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Abstract
The 2005 hurricane season was particularly damaging to the United States, contributing
to significant losses to energy infrastructure –much of it a result of flooding from storm
surges during hurricanes Katrina and Rita. Previous research suggests that these events
are not isolated, but rather foreshadow a risk that is to continue and likely increase with a
changing climate (17). Since extensive energy infrastructure exists along the U.S. Atlantic
and Gulf coasts, these facilities are exposed to an increasing risk of flooding. We study the
combined impacts of anticipated sea level rise, hurricane activity, and subsidence on en-
ergy infrastructure in these regions with a first application to Galveston Bay. Using future
climate conditions as projected by four different Global Circulation Models (GCMs), we
model the change in hurricane activity from present day climate conditions in response to a
climate projected in 2100 under the IPCC A1B emissions scenario using hurricane analysis
developed by Emanuel (5). We apply the results from hurricane runs from each model to
the SLOSH model (Sea, Lake and Overland Surges from Hurricanes) (19) to investigate
the change in frequency and distribution of surge heights across climates. Further, we in-
corporate uncertainty surrounding the magnitude of sea level rise and subsidence, resulting
in more detailed projections of risk levels for energy infrastructure over the next century.
With a detailed understanding of energy facilities’ changing risk exposure, we conclude
with a dynamic programming cost-benefit analysis to optimize decision making over time
as it pertains to adaptation.

Thesis Supervisor: Professor Henry D. Jacoby
Title: Professor of Management, Sloan School of Management
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Chapter 1

The Increased Risk of Coastal Flooding

Major hurricanes in recent years have threatened energy security in the United States. Hur-

ricane Katrina in August of 2005, followed by Hurricane Rita in September, delivered the

‘world’s first integrated energy shock’ as it simultaneously disrupted oil, natural gas, and

electric power generation, halting 27 percent of U.S. oil production and 21 percent of U.S.

refining capacity (33). A large portion of this damage was a result of flooding from storm

surges which reached heights as high as 8.5 m on the open coast (9). The incredible loss

from these storms raises the question: Are these isolated events or are hurricanes becoming

more destructive in a changing climate? This work aims to answer that question. More

specifically, we focus on the damage that coastal energy infrastructure is exposed to un-

der climate change. Further, we expand from these risk exposures to capture the expected

benefit and optimal timeframe for adaptation. For coastal infrastructure at risk of flooding,

adaptation involves protective levees built to retain ocean water. The cost of constructing

and maintaining the levees is weighed against the expected damage costs of postponing

precautionary adaptation measures. We present a time-dependent dynamic decision mak-

ing process built to minimize the expected costs.

1.1 Climate Change

Anthropogenic greenhouse gas emissions have lead to an increased concentration of green-

house gases in the atmosphere. Carbon dioxide, for instance, has increased by 31% since
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preindustrial times (13). The presence of greenhouse gases in the atmosphere traps outgo-

ing radiation. Without these gases, Earth would be inhabitable; however, an increased con-

centration of greenhouse gases over the past century has resulted in an increase in global

temperatures and thus a changing climate. As anthropogenic greenhouse gas emissions

continue to increase in concentration, we expect to see global average temperatures in-

crease further. The rate of this increase is largely dependent on the rate of emissions as

well as the feedback loops that occur (28). This past century, global average temperatures

have risen by 0.8oC with about 0.6oC of that increase occurring since 1980 (23). The IPCC

AR4 report predicts this trend of temperature increases to continue and to be another 0.3 to

6.4 oC higher by the year 2100 (28).

This increase in temperature that we have seen over the past three decades has had

a variety of effects on our global environmental system. Increases in atmospheric water

vapor, increases in ocean temperatures, decreases in glacial snow cover and arctic sea ice,

and changes in precipitation are among many of the changes that have been recorded over

the past several decades (2). Most relevant to this project are the changes in tropical storm

activity and sea level rise, which also happen to be the two areas of climate science with

some of the greatest uncertainty. While a geographic location may see a wide range of

storms every year, damage to infrastructure is generally all accounted for during the rare

severe storms. Recently, studies have shown that 10% of storms cause 90% of damage,

and 1% of storms cause 58% of damage globally. Under climate change, the intensity of

severe storms is anticipated to increase with estimates suggesting 10% of storms will cause

93% of damage and 1% of storms will cause 64% of damages (31). Speculation about an

increase in intensity of extreme storm events is based on the understanding that with an

increase in sea surface temperature (SST), tropical storms will have more potential to grow

in intensity and develop to be more destructive (18).

Increased temperatures have also affected ocean levels and are anticipated to affect

them further in the future. Cazenave and Llovel estimate that the mean sea level has risen

about 17cm since 1900 as a result of increased global temperatures (3). Global tempera-

tures affect ocean levels in two distinct ways. One is through thermal expansion: As ocean

temperatures increase, water expands, taking up more space and increasing sea level. The
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second is through a decrease in land-ice cover leading to more water running off into the

oceans. Scientists have a fairly good idea of the temperature effects on thermal expan-

sion, temperature impacts on the melting rate of the great ice sheets is a less understood

relationship.

Understanding the physical processes that lead to the observed trends in sea level rise

and hurricane frequency and intensity helps us to predict a future climate scenario.

1.2 Energy Facilities at Risk

The United States, as the third largest oil producer in the world, second largest producer of

natural gas, and second largest producer of coal, necessarily has a large amount of energy

infrastructure. With a changing climate, infrastructure is exposed to more extremes, most

destructive being extreme wind and water damage. While wind has destructive potential

for power lines and window damage, large scale energy infrastructure is most vulnerable

to damage resulting from floods. This reduces the scope of facilities at risk under consid-

eration here to those at risk of flooding. To further reduce our scope, we focus our analysis

specifically on coastal flooding. In the United States, coastal energy infrastructure is largely

a mix of oil refineries, oil import sites, and natural gas hubs (29). Much of this infrastruc-

ture is on the Atlantic Coast and Gulf Coast of the U.S., with the Gulf Coast being more

densely populated with these facilities. The Eastern side of the U.S. also happens to be

exposed to North Atlantic Tropical Cyclones. As an example of the facilities at risk, Figure

1-1 shows the distribution of electric generation in the U.S..

1.3 Components of Climate Change Risk

Considering coastal energy infrastructure, we examine the range of factors that lead to a

change in risk. As the 2005 hurricane season indicated, energy infrastructure is vulner-

able to storm surges from the North Atlantic Hurricane season. Under climate change,

the potential for extreme storm surges is liable to increase. A rising sea level is another

contributing factor to vulnerability change. Further, as a result of ground water extraction
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Figure 1-1: Electric Power Plants in the United States (http://www.eia.gov/state/)

and the extraction of other mined resources, many locations are experiencing subsidence.

These are the factors accounted for in our risk assessment.

1.3.1 Hurricane Intensity and Surge

Atlantic Hurricanes

According to the National Oceanic and Atmospheric Administration (NOAA), each year

approximately ten tropical storms develop in the North Atlantic, Caribbean, and Gulf of

Mexico, six of which develop into hurricanes, of which only one or two make landfall (1).

A hurricane is defined as ‘an intense tropical weather system of strong thunderstorms with

a well-defined surface circulation and maximum sustained winds of 74 mph or higher’ (1).

Hurricanes are on average 300 miles wide, and they generally survive for 2 weeks. In order

to form, hurricanes require pre-existing weather disturbances, atmospheric moisture, warm

ocean water (80oF or higher), and light prevailing winds.

Typically, under these conditions, a cluster of thunderstorms grows in the middle of the

Atlantic, continually feeding off the warmth of the ocean water and the heat that is produced

as water vapor condenses into drops. Strong prevailing winds can often tear these tropical

depressions apart; however, with light prevailing winds the tropical depression will move

and, with the Coriolis effect, begin the counterclockwise rotation and take on the typical

spiral formation. At this point, what was originally a tropical depression has reached the
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classification of a tropical storm. If the storm continues to grow and become strong enough

(winds 74 mph or higher), the storm is classified as a hurricane. If, however, the storm

passes over cooler bodies of water or over land, it will lose energy and die off.

The Saffir-Simpson scale is a popular scale that was introduced by wind engineer Herb

Saffir and meteorologist Bob Simpson as a means of communicating the severity of storms.

It assigns storms to categories 1 through 5, based solely on the maximum windspeed of the

storm. This measure has been somewhat effective in providing warnings of the severity

of a storm but it neglects to describe a variety of factors that can have great influence

over the gravity of the hurricane such as size and direction of approach. While wind-

speed is generally an indication of how much wind-damage a storm can produce, maximum

windspeed only describes part of a hurricane’s intensity. Alternatives to the Saffir-Simpson

scale have been introduced such as the Power Dissipation Index used by Emanuel (4):

PDI =
�

V 3
maxdt, (1.1)

where V 3
max is the maximum wind speed and the interval is over the lifetime of the storm.

Emanuel was able to show a correlation between SST and PDI for North Atlantic storms

from 1930 to 2005 (see Figure 1-2)(4). This work shows that Atlantic PDI has more than

doubled since 1975 as temperatures have increased by about 0.5oC.

But Emanuel stresses that SST alone cannot explain the increase in the destruction po-

tential of hurricanes. He points to other contributing factors such as the entire temperature

profile of the troposphere and vertical wind shear. There is evidence that an increase in

global temperatures also contributes to a change in the temperature profile of the oceans,

meaning that temperatures below the surface are also warmer (32). Storm-induced mixing

produces negative feedback as cooler waters are brought to the surface, providing less heat

for a storm to feed off of. If the entire temperature profile of the oceans has increased

in temperature then this negative feedback is less effective and storms will have a greater

potential to build in strength.
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Figure 1-2: A measure of the total power dissipated annually by tropical cyclones in the
North Atlantic (the power dissipation index, PDI) compared to September sea surface tem-
perature (SST) (4).

Storm Surge

Storm surges are typically 50 to 100 miles wide and can reach heights as high as 15 feet

(1). They are formed by the external forcing of an approaching storm and are known to

cause the most damage and deaths during a hurricane. The intensity of a storm is not the

only factor governing the magnitude of the storm surge, as discussed below.

We can study how these features influence the magnitude of storm surge using simpli-

fied models of the region. The SLOSH model (11), run by the National Hurricane Center, is

a hydrodynamic model that applies hurricane simulations with a numerical grid of a coastal

region to simulate the resulting storm surge. ADCIRC is a three dimensional finite volume

coastal ocean model and is used to model the hydrodynamics around shelves (20). It has

a higher resolution than SLOSH and so is computationally more expensive but, integrated

vertically it can be used to validate SLOSH results. Due to limited time, we were unable to

use ADCIRC for validation in this analysis.
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1.3.2 Tides

When a storm makes landfall, the tidal period has an impact on the resulting surge height.

Including tides in our assessment adds complications to our analysis. First, a changing sea

level has the potential to change the tides in the region as it affects the resonance structure

of the tidal systems. The coastal structure, latitude, and bathymetry all add to unique

tidal patterns, thus the changes in tides will vary with each location as well. Tides have a

nonlinear impact on storm surges, the tidal-surge interaction itself being influenced by shelf

geometry. For shallow or more pronounced slopes in ocean floors, the nonlinear impacts

of tides on surge heights is more pronounced. Nonlinearity is further pronounced for storm

arrivals making landfall at low tide (26).

1.3.3 Subsidence

Subsidence is the phenomenon that describes the sinking of land surfaces, often as an effect

of the removal of the Earth’s resources. Currently, an estimated 15,000 square miles in the

U.S. have been affected by subsidence. The three main contributing factors to subsidence

include ‘the compaction of aquifer systems, oxidation of organic soils, and the collapse of

cavities in carbonate and evaporite rocks’ (8). The most severe subsidence since the 1900’s

has been attributed to the removal of ground water, and some, especially in the Gulf has

been a result of the mining of natural gas or oil. As water or these large deposits of fu-

els are mined from deep wells, the integrity of the support structure is weakened and the

land above has the potential to sink or collapse into the newly emptied geological struc-

tures. Infrastructure will inevitably be sinking closer to sea level in locations experiencing

subsidence, and thus becoming more vulnerable to coastal flooding.

1.3.4 Sea Level Rise

‘Three million years ago, during the Pliocene, the average climate was about 2o to 3oC

warmer and sea level was 25 to 35 m higher than today’s values.’(25) The rate at which

ocean levels respond to a 2o to 3oC global warming, however, is still unclear.
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The IPCC AR4 cites that 80% of the heat added to the climate since 1961 has been ab-

sorbed by the oceans (28). In fact, ocean temperature increases have been recorded as deep

as 3000m. This increase in temperature has lead to thermal expansion, contributing to the

sea level rise seen thus far since 1900 (3). Figure 1-3 summarizes the anticipated sea level

changes from IPCC AR4 based primarily on the changes attributed to thermal expansion.

Figure 1-3: IPCC emissions scenarios and related estimates of sea level rise

Thermal expansion, however, is only one of four critical factors leading to an increase

in sea level. Glacial run-off as well as run-off from the West Antarctic Ice Sheet (WAIS)

and Greenland Ice Sheet (GIS) also play a key role in contributing to sea level rise, although

the rate and the extent of their impacts is far less understood. The uncertainty from these

components has led to a wide range of sea level rise estimates. The estimates used to

develop this analysis fall in the range 0.55m and 2m sea level rise by 2100.

Another complication in studying sea level changes is that the changes are not uniform

across the globe. Some places on Earth are anticipated to see a greater increase in sea level
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than others. This is a result of a number of factors. For one, as glaciers and ice sheets melt,

the water contributed to the surrounding ocean is colder than the existing water. An influx

of cooler water would therefore diminish the impacts of thermal expansion. Some models

predict that the sea level change would not change immediately surrounding the ice sheets

but that their contribution to a rising sea level would be felt closer to the equator (21). Also,

as glaciers melt the pressure that was once on the land underneath is weakened, therefore,

we see land masses rising in some locations as it rebounds from the lack of pressure. This is

a slow process that takes centuries to reach equilibrium but is yet another contributing factor

to an uneven sea level rise. In fact, some regions, such as the Baltics, have seen a decrease

in sea level as a result of this phenomenon. Further factors influencing local changes in

sea level include surface winds, ocean currents, variations in salinity, and changes in the

Earths gravity field (as land ice melts, weight is redistributed across the globe, weakening

the local gravitation impacts on water height). (14)

The wide range of estimates described here, and the complexity of sea level distribu-

tion, make it difficult to predict a future sea level with any confidence. We anticipate this

component of climate change science to evolve rapidly in the coming years.

1.4 Coastal Flood Risk Analysis

In the work that follows, we combine these contributing factors to risk of inundation in a

case study to derive a probability distribution of the risk of flooding over the course of this

century. Chapter 2 outlines the formulation of our sample case, Galveston Bay. We will

discuss the features and vulnerable facilities specific to Galveston Bay as well as the basis

for choosing the A1B emissions scenario for our study. We further introduce in Chapter 2

the Atmospheric and Oceanic Global Circulation Models (AOGCMs) used in our analysis.

In Chapter 3 we present our analysis. Here, we give a detailed description of the models

used for determining the risk of storm intensity, surge, and frequency. We further develop

risk profiles for subsidence and sea level rise based on historical data and multiple model

predictions. We then present our methodology for combining these risks to make detailed

predictions for the vulnerability of coastal infrastructure. Chapter 4 presents our decision
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analysis in response to climate change. Here we incorporate a dynamic cost-benefit analysis

to optimize the decisions to adapt to the risks of climate change in each decade between

2000 and 2100. Chapter 5 concludes this work with our major findings, policy suggestions,

and future work.
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Chapter 2

Formulation of a Sample Case:

Galveston Bay

2.1 A Decision Focus

A complete analysis of risk to coastal energy infrastructure would need to consider types of

infrastructure and different types of damage to it, variation in climate change across loca-

tions, various emissions scenarios, and various climate models. We narrow down the scope

of this analysis by selecting a sample case, and illustrate, through this case, the methodol-

ogy in assessing risk so that it can be applied to locations with different conditions. The

focus is on provision of information on when and what to do to adapt to the rising risk.

A significant amount of damage to energy infrastructure in recent years has been a

result of flooding. We determine that a facility is ‘at risk’ of damage if it is at risk of

being flooded. We compare across climates the probability of a facility being flooded. If a

scenario indicates that water level has reached the facility, through the combined effects of

our physical risk factors, then we consider the facility flooded. We report our results as an

annual probability of flooding and use these estimates in the decision making framework

in Chapter 4.

With increasing threats of climate change, response decisions are needed for infrastruc-

ture in harm’s way. We consider there to be three types of responses here. The first is to

continue with business as usual and to face the increasing risks of damage. The second is to
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abandon a facility. If the expected costs of damage are so high that they offset the benefit of

running the facility, then abandoning the facility may be the least costly option. And third,

is the option to build protective levees. With this last option, the decision options continue

to include the optimal height and length of the levees and the best time to construct the

levees or to add extra height to the levees. Of course other options include a combination

of these three. For example, business as usual at first and then either abandonment or adap-

tation.

2.2 Choice of Sample Set of Facilities

Galveston Bay While the U.S. coastline is home to a wealth of energy facilities (see

Figures 1-1), Galveston Bay is home to some of the most vulnerable energy infrastructure

along the coastline (see Figure 2-1). We chose to focus our analysis on the infrastructure in

Galveston due to a number of key features specific to that region.

Historically, Galveston Bay has seen incredibly destructive hurricanes. The Galveston

Hurricane of 1900 is still to this day the deadliest storm to have hit the United States, killing

upwards of 6000 people. Following the Hurricane of 1900, Galveston underwent extensive

reconstruction as most of the buildings were left damaged, if not destroyed. A retaining sea

wall, 17 feet tall and originally 3 miles long, was built by 1910 in time to blunt the fourth

most destructive storm in the 20th century, which made landfall in Galveston in 1915 (24).

The sea wall was further a useful addition during the category 4 hurricane that hit Galveston

in 1932, the storm surge from the Category 4 hurricane that landed in Freeport, TX, and

Hurricane Alicia in 1983 which was the costliest hurricane seen within that decade (16).

Major reconstruction of the town has taken place to raise homes several feet in anticipation

of new storm arrivals. Despite this, Hurricane Ike still caused nearly $30 billion in damage

to the city in 2008.

The Gulf Coast in general has a history of incredible storm damage, with nearly half

of the most destructive storms of the 20th century in the U.S. blowing through the Gulf.

Coastal communities, including Galveston, have begun adapting with sea walls and levee
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systems, but today Galveston and Houston are still considered to be highly vulnerable

regions to intense tropical storms (24).

Aside from being historically disaster prone, there is a significant number of critical

energy facilities operating in Galveston Bay. It is an active oil seaport, so has become

a location populated with large oil refineries as well as the Big Hill Strategic Petroleum

Reserve. Aside from oil, a number of natural gas and coal power plants are in operation

in Galveston. Texas produces more energy than any other U.S. state, accounting for over

30% of United States natural gas production and over 20% of the crude oil production (29).

Much of this production depends of the facilities in Galveston Bay.

Another unique feature of the region is the topography, and the changing topography of

Galveston. The region is low lying, with much of it’s infrastructure sitting within 15 feet

of mean sea level. Apart from being relatively close to sea level, Galveston is also expe-

riencing some of the most severe subsidence in the U.S. (8); some regions have sunk as

much as 10 feet since 1906 (see Figure 2-2). Much of the land subsidence can be attributed

to the removal of ground-water, but other contributing factors exist include the mining and

drilling for oil and natural gas (8). All of these factors combined add to relatively vulnera-

ble energy infrastructure as well as a changing vulnerability as subsidence continues, ideal

for our analysis.

Three Facilities We refine our analysis further by selecting three high-capacity, low-

lying facilities to focus on for our risk assessment. These include the Texas City Oil Re-

finery (elevation 5, 6, 8 feet above mean sea level with 199,500, 76,000 and 467,720 barrel

capacity respectively), the Big Hill Strategic Petroleum Reserve (elevation of 11 feet, 160

million barrel capacity), and Baytown Energy Center LP (5 feet elevation, 915 MW Gas-

fired combined cycle). We focus our analysis on these three facilities to analyze the change

in risk of them being flooded over ten years.
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2.3 Scenarios of Greenhouse Gas Emissions

Research indicates that the severity of anthropogenic climate change is dependent on green-

house gas emissions rates (27). Therefore, the potential for flooding in 2100 will be affected

by the rate of emissions over the course of this century. Studying many emissions scenarios

was beyond the scope of this project, we therefore choose to study the impacts from just

one scenario, the A1B emissions scenario as defined by the IPCC AR4. The A1 family

of emissions scenarios describe a future with rapid economic growth, population peaking

mid-century, and a rapid introduction of new technologies (28). Under A1B, energy is

derived from a mix of fossil-fuel and non-fossil fuel sources. Figure 2-3 shows the IPCC

emissions trajectories and Figure 2-4 shows the projected temperature increase for these

emissions scenarios. Models predict that under the A1B scenario, temperature change by

the end of this century will be somewhere between 1.7 and 4.4 oC, with the best estimate

being 2.8oC and a sea level rise between 0.21 and 0.48m relative to the temperature and lev-

els from 1980-1999. This temperature change will result in a change in hurricane activity

as well as a change in the rate of sea level rise.

2.4 Atmospheric-Ocean General Circulation Models (AOGCMs)

AOGCMs are used to study how the climate will react to the A1B emissions scenario.

Analysis in the IPCC AR4 is based on the projections of 18 AOGCMs, we work with four of

the 18 for the hurricane arrivals (Table 2.1) and six for sea level rise (Table 2.2). See Figure

2-4 for the projected range of climate responses that the AOGCMs predict for various

emissions scenarios. A1B is displayed in Figure 2-4 to be a compromise between high

and low emission scenarios and is predicted to produce a range of temperature increases

centered roughly around 3oC.

28



Table 2.1: Global Circulation Models from IPCC AR4. Temperature projections are based
on the A1B emissions scenario.

model name Institution predicted temperature increase by 2100
CNRM-CM3 Le Centre National de Recherches 2.9oC

Meteorologiges, Meteo-France
ECHAM Max Planck Institution 3.4o

GFDL-CM2.0 NOAA Geophysical Fluid 2.7o

Dynamics Laboratory
MIROC 3.2 CCSR/NIES/FRCGC, Japan 4.5o

Table 2.2: Global Circulation Model’s from IPCC AR4. Temperature and sea level rise
estimates based on A1B emissions scenario.

model name temperature change sea level rise
ccma cgcm 3.1 2.6005 oC 0.2102 m

giss aom 1.7929 oC 0.3433 m
giss model e r 1.7485 oC 0.2808 m

inmcm 3.0 2.1573oC 0.2385 m
miroc 3.2 (high res) 3.7111 oC 0.3375 m
miroc 3.2 (med res) 3.1049oC 0.2757 m

mri cgcm- 2 3.2a 2.0652oC 0.1338 m
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Figure 2-1: Energy infrastructure in Galveston and surrounding regions
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Figure 2-2: Land subsidence in Texas
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Figure 2-3: IPCC AR4 emissions scenarios
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Figure 2-4: Simple model results from the IPCC AR4: (a) global mean temperature projec-
tions for the six illustrative SRES scenarios and (b) Same as (a) but results using estimated
historical anthropogenic forcing are also used.(28)
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Chapter 3

Physical Risk to Galveston Bay Facilities

3.1 Risk Components

For our sample case, we conduct a risk analysis to determine how the risk of flooding

changes between a climate in 1980-2000 and a climate in 2080-2100. For simplification,

throughout the rest of the analysis, we occasionally refer to these two decade-long periods

as 2000 and 2100 respectively. We study the change in risk by looking specifically at

these two separate time frames and using AOGCMs as well as numerical approximations

to predict how this risk is changing over time. Recall that the future scenario is conditional

on an A1B emissions trajectory and that the climate models used in this study operate under

this assumption. To consider the full risk, we first break down the analysis into probability

distributions of each contributing factor in each projected climate.

3.1.1 Storm Intensity and Surge1

Storm Intensity

We begin by looking at tropical cyclone intensity in both climates. Since there is a rel-

atively limited record of hurricane activity due to their infrequency, it is difficult to base

our current climate’s trends strictly on historical data. For this reason, a method developed

by Emanuel is used to generate a large number of sample storms to produce probability

1Special thanks to Dr. Ning Lin who performed runs of models used in the analysis.
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distributions of storm intensities that are “statistically robust estimates of the probability

distributions of storms in different climates” (5). Synthetic hurricanes are simulated under

conditions projected by large scale Global Circulation Models (GCMs) to see how changes

in environmental factors can alter hurricane activity. The GCMs used for this analysis are

from the IPCC AR4 and are described in Table 2-1. They include CNRM, ECHAM, GFDL,

and MIROC, each run under the A1B emissions trajectory.

GCMs are numerical models representing earth’s physical processes that govern the

atmosphere, ocean, and cryosphere interactions. The models used in the IPCC AR4 typi-

cally have between a 250km and 600km horizontal resolution with 10 to 20 vertical layers

(IPCC AR4 Data Distribution Centre). The GCM’s themselves are too coarse to be used in

the modelling of tropical cyclone activity so a more resolved model is embedded into the

GCM’s to capture the effects governing tropical cyclone activity.

Emanuel’s method for tropical cyclone generation performed involves three steps;

1. Genesis by Random Seeding. This synthetic seeding technique draws ‘storm seeds’

randomly distributed through space and time. These seeds are initiated as warm-core

vertices with peak winds of 12ms−1 with nearly no midlevel humidity. They tend

to quickly decay due to their small potential intensity, vertical wind sheer, or low

midtroposheric entropy.

2. Tracks. A “beta and advection” model creates tracks from these seeds based on

vertically averaged wind-sheer and then corrected for beta shift. The wind sheer

is generated using synthetic wind Fourier time series of 850 and 250 hPa. These

two scalar wind fields statistically conform to the same monthly mean, variance, and

co-variance as wind statistics from present climate data from the National Centers

for Environmental Predication-National Center for Atmospheric Research reanaly-

sis dataset. Tracks are generated from these wind fields with generous geographic

boundaries, allowing them to continue to far greater latitudes and longitudes than is

typically seen. For our research, we specify a location (Galveston, 29.3o N, 94.5o W)

and a filter with a radius of 100 km (see Figure 2-2). Only tracks that pass through the

filter are kept, the rest are discarded. This allows for us to include tracks seeded any-
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where in the Atlantic to be included in our analysis, provided that the track passes

through the filter. Figure 3-1 illustrates a set of storm tracks that are kept for our

analysis.

3. Intensity. For the tracks that pass through the filter, the Coupled Hurricane Intensity

Prediction System (CHIPS) is run to determine the intensity of the storm. The wind

shear used in CHIPS is the same wind field used for generating the tracks, therefore

creating consistent storm motion and wind shear. Generally the storms dissipate well

before the end of their tracks.

Only tracks exceeding a minimum windspeed of 34 mph within our specified filter are kept.

The model continues to generate seeds until Ntracks storm tracks have been generated that

both exceed the minimum intensity threshold and pass through the filter. Ntracks is set to

equal 3000 for each model and Nseeds is the number of seeds required for a given model to

generate 3000 storm tracks. Nseeds will therefore differ among models.

This method is used to generate hurricanes off of GCMs under 1980-2000 conditions,

and then is run again under the A1B emissions trajectory to reach a new climate for 2080-

2100. The data input for both of these runs was obtained mostly from the World Climate

Research Program (WCRP) third Climate Model Intercomparison Project (CMIP3) multi-

model dataset. We draw conclusions about the change in intensity of storms across climates

by comparing the distribution of storm intensities generated through these models. We first

look at the atmospheric storm conditions along a tropical cyclone’s track before determin-

ing the resulting storm surge.

The output of each storm track provides us with information on a 2-hour time step. This

information includes

• storm location

• radius of maximum wind

• maximum windspeed

• pressure

37



We initially compare maximum windspeed from each storm and model across time. For

every hurricane track, we choose the location along the track closest to our specified point

and note the maximum wind speed generated at that point in the track. Figure 3-2 illustrates

the difference between the models’ cumulative probability distributions of windspeed con-

ditional on a storm arriving. Figure 3-3 indicates the difference between climates within

the GFDL model. (Not shown are our results that indicate that the GFDL GCM produces

the largest increase in average storm intensity.) NOAA uses GFDL for the North American

Regional Climate Change Assessment Program. Although in our analysis we consider the

results from all models, we focus on GFDL in the illustration of our results.

3.1.2 Surge Simulations

As hurricane intensities increase, there is a general anticipated trend of increased storm

surges, leading to a greater potential for flooding.

Storm surges occur when sustained wind forces act on a body of water, forcing water

up onto the shore. The height of the storm surge is determined by a number of factors:

• the bathymetry around the coastline

• the size of the storm

• the speed of the wind

• the direction of the wind

• the time of the tidal cycle

• the speed and direction in which the storm is approaching

A further feature of a storm surge is that it creates a sloping ocean surface, resulting

in more extreme surges in the upper reaches of bays (32). Due to all of these factors, it is

difficult to make a straight forward calculation relating windspeed to storm surge. There

are attempts to generalize the relationship between wind velocity and storm surge such as

the relationship described by the Saffir-Simpson scale, however, these relationships are too

crude for the purposes of our analysis (12). Instead the SLOSH model (Sea, Lake and
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Overland Surges from Hurricane) was used. It applies forcings from each hurricane run to

a finite coastal ocean model of Galveston’s surrounding coastline to generate correspond-

ing maximum surge heights.

The storm surge heights that are used in this analysis involve the maximum surge height

for three different locations in Galveston for every storm. Surge heights from three different

locations were recorded in order to get a broader geographic representation of maximum

surge height. The three points that were used include Point A located at 29o3 N and 94o5W,

Point B located at 29o7 N and 94o2W, and Point C located at 29o2 N and 94o2W.

Figure 3-4 shows that while there is some variation across locations in surge heights, it

isn’t terribly dramatic. For this reason we refer to the results from Point A for the remainder

of our analysis, which is the closest point to our facility of interest.

We compare the differences in surge heights across climates in Figure 3-5 by contrast-

ing the probability density functions in 2000 against 2100 in the GFDL GCM. These results

indicate the change in distribution of surge height assuming there is no sea level rise.

3.1.3 Annual Frequency and Hurricane Arrival Processes

As disturbances are seeded in the models during genesis, a number of conditions must

exist for the seeds to develop into tropical storms. As described in Chapter 1, hurricanes

require pre-existing weather disturbances, atmospheric moisture, warm ocean water, and

light prevailing winds. The capacity to which these ideal conditions are met change with a

warming climate and a different potential is reached for these seeds to develop into storms.

As discussed, each climate model and time period produces a different distribution of storm

intensities. Being able to use these distributions to anticipate storm arrivals in a given

year requires each climate model to be calibrated. This calibration is done using a single

constant, based on the hurricane database (HURDAT) record (10), to achieve an annual

frequency. HURDAT is a ‘best track’ dataset that was updated in 2001 and again in 2002

to include reanalysis data for storm tracks as far back as 1851. The annual frequency for

the 1980-2000 period in our analysis in Galveston Bay is taken from HURDAT and is the
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observed number of tropical storms, above a specified minimum threshold of 34 mph, that

pass through our filter in a year.

Initially in the analysis, the models are calibrated to the observed number of genesis

events in a year (i.e. actual number of seeds) averaged between 1981 and 2000. Let i be

the specific AOGCM and α be the observed annual genesis frequency (seeds/year), which

is assumed constant over time. Each model’s calculated annual frequency of storm events,

AF c
i , can then be stated as

AF c
i,2000 = α× Ntracks

Nseeds,i,2000
, (3.1)

The analogous equation holds for 2100. This procedure for computing AFi,2000 and AFi,2100

is internal to the model. This, however, produces different AFi,2000 values for each model

because a different Nseeds,i,2000 is required for each model to produce Ntrack = 3000. It is

expected that there are biases within each model so an additional calibration is performed

by setting annual frequencies for each model under the current climate, AFi,2000, to 0.26,

the observed present day annual frequency at Galveston based on HURDAT. The correction

for 2000 is then

AFi,2000 = AF c
i,2000 ×Ki = 0.26 (3.2)

Ki =
0.26

AFi,2000
(3.3)

Ki is used to calibrate model i’s future annual frequency, which is denoted as AF c
i,2100;

AFi,2100 = Ki × AF c
i,2100 (3.4)

or

AFi,2100 = Ki × α× Ntrack

Nseeds,i,2100
(3.5)

Without this calibration, we would only see the proportional increase in storms within

a model and not the actual anticipated frequency. The calibrated annual frequencies are

listed in Table 3.1.
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Hurricane Arrival Process. We assume that hurricane arrival times are independent of

one another and therefore follow a poisson distribution with annual frequency as the pa-

rameter. Given AFi, we can calculate the probability of k storms occurring in one year;

P (k|AFi)i =
AF k

i e
−AFi

k!
(3.6)

The probability distributions thus far show the risk of flooding given a storm arrival.

We seek, however, to find the distribution of the annual risk of flooding instead. To do

this, we use a numerical approximation to derive the resulting distribution from the poisson

arrival process with annual frequency, AFi, as the poisson parameter . Since this is a pois-

son process, more than one storm could arrive in a given year. Define Nk as the number

of storm arrivals in one year. Of these arrivals, we only keep the highest resulting surge

for our distribution since any lower surge height will be surpassed by the highest surge in

that year. For this approximation, we sample 100,000 times by first sampling the number

of storms, Nk, from a poisson distribution, then drawing Nk times from the distribution of

storm surges given an arrival. We record the highest of the Nk storms for our yearly arrival

height. The result is a new distribution of the annual probability of surge heights. Figure

3-6 illustrates the resulting annual storm surge height distribution in red and contrasts this

distribution to the storm surge probability distribution given a storm arrival, which is indi-

cated in blue. For the remainder of the analysis, we use the annual surge height probability

distribution (red curve). One very notable difference between these two distributions is

that there will be a high probability of no storm arrivals in a year. The probability of this

occurring is simply;

P (k = 0, AFi)i = e−AFi . (3.7)

Tidal Effects

Tides in Galveston don’t have a significant impact in this study as they only vary by about

a foot from mean sea level. If this analysis is to be applied to regions with a greater tidal

fluctuation then more attention should be paid to the incorporation of tides into models. For
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our analysis, we randomly select a tidal height from a sinusoidal distribution with amplitude

1 foot and add it linearly to the surge height. Note that, despite the sinusoidal function being

less than accurate, this is further an inaccurate depiction of reality since storm surges occur

over a period of time allowing tidal heights to fluctuate within that time.

3.2 Sea Level Rise

We model the addition of sea level using two analytical components. There is s stronger

scientific basis for estimating sea level rise resulting from thermal expansion. This is one

component of our analysis. The great ice sheets are still lacking sound scientific evidence

and reasoning for how they will melt. We isolate this component from thermal expansion

so that it can be easily modified as the science evolves.

3.2.1 A. Thermal Expansion

Since some of the models in the IPCC AR4 include thermal expansion in their output, we

run our analysis off of these predictions, however, the four climate models used to study

hurricane arrivals do not all include a sea level component, although they do include tem-

perature change. We therefore derive a relationship between temperature and sea level rise

using six GCMs from the IPCC AR4 that do include sea level output in their forecasts.

These models are listed in Table 2.2 and their temperature projections and sea level rise

projections are shown in Figures 3-7 and 3-8.

From the results in Table 2.2, we run a regression (see Figure 3-9) and derive a crude

estimate of a relationship between temperature change and sea level rise for each of these

models. Some literature suggests that the relationship between thermal expansion and at-

mospheric temperature linear, especially in the near-future (14) and I use this assumption

in the regression. This estimate is based on the decade averaged change in temperature

between 2000 and 2100 and the decade averaged change in sea level between 2000 and

2100. The temperature change pathway is not included in the regression, I assume the re-

sulting change that is projected at the end of the century to be sufficient. I further assume
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the residuals from the regression to be normally distributed.

From this regression, we conclude that the risk of thermal expansion follows a normal

distribution with mean of 0.027Ti + 0.19, and variance of 0.173672, where Ti i the decade

average temperature change across the century.

We sample from this distribution, where Ti is the corresponding temperature of the

models used for hurricane analysis, and linearly add the sea level rise contributions to the

corresponding surge heights. We lose some accuracy in assuming a linear addition; as the

ocean level rises, the shape of the coast line and the coastal bathymetry changes and has

the potential to alter the resonance of the system. This ultimately affects the ways that

waves move onto shore meaning that storm surges could be amplified or diminished with

an additional sea level rise. However, we don’t expect that an increase of 1-2m would alter

the system enough to observe a change much different from a linear addition. Therefore,

we accept this to be a rough approximation.

B. WAIS and GIS

The massive uncertainties in the contributions to sea level rise from the great ice sheets

make it difficult to incorporate into our risk assessment with confidence. But to ignore this

component of the risk is misleading as it could potentially contribute an additional meter or

more of sea level. Scenario analysis has been one approach in previous methods. Instead,

we’ve chosen to estimate uncertainty distributions for sea level rise and add this linearly to

our flood height estimates from the previous parts of this analysis.

Please note that expert elicitation is needed but missing in our analysis to date. Recent

studies have shown a wide range of sea level rise scenarios. Kastman et al. , anticipates a

‘high level’ scenario of 0.55 to 1.15 m in global mean sea level rise by 2100 (15). Nicholls

et al. predicts that with a 4oC temperature increase, sea level could increase by as much as

2m although an undefined but low probability is attached to the high end of this range (22).

Vermeer and Rahmstorf predict a rise in sea level between .97 and 1.56m above 1990 levels

by 2100 with a model average of 1.24m (30), and Nordhaus’ RICE model anticipates that

with a no policy scenario, (emission trajectory similar to A1B) that we will see a sea level
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rise of 0.727m by 2100.

Some studies of coastal risk add a scenario value of the WAIS and GIS effects to other

coastal risk (e.g. Ning et al. 2012) which gives an impression of the total risk. However, to

support the decision analysis framework developed here, an expression of the uncertainty

in this effect is needed. (Adding a scenario value involves the implicit assumption that the

ice sheet contribution is certain at the scenario value applied.) To facilitate the decision

making process, we create a risk distribution to reflect the studies completed to date. We

use a log normal distribution with mean 0.6m, and standard deviation of 0.14m (Figure

3-10). We use a lognormal so that the results are positive sea level additions and so the

extremes can be captured in the tails.

Subsidence

We approach this portion of our analysis, again, with wide uncertainty. The rate of subsi-

dence will depend on a few factors, namely what we draw from the ground (water, natural

gas, oil). So the rate at which subsidence occurs can be altered as changes in policy and

human activity occur. There is also possibility of technology advancement that could slow

down subsidence. Given these unknown factors, predicting the rate of subsidence is a chal-

lenge. We run our analysis off of a distribution based roughly on the previous century’s

subsidence levels. The locations of our interest sit in a zone that has seen roughly between

3 and 4 feet of subsidence between 1906 and 2000. To estimate this coming century’s sub-

sidence, we use a triangular distribution. We assume that there will likely be a slower rate

of subsidence given an increased understanding of the causes. We therefore assume a mean

of 2 feet and use 4 feet as our upper bound. We use zero for our lower bound and construct

a triangular distribution on these three parameters. (see Figure 3-11) With clearer policies

and with appropriate models, we would derive a more realistic distribution. We use a trian-

gular distribution to bring attention to the lack of understanding behind the extent and risks

of subsidence.

44



Table 3.1: Calibrated annual frequencies in Galveston using the current annual frequency
of 0.26.

model AF in 2000 AF in 2100 Ki AF in 2100, calibrated
(AF c

i,2000) (AF c
i,2100) (AFi,2100)

echam 0.3669 0.3902 0.7086 0.2765
gfdl 0.3613 0.8430 0.7196 0.6066

miroc 0.1929 0.2124 1.3478 0.2863
cnrm 0.3729 0.4077 0.6972 0.2843

3.2.2 Combining components into a physical risk measure

To account for all of these risks occurring, we combine these many distributions under

each climate scenario. For the present scenario, sea level rise and subsidence are ignored

and only storm arrivals under current intensities and frequencies, and tides are considered.

To accomplish amalgamating the distributions, we use a numerical approximation by se-

quentially sampling from each of the distributions, and adding the sampled sea heights or

sunken ground levels together. We repeat this sampling method (i.e. Monte Carlo method)

for each climate 10,000 times to get an approximation of the combined risk distributions

for each climate. The change in risk distribution across climates is shown in Figure 3-12.

For the GFDL model and under our assumptions of sea level rise and subsidence, the anal-

ysis concludes that for a facility sitting at 5 feet, under 2000 climate conditions, there is

a 1.27% chance of flooding in one year. This probability increases to 47.16% in the 2100

time period under A1B. See Table 3.2 for the results from all four models.

3.3 Tables and Plots
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Table 3.2: Probability of Flooding for facility at 5 feet in elevation

model name Annual Flood Risk (1980-2000) Annual Flood Risk (2080-2100)
CNRM-CM3 0.0095 0.3886

ECHAM 0.0089 0.3871
GFDL-CM2.0 0.0127 0.4716

MIROC 3.2 0.0108 0.3973

Figure 3-1: 50 of the storm tracks used in our analysis, passing through filter centered at
Galveston (see Figure 3-1).
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Figure 3-2: Maximum wind speed cumulative distribution, conditional on storm arrival in
Galveston Bay, 2000
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Figure 3-3: Cumulative distribution of windspeeds in Galveston Bay for the GFDL GCM,
2000 and 2100 conditional on storm arrival
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Figure 3-4: Cumulative distribution of surge heights across three locations in Galveston
Bay, 2100

49



Figure 3-5: Cumulative distribution of surge heights in Gavleston Bay, 2000 and 2100 for
the GFDL GCM
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Figure 3-6: Cumulative Distribution of the expected storm surge in Galveston Bay given
the arrival of a storm (blue curve) against the expected maximum surge height in a given
year (red curve), for the GFDL GCM
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Figure 3-7: Decade averaged temperature projections from IPCC AR4 under the A1b emis-
sions scenario
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Figure 3-8: Decade averaged sea level rise projections from the IPCC AR4 under the A1b
emissions scenario
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Figure 3-9: Linear regression of decade averaged 2100 temperature projections (Figure 3-
8) vs 2100 sea level rise projections (Figure 3-9), from the six models from Table 2.2 run
off of A1B emissions scenario.
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Figure 3-10: Lognormal distribution for sea level contributions from the Great Ice Sheets
and West Antarctic Ice Sheet by 2100 with mean 0.6m and standard deviation of 0.14m.
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Figure 3-11: Triangular Distribution for subsidence levels in Galveston Bay, 2000 to 2100,
with mean 2 feet, minimum 0 feet and maximum 4 feet.
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Figure 3-12: The resulting probability of inundation, including risks of storm surge, ther-
mal expansion, sea level contributions from WAIS and GIS, and subsidence. The blue
line is the probability distribution of inundation in 2000 and the red line is the probability
distribution of inundation in 2100.
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Chapter 4

Facility decision under risk

With events like the Fukushima Daiichi nuclear disaster or Hurricane Katrina’s impact on

the oil industry, we can understand how the security of our energy infrastructure has broad

social, environmental, health, and economic implications. It’s not always clear, however,

whether a facility’s risk is extreme enough to require adaptation to minimize losses and

damages. In Chapter 4, we examine the decision making framework necessary to make the

optimal adaptation strategy for coastal facilities that are vulnerable to flooding.

4.1 Translating Risks to Decisions

Each facility along the coast in Galveston is exposed to some risk of flood damage. In

Chapter 3, we showed that for a facility at a 5 foot elevation along the coast, the risk of

flooding, according to the GFDL model, and under 2000 climate conditions, is 1.27% and

that by 2100 this risk is anticipated to increase to 47.16% under the assumptions outlined

in Chapter 3. (Note that the risk analysis to be carried out in this chapter includes only the

results from the GFDL model.) More generally, in Chapter 3 we also derived risk profiles

for maximum yearly surge heights for both 2000 and 2100 climates. These risk profiles

assume that no adaptation has taken place to date. As Galveston furthers the extent of its

adaptation, however, we expect these risks to decrease.

In this analysis, adaptation in response to the risks of coastal flooding means the con-

struction of levees or sea walls to retain ocean water. Levees are meant to minimize or
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eliminate the impacts of storm surges and sea level rise on infrastructure up to a certain

height. Levees do have the potential to fail, as was observed in New Orleans during Hur-

ricane Katrina. Their effectiveness therefore relies on the integrity of the structures, which

can be reinforced through time. In this analysis we assume no failure and further assume

that once a levee is constructed, the maintenance of structure is maintained through time. A

possible extension of this analysis would be to allow for the structure to degrade and/or fail

and should be considered in future work. For the purposes of our analysis, we consider the

major constraints in adaptation to be those imposed by the costs of building and the costs

of maintaining the levee structure. There is the option to build a levee at any point in time

or to add to an existing levee at any point in time. Here we build a dynamic programming

model to identify the most economical adaptation strategy over time.

4.2 Adaptation Strategy: Dynamic Programming

As risks increase over time, there is a growing need for adaptation. The decision making

process to adapt at any point in time depends on both the current risk a facility is exposed

to and its expected future risk. Sequential decision making can add a complication to how

we make decisions. Decisions made today will affect the future and therefore affect future

decision making. Similarly, future possible decisions could affect what decisions we make

today. Most crucial are the immediate decisions made so we construct our analysis to

ultimately inform present day decisions.

In dynamic programming, during each time period, we consider the state of a facility

and all possible decisions available within that state. For our analysis, the ‘state’ is the

level of protection in place (i.e., the height of the levee in feet) and the decision ‘action’

options consist of the number of additional feet to build, including the option not to add

any feet to the levee. The expected losses at any point in time is a function of future states

and actions. We therefore begin optimizing in the last state and work our way backwards to

our initial state. To limit the decision options we only consider adaptation options between

2000 and 2100, and we allow decisions for additional structures to be made at each decade

(this means that the last state under consideration for decision making is the 2090-2100).
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Further, we allow for up to a 20 foot tall levee to be added, as low as 0 feet, and on a 2 foot

increment for options in between.

Define St and At(St) to be the state and best action respectively at time t, and let Vt(St)

be defined as the lowest expected costs at time t in state St. Further, let Ct(St, At) be the

expected costs at time t given state St and action At.

For each time period, we calculate the best action and lowest value such that

At(St) = argmin
At

{Ct(St, At) + Vt+1(St + At)} , (4.1)

and

Vt(St) = min
At

�
1

(1 + r)t
(Ct(St, At) + Vt+1(St + At))

�

, (4.2)

where r is the discount rate. Ct(St, At) is defined as

Ct(St, At) = E(Damage|St, At) + cm ×m× St + cb ×m× At, (4.3)

where E(Damage|St, At) is the expected damage during the time period given the state

and action, cm is the cost of maintaining one foot-mile of sea wall, cb is the cost of building

an additional foot-mile of sea wall, and m is the number of miles of sea wall necessary to

protect the facility.

Since we choose to look at decisions made every decade, each of these costs are ac-

cumulated over the decade, with the discount rate of r. We obtain probabilities of yearly

inundation by interpolating between our two probability distributions shown in Figure 3-

13. We interpolate the flood heights linearly between percentiles. For instance, if the 60th

percentile of flood heights is 0.5 feet in 2000 and 5.5 feet in 2100, then the 60th percentile

for the intermediate decades will be 1 foot in 2010, 1.5 feet in 2020, 2 feet in 2030 and

so on. The underlying assumption for this interpolation is based on the linear relationship

between sea level rise and temperature projections from the GCMs used from the IPCC un-

der A1b, and a linear trend in temperature increases between 2000 and 2100. For the other

components of the risk analysis (i.e. great ice sheets, subsidence, and hurricane intensity),

there is lacking scientific understanding of the change in risk will progress over the century.
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Due to the lacking scientific bases, our default assumption was a linear trend in a changing

risk profile. Future work is needed to develop simulations for the intermediate decades

between 2000 and 2100, but for now the resulting intermediate probability distributions are

shown in Figure 4-1.

From these probability distributions, we can find Pt(ζ > ξ + St + At), which is the

probability that the flood height, ζ , will exceed the wall height at elevation ξ in a given year

with a protection height of St + At. To derive the expected damages over the tth decade,

we calculate

E(Damage|St, At) =
10�

i=1

1

(1 + r)i−1
×D × Pt(ζ > ξ + St + At), (4.4)

where D is the damage incurred by a flooded facility.

By iterating backwards over time, we are able to derive the optimal wall height for each

state. We illustrate this method using a case of a flooded facility of similar magnitude to

facilities that exist at 5 feet above today’s mean sea level in Galveston. Costs incurred by

this facility is the sum of lost or damaged infrastructure, loss of operational capacity until

repairs were finished, and legal costs for damaged property as a result of the flood. Data is

not available on potential damage to the refinery actually located at Point A in Galveston

Bay, so to illustrate the method we assume the existence of a 200,000 barrel per day refinery

at that point and apply estimates from a facility flooded by hurricane Katrina. The resulting

model parameters are the following:

• D=$650,000,000

• cm = $4330 per foot per mile2

• cb = $1, 000, 0003

• m = 5 (number of miles of dykes required)
2The cost of annual levee maintenance per foot height per mile length is taken from Franck 2009(7). It’s

a rough estimate taken from Okita and Pritchard (2006) by averaging two levee projects there. The average
was $4330 per ft per mile.

3Estimate based on public records of damage and liability costs of flooding, plus an estimate of the cost
of almost a year’s shutdown of a flooded refinery during Hurricane Katrina. The estimate is for illustrative
purposes only and has not been reviewed or approved by the company.
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Figure 4-1: Probability distributions of inundation for each decade by interpolating be-
tween risk profiles from Figure 3-13
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• r = 0.05

• ξ = 5 feet

The result is a decision matrix as shown in Figure 3-2 (need to format this matrix to be

more clear).

Figure 4-2: Decision matrix for the height of sea wall recommended to minimize costs with
a changing climate. The columns increase with each decade(2000, 2010, 2020,... 2100) and
the rows increase indicating each state (0 feet, 2 feet, 4 feet, .... 20 feet)

With current projections of a changing climate over time, we produce a decision array

that informs decisions sequentially over time. Note that this array will change as we further

our understanding of the risks. To interpret the decision array, the columns move left to

right with each decade, 1990-2000 being the first column. The rows are each state from 0

to 20 increasing with a step size of 2 feet. We can see that in the first row, (i.e. in a state

with no protection) and first column (i.e. 1990-2000 time period), an 8 foot wall should be

built immediately. If this decision is made then in the second decade (second column), at a

state of 8 feet (5th row), no change in protection is called for. This remains true until the 5th

time period when another 2 feet should be added for a total of a 10 foot levee. Following

this decision path, the final construction is in adding another 2 feet in the 8th decade for a

total of 12 feet.

The decision framework was also tested on a risk profile that remains constant over

time, the profile identical to the 2000 climate. This means no changes in sea level or hur-
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ricane activity would occur over a century. Regardless of this, the results still suggest to

build a wall, but only one that is 6 feet in height (see Figure 4-3), 2 feet less than what our

decision would be with a different future set of risks.

Figure 4-3: Decision matrix for the height of sea wall recommended to minimize costs with
no changing climate. The columns increase with each decade(2000, 2010, 2020,... 2100)
and the rows increase indicating each state (0 feet, 2 feet, 4 feet, .... 20 feet)

This decision framework allows us to see how postponing wall construction means that

greater costs are absorbed in the future (see Figure 4-4) while exposing facilities to greater

risks right now. This matrix displays the future expected accumulated costs in each period

and in each state associated with making the optimal decision given the period and state

(i.e. Ct(St, At) from (4.3)). For instance, for 2000 in a state with no sea wall, if optimal

decisions are made each decade, then the expected accumulated costs over the century

are $52.7 million (column 1, row 1). This framework also allows us to make sequential

decisions in the situation where the optimal decision is infeasible at the given time period.

If a wall is unaffordable today or if certain regulations restrict the construction of a wall

now, we can still make near-optimal decisions in a subsequent decade in accordance with

our analysis. For instance, if a sea wall can’t be constructed in 2000 but is feasible in

2020, then the expected accumulated costs in 2020 will be $50 million (column 3, row 1).

Today’s total expected costs, however, would also need to include the expected costs of no

protection for the first two decades. Using risk profiles for 2000 and 2010 we calculate
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the extra expected costs of leaving a facility unprotected and find that an additional $148

million dollars from expected damages would be incurred in that time frame.

This decision making framework provides us with useful insight in how to best adapt

to climate change. Our decisions will be modified as the scientific understanding of risks

evolve. But this decision making framework also allows us to decide if the costs of adapta-

tion exceed the value of the facility. If today’s net present value of an unprotected facility

is greater than $52.7 million, then there are still financial gains of keeping the facility in

operation. If, however, the net present value is less than $52.7 million, then the expected

damages would outweigh the benefits of keeping the facility in operation. In this scenario,

the optimal decision would be to abandon the facility.

Figure 4-4: Costs matrix (expressed as the net present value in that time period in $× 106)
for sea wall heights in each state and time period with optimal future decision making under
changing climate. Note: costs correspond with sea wall heights from Figure 4-2
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Chapter 5

Conclusions and Policy

Recommendations

5.1 Summary

The effects of climate change have begun to take shape globally with changes in precipita-

tion, milder winters, changes in storm patterns, warming oceans, and a rising sea level. For

the coastal regions of the United States, there is increased concern of how sea level rise and

storm patterns in particular, will expose the areas to greater threats of coastal flooding. In

this work we present a methodology for modelling the changing vulnerability of coastal in-

frastructure in a changing climate with a first application to Galveston Bay energy facilities.

The underlying assumption is that the future climate is a result of one emissions scenario,

A1B, as defined by the IPCC AR4. We develop flood height probability distributions for

each risk factor contributing to the threat of inundation. This includes:

1. Storm surges from hurricane simulations. A Coupled Hurricane Intensity Prediction

System is run off of conditions from four distinct AOGCM results from the IPCC

AR4 and the resulting hurricane simulations are applied to the SLOSH model to

determine a resulting probability risk distribution for storm surge heights.

2. Sea level rise as a result of thermal expansion. We use a normal distribution based

on six AOGCM sea level rise results under A1B from the IPCC AR4.
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3. Sea level rise from the contributions of the Greenland and West Antarctic ice sheets.

We derive a lognormal distribution based on a wide range of published results.

4. Subsidence as a result of the removal of groundwater or other resources. We use a

triangular distribution which we estimate based on historical subsidence levels in the

Galveston region.

We use a Monte Carlo method to randomly sample from each of these distributions in

order to obtain a combined probability distribution for maximum yearly flood heights for

both the 1980-2000 time period and the 2080-2100 time period.

We extend this analysis further to incorporate dynamic decision making under the

changing risks of annual flooding. We interpolate between our 2000 and 2100 risk pro-

files to obtain intermediate risk distributions for each decade. For our decision analysis we

choose a facility sitting at five feet above current mean sea levels in Galveston Bay and

assume a similar damage potential as a 200,000 barrel per day refinery that was flooded

during Hurricane Katrina. We consider the option to protect a facility by constructing sea

walls, versus the option of leaving the facility unprotected. Through dynamic programming

we derive the optimal decision making sequence for each decade in order to minimize total

expected costs.

We find under our assumptions that for a facility at five feet above mean sea level, the an-

nual risk of flooding today is about 1% and that this risk increases to somewhere between

38 and 47% by 2100.

This method provides an integrated risk assessment for facilities in Galveston Bay and

would be a useful tool in determining the extent of protection that an operating facility

could benefit from. This method can be more broadly applied to any coastal region with

vulnerable infrastructure, or vulnerable assets by adjusting the probability distributions

from the contributing factors to better reflect the impacts specific to those regions. The

expected costs must also be adjusted to reflect the value of the facility under consideration.
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5.2 Applications to Public Policy

As the nature of our weather patterns and environmental systems change, the policies gov-

erning human activities should be adjusted to reflect that change. Through our analysis,

we’ve concluded that coastal energy infrastructure will become more vulnerable to inunda-

tion with a changing climate and contributing impacts of subsidence. Flood-related policies

should therefore be developed to reflect this changing risk.

One of the major policy concerns with regards to coastal flooding is with regards to

zoning and insurance policies. In 1965, Congress had passed the Southeast Hurricane

Disaster Relief Act, which provided post-disaster relief following extreme floods. Shortly

after this Act was passed, however, there was a call for a broader look at flood control

in order to help mitigate future damage. In 1968, Congress created the National Flood

Insurance Program (NFIP) to provide affordable flood insurance and provide floodplain

management regulations to reduce the flood-damage potential in communities of high flood

risk. NFIP is administered by the Federal Insurance and Mitigation Administration (FIMA)

within the Federal Emergency Management Agency (FEMA) and is also responsible for

administering programs aimed to provide assistance in reducing future damage in flood-

prone regions. In order to be able to provide affordable insurance, the NFIP established

a 100-year flood risk standard. Properties must meet this standard before qualifying for

the subsidized insurance rates. Statistically, the 100-year standard means a 1% annual

risk of flooding, therefore, “the 100-year flood has a 26 percent chance of occurring over

the life of a 30-year mortgage”(6). If communities don’t undertake mitigation efforts in

compliance with the regulations established by NFIP, then they are not eligible for the

subsidized insurance provided by FEMA.

One of FEMA’s responsibilities is to deliver flood hazard maps of the Nations flood-

prone regions. These maps are intended to identify regions at high-risk of flooding and to

determine which zones fall under the 100-year standard. If sufficient precautionary mea-

sures are undertaken, such as the construction of a levee compliant with FEMA’s criteria,

then the risk maps are adjusted to take the alterations into account. This could mean that
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properties would no longer be required by law to purchase flood insurance or that their

insurance rates would decrease.

The hazards considered by FEMA are all based on todays vulnerable coastlines; they

have not yet developed changing risks in to their models. For a 30-year mortgage, however,

climate change is anticipated to change the risk established by FEMA today. Regions that

may be in flood-prone areas in 30 years, may not realize how their risks and insurance costs

may be liable to change. Incorporating a longer-term view in FEMAs flood mapping, will

allow more informed decisions to be made regarding new developments. The methodology

from this research could be applied to FEMA’s map generation in order to provide better

insight into the changing risks for property owners or developers.

Further attention should be paid to the contributing factors to increased risk of inunda-

tion. We highlight two of contributing factors here, the first being climate change. There

exists a large body of literature that addresses the policy options and challenges for miti-

gating against future climate change outcomes. The scale of these policy options are con-

sidered on national and international platforms and while it is a critical topic that should

not be overlooked, it is beyond the scope of our more regional analysis.

The second contributing factor to increased risk is subsidence, largely as a result of

the removal of groundwater; the removal of minerals, oil or gas can also contribute to

subsidence but groundwater removal has been noted to be the most crucial contributing

factor in locations experiencing severe subsidence. If we look towards a favorable long-

term outcome, we may be interested in developing policies to minimize the potential for

subsidence. This could be restricting the rate of groundwater removal or replenishing the

water table after the fact. The trouble with replenishing the water table is that a source

of clean water is needed to replenish it with if we are to avoid contaminating the water

supply. This would defeat the purpose, however, of removing water in the first place.

Developing careful regulations for the amount and rate of ground-water removal is crucial

to minimizing the subsidence rates in the United States.

Research has shown that decision makers’ perception of risk is based on their rationality

assumptions whereas investor’s perception of risk is driven by their perceived storm risk

(7). As we look to develop policies appropriate for changing risks, it is important that
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decision makers are therefore well informed of the true changing risks. Further coastal

analysis to the vulnerability to climate change would be needed to provide this insight.

5.3 Future Work

There are a number of components to this analysis that require improvements. The follow-

ing are a few of the items that should be addressed in future work.

Modelling the changing environmental risks

• Expand emission scenarios to include more scenarios other than A1B which is under

criticism for over-predicting short-term economic growth.

• The hurricane runs used for this analysis were based either on a climate from 1980-

2000 or a climate from 2080-2100 under the A1B emissions scenario. To better

understand how quickly hurricane magnitudes will change, it would be beneficial to

run the hurricane model off of climates in the more immediate future, such as 2030

and 2050, to derive a more accurate path of the changing risks of inundation.

• The SLOSH model produces maximum surge heights within the boundaries of the

coast but does not include inland elevation in the model. To more accurately predict

the risk of flooding for low-lying facilities set inland, we should include topographic

details and a wetting and drying factor into our surge model.

• The SLOSH model could not accommodate sea level rise or subsidence into the

model prior to surge height predictions. To have more accurate predictions of surge

heights over time, increased sea levels and/or subsiding coasts should be incorporated

into the surge model to better reflect the combined impacts.

• The sea level probability distributions used in this analysis were derived from the

best predictions available to us at the time of the study. As the science behind sea
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level rise develops further, the probability distributions for sea level heights should

be modified to better reflect these scientific developments.

• We included a triangular distribution for subsidence to indicate the major uncertain-

ties in these predictions. Future work should involve subsidence models that incor-

porate potential policies to limit ground water extraction and better reflect the true

risks of future subsidence.

• The analysis should be applied to different locations along the United States coast

line. The features of Galveston make it specifically vulnerable and the severity of

infrastructure vulnerability is anticipated to be less severe in different locations. Ap-

plying this methodology to different locations would give us a better idea of the

degree to which other coastal infrastructure are exposed to increased threats of in-

undation. Given the complexity of this analysis, however, applications to different

locations would be more feasible with the development of a reduced form model.

Infrastructure decision analysis

• In the dynamic decision making process, the options were to either continue with

business as usual or adapt by constructing a sea wall. A third option would be to allow

for abandonment in the decision making process. This option should be considered

in future work.

• We’ve assumed in this analysis that once a levee is constructed that it is adequately

maintained through time, indefinitely. In reality, there is the option to build a levee

and not maintain it. This option should be considered in our analysis and would also

impact the risk of failure. This risk of failure should therefore also be incorporated

into the model and into the decision making process.

• Our analysis was based on existing infrastructure in Galveston Bay and neglected to

incorporate potential future infrastructure in the region. To fully understand the true

magnitude of future damage, we should better incorporate economic projections and

future potential infrastructure into our analysis.
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• The cost for adapting to a rising sea level was based on rough estimates and require

validation both on the cost of constructing a sea wall (the cost is likely to vary de-

pending on the location) and the cost of maintaining the sea wall (the cost is likely to

vary depending on environmental conditions or quality of the initial construction).
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