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ABSTRACT 
This study estimates of the impact of climate change on yields for the four most commonly grown crops (millet, maize, 
sorghum and cassava) in Sub-Saharan Africa (SSA). A panel data approach is used to relate yields to standard weather 
variables, such as temperature and precipitation, and sophisticated weather measures, such as evapotranspiration and the 
standardized precipitation index (SPI). The model is estimated using data for the period 1961-2002 for 37 countries. 
Crop yields through 2100 are predicted by combining estimates from the panel analysis with climate change predictions 
from general circulation models (GCMs). Each GCM is simulated under a range of greenhouse gas emissions (GHG) 
assumptions. Relative to a case without climate change, yield changes in 2100 are near zero for cassava and range from 
–19% to +6% for maize, from –38% to –13% for millet and from –47% to –7% for sorghum under alternative climate 
change scenarios. 
 
Keywords: Climate Change; Crop Yield; Error Correction Model 

1. Introduction 
Climate change is an important environmental, social and 
economic issue. It threatens the achievement of Millen-
nium Development Goals aimed at poverty and hunger 
reduction, health improvement and environmental sus-
tainability [1]. Such issues are particularly important for 
Sub-Saharan Africa (SSA) where many people depend 
on agriculture for subsistence and incomes [2]. Agricul-
ture, and especially crop growing, is heavily dependent 
on weather events in SSA, where 97% of agricultural 
land is rainfed [3]. The impact of climate change on crop 
yields is therefore a major concern in this region. 

A large number of studies have investigated several 
aspects of the impact of climate change. Two main tech-
niques are used to evaluate the effect of climate change 
on yields: 1) crop growth models and 2) regression 
analyses. Crop growth models are widely used and pro-
duce precise crop yield responses to weather events. In a 
seminal paper, Rosenzweig and Parry [4] provide a 
global assessment of climate change on world food sup-
ply and predict grain yield losses of up to 10% in several 
SSA countries between 1990 and 2080. However, crop 
growth models require daily weather data and are cali-
brated under experimental conditions. 

Alternatively, regression analyses allow the quantifi-
cation of weather changes on crop yields in an actual 
cropping context. Barrios et al. [5] estimate the impact of 

weather changes on agriculture net production index in 
SSA versus non-SSA countries. Among the few regres- 
sion-based impact assessments of future climate change 
on crop yields in Africa, Ben Mohamed et al. [6] and 
Van Duivenbooden et al. [7] consider millet, cowpeas 
and groundnut in Niger. The most extensive assessment 
for SSA is provided by Schlenker and Lobell [8]. These 
authors predict median yield reductions ranging from 
22% for maize to 8% for cassava when considering 16 
climate change models for the mid-21st century. 

Similarly to Schlenker and Lobell [8], this study esti-
mates single output production functions for SSA in ag-
gregate. Separate equations are estimated for the four most 
commonly grown crops in SSA (cassava, maize millet 
and sorghum) only. This study builds on existing litera-
ture in three ways. First, this study implements a more 
refined econometric analysis by appropriately treating 
non-stationarity data and using an estimator tailored to 
the specific attributes of the data. Second, in addition to 
standard temperature and precipitation variables, this 
study considers weather variables for evapotranspiration, 
standardized precipitation index (SPI), droughts and 
floods. Finally, by considering 20 climate change sce-
narios and allowing for technological changes, this study 
facilitates a comparison of predicted future yields under 
climate change and no climate change scenarios. 

The article is divided into six further sections. Section 
2 describes the production function specifications and the 
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methodology employed. Section 3 presents the data used. 
Regressions results are presented and discussed in Sec-
tion 4. Climate change predictions are described in Sec-
tion 5. The predicted impact of climate change on yields 
for mid-2000 and late-2000 are presented in Section 6. 
Conclusion comments are presented in Section 7. 

2. Modeling Framework 
2.1. Production Function Specification 
Traditionally, empirical studies have estimated the rela-
tionship between agricultural output and land, labor and 
capital inputs [9]. Land productivity in Africa, like in 
other regions, often differs within farms [10]. Farmers 
usually cultivate better soils first and then expand onto 
land of lesser quality, which implies that the marginal 
productivity of land is decreasing. Area harvested is 
therefore included in the production function to represent 
decreasing marginal productivity.  

Labor is also a key determinant of agricultural produc-
tion in Africa, as 89% of cultivated land is cropped 
manually [11]. In 1992, about 65% of SSA’s population 
was involved in agriculture [12]. However, as most of the 
labor input for African farms comes from family mem-
bers, the level of labor input depends on family structures, 
in addition to the number of hours worked and work effi-
ciency [10]. Furthermore, agricultural labor input re-
quire- ments vary depending on the season, and labor 
charac- teristics such as education, health and farming 
experience determine agricultural yields through work 
capacity and the quality of crop management practices. 
As labor data are limited for SSA and population data are 
poor proxies for labor, this factor is not considered in the 
production function specification. 

The level of mechanization also greatly influences ag-
ricultural efficiency [13]. However, capital requirements 
for traditional agriculture are low [14] and African agri-
culture relies mainly on non-mechanical power: animal 
power is used on 10% of cultivated land and mechanical 
machinery is used on only 1% of cultivated land [11]. 
Therefore, mechanization is also not considered. 

Precipitation is also a major determinant of crop 
growth and yields in rainfed areas. The impact of water 
supply on crop yields is generally estimated using cumu-
lative annual rainfall [15,16], or growing  season rain-
fall [17]. Precipitation is generally found to have a posi-
tive impact on crop yields. Standardized precipitation is 
also used to represent precipitation when a large variety 
of climatic zones are considered. This measure is unin-
fluenced by scale effects as it calculates a standardized 
departure from the mean of a long-term trend [18]. The 
SPI proposed by McKee et al. [19] is calculated by first 
fitting a gamma probability density function to the fre-
quency distribution of rainfall over the reference period. 

The probability density function is then used to deter-
mine the cumulative probability of a particular precipita-
tion level for a chosen time scale. Finally, the calculation 
is transformed into a normal distribution with a mean of 
zero and a variance of one (~N(0,1)) to obtain SPI values 
expressed in standard deviations from the median. Nega-
tive SPI values indicate below normal rainfall and posi-
tive SPI values indicate above normal rainfall. Different 
time scales, ranging from 1 to 48 months, can be used to 
calculate the SPI. In this study, a 12 month (January to 
December) SPI is calculated. The period 1901-2002 is 
used as a reference period. The SPI is generally posi-
tively correlated with crop yields [20-22]. 

Using the SPI, it is possible to identify periods of 
drought [19] and floods [23]. In this study, droughts and 
floods start when the SPI reaches values of –1.5 and +1.5 
respectively and ends when the index returns to a posi-
tive and negative value respectively. The SPI-based 
drought and flood spell indices have only recently been 
used in regression analyses [24-26]. 

The effect of average temperature on yields has been 
widely studied in econometric analyses, and generally 
has a negative effect on crop yields [20,27-30]. A more 
comprehensive indicator of weather conditions is pro-
vided by the evapotranspiration (ET) rate. ET is the 
combination of the loss of water from soils (by evapora-
tion) and from crops (by transpiration). If rainfall and/or 
irrigation do not meet ET demand, a water stress occurs, 
which reduces crop yields [31]. Evapotranspiration is 
mainly used in regression analyses to represent crop wa-
ter use [32,33]. There are several alternative ET meas-
ures. However, due to data limitations, only the reference 
evapotranspiration (ETo) rate can be calculated for this 
study. The Hargreaves equation [34] specifies ETo as:  

0.5
avg max min aETo 0.0023 T   17.8 T   T R    (1) 

where Tavg, Tmax and Tmin are respectively mean, maximum 
and minimum temperature, and Ra represents extraterres-
trial radiation and is calculated following Allen et al. 
[35].  

Several crop yield determinants are not considered in 
this study. For instance, fertilizer use in SSA is low 
compared to the rest of the world, due mainly to market 
inefficiencies and low levels of liquidity held by farmers 
and high fertilizer price relatively to crop sale prices [36]. 
According to FAO [37], SSA’s fertilizer consumption is 
not expected to rise significantly in the next two decades. 
Irrigation is used in only 3% of the cultivated area in 
SSA and no change is expected [38]. This is partly be-
cause of unfavorable market and institutional situations 
but also a result of technical inapplicabilities due to poor 
soil quality and topography. Crop variety selection is also 
not considered, as farmers’ choices among cultivars is 
limited by seed supply and new seeds are not widely 
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adopted in SSA [39]. Several other factors, such as crop 
management, weeds, pests, diseases and soil quality are 
not included in the analysis due to data limitations. 

Quadratic terms for weather variables are included in 
specifications to account for non-linear weather effects 
on crop yields [40-42]. Interaction terms between weather 
variables are used to determine the potential effect of one 
weather variable given the effect of the other weather 
variable [43]. 

To avoid multicollinearity, two alternative specifica-
tions are considered for each crop. A first analysis, the 
T-P model, includes the most commonly used weather 
indicators, which are precipitation and temperature aver-
ages. The T-P model can be summarized as: 

2 2 2
it tY A ,T ,T ,P , P ,T P ,T P ,T Pit it it it it it itf 2  (2) 

where for each crop i at time t, Y represents yield, A area 
harvested, T temperature and P precipitation. 

A second analysis evaluates the influence of ETo, SPI, 
drought and flood spells. In the ET-SPI regressions, a 
squared term for ETo is included and drought and flood 
dummies are used to represent the effect of extreme pre-
cipitation conditions. The ET-SPI model can be summa-
rized as: 

2
it it it it it it

2
it

Y A , ETo , ETo ,SPI , Drought ,Flood ,

ETo SPI , ETo SPI ,ETo Drought ,ETo Flood

it

it it it

f

 (3) 
A third analysis considers the effect of CO2 concentra-

tion which is highly correlated with weather variables as 
changes in CO2 concentration drive changes in climate. 
Therefore, traditional weather variables are not included 
in specifications that include CO2 concentration. The 
CO2 model is specified as: 

2Y lnA ,COit it tf              (4) 

2.2. Methodology 
A panel analysis is preferred as the sample size and qual-
ity of data are enhanced when combining a cross-section 
with time series. A panel analysis also allows one to con-
trol for time invariant unobservable factors that might 
affect the estimated coefficients, which is not possible in 
country specific studies. To control for omitted variables 
that vary over time but not across countries, time dummy 
variables are included for N-1 periods, when they are 
jointly significant. 

One limitation of panel estimations is that parameters 
are assumed to be homogenous across countries. Gener-
ally, African countries share similar economic character-
istics [44]. However, farming conditions may differ 
across countries as a variety of agricultural systems are 
observed in SSA [45]. Based on growth potential for 

different farming systems and their prevalence in each 
country, Diao et al. [46] distinguish countries with less 
favorable agricultural conditions (LFAC) and countries 
with more favorable agricultural conditions (non-LFAC)1. 
To account for potential parameter homogeneity across 
countries, a dummy variable equal to one for LFAC 
countries and zero for non-LFAC is created and inter-
acted with the climatic variables in each specification. 

The inclusion of quadratic and interaction terms results 
in the proliferation of similar terms, which can induce 
multicollinearity [47]. However, inappropriate inclusion 
of quadratic and interaction terms could produce incor-
rect nonlinearities and misleading relationships [48]. 
Therefore, for each model, a general to specific strategy 
is followed where the final specification is modified to 
exclude quadratic and/or interaction terms that are insig-
nificant or have incorrect signs. 

Regression studies generally include a time trend to 
represent the evolution of technologies. However, the 
estimation of the production function in first differences 
(without a time trend but with a constant) allows the im-
pact of technology to be included without inducing mul-
ticollinearity. 

Yield and area data are log-transformed to improve the 
distribution of variables, so the model estimates elastic-
ities. Weather variables, on the other hand, are not 
log-transformed so as to produce semi-elasticities, which 
allow direct determination of the impact of, say, a 1 C 
increase in temperature or a 10 mm increase in rainfall. 

2.2.1. Unit Root Test 

A panel series panels stationarity test such as Hadri’s [49] 
is not applicable as the current panel is unbalanced. Panel 
unit root tests such as Levin, Lin and Chu [50], Im, 
Pesaran and Shin [51] and Maddala and Wu [52] tests are 
not informative as, if the null hypothesis is rejected, they 
do not indicate which variables are non-stationary or the 
order of integration for each variable. Therefore, each 
series is tested for a unit root using the Elliott-Rothenberg- 
Stock (ERS) time series test, which is a Dickey-Fuller 
generalized least square (DF-GLS) test using critical 
values from Elliott et al. [53]. This test is preferred to the 
augmented Dickey-Fuller test (ADF) because it has 
greater power and performs better in small samples.2 The 
ERS test has a null hypothesis of a unit root and an al-
ternative hypothesis of stationarity. The test is first per-
formed with a maximum lag length proposed by Schwert 
[56] and, in order to keep the sample as large as possible, 
the test is re-implemented with the maximum lag value 

1In this study, LFAC countries include Botswana, Burundi, Chad, Ga-
bon, Madagascar, Mali, Mauritania, Namibia, Niger and Rwanda. Re-
maining countries are classified as non-LFAC countries. 
2The KPSS stationarity test of Kwiatkowski et al. [54] is not used be-
cause of its low power [55]. 
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reduced to the optimal lag length based on the SBIC cri-
terion. As the data generating process is not known a 
priori, a constant and a time trend are included when im-
plementing the test. Initially, the test is performed on 
variables in first difference to ensure that the series are 
not integrated of an order higher than one. All variables 
for which the ERS unit root test applied to first differ-
ences is rejected are tested for cointegration. 

2.2.2. Cointegration Test 

When using non-stationary variables, a spurious regres-
sion is of concern. Cointegration tests developed by 
Pedroni [57-59], McCoskey and Kao [60] and Kao [61] 
test for the presence of a unit root in the residuals. How-
ever, these tests assume cross-sectional independence 
which is unlikely in this study. A test developed by 
Westerlund [62] addresses the issue of cross-sectional 
dependence by bootstraping p-values. Westerlund’s ap-
proach tests the significance of the error correction (EC) 
term in an error correction model (ECM). If a cointe-
grating vector is found for the panel as a whole, an ECM 
is estimated. 

2.2.3. Diagnostic Tests 

The choice of estimator depends on the model to be es-
timated and the properties of the data. To determine the 
presence of cross-sectional correlation, the Breusch-Pagan 
test for cross-sectional independence described by Greene 
[63, p. 601] is performed. However, as this test is not 
applicable when the number of groups is greater than the 
number of years, a test developed by Pesaran [64] is used 
when the number of groups is large. To test for autocor-
relation, a test proposed by Arellano and Bond [65] is 
applied. The presence of heteroskedasticity is tested us-
ing the panel heteroskedasticity test described by Greene 
[63], which produces a modified Wald statistic testing 
the null hypothesis of group wise homoskedasticity.  

3. Data 
FAOSTAT [66] provides data on area harvested (in hec-
tares, Ha) and yields (in tonnes/Ha) aggregated at the 
national level from 1961 to 2002.3 Weather data ex-
tracted from the CRU TS 2.1 dataset [67] cover the pe-
riod 1901-2002 and are available at the 0.5 × 0.5 degree 
resolution for all SSA. To consider only relevant weather 
data (e.g. avoid considering weather data for desert ar-

eas), grids are selected for crop growing areas using sat-
ellite-derived land cover data from Leff et al. [68]. Crop 
location data are provided at the 0.5 × 0.5 degree resolu-
tion, with each grid cell representing the fraction of the 
area allocated to the cultivation of each crop. Weather 
data are weighted by the proportion of area harvested for 
each crop relative to total area within the cell. Weather 
averages are therefore specific to each crop.4 CO2 con-
centration data are obtained from measurements at Mauna 
Loa Observatory, Hawaii, which provides good estimate 
of global CO2 concentration (Tans, 2009). As a global 
measure of CO2 concentration is used, the data are iden-
tical for all crops and in every region. 

Data summary statistics for each crop are reported in 
Table 1. Over the period 1961-2002, cassava yields were 
higher than yields for the other crops considered. Yields 
increased for all crops, except for millet. Harvested area 
increased for all crops and the most widely harvested 
crop is sorghum. Temperatures generally increased over 
the period 1961-2002. The highest temperature is ob-
served for millet areas and the lowest temperature is ob-
served for maize areas. The highest ETo rate is observed 
in the millet zone and overall, there was an increase in 
ETo over the period for all crop areas. Annual precipita-
tions decreased slightly over the period, and, on average 
over the period, the highest annual precipitation is ob-
served in the cassava zone. SPI decreased, indicating 
precipitation decreases compared to the 1901-2002 av-
erage. However, precipitation is generally higher than 
normal in the first half of the period in each crop zone 
and lower than normal in the second half of the period. 
Particularly low SPI values are observed in the four har-
vested areas in the middle of the 1980s. The incidence of 
drought spells increased during the sample period in the 
four crop areas, and the occurrence of drought was the 
highest in the mid-80s. The largest occurrence of floods 
was experienced in sorghum area. The mean annual CO2 
concentration steadily increased over the period 1962-2002. 

4. Results and Discussion 
The null hypothesis of the presence of a unit root is re-
jected for most first-differenced variables (not reported 
here). For a few series, however, the null hypothesis 
cannot be rejected, but supplementary visual analyses 
suggest that the series are I(1). As displayed in Table 2, 
diagnostic tests reveal the presence of cointegration and 
cross-sectional dependence in all final crop specifications, 
except for cassava. The null hypothesis of no autocorre- 
lation and homoskedasticity are rejected in all regres- 
sions. Based on these tests, the preferred estimator is a 

3Although FAOSTAT provides data for all countries in SSA, several 
outlier countries are not considered in the analysis: Ethiopia and Eritrea
which were one nation (Ethiopia) prior to 1993; Djibouti, which pro-
duces very little agriculture; and South Africa, which employs farming 
practices similar to North American and European practices [37] and is 
very different from other SSAn countries. Additionally, millet agro-
nomic data in Congo are not considered as data are only available from 
2000. 

4Some sorghum production is reported in Madagascar [66], but as crop 
location data do not report sorghum growing in this country, sorghum 
weather data are not available for this country. 
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Table 1. SSA Summary statistics (1961-2002). 

Variable Crop Observation Mean St Dev Min Max 

Cassava 1428 6.4 3.3 0 23.2 

Maize 1554 1.0 0.4 0.1 2.7 

Millet 1302 0.7 0.4 0 2.0 
Yield 

(tonnes/Ha) 

Sorghum 1386 0.8 0.3 0.1 2.0 
       

Cassava 1428 233,070 456,849 0 3,446,000 

Maize 1554 387,204 608,123 936 5,472,000 

Millet 1302 457,671 980,445 0 5,814,000 
Area 
(Ha) 

Sorghum 1386 467,515 1,092,950 375 7,809,000 
       

Cassava 1428 1,260 541 218 3,269 

Maize 1554 1,061 482 79 2,822 

Millet 1302 992 457 88 2,960 
Precipitation 

(mm) 

Sorghum 1386 987 474 60 2,961 
       

Cassava 1428 –0.15 1.02 –3.79 3.22 

Maize 1554 –0.15 1.03 –3.70 3.18 

Millet 1302 –0.21 1.04 –3.93 3.16 

SPI 
(standard deviation 

from median) 
Sorghum 1386 –0.19 1.04 –3.91 3.19 

       
Cassava 1428 0.21 0.40 0 1 

Maize 1554 0.20 0.40 0 1 

Millet 1302 0.23 0.42 0 1 
Drought 
(dummy) 

Sorghum 1428 0.20 0.40 0 1 
       

Cassava 1428 0.09 0.29 0 1 

Maize 1554 0.10 0.30 0 1 

Millet 1302 0.10 0.30 0 1 
Flood 

(dummy) 

Sorghum 1428 0.13 0.33 0 1 
       

Cassava 1428 24.7 2.5 18.1 29.2 

Maize 1554 24.3 3.5 10.7 29.4 

Millet 1302 24.9 2.9 18.6 29.5 
Temperature 

(ºC) 

Sorghum 1386 24.5 3.7 10.6 29.5 
       

Cassava 1428 11.1 1.7 7.0 14.4 

Maize 1554 11.1 1.9 7.0 14.7 

Millet 1302 11.8 1.6 8.8 14.6 
ETo 

(mm/day) 

Sorghum 1386 11.4 1.9 7.1 14.8 

 
Table 2. Diagnostic tests statistics for final specifications. 

Crop Model No cointegration Cross-sectional independence No first-order autocorrelation Homoskedasticity 
TP –11.76 1.17 –3.36*** 45077*** 

Cassava 
ET-SPI –13.25 0.98 –3.36*** 45259*** 

TP –22.20*** –2.53** –3.34*** 6547*** 
Maize 

ET-SPI –23.04*** –2.48** –3.34*** 5009*** 

TP –21.61*** –2.31** –4.81*** 3022*** 
Millet 

ET-SPI –20.56*** –1.89* –4.81*** 3089*** 

TP –22.40*** –2.77*** –3.93*** 2285*** 
Sorghum 

ET-SPI –23.12*** –2.55** –3.93*** 2082*** 
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fixed effect (FE) estimator, or if FEs are not significant, a 
pooled ordinary least squares (OLS) estimator, both with 
Driscoll and Kraay standard errors (1998). Driscoll and 
Kraay standard errors are robust to first-order correlation 
and heteroskedasticity and cross-sectional dependence. 
For consistency, the same estimator is used for each 
specification. 

Regression results for the T-P and ET-SPI models are 
presented in Table 3. Regressions for the CO2 model 
showed a significant (and positive) effect of CO2 con-
centrations millet only. Results for the CO2 model are 
therefore not reported. 

The estimated coefficient for the error correction term, 
ECt–1, is highly significant in maize, millet and sorghum 
regressions, which supports the cointegration test results. 

Estimated ECt–1 terms are similar for maize and millet 
and indicate that around 39% of the disequilibrium is 
corrected each year. For sorghum, the ECt–1 terms are 
slightly higher in magnitude (–0.49), indicating faster 
adjustment to equilibrium. 

An increase in harvested area has a negative and sig-
nificant effect on cassava, maize and sorghum yields, 
indicating decreasing marginal land productivity. For 
these three crops, estimated coefficients are similar in 
both T-P and ET-SPI models but differ across crops re-
flecting different marginal land productivities. For in-
stance, a 10% increase in area causes a 2% cassava yield 
decrease, a 1.1% maize yield decrease, and a 0.9% sor-
ghum yield decrease. 

Regarding weather variables, as noted above, insig-
nificant interaction and quadratic weather terms were 
excluded. For cassava, temperature and precipitations 
coefficients are not significant in the T-P regression. 
Similarly, ETo and SPI are insignificant in the ET-SPI 
model. However, the ET-SPI model indicates that floods 
are detrimental to cassava yields. Drought variables were 
insignificant and therefore excluded from the final speci-
fication reported in Table 3. This finding is plausible as 
cassava is a relatively drought resistant plant but vulner-
able to excessive water.  

 
Table 3. T-P and ET-SPI regressions results: dependent variable lnY. 

Explanatory Variables Cassava Maize Millet Sorghum 
T-P ET-SPI T-P ET-SPI T-P ET-SPI T-P ET-SPI T-P ET-SPI 

lnA lnA –0.197*** 
(0.0491) 

–0.197***
(0.0493) 

–0.118** 
(0.0443) 

–0.112** 
(0.0455) 

–0.0273 
(0.0509) 

–0.0199 
(0.0522) 

–0.0985*** 
(0.0352) 

–0.0857**
(0.0377) 

T ETo –0.00190 
(0.00798) 

–0.00192 
(0.0276) 

–0.0475 
(0.0397) 

–0.197*** 
(0.0557) 

–0.101***
(0.0283) 

–0.277*** 
(0.0550) 

–0.146*** 
(0.0367) 

–0.296***
(0.0542) 

P SPI –8.21e-06 
(1.03e-05) 

0.000581 
(0.00218) 

0.00243***
(0.000891) 

0.0289*** 
(0.00582) 

0.000501***
(0.000145)

0.0263*** 
(0.00807) 

0.000283***
(0.000102) 

0.0356***
(0.00791)

P2 Flood  –0.0202***
(0.00628) 

–1.17e-06***
(3.96e-07) 

–0.0740***
(0.0176) 

–1.66e-07***
(4.95e-08)

–0.226** 
(0.106) 

–5.63e-08* 
(2.92e-08) 

–0.0785***
(0.0264) 

(T×P)    –7.68e-05**
(3.25e-05)      

(T×P2) (ETo × Flood)   4.09e-08***
(1.48e-08)   0.0192** 

(0.00901)   

(T×LFAC)      –0.0184 
(0.0311)  0.0223 

(0.0490)  

(P×LFAC)      0.000948***
(0.000327)  0.00137*** 

(0.000326)  

(P2×LFAC)      –4.31e-07***
(1.51e-07)  –6.53e-07***

(1.54e-07)  

ECt–1 ECt–1   –0.386*** 
(0.0525) 

–0.386*** 
(0.0531) 

–0.387***
(0.0417) 

–0.395*** 
(0.0459) 

–0.496*** 
(0.0396) 

–0.490***
(0.0413) 

Constant Constant 0.00971* 
(0.00505) 

0.00964* 
(0.00503) 

–0.0315 
(0.0223) 

–0.0088 
(0.0162) 

0.0353 
(0.0219) 

0.0403* 
(0.0200) 

0.00707 
(0.0233) 

–0.0222 
(0.0173) 

Observations/Countries 1371/34 1371/34 1517/37 1517/37 1254/31 1254/31 1336/33 1336/33 

R2 0.084 0.085 0.269 0.268 0.307 0.296 0.357 0.355 

F 5.722*** 3.430*** 29.39*** 36.99*** 299.8*** 393.2*** 334.1*** 9780*** 

RMSE 0.122 0.122 0.254 0.256 0.253 0.285 0.256 0.298 

Time dummies no no yes yes yes yes yes yes 

Fixed effects no no yes yes yes yes yes yes 
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Temperature and precipitation changes have the ex-

pected effects on maize yields. The significant squared 
precipitation term indicates non-linear yield responses to 
changes in precipitation. Also, the temperature and pre-
cipitation interaction terms reveal that the effect of pre-
cipitation depends on temperature and vice versa. Pre-
dicted values for lnY for given values of P and T, and 
90% confidence intervals, are represented in Figure 1. 
The left-hand graph shows that when P is at its mean value 
(1057 mm), a 1 C temperature increase decreases maize 
yields by 8.3%. The right-hand graph illustrate that there 
is a concave relationship between precipitation and yield. 
When T is at its mean value (24.3 C), a 100 mm increase in 
precipitation leads to a 1.7% maize yield increase. How-
ever, as the change in precipitation increases, the mar-
ginal impact of precipitation decreases. For a 500 mm 
increase in precipitation, yields increase by 3.1%. 

The ET-SPI regressions provide a simpler representa-
tion of weather effect on maize than the T-P model. The 
ETo parameter has a significant negative effect on maize 
yield changes, which is consistent with expectations as 
an increase evapotranspiration is related to higher solar 
radiation and temperature. The SPI coefficient is positive 
and significant which indicates that higher than normal 
precipitation is beneficial to maize yields. For instance, a 
one standard deviation change from median precipitation 
increases maize yields by 2.9%. Alternatively, floods 
have a significant negative effect on yield. For example, 
maize yields during flood spells are respectively 7.1%, 
lower than during normal conditions in SSA. 

In the T-P model, temperature has a negative and sig-
nificant effect on millet yields. Precipitation has a posi-
tive effect on millet productivity and the squared pre-
cipitation term indicates a concave relationship between 
precipitation and yield. However, precipitation effects 
differ across LFAC and non-LFAC countries. As illus-
trated in Figure 2, a 100 mm decrease in precipitation 
leads to a 1.9% yield decrease in non-LFAC countries 
and a 3.3% yield decrease in LFAC countries. A 100mm 
increase in precipitation causes yield increases of 1.6% 
and 2.1% in non-LFAC and LFAC countries respectively. 
These findings are consistent with the expectation that 
crop growth in non-LFAC countries is less affected by 
weather events than in LFAC countries. 

The ET-SPI model indicates a negative and significant 
ETo effect on millet yield, and the impact of ETo de-
pends on flood occurrences and vice versa. Everything 
else constant, when Flood is at its mean value (0.09), a 
0.5 mm per day increase in ETo causes a 13.8% decrease 
in millet yields. Alternatively, holding ETo at its mean 
value (11.8 mm/day), millet yields decrease by 0.02% 
when a flood starts.  

The T-P model indicates that temperature has a negative 
impact on sorghum yields and precipitation has a positive 

 
Figure 1. The effects of temperature and precipitation on 
maize yield. 
 

 
Figure 2. The effect of precipitation on millet yield. 

 
non-linear effect on sorghum yields. Additionally, as for 
millet, precipitation has a larger effect on yields in LFAC 
countries than in non-LFAC countries. As displayed in 
Figure 3, a 100 mm increase in precipitation leads to a 
1.7% increase in sorghum yields in non-LFAC countries 
and a 1.9% increase in LFAC countries. But the inclusion 
of the squared precipitation term implies a decreasing 
response at the margin. Therefore, a 200 mm change in 
precipitation leads to a sorghum yield increase of only 
3.2% in non-LFAC countries and 2.4% in LFAC coun-
tries. The results illustrate that sorghum yields in LFAC 
countries are more vulnerable to precipitation changes 
than in non-LFAC countries.  

Sorghum ET-SPI regressions results are similar to re-
sults for the T-P specification. ETo has a negative and 
significant effect on sorghum yields in SSA. A 1mm in-
crease in ETo leads to a 29.6% increase in sorghum 
yields. These effects appear very important but represent 
extreme events. For an ETo increase of 0.006 mm (the 
average change in the sample), sorghum yields are ex-
pected to increase by only 0.18%. The SPI variable has a 
significant effect on sorghum yields. For example, a one 
standard deviation increase from median precipitation 

Copyright © 2012 SciRes.                                                                                AJCC 



E. BLANC 8 

 
Figure 3. The effect of precipitation on sorghum yield. 

 
leads to a 3.6% sorghum yield increase. The effect of 
excessive precipitation, represented by flood dummies, is 
detrimental to sorghum yields. Specifically, sorghum yields 
during flood spells are 7.5% lower than during non-flood 
periods. These differences in predicted sorghum yields 
between flood and non-flood spell periods are similar to 
those estimated for maize. 

5. Climate Change Predictions 
Future climate changes are predicted using five atmos-
phere-ocean general circulation models (AOGCMs): 
CSIRO2 [69], HadCM3 [70], CGCM2 [71], ECHAM4 
[72] and PCM [73]. Four alternative future GHG emis-
sions scenarios serve as inputs into the AOGCMs. The 
four storylines that support the Special Report on Emis- 
sions Scenarios (SRES) scenarios (A1FI, A2, B1 and B2) 
are sourced from IPCC [74]. The storylines differ with 
respect to assumptions regarding population growth, eco- 
nomic and social development, energy and technology, 
and agriculture and land-use emissions. Based on the five 
AOGCMs and the four scenarios presented above, 20 
future climate change scenarios are produced. Data for 
the four climate scenarios under the five AOGCMs are 
extracted from the TYN SC 2.0 dataset. The TYN SC 2.0 
dataset provides global data at the 0.5 × 0.5 degree reso- 
lution from 2003 to 2100. 

Over the 21st century, temperature is predicted to in- 
crease under all scenarios. Averaged across models, the 
largest temperature increases are predicted under the A1FI 
scenario, which predicts the largest increase in GHG 
emissions. Alternatively, the smallest temperature in-
crease is predicted under the B1 scenario, which predicts 
the lowest level of CO2 concentration by 2100. Temperature 
increases also vary across AOGCMs. The ECHAM4 and 
HadCM3 models generally predict the highest tempera- 
tures, while the PCM model predicts the lowest tem- 
peratures. Evapotranspiration predictions for the 21st 
century are similar to those for temperature. 

Precipitation predictions for the period 2003-2100 are, 

on average, lowest under the A1FI and A2 scenarios and 
highest under the B2 scenario in all crop zones. Across 
AOGCMs, the lowest precipitation predictions over the 
21st century are, on average, obtained from the CGCM2 
model and the largest are obtained from the ECHAM4 
model. Predicted SPI values follow similar patterns to 
precipitation values. The A1FI scenario produces the 
most frequent drought and flood occurrences, and the B1 
scenario the fewest drought and flood occurrences. 
Compared to late-1900, droughts are generally expected 
to decrease, but increase in the CSIRO2 and HadCM3 
models in late-2000. Flood occurrences are predicted to 
become less frequent under the CGCM2 model and more 
frequent under the ECHAM4 model. 

6. Climate Change Impacts 
In this study, the yield predictions for each crop are per-
formed using the specification that best fits the data. The 
most widely used statistics used to assess predictive per-
formance is the root mean squared error (RMSE) [75]. 
RMSE is calculated using the leave-one-out cross-validation 
(LOOCV) method described by Michaelsen [76]. 

As indicated in Table 3, The RMSE for the T-P and 
ET-SPI models are similar for cassava regressions. The 
ET-SPI model is preferred to predict cassava yields, as 
weather variables are insignificant in the T-P regression, 
while floods have a significant effect in the ET-SPI re-
gression. For maize, the RMSE is slightly smaller for the 
T-P model than the ET-SPI model. However, the ET-SPI 
model is preferred to the T-P model as all weather vari-
ables in the ET-SPI are significant and the specification 
is simpler than the T-P. To predict millet yields, both the 
T-P and ET-SPI models produce similar estimates, so the 
choice is based on the RMSE, which indicates that the 
T-P model produces the best predictions. Regarding sor-
ghum, the T-P model is preferred as it has a lower RMSE 
than the ET-SPI model. 

To simplify presentation of climate change representa-
tions, average values for weather parameters are calcu-
lated over three 30-year periods. Average values over the 
period 1970 to 1999 represent the base period (late-1900), 
values over the period 2040 to 2059 represent mid-century 
forecasts (mid-2000) and values over the period 2070 to 
2099 represent end of century predictions (late-2000).  

Predicted cassava yields are very similar under all 
AOGCMs and scenarios. On average, cassava yields are 
expected to increase from 6.6 tonnes per Ha in late-1900 
to 14.9 tonnes per Ha in late-2000 under all climate 
change scenarios. Maize yield predictions are generally 
the lowest under the B2 scenario, and highest under the 
A1FI scenario. By late-2000, maize yields are predicted 
to range from 2.6 tonnes/Ha under the scenario predict-
ing the highest rate of evapotranspiration (HadCM3-A1FI), 
to 3.4 tonnes/Ha under the scenario predicting the lowest 
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rate of evapotranspiration (PCM-B2). Compared to yields 
of 1 tonne/Ha in late-1980, these changes represent in-
creases of 160% to 240% respectively. These predicted 
yield increases appear large, but are nevertheless below 
the maximum attainable yield of 5.1 tonne/Ha [77]. Re-
garding millet, compared to an average of 0.7 tonnes/Ha 
in late-1900, yield changes are predicted to range by be-
tween –28.6% under the HadCM3-A1FI, CGCM2-A1FI 
and ECHAM4-A1FI scenarios (0.5 tonnes/Ha), to 14.3% 
under the PCM-B1 (0.8 tonnes/Ha) by late-2000. Sor-
ghum yields are predicted to increase under all scenarios 
and AOGCMs by mid-2000 but some decreases are pre-
dicted by late-2000 under the A1FI scenario. Specifically, 
predicted sorghum yields range from 0.8 tonnes/Ha un-
der the HadCM3-A1FI, CGCM2-A1FI and ECHAM4- 
A1FI scenarios to 1.4 tonnes/Ha under the PCM-B1 sce-
nario (i.e. changes of 0% to +75%, respectively, com-
pared to late-1900). 

the largest precipitation changes (which increase or de-
crease depending on the AOGCM), and the largest 
changes in droughts and floods. Alternatively, the small-
est variations in climate change impacts are predicted 
under the B1 scenario, which predicts the smallest in-
crease in temperature and smallest changes in precipita-
tion, droughts and floods. The box plot also shows that 
predicted yield impacts are negative for most crops. 
However, as in-sample predictions for cassava did not fit 
the data as well as predictions for other crops, predicted 
changes for this crop should be interpreted with caution.  

Maize yield decreases relative to the reference scenario 
are predicted under nearly all scenarios by late-2000, and 
reach 18.8% under the HadCM3-A1FI scenario. How-
ever, a gain of up to 6.3% is predicted under the B2 sce-
nario. Millet yields are predicted to decrease in all cli-
mate scenarios compared to the reference scenario. Yield 
decreases range from 37.5% under the HadCM3-A1FI, 
CGCM2-A1FI and ECHAM4-A1FI scenarios to 12.5% 
under other scenarios. Compared to the reference sce-
nario, climate change causes sorghum yields decreases 
ranging from 46.7% under the HadCM3-A1FI, CGCM2- 
A1FI and ECHAM4-A1FI scenarios, to 6.7% under the 
PCM-B1 scenario by late-2000. 

The range of predicted climate change induced im-
pacts in late-2000 on mean yield compared to the refer-
ence scenario of no climate change are presented in Fig-
ure 4. In this diagram, the boxes represent, for each crop 
and each scenario, the range of predictions across all 
AOGCMs between the 25th and 75th percentile. The 
lines inside the boxes represent the median predictions. 
The whiskers represent upper and lower adjacent values, 
unless a prediction is classified as an outsider, which is 
represented by hollow circles. 

7. Conclusions 
Analyses of the four most commonly harvested crops in 
SSA reveal, in general, a significant impact of weather 
on yields. Regression analyses using temperature and 
precipitation provided significant and sensible estimates.  

As can be seen in Figure 4, predictions for all crops 
are most widely spread under the A1FI scenario. The 
A1FI scenario predicts the largest temperature increases, 
 

 
Figure 4. Predicted impact of climate change, compared to the reference scenario. 
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A second set of regressions using more refined weather 
parameters provided generally similar findings but with 
an explicit treatment of extreme precipitation events. The 
analysis also revealed that the impact of precipitation on 
crop yields depends on national agricultural conditions. 
Precipitation changes were found to have a larger impact 
on millet and sorghum yields in LFAC countries than 
non-LFAC countries. 

These estimates were used to estimate the impact of 
future climate change. These calculations showed that, 
on average, crop yield are expected to increase in the 
21st century compared to late-1900. However, compared 
to a scenario of no climate change, climate change is 
predicted to decrease yields for all crops, expect cassava. 
Comparing predictions across scenarios showed that cli-
mate impacts are smallest under the B1 scenario, which 
assumes reduced GHG emissions via, among other things, 
the introduction of clean and resource-efficient technolo-
gies and focusing on global solutions to economic, social 
and environmental sustainability. 

When drawing conclusions from the results, it should 
be noted that predictions of the impact of climate change 
are beset by uncertainty. First, econometric based projec-
tions induce parameter and modeling uncertainty. The 
consideration of a confidence interval provides a measure 
of the uncertainty stemming from the econometric esti-
mation. However, econometric estimates assume that the 
estimates based on past events will continue in the future. 
Second, the study produces predictions based on climate 
change predictions limited to the crop zones defined by 
Leff et al. [68], which are representative of the early 
1990s. Therefore, the analysis fails to take into account 
the adaptation of farmers via spatial migration of crop 
zones. Third, there is uncertainty in climate change pre-
dictions stemming from climate modeling and future 
scenarios of GHG emissions due to incomplete or un-
knowable knowledge (New and Hulme, 2000). This 
study attempted to address this shortcoming by consid-
ering an ensemble of AOGCMs and scenarios, so as to 
provide a comprehensive range of potential impacts. 
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