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Probabilistic Projections of 21%* Century Climate Change over Northern Eurasia

Erwan Monier™T, Andrei Sokolov®, Adam Schlosser”, Jeffery Scott” and Xiang Gao”

Abstract

We present probabilistic projections of 21*' century climate change over Northern Eurasia using the Mas-
sachusetts Institute of Technology (MIT) Integrated Global System Model (IGSM), an integrated assessment
model that couples an earth system model of intermediate complexity with a two-dimensional zonal-mean
atmosphere, to a human activity model. Regional climate change is obtained by two downscaling meth-
ods: a dynamical downscaling, where the IGSM is linked to a three-dimensional atmospheric model; and
a statistical downscaling, where a pattern scaling algorithm uses climate-change patterns from 17 climate
models. This framework allows for key sources of uncertainty in future projections of regional climate
change to be accounted for: emissions projections; climate system parameters (climate sensitivity, strength
of aerosol forcing and ocean heat uptake rate); natural variability; and structural uncertainty. Results show
that the choice of climate policy and the climate parameters are the largest drivers of uncertainty. We also
find that different initial conditions lead to differences in patterns of change as large as when using differ-
ent climate models. Finally, this analysis reveals the wide range of possible climate change over Northern
Eurasia, emphasizing the need to consider all sources of uncertainty when modeling climate impacts over
Northern Eurasia.
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1. INTRODUCTION

Northern Eurasia accounts for 60% of the land area north of 40°N and includes roughly 70%
of the Eartt’s boreal forest and more than two-thirds of the Earth’s permafrost (Groisman et al.,
2009). As a result, the region is a major player in the global carbon budget. Over the past century,
Northern Eurasia has experienced dramatic climate change, such as significant increases in
temperature, growing season length, floods and droughts (Groisman and Soja, 2009; Soja and
Groisman, 2012). These changes have large environmental and socioeconomic impacts including
forest fires (Groisman et al., 2007), permafrost thaw (Romanovsky et al., 2007), extensive
land-use change and water management projects (Groisman et al., 2009). Further climate change
could lead to significant releases of greenhouse gas (carbon dioxide and methane) to the
atmosphere caused by severe permafrost thaw, increasing forest fires, changes in lake and wetland
dynamics and changes in land cover. This implies a potential positive feedback cycle. For this
reason, it is imperative to quantify the full range of possible climate change over Northern
Eurasia.

* Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge, MA.
t Corresponding author (Email: emonier@mit.edu).


mailto:emonier@mit.edu

Recent studies have investigated various climate change impacts over Northern Eurasia,
including rising methane emissions (Zhu et al., 2011), vegetation change (Tchebakova et al.,
2009; Jiang et al., 2012), agroclimatic potential (Tchebakova et al., 2011) and near-surface
permafrost degradation (Lawrence and Slater, 2005). These studies, along with many others
focused on Northern Eurasia or other regions, generally rely on a small ensemble of climate
simulations that does not cover the full range of uncertainty. In particular, such studies do not
consider all the major sources of uncertainty in future projections of climate change, namely: (i)
uncertainty in the emissions projections, using different climate policies; (ii) uncertainty in the
climate system parameters, represented by different values of climate parameters; (iii) natural
variability, obtained by initial condition perturbation; and (iv) structural uncertainty using
different climate models. For this reason they are likely to underestimate the range of climate
change and its impacts over the region.

In this study, we attempt to simulate possible future climate change over Northern Eurasia, by
computing probabilistic projections of 21% century surface air temperature and precipitation
changes and considering the four aforementioned sources of uncertainty. Our focus is the
Northern Eurasian Earth Science Partnership Initiative (NEESPI) domain, which extends from
15°E in the west to the Pacific Coast in the east from 40° to the Arctic Ocean coast in the north.

2. METHODOLOGY
2.1 Modeling Framework

This work uses the MIT IGSM (Sokolov et al., 2005, 2009), an integrated assessment model
that coupled an Earth System Model of Intermediate Complexity (EMIC), with a two-dimensional
zonal-mean atmosphere, to a human activity model. The IGSM includes a representation of
terrestrial water, energy, and ecosystem processes, global scale and urban chemistry including 33
chemical species, carbon and nitrogen cycle, thermodynamical sea ice, and ocean processes. The
IGSM has been used in EMIC intercomparison exercises (Eby et al., 2013; Zickfeld et al., 2013)
as well as to perform probabilistic projections based on uncertainties in emissions and climate
parameters (Sokolov et al., 2009; Webster et al., 2012). In version 2.2, the IGSM uses a
two-dimensional mixed layer anomaly diffusive ocean model. In version 2.3, the IGSM uses a
three-dimensional dynamical ocean model based on the MIT ocean general circulation model
Marshall et al. (1997a,b). In the IGSM2.3, heat and freshwater fluxes are anomaly coupled in
order to simulate a realistic ocean state. Observed wind stress from six-hourly National Centers
for Environmental Prediction (NCEP) reanalysis (Kalnay et al., 1996) is used to more realistically
capture surface wind forcing over the ocean. For any given model calendar year, a random
calendar year of wind stress data is applied to the ocean in order to ensure that both short-term
and interannual variability are represented in the ocean’s surface forcing. Different random
sampling can be applied to simulate different natural variability (Monier et al., 2013b).

Regional climate change is then obtained from IGSM simulations using two downscaling
methods. A dynamical downscaling method relies on the MIT IGSM-CAM framework (Monier
et al., 2013b) that links the IGSM version 2.3 to the National Center for Atmospheric Research



(NCAR) Community Atmosphere Model (CAM) (Collins et al., 2006). New modules were
developed and implemented in CAM to allow climate parameters to be changed to match those of
the IGSM. In particular, the climate sensitivity of CAM is changed using a cloud radiative
adjustment method (Sokolov and Monier, 2012). In the IGSM-CAM framework, CAM is driven
by greenhouse gas concentrations and aerosol loading computed by the IGSM model, as well as
by IGSM sea surface temperature (SST) anomalies. A statistical downscaling is based on a
Taylor-expansion pattern scaling algorithm (Schlosser ef al., 2012) that extends the latitudinal
projections of the IGSM two-dimensional zonal-mean atmosphere by applying longitudinally
resolved climate patterns from observations and from climate model projections from the
Coupled Model Intercomparison Project phase 3 (CMIP3). This two-pronged approach simulates
regional climate change at 2° x 2.5° resolution based on IGSM probabilistic projections. It has
been used successfully in previous work on the United States (Monier et al., 2013a).

2.2 Description of the Simulations

In this study, we analyze two emissions scenarios corresponding to a median unconstrained
emissions (UCE) scenario where no policy is implemented after 2012 and a stabilization scenario
where greenhouse gases are stabilized at 550 ppm CO; (660 ppm CO,-equivalent) by 2100. The
stabilization scenario corresponds to the level 2 stabilization (L2S) described in Clarke et al.
(2007).

For each emissions scenario, a 400-member ensemble simulation with the IGSM2.2 is run with
Latin hypercube sampling (LHS) of climate parameters (climate sensitivity, strength of the aerosol
forcing, ocean heat uptake rate) (Sokolov et al., 2009; Webster et al., 2012). Pattern scaling is
then applied to each IGSM2.2 ensemble member based on the patterns of climate change of 17
CMIP3 climate models, following Schlosser et al. (2012). The resulting meta-ensemble is viewed
as a “hybrid frequency distribution” (HFD) that integrates the uncertainty in the IGSM ensemble
and in the regional patterns of climate change of different climate models.

Additional simulations are conducted with the IGSM-CAM framework in order to complement
the statistical downscaling with simulations using a three-dimensional atmospheric model. To
limit the number of IGSM-CAM simulations, three sets of climate parameters are chosen to
reproduce the median, and the 5% and 95" percentiles of the probability distribution of 21%
century global climate change (Monier et al., 2013b). The ocean heat uptake rate in all the
IGSM-CAM simulations lies between the mode and the median of the probability distribution
obtained with the MIT IGSM using optimal fingerprint diagnostics in Forest ef al. (2008). We
then choose values of climate sensitivity (CS) and net aerosol forcing (F,.) that correspond to the
5% percentile (CS=2.0°C and F,.=-0.25 W/m?), the median (CS=2.5°C and F,.=-0.55 W/m?) and
the 95™ percentile (CS=4.5°C and F,.=-0.85 W/m?) of the marginal posterior probability density
function with uniform prior for the climate sensitivity-net aerosol forcing (CS-F,.) parameter
space (Monier et al., 2013b). The values of climate sensitivity agree well with the conclusions of
the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC),
which finds that the climate sensitivity is likely to lie in the range of 2.0°C to 4.5°C (Meehl et al.,



2007). Finally, five-member ensembles were carried out for each choice of parameters using
different initial conditions and random wind sampling (referred to as initial conditions in the
remainder of the paper). Further details on the IGSM-CAM simulations can be found in Monier
et al. (2013Db).

In total, this study is based on 13,600 IGSM-HFD simulations and 30 IGSM-CAM
simulations, providing an unprecedented ensemble of simulations using both dynamical and
statistical downscaling. From here on, we refer to low, median and high IGSM-HFD simulations,
the IGSM-HFD simulations corresponding to the 5, median and 95™ percentile of the NEESPI
mean distribution of temperature or precipitation. Similarly, we refer to low, median and high
IGSM-CAM simulations, the IGSM-CAM simulations with values of climate sensitivity
corresponding to the 5%, median and 95™ percentile of its probability distribution, respectively,
2.0°C, 2.5°C and 4.5°C.

3. RESULTS

Figure 1 shows 21* century time series of NEESPI mean surface air temperature and
precipitation anomalies from present day from IGSM-CAM and IGSM-HFD simulations. Even
though the low, median and high simulations for each downscaling method are obtained from
different distributions (NEESPI mean for IGSM-HFD and climate sensitivity for IGSM-CAM),
the NEESPI mean simulated by the two methods show a good agreement, especially for
temperature. For precipitation, the IGSM-CAM tends to simulate stronger increases in
precipitation than the IGSM-HFD simulations, most notably for the stabilization scenario. That is
because the IGSM-HFD takes into account multiple models, some with lesser tendencies for
increases in precipitation over Northern Eurasia than CAM. Overall, both downscaling methods
show a large range of future warming (from 4.5 to 10.0°C and from 2.0 to 4.0°C for, respectively,
the unconstrained and the stabilization scenario) and moistening (from 0.2 to 0.5 mm/day and
from 0.05 to 0.25 mm/day for, respectively, the unconstrained and the stabilization scenario) over
the NEESPI region. The stabilization scenario is always associated with a significant reduction in
future climate change compared to the unconstrained emissions scenario. It should be noted that
all of the IGSM-HFD simulations exhibits warming and moistening for both emissions scenarios,
indicating the robustness of these tendencies amongst the CMIP3 climate models over the region.
In addition, the IGSM-CAM simulations exhibit a much larger year-to-year variability than the
IGSM-HFD, even in the mean of the 5-member ensemble based on different initial conditions.
That is because the variability in the IGSM-HFD is solely driven by the IGSM two-dimensional
atmosphere, thus underestimating local variability over the NEESPI region. The envelope of the
30 IGSM-CAM simulations, which takes into account year-to-year variability, shows a good
agreement with the observed variability in NEESPI mean temperature and precipitation anomalies
from 2000 to 2010. Finally, Figure 1 reveals that the natural variability simulated by the
IGSM-CAM provides a wider range of changes than the human signal simulated in IGSM-HFD
until around 2040 when it is overcome by anthropogenically driven warming/moistening.

Another analysis comparing NEESPI mean changes in temperature and precipitation between
the IGSM-CAM and IGSM-HFD is presented in Figure 2. We compare IGSM-HFD frequency



distributions of NEESPI mean temperature and precipitation changes for various periods of the
21 century with respect to present day to the range obtained from the IGSM-CAM simulations.
Figure 2 further demonstrates the broad agreement between the two downscaling methods and the
large range of plausible future warming and moistening over Northern Eurasia. A further analysis
(not shown) reveals that the frequency distributions generally display a positive skewness and
kurtosis (relative to the normal distribution). The positive skewness and kurtosis increase as the
projections extend into the 21 century, and are larger for the unconstrained emissions scenario.
The IGSM-CAM simulations also exhibit positive skewness, although it is more pronounced than
for the IGSM-HFD. This can be explained by the fact that the IGSM-CAM simulations only
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Figure 1. IGSM-CAM and IGSM-HFD changes in NEESPI mean surface air temperature under a) UCE
scenario and b) L2S scenario; and in NEESPI mean total precipitation under ¢) UCE scenario and d)
L2S scenario from the 1991-2010 base period. Light gray (dark gray) denotes the full range (90%
probability interval) of the IGSM-HFD simulations while the white line shows the median. Bold blue,
green and red lines show the 5-member ensemble mean of the IGSM-CAM simulations for the low,
median and high values of climate sensitivity chosen in this study, while the thin blue and red lines
show the minimum and maximum changes over all IGSM-CAM simulations. The black lines represent

observations, the Goddard Institute for Space Studies (GISS) surface temperature (GISTEMP)
(Hansen et al., 2010) and the 20" Century Reanalysis V2 precipitation (Compo et al., 2011).



consider one value of ocean heat uptake rate and that the marginal posterior probability density
function with uniform prior for the climate sensitivity-net aerosol forcing (CS-F,.) parameter
space for this particular value of ocean heat uptake rate is itself skewed (Monier et al., 2013b).
Figure 2 also illustrates the overestimation of precipitation increases from the IGSM-CAM
compared to the IGSM-HFD. In addition, it shows that full range of the IGSM-CAM simulations
in the earlier part of 21 century, largely driven by natural variability, can be as wide as the full
range of the IGSM-HFD simulations. This suggests that the role of natural variability in driving
the range of probable NEESPI regional changes is not negligible, especially for projections over

the next few decades.
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Figure 2. Hybrid frequency distributions (histograms) of changes in NEESPI mean surface air temperature
and NEESPI mean total precipitation from the 1991-2010 base period along with the range obtained
from the IGSM-CAM simulations (box plots). The box plots represent the changes obtained from the
IGSM-CAM 5-member ensemble mean simulations with the low, median and high climate sensitivity
while the horizontal line shows the minimum and maximum changes obtained among all individual
IGSM-CAM simulations. Changes for different periods are shown with different colors: 2021-2040
mean (blue), 2041-2060 mean (green), 2061-2080 mean (orange) and 2081-2100 mean (red).



The regional patterns of change over the NEESPI region simulated by the IGSM-CAM and
IGSM-HFD approaches are then investigated. Figure 3 and Figure 4 show maps of, respectively,
21* century changes in temperature and precipitation for the low, median and high simulations.
Regional patterns of temperature changes agree well between the IGSM-CAM and IGSM-HFD,
with the largest warming in the northern parts of the NEESPI region. For precipitation, there is
also a broad agreement in the pattern of drying/moistening between the two downscaling
approaches, with some drying in Eastern Europe and the southern parts of the NEESPI region and
moistening in the northern parts. The IGSM-CAM simulations show similar patterns of
temperature and precipitation changes, with larger magnitudes for higher climate sensitivities and
emissions. This is because the IGSM-CAM relies on a single atmospheric model and because
Figure 3 and Figure 4 show the average over the five initial conditions. Averaging over the
different initial conditions filters out most of the natural variability, leaving only the human
induced climate response, which displays similar patterns of change even with different values of
climate sensitivity (Sokolov and Monier, 2012). On the other hand, the IGSM-HFD simulations
show larger differences in the patterns of change because they consider multiple models and thus
includes structural uncertainty.
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Figure 3. Maps of changes in surface air temperature for the period 2081-2100 relative to the 1991-2010
base period for both IGSM-CAM and IGSM-HFD simulations. For IGSM-CAM simulations, the
5-member ensemble mean for the high (HIGH), median (MED) and low (LOW) climate sensitivity are
shown for the UCE and L2S scenarios. For the IGSM-HFD, the simulations corresponding to the 5™
percentile (LOW), median (MED) and 95™ percentile (HIGH) of the hybrid frequency distribution of
NEESPI mean changes are shown for the UCE and L2S scenarios. The IGSM run number and model
pattern are listed for the IGSM-HFD simulations plotted.
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Figure 4. Maps of changes in total precipitation for the period 2081-2100 relative to the 1991-2010 base
period for both IGSM-CAM and IGSM-HFD simulations. For IGSM-CAM simulations, the 5-member
ensemble mean for the high (HIGH), median (MED) and low (LOW) climate sensitivity are shown for the
UCE and L2S scenarios. For the IGSM-HFD, the simulations corresponding to the 5™ percentile
(LOW), median (MED) and 95™ percentile (HIGH) of the hybrid frequency distribution of NEESPI mean
changes are shown for the UCE and L2S scenarios. The IGSM run number and model pattern are
listed for the IGSM-HFD simulations plotted.

Figure 5 shows the impact of the initial conditions within the IGSM-CAM framework. Maps
of 21% century changes in temperature and precipitation for the median simulation under the
stabilization scenario and for different initial conditions reveal the significant role of natural
variability in future climate projections over Northern Eurasia. With different initial conditions,
the simulations show similar magnitudes in temperature and precipitation changes but very
different patterns. The location of the maximum warming can differ significantly, from European
Russia (initial condition 3) to Eastern Siberia (initial condition 5). Precipitation patterns are also
strongly influenced by the initial conditions, with a significantly different extent of the drying
pattern found over Eastern Europe and the southern parts of the NEESPI region. The location of
the maximum moistening can vary widely, from Scandinavia (initial condition 4) to Northern
China (initial condition 2). The impact of the model pattern in the IGSM-HFD approach is
analyzed by plotting the median simulation under the stabilization scenario and the four
surrounding simulations, corresponding to the 50.02", 50.01%, 49.99™" and 49.98™ percentiles of
the NEESPI mean distribution (Figure 6). The NEESPI mean of these five simulations is virtually
identical and each simulation could be considered as the median. However, the associated pattern
of change is often very different because the corresponding model used in the pattern scaling
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Figure 5. Maps of IGSM-CAM changes in surface air temperature and total precipitation for the period
2081-2100 relative to the 1991-2010 base period for the 5 simulations with different initial conditions
for the median (MED) climate sensitivity and L2S scenario.

method is different. This leads to differences in temperature patterns similar to the initial
condition analysis, with different locations of the maximum warming. For precipitation changes,
the five IGSM-HFD simulations show less discrepancies than the initial condition analysis,
largely because three out of the five simulations rely on the same model, and because the other
two are based on models that seem to have similar patterns of precipitation changes over Northern
Eurasia. This is a surprising result that shows that the uncertainty in regional climate change
simulated by ensembles based on initial condition perturbation and multimodel ensembles seems
to compare well over Northern Eurasia.

4. SUMMARY AND CONCLUSION

In this study, we present probabilistic projections of climate change over Northern Eurasia
(NEESPI region) using the MIT IGSM downscaled via both a dynamical method (the
IGSM-CAM framework) and a statistical method (pattern scaling). The analysis of the very large
ensemble of simulations (a total of of 13,630 simulations) shows that the uncertainty in the choice
of policy and in the climate response (climate sensitivity, strength of the aerosol forcing and
ocean heat uptake rate) results in a wide range of probable outcomes. It further shows that
simulations with different initial conditions can lead to different patterns of change (even in the
20-year mean changes), as different as using different models. This is especially true for lower
values of climate sensitivity and emissions scenarios with stringent stabilization of greenhouse
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Figure 6. Maps of IGSM-HFD changes in surface air temperature and total precipitation for the period
2081-2100 relative to the 1991-2010 base period corresponding to the median (50TH) of the hybrid
frequency distribution of NEESPI mean changes, along with the 4 simulations bounding the median
(50.02TH, 50.01TH, 49.99TH and 49.98TH). The IGSM run number and model pattern are listed for the
IGSM-HFD simulations plotted.

gases. This result agrees with Deser et al. (2012) that shows that natural variability contributes
substantially to the uncertainty in climate change projections. This result suggests that an
ensemble based on initial condition perturbation could potentially be used within a single model
as a substitute for a multimodel ensemble, even for end-of-century projections. However, this
study, along with Monier et al. (2013a), suggests that at the scale of a region like Northern
Eurasia or the United States, the choice of policy is the largest source of uncertainty, followed by
the climate parameters. This is especially true for long-term projections that extend past 2050.

In light of these projections, it appears obvious that Northern Eurasia is at risk of substantial
climate warming if mitigation policies are not implemented. In light of recent observed trends,
such warming could lead to further widespread permafrost degradation and more intense and
frequent forest fires (Groisman et al., 2007), and potentially result in the release of large amounts
of carbon and methane (Gao et al., 2013). The simulations with different emissions scenarios,
values of climate parameters, initial conditions and models show consistent patterns of drying in
the southern parts of the NEESPI region, especially over Eastern Europe, and moistening over the
rest of the region. These pronounced features indicate potential predictability in future
precipitation changes over the region.

Overall, we recommend that when investigating climate change impacts over Northern
Eurasia, studies consider the four sources of uncertainty analyzed in this paper, namely: (i)
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uncertainty in the emissions projections, using different climate policies; (ii) uncertainty in the
climate system parameters, represented by different values of climate parameters; (iii) natural
variability, using different initial conditions; and (iv) structural uncertainty using different climate
models. Furthermore, we suggest that probabilistic projections be used to drive impact models,
even though we realize it would require large computing capabilities and would put a larger
burden on impact modeling groups. Nonetheless, in light of this study, it appears evident that
uncertainty in regional climate change projections is still large and should be accounted for
systematically when estimating regional climate impacts.
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