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Abstract Recent literature showed that the choice between a price or quantity control
depends, in part, on the dynamic structure of cost uncertainty. Temporary shocks to abatement
cost favors the use of a price control, while permanent shocks favor a quantity control.
Unfortunately, the importance of this assumption to the optimal choice has not yet received
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accessibility of the results, which reinforce the critical role played by the assumed structure
of uncertainty.

Keywords Cap and trade · Permanent shocks · Tax · Transitory shocks

Part of Parsons’ research was supported by the MIT Center for Energy and Environmental Policy Research
and the MIT Joint Program on the Science and Policy of Global Change and by a grant from the Doris Duke
Charitable Foundation. Part of Taschini’s research was supported by the Grantham Research Institute on
Climate Change and by the Centre for Climate Change Economics and Policy, which is funded by the UK
Economic and Social Research Council (ESRC) and Munich Re. This draft has benefited from helpful
comments from Sam Fankhauser, Cameron Hepburn, Jake Jacoby, Gib Metcalf, John Reilly, Mort Webster
and Federica Buricco and participants in the MIT Emissions Prediction and Policy Analysis seminar.

J. E. Parsons (B)
Sloan School of Management MIT, Massachusetts Institute of Technology, E19-411, 77 Massachusetts
Ave, Cambridge, MA 02139, USA
e-mail: jparsons@mit.edu

L. Taschini
The Grantham Research Institute on Climate Change and the Environment, London School of Economics
and Political Science, London, UK
e-mail: l.taschini1@lse.ac.uk

123



J. E. Parsons, L. Taschini

JEL Classification H23 · Q28 · Q50 · Q58

1 Introduction

Two classic alternatives for regulating pollutants are a cap and trade system or a tax. One
is a quantity control and the other a price control. Under idealized circumstances the two
are equivalent. If the regulator has full information on the parameters of the economy, then
there is a simple duality in the problem: A given quantity control yields a specific price,
and vice-versa so that it doesn’t matter whether it is the price or the quantity which is
fixed directly. However, Weitzman (1974) showed that if the regulator has incomplete infor-
mation about production costs, this duality no longer holds and the final outcome varies
depending upon whether a price control or a quantity control is used. If the expected
marginal benefit function is flat relative to the marginal cost function, then a price con-
trol is preferred. If the marginal benefit function is steeper, then a quantity control is pre-
ferred.

Greenhouse gases are an example of “stock pollutants” for which the accumulation of
emissions in the atmosphere determines the environmental damage, as opposed the flow of
emissions within any specific window of time. In applying the Weitzman result to the specific
problem of greenhouse gas emissions, the early literature emphasized this characteristic. As
a stock pollutant, the marginal benefit function for abatement within any single period is
relatively flat while the marginal cost function slopes sharply, so a price control maximizes
welfare given uncertainty on cost, see, for example, Nordhaus (1994) (Ch. 8, fn. 4), Pizer
(1999) and Hoel and Karp (2002). Although the choice ultimately depends upon the empirical
parameters of the problem, the stock pollutant nature of greenhouse gases appeared to make
the outcome obvious.

Later research on the dynamic problem pointed out that the early literature had made
a narrow assumption about the dynamic structure of the uncertainty on cost through time.
This later literature solved a more general case, and showed that uncorrelated uncertainty
on cost across periods (temporary uncertainty) led to a preference for using a price con-
trol in each period, while correlated uncertainty on cost (permanent uncertainty) led to a
preference for using a quantity control—see, among others, Newell and Pizer (2003) and
Karp and Zhang (2005). Consequently, which control is preferred depends crucially on the
degree of correlation in costs across periods, together with the other parameters of the prob-
lem.

The original result from the early literature, that a price control is superior for stock pollu-
tants like greenhouse gases, achieved wide currency among economists and policy makers.
The later revision, noting the important role of the assumption about the dynamics of cost
uncertainty, is less widely appreciated. For example, the Stern Review (2006) reports that
the stock pollutant character of the greenhouse gas problem unambiguously argues in favor
of a price control.

This paper attempts to address the lag in digesting the later research results by reproducing
the results in a slightly different model with some useful features. The model is relatively
simple, so that the optimal dynamic policy is easily derived and can be handily simulated.
The match between alternative extreme assumptions on the dynamic structure on costs and
the preference for either a price or quantity control is stark, so that the underlying relationship
between the assumption and the result is highlighted. As always, reproducing a fundamental
result in a different context helps clarify the essential relationship between the assumptions
and the result.
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2 A Simple Dynamic Model of Emissions

We analyze emissions within a finite time horizon. This enables us to use simple backward
programming techniques to find the optimal dynamic emissions policy. While this means
we do not capture the full complexity of the infinite horizon problem, it turns out to be an
acceptable tradeoff since we are able to capture the insights of Newell and Pizer (2003) and
Karp and Zhang (2005) within this simpler context. The finite time horizon is divided into
an arbitrarily large number of periods indexed by {i, i = 1, 2, . . . , N }. Letting the number
of periods grow, and the duration of each period shrink, we can approximate the continuous
time solution. As we will see, the form of our solution easily incorporates the duration of
each period.

Emissions in each period are denoted qi , which is a control variable that can be adjusted
without constraint. The economy incurs costs that are declining in the rate of emissions, and
also a function of a cost parameter, θi , that evolves over time. We choose the functional form
for the economy’s costs as to generate a simple optimization condition in a multi-period
problem with discounting:

ci (qi , θi ) = eθi −qi .

With this form, marginal costs are the negative of the cost,

∂ci (qi , θi )

∂qi
= −eθi −qi .

Higher emissions lower cost. Cutting emissions—abatement—increases cost. Increasing
the parameter θi shifts cost up while also steepening the cost curve, so that both the cost of
abatement and the marginal cost of abatement increases.1

We evaluate two contrasting specifications of cost uncertainty. In the first specification,
shocks to the cost parameter have only a temporary or transitory impact. A shock affects the
cost parameter in that period, but has no impact on the expected cost in any future period. In the
second specification, shocks to the cost parameter have a permanent impact. A shock affects
the cost parameter in that period, and the expected cost in all future periods is incremented
by the same amount, too.

The first specification of the cost parameter θi is:

θi = θ0 + iν + σεi , (1)

where θ0 is the starting cost parameter, ν is the constant expected growth rate in the mean
cost parameter, and εi are independent standard normal random variables, i.e. the shocks to
the cost parameter. This defines a process that is white noise around a linearly increasing
trend. It is comparable to a mean reverting process with full reversion to the growing mean
within the period.

The second specification of the cost parameter θi is:

θi = θi−1 + μ + σεi . (2)

where μ is the constant expected growth in the cost parameter. This process is a random walk
with trend. It is often said that the random walk has “infinite memory”. It is in this sense that
we say the shocks have a permanent impact on the cost parameter.

These are two extreme special cases of a more general specification, and correspond to
the extreme special cases of perfectly correlated or perfectly uncorrelated uncertainty in the

1 Hoel and Karp (2001) explore the impact of multiplicative uncertainty as opposed to the additive uncertainty.
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specification used in Newell and Pizer (2003) and Karp and Zhang (2005). A very simple
and intuitive presentation of the difference between temporary and permanent uncertainty
can be found in an “Appendix” to the on-line working paper version of this paper, Parsons
and Taschini (2011). The more general specification is presented in that “Appendix”.

The cost-effective emissions policy involves a constant weighing of the updated condi-
tional marginal benefits of a unit of emissions against the updated conditional marginal costs.
We focus on a subsidiary problem: What is the dynamic emissions policy that minimizes the
cost of regulated agents of achieving a fixed target of aggregate emissions, q, over the N
periods so that:

N∑
i=1

qi ≤ q.

The focus on a simple aggregation of emissions, with emissions in any two periods being
perfect substitutes for one another, is a simplified but essential feature of any “stock pollu-
tion” problem. The focus on an absolute constraint involves two additional simplifications
that require additional discussion. First, defining a fixed, definite constraint abstracts from the
problem of weighing the marginal cost of additional abatement in aggregate emissions against
the marginal benefit of additional abatement. A fixed, definite constraint would only be opti-
mal if the marginal damage were approximately zero below the constraint and approximately
infinite at the constraint. Nevertheless, as we shall see, the solution to the subsidiary cost
minimization problem has a very simple structure that successfully captures the key insights
of the solutions to the fuller cost-benefit problem analyzed in Newell and Pizer (2003) and
Karp and Zhang (2005). Also, in an “Appendix” to the on-line working paper version of this
paper, we show that the insights developed here on the characteristics of the cost minimizing
dynamic emissions policy carry over when the marginal benefits must be incorporated into
the analysis. Second, per Yohe (1978), an absolute constraint like this might yield a bias in
favor of a quantity control. Yohe (1978) proposed a model that allows discrepancies between
the quantity orders and the actual output achieved by the regulated entities. He notes that,
while the relative size of the variance in output under the two opposing modes of control
matters, the importance of the comparison still depends on the relative curvature of the cost
and benefit functions. While it may be worthwhile to explore a more general version of our
model that addresses both of these points, in the interest of preserving the simplicity of our
solution, we have restricted ourselves to this less general structure.

We solve for the cost minimizing policy using backward induction. We first set up the
general solution format we use, and then we solve for the certainty case and our two extreme
uncertainty cases, in which shocks to the cost parameter are either temporary or permanent.
A dynamic emissions policy will set emissions in each period conditional on some function
of past aggregate emissions and on the current value of the cost parameter. We denote the
remaining allowed emissions as we arrive in period i by q̄i . Analytically, q̄i+1 = q̄i − qi

for i = 1, . . . , N − 1. The choice of emissions will also depend upon the level of the cost
parameter, θi , and so we write emissions as a function of these two parameters, qi (q̄i , θi ).

We denote the value function in period i = 1, . . . , N , as Vi . Since the target of aggregate
emissions is fixed, in the final period when i = N , the value function is simply the total cost
of remaining emissions to abate:

VN (q̄N , qN , θN ) ≡ c
(

qN (q̄N , θN ), θN

)
.
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The cost minimizing emissions level, q∗
N (q̄N , θN ), is the solution of the following problem

min
qN

VN (q̄N , qN , θN )

subject to the constraint
∑N

i=1 qi ≤ q. Given the cost function, the solution is trivial:

q∗
N (q̄N , θN ) = q̄N .

We denote the optimized value function as V ∗
N . It is a function of the remaining allowed

emissions coming into the period and the realized cost parameter in the period:

V ∗
N (q̄N , θN ) ≡ VN

(
q̄N , q∗

N (q̄N , θN ), θN

)

= c
(

q∗
N (q̄N , θN ), θN

)
= c(q̄N , θN ).

We will also want to take note of the marginal cost of emissions under this optimal policy
which is:

p∗
N (q̄N , θN ) ≡ −∂c(q∗

N (q̄N , θN ), θN )

∂qN
= c(q∗

N (q̄N , θN ), θN ).

where p∗
N (q̄i , θi ) represents the shadow price and is defined as the negative of marginal cost.

For convenience of comparison, we will generally focus on the log of the marginal cost,
ln(p∗

i ) = θi − q∗
i .

In earlier periods, when 1 ≤ i < N , the value function is the total cost of current period
emissions plus the discounted expectation of the value function in the subsequent period:

Vi

(
q̄i , qi , θi

)
≡ c

(
qi (q̄i , θi ), θi

)
+ Eθi

[
V ∗

i+1

(
q̄i+1(q̄i , qi ), θi+1

)]
.

The uncertainty about θi is resolved at the end of each period, therefore the expectation
operator is conditioned on the realisation of the cost parameter. The cost minimizing emissions
level q∗

i (q̄i , θi ) solves

min
qi

Vi (q̄i , qi , θi ).

The optimized value function is:

V ∗
i (q̄i , θi ) ≡ Vi

(
q̄i , q∗

i (q̄i , θi ), θi

)
.

The marginal cost of emissions is:

p∗
i (q̄i , θi ) ≡ −∂c(q∗

i (q̄i , θi ), θi )

∂qi
= c(q∗

i (q̄i , θi ), θi ).

The sequence of emissions functions, q∗
i (q̄i , θi ), form the cost minimizing dynamic emis-

sions policy from the perspective of the regulated agent. The sequence of price functions,
p∗

i (q̄i , θi ), form the price corresponding to the cost minimizing dynamic emissions policy.2

We have not introduced a formal model of asymmetric information on cost between a
regulator and firms. In a dynamic context, this would require a specification of the time lag
between the evolution of the cost parameter and the evolution of the regulator’s updated

2 Our model abstracts from a number of other dynamic factors one might wish to include. For example, Kelly
(2005) investigates the general equilibrium effects of price or quantity regulation that are missing in Weitzman
and the subsequent literature including this model. Heutel (2012) and Fischer and Springborn (2011) explore
dynamic emissions policies in the context of macroeconomic fluctuations in a real business cycle framework.
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information about costs. Moreover, if the regulator is inferring information about the cost
parameter from the chosen rate of emissions, then the problem becomes a very complicated
dynamic game between the regulator and firms. To finesse this problem, we focus on charac-
terizing features of the cost minimizing dynamic emissions policy, such as the variance in the
rate of emissions—the quantity variable—or the variance in the marginal cost of emissions—
the price of emissions, that we believe are robust diagnostics for the viability of regulations
focused on quantity or on price. For example, if the cost minimizing dynamic emissions
policy yields a quantity that hardly varies in response to shocks to the cost parameter, then it
will be relatively easy for a regulator to closely mimic the outcome by means of a quantity
control. Conversely, if the cost minimizing dynamic emissions policy yields a marginal cost
that varies dramatically in response to shocks to the cost parameter, then it will be relatively
hard for a regulator to closely mimic the outcome by means of a price control. The exact
measure of success or failure will ultimately depend on the structure of the information flow
to the regulator and the game between the regulator and firms. This model does not explore
that level of detail.

We now turn to examining the solution to this problem under different circumstances. We
begin by solving the certainty case, since this provides useful intuition for the uncertainty
cases. We then solve the two contrasting uncertainty cases and show how the degree to which
uncertainty is temporary or permanent shapes the cost minimizing emission policy.

2.1 Certainty Case

For the certainty case we have σ = 0, so that the dynamics of θi reduces to

θi = θ0 + iν for i = 1, . . . , N .

As shown in the “Appendix”, the cost minimizing emissions path has a conveniently
simple general form:

q∗
i = 1

N − i + 1
q̄i − 1

2
(N − i)(ν − r), (3)

and

V ∗
i (q̄i , θi ) = ieθi −q∗

i = ieθi − 1
N−i+1 q̄i + 1

2 (N−i)(ν−r). (4)

The log marginal cost of emissions is:

ln
(

p∗
i (q̄i , θi )

)
= θi − q∗

i (q̄i , θi ) = θi − 1

N − i + 1
q̄i + 1

2
(N − i)(ν − r). (5)

The expressions in Eqs. (3)–(5) are contingent on whatever may be the endowment of
remaining allowed emissions coming into the period, q̄i , and they are expressed in terms of
the remaining number of periods. Therefore, it is not immediately clear from Eq. (3) how the
emissions in different periods compare to one another. In the certainty case, we can readily
translate back to an equation that describes emissions in different periods as a function of
the total allowed emissions, q̄, the total number of periods, N , the rate of growth in the cost
parameter, ν, and the discount rate, r :

q∗
i (q̄, N , ν, r) = 1

N
q̄ +

(
i − N

2

)
(ν − r). (6)
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(a) (b)

Fig. 1 5-year evolution of the certainty case: cost minimizing dynamic emission policy, q∗
i , (left) and the log of

marginal cost of emissions, ln
(

∂c(q∗
i ,θi )

∂q∗
i

)
, (right) for the certainty case. In this example q̄ = 1, 000, θ0 = 5,

ν = 0.1, σ = 0, r = 0.05, and the time step corresponds to a week. a Optimal emission policy q∗
i . b Log of

marginal cost ln
(

∂c(q∗
i ,θi )

∂q∗
i

)

Transforming the price—the negative of the marginal cost—in log terms for the ease of
exposition, p∗

i can be expressed as:

ln
(

p∗
i (q̄, N , ν, r)

)
= θ0 − 1

N
q̄ + N

2
(ν − r) + ir . (7)

To understand the optimal emissions policy in Eq. (3) begin by assuming that ν = r,
so that the cost parameter is growing at a rate equal to the discount rate. In that case, the
optimal policy is to allocate to period i a pro rata share of the remaining allowed emissions,

1
N−i+1 q̄i . Application of this policy to successive periods means that emissions are equal

in every period, q̄
N . The (log) marginal cost of emissions rises, θ0 − q̄

N + ir, but at a rate
equal to the discount rate, so that the discounted marginal cost is constant across all periods.
When ν �= r the optimal policy is to adjust the pro-rata allocation in period i to reflect
the differential between the growth rate on the cost parameter and the discount rate. The
adjustment assures that emissions increase linearly through time at the rate ν − r, as seen in
Eq. (6) and shown in Fig. 1a, so that the marginal cost of abatement grows at the discount rate,
r, as seen in Eq. (7) and reported by Fig. 1b. If ν ≥ r, and the underlying cost parameter is
growing at a rate greater than the discount rate, then this adjustment leads to reducing the rate
of emissions now, in period i, increasing the realized marginal cost today, so as to preserve
allowed emissions for the later periods when the cost parameter is higher, thus reducing the
growth rate in the realized marginal cost to equal the discount rate.

An important feature to take note of in the solution to this certainty case is that the optimal
emissions level, q∗

i , is independent of the realized cost parameter, θi . The cost minimizing
emissions path is fully determined by (i) the quantity of emissions being targeted relative to
the time remaining, and (ii) the rate of growth in the cost parameter relative to the discount
rate. The level of the cost parameter does not enter the equation. If we change the current
value of the cost parameter, we don’t change the cost minimizing emissions policy! This fact
significantly aids our solution of the cost minimizing policy when the evolution of the cost
parameter is uncertain, i.e., when we allow σ > 0, whether for the case of temporary or
permanent shocks.
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2.2 Temporary Uncertainty Case

As shown in the “Appendix”, the general form of the optimal dynamic policy is:

q∗
i = 1

N − i + 1
q̄i − 1

2
(N − i)(ν − r) − Aiσ

2 + N − i

N − i + 1
σεi (8)

where

Ai = N − i

N − i + 1

(
Ai+1 + 1

2(N − i)2

)
for i = 1, . . . , N − 1 and AN = 0

The general form of the optimized value function is:

V ∗
i (q̄i ) = ieθi −q∗

i = ieθi − 1
N−i+1 q̄i +Ai σ

2+ 1
2 (N−i)(ν−r)− N−i

N−i+1 σεi .

The log price is:

ln(p∗
i ) = θ0 + iν − 1

N − i + 1
q̄i + Aiσ

2 + 1

2
(N − i)(ν − r) − 1

N − i + 1
σεi

The optimal emissions policy in Eq. (8) is similar to the certainty case in two of the
components: the pro rata share of the remaining allowances, 1

N−i+1 q̄i , and the linear growth

factor, 1
2 (N − i)(ν −r). In addition, there is a deduction in the current emissions level, Aiσ

2,

which is tied to the overall volatility of emissions. This is an adjustment to the inter-temporal
allocation of emissions necessitated by the increasing uncertainty about future emissions.
Finally, there is the component of emissions that fluctuates with the current realization of
costs: N−i

N−i+1σεi . If the remaining number of periods is large, then the coefficient is close
to 1, which means that all of the shock in the cost parameter is absorbed in adjustment
to the current level of emissions. This adjustment keeps the current level of marginal cost
approximately constant. As the remaining number of periods declines, the coefficient on the
quantity adjustment falls, so that only a portion of the shock in the cost parameter is absorbed
in adjustment to the current level of emissions. This is because of the fixed aggregate emissions
constraint. Any adjustment in the current level of emissions must be compensated for with
an opposite adjustment in emissions over all of the remaining periods. The coefficient on
the quantity adjustment, N−i

N−i+1 , results in all periods sharing equally in the increased or
decreased marginal cost so as to minimize the aggregate cost impact. When there are fewer
remaining periods to share the remaining costs, a larger fraction must be absorbed in the
current period. Consequently, as the final period approaches, price reflects a larger and larger
portion of the shock of the cost parameter.

These points can be formalized by showing the formula for the variance of emissions and
of the log of price. The variance of emissions and log price one period ahead are:

V ari−1(q
∗
i ) = N − i

N − i + 1
σ, and V ari−1(ln(p∗

i )) = 1

N − i + 1
σ.

The variance of the forecasted emissions and log price at any period, i, relative to the
starting period, i = 0, are:

V ar0(q
∗
i ) =

√∑i−1

h=1

( 1

N − h + 1

)2 +
( N − i

N − i + 1

)2
σ.

and

V ar0(ln(p∗
i )) =

√∑i

h=1

( 1

N − h + 1

)2
σ.
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Temporary shocks case: expected path of emissions, q∗
t
 (dashed)

0 1 2 3 4 5

0.25

0.3

0.35

0.45

0.5

0.55

Years

ln
(p

∗ i
)

Temporary shocks case: expected log marginal cost of emissions, ln(p∗
i ) (dashed)

(a) (b)

0.4

Fig. 2 One-standard deviation confidence bounds around the expected path of the optimal quantity of emis-

sions, q∗
i , (left) and around the expected path of the log of marginal cost, ln

(
∂c(q∗

i ,θi )

∂q∗
i

)
, (right). In this

example q̄ = 1, 000, θ0 = 5, ν = 0.1, σ = 0.2, r = 0.05, 5-year horizon, and the time step corresponds to a
week. a Expected path and confidence bounds for q∗

i . b Expected path and confidence bounds for the log of

marginal cost ln
(

∂c(q∗
i ,θi )

∂q∗
i

)

Figure 2a shows a pair of one-standard deviation confidence bounds around the expected
path of the optimal quantity of emissions through time. Figure 2b shows a pair of one-standard
deviation confidence bounds around the expected path of the log of marginal cost through
time.

2.3 Permanent Uncertainty Case

As shown in the “Appendix”, the general form of the optimal dynamic policy is:

q∗
i = 1

N − i + 1
q̄i − 1

2
(N − i)(μ − r), (9)

and

V ∗
i (q̄i , θi ) = ieθi −q∗

i = ieθi − 1
N−i+1 q̄i + 1

2 (N−i)(μ−r).

The log price is:

ln(p∗
i ) = θi−1 + μ + σεi − 1

N − i + 1
q̄i + 1

2
(N − i)(μ − r) (10)

With a permanent shock, the cost in all periods is equally higher or lower, so that an adjustment
in the current period emissions will not help. In fact, the distribution of emissions over
time has no reason to change. The optimal emissions policy in Eq. (9) and represented in
Fig. 3a is identical to the certainty case. Emissions in each period are a proportional fraction
of the remaining available allowances as determined by the remaining number of periods
over which those allowances must be shared. Emissions are adjusted for an allowance for
growth in emissions to match the growth rate in the cost parameter and are independent of
the cost parameter itself. Emissions are entirely unresponsive to shocks to the cost parameter.
Since none of the cost uncertainty is absorbed by the quantity of emissions, all of the cost
uncertainty must be absorbed by the price as shown in Eq. (10).
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Permanent shocks case: a collection of sample paths of the log of marginal cost, ln(p
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i )

(a) (b)

Fig. 3 5-year evolution of the cost minimizing dynamic emission policy, q∗
i , (left) and the log of marginal

cost of emissions, ln
(

∂c(q∗
i ,θi )

∂q∗
i

)
, (right) for the permanent shock case. In this example q̄ = 1, 000, θ0 = 5,

μ = 0.08, σ = 0.2, r = 0.05, the time step corresponds to a week, and we consider a set of 50 sample
paths. a Optimal emission policy q∗

i . b Collection of sample paths of the log of marginal cost of emissions

ln
(

∂c(q∗
i ,θi )

∂q∗
i

)

These points can be formalized by showing the formula for the variance of emissions and
of the log of price. The variance of emissions and log price one period ahead are:

V ari−1(q
∗
i ) = 0, and V ari−1(ln(p∗

i )) = σ.

The variance of the forecasted emissions and log price at any period, i, relative to the
starting period, i = 0, are:

V ar0(q
∗
i ) = 0, and V ar0(ln(p∗

i )) = √
iσ.

Figure 3a shows the deterministic emissions policy in the face of permanent uncertainty
in the cost parameter. Figure 3b shows the log of the marginal price.

These two cases provide sharp insight into the different impact that uncertainty in cost
should have upon the cost minimizing emissions path depending upon whether it is a tem-
porary uncertainty or a permanent uncertainty. In the case of temporary uncertainty, it is the
quantity of emissions that absorbs shocks to the cost parameter, while the price of emissions
is relatively constant. In the case of permanent uncertainty, quantity is constant and it is price
that absorbs shocks to the cost parameter.

3 Conclusions

We constructed a simple model that helps clarify the role of uncertainty in the choice of a
price or quantity instrument. Our contribution is the simplicity of the model and the sharpness
of the results. In particular, we fully characterize the time path of the optimal quantity of
emission responding to shocks to the cost of abatement, whether those shocks temporarily
change the cost or permanently change it. If the shocks to cost are exclusively temporary,
then it is optimal to adjust the quantity period-by-period, keeping the marginal cost relatively
constant. If the shocks are exclusively permanent, then it is optimal to keep the quantity
fixed, letting the marginal cost vary as the cost varies. This result provides insight into the
optimal instrument choice for a regulator attempting to control emissions by private agents
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with better information on costs, although we do not explicitly model this problem. In the
case of temporary uncertainty, when the dynamic emissions policy is to adjust the quantity
period-by-period, keeping the marginal cost relatively constant, it is most likely optimal to
employ a price instrument. However, in the case of permanent uncertainty, a price instrument
will clearly not be optimal since it is the price that ought to absorb all of the shocks to cost.
Instead, since quantity should be invariant to the cost shocks period-by-period, a quantity
instrument is likely to be optimal. Our results, therefore, reinforce the findings of Newell and
Pizer (2003) and Karp and Zhang (2005) that the choice between using a quantity or price
instrument hinges on whether or not the uncertainty in costs is correlated across periods.

Our model also provides insight into the operation of a cap-and-trade system that allows
banking and borrowing of allowances across periods. The time path of the optimal quantity of
emission we derived is also an optimal dynamic allocation of allowances across the periods
included under a cap. Therefore, cap-and-trade with banking and borrowing implements the
dynamically cost effective emission policy, regardless of the sort of uncertainty. If the cap-
and-trade system faces temporary uncertainty in costs, then it will be the period-by-period
quantity of emissions that will fluctuate under the cap-and-trade system, and the price will
be relatively constant. If the cap-and-trade system faces permanent uncertainty in costs, then
it will be the period-by-period price that will fluctuate under the cap-and trade system, and
the quantity of emissions in each period will not be stochastic, but rise deterministically at
the rate of growth in costs less the interest rate.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which
permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source
are credited.

Appendix

We solve the optimal pollution control problem using recursive substitution. For the sake
of exposure, we count periods backwards from the endpoint using the index j to denote
periods from the endpoint, with j = N , . . . , 2, 1. Recall also that the allowed emissions
remaining in the subsequent period is a function of the emissions chosen in the current
period, q̄ j−1 := q̄ j − q j . We begin by solving the certainty case, since this provides useful
intuition for the uncertainty cases. We then solve the uncertainty case when per period’s
shock is purely temporary and purely permanent, respectively.

Certainty Case

When σ = 0, we have the certainty case and the cost parameter follows the dynamics:

θ j−1 = θ j + ν = θ0 + (N − j + 1)ν.

Solving for j = 1, we have q∗
1 (q̄1, θ1) = q̄1. Therefore, the value function in the last

period V ∗
1 (q̄1, θ1) = c(q̄1, θ1) = eθ1−q∗

1 . For j = 2, we have

V2(q̄2, q2, θ2) = Eθ2

[
c(q2, θ2) + e−r V ∗

1 (q̄1(q̄2, q2), θ1)
]

= eθ2
[
e−q2 + e−(r−ν)e−(q̄2−q2)

]
.

123



J. E. Parsons, L. Taschini

Solving the first order condition for the cost minimizing emissions gives us:

q∗
2 = 1

2
q̄2 − 1

2
(ν − r). (A-1)

Substituting this into the value function gives the optimized value function:

V ∗
2 (q̄2, θ2) = 2eθ2−q∗

2 = 2eθ2− 1
2 q̄2+ 1

2 (ν−r). (A-2)

For j = 3, we have

V3(q̄3, q3, θ3) = Eθ3

[
c(q3, θ3) + e−r V ∗

2 (q̄2(q̄3, q3), θ2)
]

= eθ3
[
e−q3 + 2e− q̄3−q3−3ν+3r

2

]
.

Solving the first order condition for the cost minimizing emissions gives us:

q∗
3 = 1

3
q̄3 − 2

2
(ν − r)

Substituting this into the value function gives the optimized value function:

V ∗
3 (q̄3, θ3) = 3eθ3−q∗

3 = 3eθ3− 1
3 q̄3+(ν−r). (A-3)

For j = 4, we have

V4(q̄4, q4, θ4) = Eθ4

[
c(q4, θ4) + e−r V ∗

3 (q̄3(q̄4, q4), θ3)
]

= eθ4
[
e−q4 + 3e− q̄4−q4−6ν+6r

3

]
.

Solving the first order condition for the cost minimizing emissions gives us:

q∗
4 = 1

4
q̄4 − 3

2
(ν − r).

Substituting this into the value function gives the optimized value function:

V ∗
4 (q̄4, θ4) = 4eθ4−q∗

4 = 4eθ4− 1
4 q̄4+ 3

2 (ν−r) (A-4)

Continuing the substitution iteratively, we obtain the general form of the optimal dynamic
policy:

q∗
j = 1

j
q̄ j − 1

2
( j − 1)(ν − r). (A-5)

and in calendar period i, it is:

q∗
i = 1

N − i + 1
q̄i − 1

2
(N − i)(ν − r). (A-6)

The general form of the optimized value function is:

V ∗
j (q̄ j , θ j ) = jeθ j −q∗

j = jeθ j − 1
j q̄ j + 1

2 ( j−1)(ν−r) (A-7)

and in calendar period i, it is:

V ∗
i (q̄i , θi ) = ieθi −q∗

i = ieθi − 1
N−i+1 q̄i + 1

2 (N−i)(ν−r) (A-8)
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Temporary Shock Case

When the per period’s shock is temporary, the cost parameter follows the dynamics:

θ j = � j + σε j , where � j ≡ � j+1 + ν.

Solving for j = 1, we have q∗
1 (q̄1, θ1) = q̄1. Therefore, the value function in the last

period V ∗
1 (q̄1, θ1) = c(q̄1, θ1) = eθ1−q∗

1 . For j = 2, we have

V2(q̄2, q2, θ2) = Eθ2

[
c(q2, θ2) + e−r V ∗

1 (q̄1(q̄2, q2), θ1)
]

=
[
eθ2−q2 + e−r

Eθ2

[
eθ1−(q̄2−q2)

]]

= e�2
[
eσε2−q2 + e−(r−ν− σ2

2 )e−(q̄2−q2)
]

Solving the first order condition for the cost minimizing emissions gives us:

q∗
2 = 1

2
q̄2 − 1

2
(ν − r) − 1

4
σ 2 + 1

2
σε2 (A-9)

Substituting this into the value function gives the optimized value function:

V ∗
2 (q̄2, θ2) = 2eθ2−q∗

2 = 2eθ2− 1
2 q̄2+ 1

2 (ν−r)+ σ2
4 − 1

2 σε2 (A-10)

For j = 3, we have

V3(q̄3, q3, θ3) = Eθ3

[
c(q3, θ3) + e−r V ∗

2 (q̄2(q̄3, q3), θ2)
]

=
[

eθ3−q3 + e−r
Eθ3

[
2eθ2− q̄3−q3−ν+r−σ2/2+σε2

2

]]

= e�3

[
eσε3−q3 + 2e− q̄3−q3−3ν+3r−3σ2/4

2

]

Solving the first order condition for the cost minimizing emissions gives us:

q∗
3 = 1

3
q̄3 − 2

2
(ν − r) − 1

4
σ 2 + 2

3
σε3

Substituting this into the value function gives the optimized value function:

V ∗
3 (q̄3, θ3) = 3eθ3−q∗

3 = 3eθ3− 1
3 q̄3+(ν−r)+ 1

4 σ 2− 2
3 σε3 (A-11)

For j = 4, we have

V4(q̄4, q4, θ4) = Eθ4

[
c(q4, θ4) + e−r V ∗

3 (q̄3(q̄4, q4), θ3)
]

=
[

eθ4−q4 + e−r
Eθ4

[
3eθ3− q̄4−q4−3ν+3r−3σ2/4−2σε3

3

]]

= e�4

[
eσε4−q4 + 3e− q̄4−q4−6ν+6r−11σ2/12

3

]

Solving the first order condition for the cost minimizing emissions gives us:

q∗
4 = 1

4
q̄4 − 3

2
(ν − r) − 11

48
σ 2 + 3

4
σε4
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Substituting this into the value function gives the optimized value function:

V ∗
4 (q̄4, θ4) = 4eθ4−q∗

4 = 4eθ4− 1
4 q̄4+ 3

2 (ν−r)+ 11
48 σ 2− 3

4 σε4 (A-12)

Continuing the substitution, the general form of the optimal dynamic policy is:

q∗
j = 1

j
q̄ j − A jσ

2 − 1

2
( j − 1)(ν − r) + j − 1

j
σε j (A-13)

where

A j = j − 1

j

(
A j−1 + 1

2( j − 1)2

)
for j = 2, . . . , N , and A1 = 0. (A-14)

Rewriting in calendar period i, we have:

q∗
i = 1

N − i + 1
q̄i − Aiσ

2 − 1

2
(N − i)(ν − r) + N − i

N − i + 1
σε j (A-15)

where

Ai = N − i

N − i + 1

(
Ai+1 + 1

2(N − i)2

)
for i = 1, . . . , N − 1, and AN = 0. (A-16)

The general form of the optimized value function is:

V ∗
j (q̄ j ) = jeθ j −q∗

j = jeθ j − 1
j q̄ j +A j σ

2+ 1
2 ( j−1)(ν−r)− j−1

j σε j (A-17)

and in calendar time:

V ∗
i (q̄i ) = ieθi −q∗

i = ie
θi − 1

Ni +1 q̄i +Ai σ
2+ 1

2 (N−i)(ν−r)− N−i
N−i+1 σεi

. (A-18)

Permanent Shock Case

When the per period’s shock is permanent, the cost parameter follows the dynamics

θi = θi−1 + μ + σεi .

Solving for j = 1, we have q∗
1 (q̄1, θ1) = q̄1. Therefore, the value function in the last

period V ∗
1 (q̄1, θ1) = c(q̄1, θ1) = eθ1−q∗

1 . For j = 2, we have

V2(q̄2, q2, θ2) = Eθ2

[
c(q2, θ2) + e−r V ∗

1 (q̄1(q̄2, q2), θ1)
]

=
[
eθ2−q2 + e−r

Eθ2

[
eθ1−(q̄2−q2)

]]

= eθ2
[
e−q2 + e−(r−μ+ 1

2 σ 2)e−(q̄2−q2)e
1
2 σ 2

]
.

Solving the first order condition for the cost minimizing emissions gives us:

q∗
2 = 1

2
q̄2 − 1

2
(μ − r). (A-19)

Substituting this into the value function gives the optimized value function:

V ∗
2 (q̄2, θ2) = 2eθ2−q∗

2 = 2eθ2− 1
2 q̄2+ 1

2 (μ−r). (A-20)
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For j = 3, we have

V3(q̄3, q3, θ3) = Eθ3

[
c(q3, θ3) + e−r V ∗

2 (q̄2(q̄3, q3), θ2)
]

=
[
eθ3−q3 + e−r

Eθ3

[
2eθ2− q̄3−q3−μ+r

2
]]

= eθ3
[
e−q3 + 2e− q̄3−q3−3μ+3r

2

]
.

Solving the first order condition for the cost minimizing emissions gives us:

q∗
3 = 1

3
q̄3 − 2

2
(μ − r)

Substituting this into the value function gives the optimized value function:

V ∗
3 (q̄3, θ3) = 3eθ3−q∗

3 = 3eθ3− 1
3 q̄3+(μ−r). (A-21)

For j = 4, we have

V4(q̄4, q4, θ4) = Eθ4

[
c(q4, θ4) + e−r V ∗

3 (q̄3(q̄4, q4), θ3)
]

=
[
eθ4−q4 + e−r

Eθ4

[
3eθ3− q̄4−q4−3μ+3r

3
]]

= eθ4
[
e−q4 + 3e− q̄4−q4−6μ+6r

3

]
.

Solving the first order condition for the cost minimizing emissions gives us:

q∗
4 = 3

4

q̄4 − 6μ + 6r

3

= 1

4
q̄4 − 3

2
(μ − r). (A-22)

Substituting this into the value function gives the optimized value function:

V ∗
4 (q̄4, θ4) = 4eθ4−q∗

4 = 4eθ4− 1
4 q̄4+ 3

2 (μ−r) (A-23)

Continuing the substitution, we obtain the general form of the optimal dynamic policy is:

q∗
j = 1

j
q̄ j − 1

2
( j − 1)(μ − r). (A-24)

and in calendar time i, it is:

q∗
i = 1

N − i + 1
q̄i − 1

2
(N − i)(μ − r). (A-25)

The general form of the optimized value function is:

V ∗
j (q̄ j , θ j ) = jeθ j −q∗

j = jeθ j − 1
j q̄ j + 1

2 ( j−1)(μ−r) (A-26)

that in calendar time i is:

V ∗
i (q̄i , θi ) = ieθi −q∗

i = ieθi − 1
N−i+1 q̄i + 1

2 (N−i)(μ−r). (A-27)
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