.56 Grasslands 08/22/2006–12/31/2012 Logan & Brunsell (2015)

Kennedy Space Center Scrub Oak 
(US-KS2)

28.61 -80.67 Closed shrublands 06/29/1999–12/31/2006 Powell et al. (2006)

Lost Creek (US-Los) 46.08 -89.98 Wetland 01/01/2000–12/31/2014 Sulman et al. (2009)

Metolius Intermediate Pine (US-Me2) 44.45 -121.56 Evergreen needleleaf forest 01/01/2002–12/31/2014 Law et al. (2004)

Metolius Second Young Pine (US-Me3) 44.32 -121.61 Evergreen needleleaf forest 01/01/2004–12/31/2009 Sun et al. (2004)

Metolius First Young Pine (US-Me5) 44.44 -121.57 Evergreen needleleaf forest 06/17/1999–12/31/2002 Law et al. (2003)

Morgan Monroe State Forest (US-MMS) 39.32 -86.41 Deciduous broadleaf forest 01/01/1999–12/31/2014 Pryor et al. (1999)

Missouri Ozark (US-MOz) 38.74 -92.20 Deciduous broadleaf forest 01/01/2004–12/31/2014 Gu et al. (2006)

Marys River Fir Site (US-MRf) 44.65 -123.55 Evergreen needleleaf forest 01/01/2005–02/17/2012 He et al. (2015)

North Carolina Loblolly Pine (US-NC2) 35.80 -76.67 Evergreen needleleaf forest 01/01/2005–12/31/2010 Noormets et al. (2010)

Mead Irrigated (US-Ne1) 41.17 -96.48 Croplands 05/25/2001–05/31/2013 Suyker et al. (2004)

Mead Irrigated Rotation (US-Ne2) 41.16 -96.47 Croplands 06/04/2001–05/31/2013 Suyker et al. (2004)

Mead Rainfed (US-Ne3) 41.18 -96.44 Croplands 06/04/2001–05/31/2013 Suyker et al. (2004)

Niwot Ridge (US-NR1) 40.03 -105.55 Evergreen needleleaf forest 11/01/1998–12/31/2014 Turnipseed et al. (2002)

Ohio Oak Openings (US-Oho) 41.55 -83.84 Deciduous broadleaf forest 01/01/2004–12/31/2013 DeForest et al. (2006)

Park Falls (US-PFa) 45.95 -90.27 Mixed forest 01/01/1995–12/31/2014 Desai et al. (2014)

Florida Everglades Shark River 
Slough Mangrove Forest (US-Skr)

25.36 -81.08 Evergreen broadleaf forest 01/01/2004–09/12/2011 Barr et al. (2009)

Sky Oaks Old (US-SO2) 33.37 -116.62 Closed shrublands 01/01/1997–12/31/2006 Stylinski et al. (2002)

Sky Oaks Young (US-SO3) 33.38 -116.62 Closed shrublands 01/01/1997–12/31/2006 Stylinski et al. (2002)

Austin Cary (US-SP1) 29.74 -82.22 Evergreen needleleaf forest 07/01/2000–12/31/2011 Fang et al. (1998)

Mize (US-SP2) 29.76 -82.24 Evergreen needleleaf forest 01/01/1999–12/31/2008 Fang et al. (1998)

Donaldson (US-SP3) 29.75 -82.16 Evergreen needleleaf forest 01/01/1999–12/31/2010 Fang et al. (1998)

Santa Rita Creosote (US-SRC) 31.91 -110.84 Open shrublands 01/01/2008–12/31/2014 Crow et al. (2015)

Santa Rita Mesquite Savanna (US-SRM) 31.82 -110.87 Woody savannas 12/31/2003–12/31/2015 Scott et al. (2008)

Sylvania Wilderness (US-Syv) 46.24 -89.35 Mixed forest 01/01/2001–12/31/2014 Desai et al. (2005)

Tonzi Ranch (US-Ton) 38.43 -120.97 Woody savannas 01/01/2001–12/31/2014 Baldocchi et al. (2004)

Vaira Ranch (US-Var) 38.41 -120.95 Grasslands 01/01/2000–12/31/2014 Baldocchi et al. (2004)

Walker Branch (US-WBW) 35.96 -84.29 Deciduous broadleaf forest 12/31/1994–06/06/2007 Hanson et al. (2005)

Willow Creek (US-WCr) 45.81 -90.08 Deciduous broadleaf forest 01/01/1998–12/31/2014 Desai et al. (2005)

Lucky Hills Shrubland (US-Whs) 31.74 -110.05 Open shrublands 06/29/2007–12/31/2015 Scott (2010)

Kendall Grassland (US-Wkg) 31.74 -109.94 Grasslands 05/06/2004–12/31/2015 Scott et al. (2010)

Wind River Field Station (US-Wrc) 45.82 -121.95 Evergreen needleleaf forest 01/01/1998–12/31/2015 Paw U et al., (2004)
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We calculated NEDI on a monthly scale based on the 
half-hourly measurements to obtain the Thornthwaite 
PET, Kc and NEDI at each site. These results were then 
classified into needleleaf forest, broadleaf forest, mixed 
forest, grasslands, savannas, shrublands, croplands and 
wetlands IGBP ecosystem types.

3.2 PDSI dataset
We used the global monthly 2.5°×2.5° PDSI dataset 
(Dai, 2011) from the National Center for Atmospheric 
Research Climate Analysis Section.3 The AmeriFlux site 
locations were matched to the PDSI dataset, to compare 
the PDSI and NEDI results under potential drought pat-
terns (Table 1). 

4. Results and Discussions

4.1 Evapotranspiration Deficits and Crop 
Coefficients

It is clear that decreasing NEDI (suggesting a shift toward 
a drier regime) is associated with increasing evapotrans-
piration deficit (differences between the Thornthwaite 
PET and observed evapotranspiration) across different 
climatic conditions for all non-forest type ecosystems ex-
cept wetlands. This suggests that NEDI can be an useful 

3 http://www.cgd.ucar.edu/cas/catalog/climind/pdsi.html

tool for drought monitoring in less complicated ecosys-
tems (Figure 1). However, the correlation between NEDI 
and evapotranspiration deficit is not significant at forest 
ecosystems, which suggests that evapotranspiration in 
forest ecosystems is not only controlled by available wa-
ter stored in the ecosystems but by other limiting factors.

To avoid biases from the varying magnitudes of site-de-
pendent evapotranspiration deficit, the transitional 
patterns of ecosystem drought were analyzed by the 
modified VITA technique with the non-dimensional 
crop coefficient Kc serving as the detection parameter. 
Rapid changes in local variance of Kc were found for all 
investigated ecosystem types when NEDI changes signs 
(Figure 2), suggesting significant changes in normalized 
evapotranspiration strength. Moreover, the local means 
of Kc are generally low (limited evapotranspiration) with 
slight changes in local variance when NEDI is negative, 
and they tend to be high (approaching potential evapo-
transpiration) with evident changes in local variance 
when NEDI is positive. The highly varying normalized 
evapotranspiration Kc with positive NEDI suggests that 
the available stored water is not the controlling factor 
to evapotranspiration when sufficient water is provided, 
whereas, water availability is Sprengel’s (Liebig’s) limiting 
factor under ecosystem drought conditions. These results 
indicate that, in terms of evapotranspiration, ecosystems 

Figure 1. Scatterplots between NeDI and eT deficit (blue dots). red lines are linear regression lines with corresponding r2 values. 
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respond differently in wet and dry regimes, and the use 
of the NEDI can successfully identify drought condi-
tions based on transitional patterns found in normalized 
evapotranspiration strength. 
Although the threshold separating wet and dry regimes 
is universally defined by NEDI across all the investigated 
ecosystem types, the results shown in Figure 2 suggest 
that the sensitivity between NEDI and Kc varies with 
ecosystem type. In general, the sensitivity for grasslands, 
savannas and shrublands is higher than for the other 
ecosystems. This implies that water availability is the 
limiting factor at these ecosystems while other ecolog-
ical limiting factors are equally important for the other 
ecosystems. If we prescribe ecosystem drought severity 
based on the magnitude of Kc, we can conceptually define 
mild drought (Kc = 0.75), severe drought (Kc = 0.5) and 
extreme drought (Kc = 0.25) with NEDI below –0.1, –0.3 
and –0.8 (Figure 2), respectively. We note this ecosystem 
drought severity scale may not be applicable to broad-
leaf forest and mixed forest because for them, Kc stops 
decreasing at around 0.5, regardless of further decrease 
in NEDI. There are two possible explanations for this 
behavior: (1) Ecosystem adaptation strategy is different 
in these two ecosystems, preventing further decreases in 
Kc even under extreme ecosystem drought; or (2) there 
are not enough samples for extreme ecosystem drought 

in our dataset for these two ecosystems, making the in-
terpretation of NEDI calculations in respect to drought 
difficult. 
On the other hand, PDSI is only weakly correlated with 
evapotranspiration deficit, and the decrease in PDSI 
(increase in drought severity) is not associated with an 
increase in evapotranspiration deficit (Figure 3). This re-
sult suggests that large-scale drought conditions detect-
ed by PDSI do not necessarily correspond to ecosystem 
drought. Similar to the analyses with NEDI, the depen-
dence of normalized evapotranspiration Kc on PDSI was 
investigated by applying the modified VITA technique 
for individual ecosystem types (Figure 4). Contrary to 
the NEDI results, local mean and local variance of Kc do 
not have any distinguishable pattern with PDSI across 
different ecosystems, and there is no clear distinction be-
tween the dry and wet regimes defined by PDSI and nor-
malized Kc. This supports our hypothesis that ecosystem 
drought conditions are detected by NEDI, but are poorly 
detected by PDSI. 

4.2 Water Use Efficiency (WUE)
Huxman et al. (2004) found a strong relationship between 
Water Use Efficiency (WUE) and precipitation, which 
highlights the importance of rain-use efficiency on eco-
logical processes and suggests that water limitation can 

Figure 2. The local mean (blue lines) and the local variance (green dots) of normalized evapotranspiration strength calculated by the 
modified vITA technique with non-dimensional crop coefficient Kc vs NeDI. 
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Figure 4. The local mean (blue lines) and the local variance (green dots) of normalized evapotranspiration strength calculated by the 
modified vITA technique with non-dimensional crop coefficient Kc vs PDSI. 

Figure 3. Scatter plots between PDSI and eT deficit (blue dots). red lines are linear regression lines with corresponding r2 values. 
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impose a common constraint on net primary production. 
Using a remotely sensed dataset with artificial neural 
networks, Lu and Zhuang (2010) identified a two-stage 
pattern in WUE changes with drought severity. Specif-
ically, their results showed that WUE increases when 
the intensity of drought is moderate and WUE tends 
to decrease under severe drought. Here, we further in-
vestigate the relationship between WUE and ecosystem 
drought severity by using the modified VITA technique 
with WUE as the detection parameter. The WUE used in 
this study was defined as the ratio between monthly NEE 
from eddy-covariance and monthly evapotranspiration. 

The two-stage changes in WUE proposed by Lu and 
Zhuang (2010) were detected at needleleaf forest, savan-
nas and shrublands, where local means of WUE were 
higher when NEDI is greater than –0.5 and then slight-
ly decreased when ecosystem drought severity became 
more intense (Figure 5). Similar patterns were shown 
in grasslands and croplands, although the changes in 
the WUE magnitude during extreme ecosystem drought 
were mild. Such two-stage patterns cannot be found in 
broadleaf forest, mixed forest and wetlands, possibly 
because there was no extreme ecosystem drought in the 
available dataset as discussed in Section 4.1. 

The WUE patterns shown in Figure 5 are strongly de-
pendent on the variations of evapotranspiration and 

carbon assimilation strength in each VITA window. The 
local means of WUE systematically varies with NEDI in 
certain ecosystem types, although there is no rapid tran-
sition detected in local variance. In general, both evapo-
transpiration and NEE decrease when NEDI is lower 
than –0.5, except for broadleaf forest, mixed forest and 
wetlands (results not shown). In this regime, the decreas-
ing trend for carbon assimilation is stronger than those 
for evapotranspiration, resulting in lower WUE during 
severe ecosystem drought, though the change in WUE is 
less significant at grasslands and croplands. On the other 
hand, evapotranspiration and carbon assimilation both 
increase at similar rates as NEDI decreases for broadleaf 
and mixed forests, resulting in a slightly increasing trend 
in WUE during severe ecosystem drought. The differ-
ence in WUE responses to ecosystem drought suggests 
that broadleaf forest and mixed forest might have dif-
ferent adaptation strategy than the other vegetated eco-
system types under limited water availability. However, 
more data recording ecosystem responses to drought is 
needed to validate this hypothesis.

5. Conclusions
In this study, we developed the Normalized Ecosystem 
Drought Index (NEDI) to objectively quantify drought 
severity in terms of ecosystem transitional responses 
to limited water availability. Eddy covariance measure-

Figure 5. The local mean (blue lines) and the local variance (green dots) of plant water use efficiency (WUe) calculated by the 
modified vITA technique plotted against NeDI. 
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ments from 60 AmeriFlux sites across 8 IGBP vegetation 
types were used to examine the validity of NEDI. The 
results show that, based on a modified VITA analysis, 
normalized evapotranspiration strength Kc decreases 
correspondingly with NEDI, suggesting that NEDI can 
reasonably characterize ecosystem responses to drought 
severity. The same analysis was performed to PDSI; how-
ever, no clear relationship can be found between normal-
ized evapotranspiration strength and drought severity 
indicated by PDSI. 

Moreover, the low data requirement and simplicity na-
tures in NEDI make it straightforward to apply NEDI 
to different scientific disciplines for drought detection 
and analysis at various spatial and temporal scales. We 
applied NEDI to investigate plant WUE dependency on 
water availability, using a modified VITA analysis, and 
the results show that most vegetated ecosystems exhib-
it two-stage changes in WUE (Lu and Zhuang, 2010), 
except broadleaf forest and mixed forest. It is possible 
that the differences found in WUE dependence on water 
availability are driven by the differences in plant adapta-
tion strategy to drought, but more extensive studies are 
required to evaluate this hypothesis. 
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