
Modeling regional transportation 
demand in China and the impacts of 

a national carbon constraint
Paul N. Kishimoto, Da Zhang, Xiliang Zhang and Valerie J. Karplus

Report No. 274
January 2015

TSINGHUA - MIT
China Energy & Climate Project



The MIT Joint Program on the Science and Policy of Global Change combines cutting-edge scientific research with 
independent policy analysis to provide a solid foundation for the public and private decisions needed to mitigate and 
adapt to unavoidable global environmental changes. Being data-driven, the Program uses extensive Earth system 
and economic data and models to produce quantitative analysis and predictions of the risks of climate change and 
the challenges of limiting human influence on the environment—essential knowledge for the international dialogue 
toward a global response to climate change.  

To this end, the Program brings together an interdisciplinary group from two established MIT research centers: the 
Center for Global Change Science (CGCS) and the Center for Energy and Environmental Policy Research (CEEPR). These 
two centers—along with collaborators from the Marine Biology Laboratory (MBL) at Woods Hole and short- and long-
term visitors—provide the united vision needed to solve global challenges.  

At the heart of much of the Program’s work lies MIT’s Integrated Global System Model. Through this integrated 
model, the Program seeks to: discover new interactions among natural and human climate system components; 
objectively assess uncertainty in economic and climate projections; critically and quantitatively analyze environmental 
management and policy proposals; understand complex connections among the many forces that will shape our 
future; and improve methods to model, monitor and verify greenhouse gas emissions and climatic impacts.  

This reprint is one of a series intended to communicate research results and improve public understanding of 
global environment and energy challenges, thereby contributing to informed debate about climate change and the 
economic and social implications of policy alternatives.    

 Ronald G. Prinn and John M. Reilly,
 Program Co-Directors 

For more information, contact the Program office: 
MIT Joint Program on the Science and Policy of Global Change

Postal Address: 
Massachusetts Institute of Technology 
77 Massachusetts Avenue, E19-411 
Cambridge, MA  02139 (USA)

Location: 
Building E19, Room 411 
400 Main Street, Cambridge

Access:  
Tel:  (617) 253-7492 
Fax: (617) 253-9845 
Email: globalchange@mit.edu 
Website:  http://globalchange.mit.edu/



Modeling regional transportation demand in China 
and the impacts of a national carbon constraint

Paul N. Kishimoto,∗† Da Zhang,‡ Xiliang Zhang‡ and Valerie J. Karplus∗

Abstract

Climate and energy policy in China will have important and uneven impacts on the country’s regionally
heterogeneous transport system. In order to simulate these impacts, transport sector detail is added
to a multi-sector, static, global computable general equilibrium (CGE) model which resolves China’s
provinces as distinct regions. This framework is used to perform an analysis of national-level green-
house gas (GHG) policies. Freight, commercial passenger and household (private vehicle) transport
are separately represented, with the former two categories further disaggregated into road and non-
road modes. The preparation of model inputs is described, including assembly of a provincial transport
data set from publicly-available statistics. Two policies are analyzed: the first represents China’s target
of a 17% reduction in GHG emissions intensity of GDP during the Twelfth Five Year Plan (12FYP),
and the second China’s Copenhagen target of a 40–45% reduction in the same metric during the period
2005–2020.
We find significant heterogeneity in regional transport impacts. We find that both freight and passenger
transportation in some of the poorest provinces are most adversely affected, as their energy-intensive
resource and industrial sectors offer many of the least-cost abatement opportunities, and the transfor-
mation of their energy systems strongly affects transport demand. At the national level, we find that
road freight is the transport sector affected most by policy, likely due to its high energy intensity and
limited low-cost opportunities for improving efficiency.
The type and degree of regional disparity in impacts is relevant to central and provincial government
decisions which set and allocate climate, energy and transport policy targets. We describe how this
research establishes a basis for regional CGE analysis of the economic, energy and environmental im-
pacts of transport-focused policies including vehicle ownership restrictions, taxation of driving activity
or fuels, and the supply of public transit.
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1. INTRODUCTION
China has replaced the United States as the world’s largest auto market, and transport con-

tributes an increasing share of its energy use and greenhouse gas (GHG) emissions. Yet motor-
ization proceeds unevenly, as heterogeneity in household income growth across provinces affects
travel and transport-related consumption. Figure 1 illustrates this heterogeneity during the pe-
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Figure 1. Private passenger vehicle ownership of Chinese provinces, 2002–2011. Annual data points
for each province are connected to show trends in increasing GDP and ownership over this period.
The three provinces with highest per-capita GDP are labelled: Beijing, Tianjin and Shanghai; for the
regional grouping, see Figure A1. Data collated from China Communications & Transportation Associa-
tion (2008) and National Bureau of Statistics of China (2008) and earlier and subsequent editions from
2003 to 2012 inclusive.

riod 2002–2011 as it pertains to ownership1 of private vehicles. The most recent data show an
order of magnitude between the provinces with lowest and highest ownership. Three of China’s
provincial-level municipalities—Beijing, Tianjin and Shanghai—have similarly high per-capita

1 By ‘ownership’ we always intend the number of vehicles per capita; ‘stock’ is used for the total number of vehi-
cles.
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Figure 2. Left, historical growth in overall Chinese passenger and freight transport activity, indexed to
activity in pass.·km or t·km in 1978, and GDP. Right, annual growth rates, with the 2001–2011 average.

gross regional product (GDP2) but widely different ownership. Finally, growth in income and
ownership over the last decade has been rapid, as has growth in other transport activity (Figure 2).

Freight transport is also closely related to China’s energy system and economy. The coal that
supplies a large share of industrial and electrical energy is moved by rail from domestic mines or
imported by sea; goods for domestic consumption or export are moved by a variety of modes, and
freight traffic is commensurate with China’s large quantity of exports.

Previously, we investigated household vehicle transport using a recursive-dynamic computable
general equilibrium (CGE) model which represented China as a single region, and found that
CO2-intensity targets have very modest impacts on China’s transport sector, on average. Reduc-
ing emissions intensity of GDP by 17% every five years results in a passenger activity reduction
of less than 8% by 2050 relative to a no-policy baseline, as baseline activity more than triples
from 2010 (Kishimoto et al., 2012). Recognizing that national-level analysis omits the regional
differences described above, and also the contribution of freight to total transport activity and en-
ergy use, we have undertaken the regional CGE modeling described here. We demonstrate the
new analysis capacity by examining differences in the provincial impact of two national policies
on emissions intensity of GDP.

Our findings illustrate the importance of a regional approach. Some of China’s poorest provinces
rely heavily on energy-intensive resource and raw materials exports, and are most adversely af-
fected by the national-level instruments we study, in part because they offer least-cost abatement
opportunities. At the national level, we find that of all the transport-related sectors, road freight
transport activity is affected most by policy, likely due to its high energy intensity and limited
low-cost opportunities for improving efficiency. Throughout, significant heterogeneity in regional

2 We use ‘GDP’ for both China’s domestic product and that of individual provinces, sometimes called a Gross Re-
gional Product (GRP), including in the China Statistical Yearbooks.
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conditions and outcomes motivates attention to provincial detail in further analysis of China’s
transport system.

The paper continues as follows: the remainder of the introduction surveys trends of the Chi-
nese transport system, and transport-related policies in place or under discussion, including re-
cent analysis from the literature. Section 2 includes a description of the China Regional Energy
Model (C-REM) developed for this research (Section 2.1), methodology of new transport sec-
tor disaggregation (Section 2.2), and the preparation of a data set of transport activity and energy
quantities (from publicly-available statistics and other literature estimates) which we use to cali-
brate the new sectors (Section 2.3). We then outline our policy analysis (Section 3.1), and detail
our findings, first regarding changes at the national level (Section 3.2) and then regarding varia-
tion in response across regions (Section 3.3). Section 4 discusses implications of our results, and
also planned future work (Section 4.1) which builds on the new regional modeling capacity.

1.1 Chinese Transportation Growth & Policy

Figure 2 shows the strong trend of historical growth in transport activity in China. The decade
ending in 2011 saw an average 8.8% annual growth in freight tonne-kilometres and 12.3% an-
nual growth in passenger-kilometres. The freight transport rate reflects strong, underlying GDP
growth, while the passenger rate also includes changes in mobility behaviour of consumers as
their per capita income has increased. The drivers of transport activity growth are projected to
continue into the future, although there is considerable uncertainty in how they will emerge as
changes in specific transport indicators (Kishimoto, 2012). For instance, while Xinhua News
Agency (2012) reports that the total private vehicle stock in China will grow to 350 million in
2030 from 50 million in 2010, our own previous recursive-dynamic CGE work agrees more closely
with the lower bound of projections by M. Wang et al. (2006), with a figure closer to 240 million
in 2030 (Kishimoto et al., 2012). Whichever figure is realized, the magnitude of increases in all
modes will be large.

Along with freight and passenger activity growth, the impacts and externalities of transport—including
high oil demand, congestion (of both road and non-road systems, and especially in cities), and lo-
cal air pollution—have become policy concerns for Chinese governments. Non-transport-specific
policies arising from national economic objectives also interact with China’s transport sector.
Aside from the national climate policies we discuss later, freight transport activity and patterns
change with the export of goods, which will in turn be altered by plans to shift away from export-
oriented manufacturing to growth driven by services and domestic demand (Qi et al., 2012). Rail
freight is also the predominant mode for moving the large amounts of coal used in China’s indus-
trial and electric power sectors between domestic locations of extraction and use.

China has designated vehicle manufacturing as a “pillar industry” (Steinfeld, 2008), and ar-
ranged joint ventures (JVs) between foreign manufacturers and domestic firms in order to im-
prove productive capacity and encourage technology transfer (Nam, 2011). At the same time,
concerned with a high reliance on oil imports (59% as of 2010, Daojiong, 2006; Xinhua News
Agency, 2012), the government has moved to set aggressive targets for vehicle fuel economy
(Hu et al., 2010; Oliver et al., 2009), and heavily subsidized the purchase of both consumer and

4



commercial “New Energy Vehicles” (NEVs, elsewhere sometimes referred to as “alternative fuel
vehicles”). Gong et al. (2012) note that this latter effort promotes the development of advanced
vehicle technology—yet has resulted in only limited progress towards sales targets. Among other
factors, the post-subsidy cost of NEVs may still compare unfavourably with other options for mo-
torizing households. For long-distance passenger transport, airports and a national, high-speed
rail network have been expanded rapidly through direct government spending (Campos et al.,
2009).

At the provincial and municipal level, transport externalities including air pollution (Sun et al.,
2004) and congestion are acute concerns. Although walking, cycling, and two-wheel electric ve-
hicles retain a non-trivial mode share in Chinese cities (Peng, 2004; Weinert, Ma, et al., 2007;
Weinert, Ogden, et al., 2008), their regulation appears to be a less pressing policy concern. In-
stead, the negative consequences of growth are often addressed through policy entrepreneurialism
(Chien et al., 2011), with decision makers studying historical international and recent domestic
responses to similar problems while experimenting with a variety of measures. For instance, in
the capital, Beijing, and China’s largest city, Shanghai, policies have been enacted which limit the
sale of new vehicles by auctioning license plates, or awarding them by lottery (Hao et al., 2011);
other cities are actively studying the effectiveness of these measures and considering hybrid sys-
tems (Caixiong, 2012). Policies on retirement of old vehicles, cordon exclusion of high-polluting
vehicles (including certain classes of freight vehicles), and the limitation of driving through rotat-
ing bans, pricing and/or tolls have been tried in different locations (Hao et al., 2011; Suen, 2012;
Yin et al., 2011). To affect the fuels used in both freight and passenger road transport, some re-
gions have taken the initiative of adopting standards more stringent than those set nationally (Xin,
2012). Municipalities have taken advantage of high subsidies and new financing opportunities in-
cluding public-private partnerships to increase the supply of subways and other public transport
(de Jong et al., 2010; Y. Wang et al., 2011).

Viewed next to the differences in statistical characteristics of provincial transport detailed be-
low in Section 2.3, the extensive suite of unevenly-applied policy instruments with sometimes
countervailing purposes suggests that impacts may differ across provinces and targeted transport
sectors. Motivated to represent these effects in a CGE model that can also capture the interaction
of transport sector energy transformation with the rest of the Chinese and world economy, we
undertook the modeling effort described in the next section.

2. METHOD

2.1 The China Regional Energy Model (C-REM)

The C-REM is a multi-sector, multi-region static numerical computable general equilibrium
economic model of the world. Thirty Chinese provinces are represented individually, along with
six international regions (Table 1). Sixteen sectors are represented, including main types of pri-
mary energy, electricity and—prior to this research—all transportation (Table 2). Like the MIT
United States Regional Energy Policy (USREP) and Economic Projection and Policy Analysis
(EPPA) models (Paltsev et al., 2005; Rausch et al., 2010), the C-REM includes supplemental
physical accounts of energy and GHG emission quantities to support analysis of policies which
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Table 1. Regions in the C-REM.

Code Region
--- (30 individual Chinese provinces; see Appendix, Figure A1)
APD Asian and Pacific developed countries
ASI Other Asian countries
CAA Former Soviet Union, Central Asia and Africa
EUR Europe
NAM United States and Canada
ROW Latin America, Eastern European countries, rest of the world

Table 2. Sectors in the C-REM, prior to transport disaggregation.

Code Sector
AGR Agriculture
COL Coal mining & processing
CRU Crude petroleum products
EID Energy-intensive industries
ELE Electricity
GAS Natural gas products
GDT Gas production & supply
LID Light industries

Code Sector
OID Other industries
OIL Refined oil
OMN Metal, minerals, other mining
OTH Other service industry
TME Transport machinery & equipment
TRD Wholesale & retail trade, hospitality
TRP Transportation
WTR Water production & supply

directly price or affect the cost of energy use or emissions. C-REM has also previously been used
to simulate an emissions intensity constraint (Zhang et al., 2012). The static version of the C-
REM used for this research has a 2007 base year. The model is implemented in the Model Pro-
gramming System for General Equilibrium (MPSGE) and GAMS, and the numerical solution
found using the GAMS/PATH solver.

The C-REM social accounting matrix (SAM) is prepared using a code which makes least-
squares adjustments to data from the 2007 China Input/Output Tables (China State Information
Council, 2011), the 2007 China Energy Statistical Yearbook (National Bureau of Statistics of
China, 2008), and the GTAP 8 Data Base (Narayanan G. et al., 2012), such that economic value
and physical quantities are balanced. Specific quantities may be designated as fixed and are not
subject to any adjustment. These include the GTAP 8 quantities for China’s national economic
totals, international trade flows and all data for non-Chinese regions. However, quantities desig-
nated as fixed presently do not include transport sector outputs or inputs (including energy), or
the household consumption that we will later assign to a new household private vehicle transport
sector. Given the necessity of using adjusted statistical data—as described in Section 2.3—we
have chosen not to have the balancing code hold fixed any transport-related quantities. One con-
sequence of this is the apparent absence of household private vehicle transport in some provinces
with low motorization, which we note in Section 3.2.

2.2 Transport Sector Disaggregation in C-REM

Our transport disaggregation has two aspects. By commercial transport, we denote the activ-
ity of the former C-REM TRP sector. The portion of this sector’s output which was consumed
as an intermediate in other production we assume to be freight transport, while the portion di-
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Figure 3. Disaggregation of the C-REM TRP sector. The original sector is eliminated, and all intermediate
demand from other sectors is satisfied from the new non-road and road freight sectors. Inputs to the
four commercial sectors are shared as described in 2.3.1.

rectly consumed by households is assumed to be commercial passenger transport. As shown in
Figure 3, we further disaggregate each of these portions into road and non-road sectors, with the
latter comprising rail, marine, air and (for freight only) pipeline transport. By household trans-
port, we denote the consumption by households of commercial passenger transport (output from
the former TRP sector), as well as from other sectors from which we construct a household ve-
hicle transport sector. In the supplemental physical accounts, activity levels for the two freight
transport sectors are in tonne-kilometres, and activity levels for the two commercial passenger
sectors and the household vehicle transport sector are in passenger-kilometres. We assign each
sector a new code:

Table 3. New household transport sectors in the C-REM.

Code Sector Activity Units
FO Non-road freight tonne·km
FR Road freight tonne·km
PO Non-road (commercial) passenger passenger·km
PR Road commercial passenger passenger·km
HVT Household vehicle (transport) passenger·km

The household vehicle transport structure is adapted from one used in the EPPA model as de-
tailed by Karplus, Paltsev, Babiker, and Reilly (2013) and applied to China by Kishimoto et al.
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(2012) for the representation of light duty vehicle technology detail in CGE. This structure is il-
lustrated in Figure 4. Households obtain an “own-supplied [vehicle] transport service” from a
vehicle capital stock, which is supplied by inputs from the transport mechanical equipment (TME)
and services (OTH) sectors. The capital stock is divided into two parts, one representing the non-
propulsion components of the vehicle transport service. The other part, designated powertrain
capital, is combined with fuel (refined oil sector output, OIL) to provide the propulsion compo-
nent of the service. In response to increases in OIL price, households substitute more powertrain
capital, obtaining a more expensive vehicle with improved fuel economy. They may also shift
consumption to other sectors—including the two modes of commercial passenger transport—or
reduce consumption. The structure separately represents the service derived from used or vintage
vehicle stock, for which fuel economy is fixed.

For this research, we applied the transport disaggregation to China’s provinces only, preserv-
ing the existing TRP structure for the six C-REM international regions.

2.3 Data Collection & Model Calibration

Reliable transport data are important if models are to provide credible transport policy analy-
ses, but the statistics on China’s economy, energy use and transport system present challenges in
their level of detail— and sometimes questionable accuracy. Guan et al. (2012) famously noted a
“gigaton gap” in reported CO2 emissions—equivalent to Japan’s national total—between a sum
of provincial totals and the national figure given by the National Bureau of Statistics (NBS). Li
et al. (2012) note that local and provincial officials, who are graded on a point system which
includes progress on development targets, thereby face incentives to over- or under-report vari-
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Figure 5. Freight activity in China (left) and Fujian (FJ, right), 2006–2009, showing reported (dotted line)
and share-adjusted (solid line) 2007 quantities.

ous quantities. In turn, provincial statistical bodies and the NBS apply corrections for this mis-
reporting or perform other adjustments, which are not documented, for a variety of sources of
error (Holz, 2004).

These challenges were encountered during development of the C-REM (more detail is given
in Zhang et al., 2012), and again in disaggregating the transport sector for this research. Our ap-
proach was to produce a provincial data set by collating publicly-available information from NBS
yearbooks (CCTA 2008; 2009 and earlier and subsequent editions from 1999 to 2012 inclusive),
and examine it to identify necessary adjustments.

Coverage of data is another challenge. While supplemental transport energy and physical ac-
tivity accounts for national-level CGE modeling can be based on NGO- or privately-maintained
international databases such as Passport GMID, IEA World Energy Balances and the Interna-
tional Road Federation’s World Road Statistics (Euromonitor International, 2011; International
Energy Agency, 2010; International Road Federation, 2010), the analogous statistics for China,
if not reported by the NBS, national ministries, or lower-level agencies, may be entirely unavail-
able. To correct this deficit, we turn to the extensive literature on Chinese transport energy use
and emissions for conversion factors, intensities and other quantities, which we combine with
adjusted statistics to produce the quantities required for model calibration.

This process is explained for commercial transport and household vehicle transport in the fol-
lowing two subsections.

2.3.1 Commercial Transport

Year 2008 statistics reported by the NBS show significant decreases relative to 2007 in marine
freight transport activity (Figure 5). This could be explained as the impact of reduced Chinese
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Figure 6. Adjusted mode shares of freight traffic, Chinese provinces, 2007.

exports due to falling global demand at the beginning of the 2008–2010 global recession—except
that there were corresponding increases in road freight activity, such that the growth in overall
totals remained steady from 2007 through 2009 (Figure 5, solid lines). The growth rates of indi-
vidual modes have also paralleled the national total in subsequent years. We instead interpret this
change as a statistical adjustment—for a former over-reporting of marine traffic, under-reporting
of highway traffic, or both—and adjust the 2007 data by sharing out the total freight activity in
the same proportion as in 2008, province by province (Figure 5, dotted lines). The resulting 2007
mode shares of freight and passenger traffic are shown in Figures 6 and 7 respectively.

The China Energy Statistical Yearbook’s energy balance tables report provincial transport en-
ergy consumption by fuel; there is no disaggregation by mode. The C-REM sectoral aggregation
and balancing code (see Section 2.1) also aggregates some of these quantities (combining, for
instance, both diesel and gasoline to OIL sector energy) and adjusts them along with other, non-
energy inputs to transport. We estimate the energy intensity of the four commercial transport sec-
tors FO, FR, PO and PR using the adjusted activity levels and bottom-up modal energy intensity
figures from literature (see Appendix, Table A1), then divide TRP output and input among the
four sectors while maintaining a balanced SAM, as follows:

1. TRP sector supply consumed by households is designated the commercial passenger part,
and remaining supply the freight part.

(a) FO and FR are assigned shares of the freight part in proportion to their relative activ-
ity levels.

(b) PO and PR are assigned shares of the commercial passenger part in proportion to their
activity levels.
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Figure 7. Adjusted mode shares of passenger traffic, Chinese provinces, 2007.

2. All TRP sector intermediate and factor demand is divided among FO, FR, PO and PR, in
proportion to their outputs.

3. Intermediate demand from the energy sectors COL, CRU, ELE, GAS, GDT, and OIL is re-
balanced between FO and FR such that their relative energy intensities match our estimate
from statistics and literature. (Likewise PO and PR.)

4. Intermediate consumption of OIL in FO is reassigned to FR, and a corresponding sum of
COL, CRU, ELE, GAS and GDT reassigned from FR to FO. (Likewise PO and PR.)

This final step enacts the observation that very little Chinese road transport in 2007 used non-
liquid fuels such as coal, natural gas or electricity.

2.3.2 Household Vehicle Transport

Given a paucity of regional data, we assign 95% of household OIL consumption to household
vehicle transport, and designate all TME consumption as vehicle capital, of which 20% is power-
train capital. Because households in Liaoning (LN) and Ningxia (NX) consume no refined oil in
the C-REM balanced SAM, household vehicle transport detail is omitted for these provinces.3 In
Karplus, Paltsev, Babiker, and Reilly (2013) and Kishimoto et al. (2012), the services (OTH) in-
put to household vehicle transport is calibrated as a residual between OIL and TME consumption
and data on total household expenditure on transport from Passport GMID. Since this latter quan-
tity is not available for Chinese provinces, we assume the ratio of OTH to TME in each of China’s
provinces to be the same as the national average. We also adopt the assumption that used vehicles

3 The absence of OIL consumption in the SAM for these regions is related to a very small value in the raw statistical
data read into the SAM balancing code, indicating that households in these provinces contribute little to total
OIL demand.
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Figure 8. Calibrated components of levelized cost per distance in household vehicle transport.

provide 60% of vehicle travel, implying the fuel–powertrain capital substitution is only avail-
able for the 40% of travel from new vehicles. In future work, identifying province-by-province
sources for these quantities will allow us to improve our results.

In calibrating the household vehicle transport sector, we faced an absence of comprehensive
provincial private vehicle activity statistics. Instead, we constructed activity levels using the ve-
hicle stock, an estimate of occupancy, and survey-based data on the annual distance travelled per
vehicle from Huo et al. (2012), with national averages and specific figures for some, but not all,
provinces. Dividing the sectoral input quantities to household vehicle transport by this activity
level data gives their contribution to the levelized cost per distance (LCPD) of household ve-
hicle transport, as shown in Figure 8. LCPD data reflect variation in several quantities across
provinces, including distance travelled per vehicle and the characteristics of private vehicles.
For instance, in Shanghai the large overall cost may reflect both the expense of luxury vehicles
and a lower driving distance denominator. In Figure 9, we note that the share of household con-
sumption devoted to transport is between 5% and 11%,4 a similar range to Travel Money Budgets
(TMB) observed for entire countries in the literature (e.g. by Schäfer, 1998).

4 With some exceptions such as Liaoning and Ningxia, as discussed, and Hainan (HI,海 南), an island province with
a high share of air travel.
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3. POLICY ANALYSIS

3.1 National Emissions Intensity Policies

As outlined in Section 1.1, an extensive suite of policies using many instruments targets China’s
transport system and the technologies and users it comprises. We developed a transport sector
disaggregation in order to support comparison of policies (some of which we anticipate in Sec-
tion 4.1) which narrowly target transport modes, technologies or provinces. However, the trans-
port sector also responds to economy-wide policy which affects the costs of energy or emissions;
the character of these effects provides important context for evaluations of targeted policy. Ap-
plying economy-wide policy allows us to examine the distinct responses of the disaggregated
transport sectors.

In addition to a base case, we model two policies. The first, denoted “Policy 1” or “P1” in fig-
ures, represents the 12FYP target of a reducing the GHG emissions intensity of GDP by 17% be-
tween 2010 and 2015. The second policy, denoted “Policy 2” or “P2”, represents the lower bound
of a targeted 40–45% reduction from 2005–2020 that China first stated at the 2009 UN Climate
Change Conference in Copenhagen (UN FCCC Secretariat, 2011). This is an additional 27.3%
reduction beyond the 2015 target.

To date, these policies are implemented by China’s central government as provincial targets
explicitly assigned such that national targets are met, with wealthier provinces (generally in the
East) facing a higher reduction burden than poorer ones. However, we model the policies using
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Figure 10. Impact of policy on China total transport activity levels (pass.-km or tonne-km) by transport
sector, including a freight total (F) and passenger total (P).

a national-level constraint and an endogenous tax on CO2 embodied in energy use, representing
a nation-wide allowance trading market in which the provincial changes in emissions intensity
depend on the relative costs of reductions across provincial economies, including their transport
sectors. For details on the differences between these two implementations of a national intensity
target, see Zhang et al. (2012).

Because we use the static version of C-REM for this research, the analysis omits future growth
in the overall economy and in transport activity which, as noted in Section 1.1, is expected to be
rapid. Along with growth, the relative levels of production from economic sectors—including
transport sectors—in China have changed, both endogenously and as a result of deliberate policy.
The static analysis assumes that the relative levels of output across sectors and provinces remain
as they were in 2007.

Finally, although the emissions intensity instrument rewards fuel switching from high- to low-
emissions intensity energy sources (for instance, from COL to OIL or GAS), for simplicity we
focus mainly on energy intensity in the following discussion of results. Reductions in emissions
intensity—of transport activity, or of output in value terms—are in line with the energy results,
plus some effect of the substitution of energy sources with lower emissions intensity.

3.2 National Impacts

3.2.1 Changes in Transport Activity

We begin our discussion of results with changes at the national level. Total Chinese CO2 emis-
sions decreased 25.4% under Policy 1 and 47.9% under Policy 2, with values larger than the in-
tensity constraints indicating that reductions were made in part by reducing production. Overall
energy intensity decreased 16% (P1) and 35% (P2) as the carbon intensity of energy decreased
10.5% (P1) and 17.9% (P2).
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Figure 11. Energy intensity of transport modes in base year (2007) data. Left, in physical terms (per
freight tonne-kilometre or passenger-kilometre); right, per unit output value and compared to the
energy intensity of electricity, energy-intensive industry, and of all GDP.

Figure 10 gives changes in total China freight and passenger activity under each policy. For
a 17% reduction in economy-wide emissions intensity of GDP, freight activity decreases 3.0%
and passenger activity decreases 2.2%; for a 40% reduction the respective figures are 8.6% and
8.5%. In both cases road freight experiences the largest change, and household vehicle transport
and non-road passenger decrease more than road commercial passenger. These changes are partly
explained by examining the energy intensity of transport modes on activity and output bases, as
shown in Figure 11. Although household vehicle transport has an activity-basis energy intensity
much higher than other passenger modes, as a value-added sector with significant non-energy
components it offers slightly less energy reduction for a given reduction in consumption of its
output. In contrast, because the road and non-road freight sectors have a similar balance of en-
ergy and non-energy inputs, the high activity-based energy intensity of road freight translates to
a high value energy intensity, with the observed larger share of activity reduction under national
policy.

3.2.2 Comparison with Impacts in Other Sectors

In Figure 12 we show the reductions in energy intensity by total freight and total passenger
transport, compared with that in the energy intensive industry (EID) and electricity (ELE) sectors
and the economy as a whole. Both categories of transport reduce energy intensity less in relative
terms than the economy as a whole, indicating that transport does not offer the lowest-cost oppor-
tunities for energy use abatement. In contrast, electricity production, a highly emissions-intensive
sector, undergoes a much larger energy-intensity reduction than the entire economy, and almost
twice as large as passenger transport.
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Figure 12. Energy intensity reductions in transport versus other sectors.

3.2.3 Oil Demand

Focusing on demand for refined oil products, Figure 13 shows contributions of individual
transport sectors to a total reduction of 1.2 EJ (5.1%) under Policy 1 and 3.558 EJ (15%) under
Policy 2. Despite the reductions in energy intensity made by passenger modes, their contribu-
tion to oil demand reduction is small due to the low level of passenger activity relative to other
oil consumption. About 40% of the reduction is made in freight modes—slightly more in road
freight—and over 50% of reductions are made in non-transport sectors.

Absent any growth, national climate policy would make a significant contribution to reducing
China’s dependence on oil imports; however, these reductions are more than offset by expected
growth in total Chinese oil demand over the periods for which the targets are set. These results
indicate that climate policy impacts may help China towards energy “self-sufficiency” (i.e. limit
the share of imports in oil consumption), but also suggest that policies targeted at passenger ve-
hicles (private or commercial) may not contribute significant reductions towards such a target
unless the share of oil consumed by passenger vehicles grows. Sectoral policy aimed at oil de-
manded by freight modes and non-transport activity, on the other hand, may have larger impact.

3.3 Provincial Impacts

3.3.1 Freight Transport

We now turn to the regional impacts of policy. In Figure 14, we show the provincial-level
impacts of each policy on road, non-road and total freight activity by province. In both cases,
Gansu (GS), Guizhou (GZ), Inner Mongolia (NM), Shanxi (SX) and Yunnan (YN) experience the
largest reductions. In general, road freight activity decreases more than non-road freight activ-
ity, although this pattern is reversed in some provinces, such as Gansu, Yunnan, Guizhou, and
Shaanxi (under Policy 2). Some provinces—such as Fujian and Jiangxi—experience increases in
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Figure 14. Policy impact on freight transport by mode and Chinese province.
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freight activity in some or all modes.
To interpret these results, we turn to Figure 15, which compares the change in freight activ-

ity by province against four other properties: total provincial GDP, the ratio of industry (EID,
LID and OID) output to GDP, the energy intensity of all provincial GDP and the energy inten-
sity of the provincial freight sector. The provinces experiencing the greatest reductions in freight
activity have high energy intensity of production overall (Figure 15c) although not of freight par-
ticularly (Figure 15d). They are required by the policy instrument to transform (de-carbonize)
their economy to greater degrees, in turn affecting demand for freight transport. All of the above-
listed provinces have relatively low CO2 emissions abatement costs and contribute significantly to
achieving the national reduction target.

3.3.2 Passenger Transport

Figure 16 shows the impacts on all three passenger modes of each policy, by province. Shanxi,
Heilongjiang, Gansu, Beijing, and Xinjiang display the largest reductions in passenger transport
generally, including household vehicle transport. Shanxi, in particular, reduces activity by 7.5%
under Policy 1 and 23% under Policy 2, respectively 2.5 and 12 points more than the next-most-
affected province, Heilongjiang. Again, there is an instance of a province increasing transport ac-
tivity under policy (about which more shortly). Generally, tightening the intensity policy does not
significantly change the share of modes between road, non-road and household vehicle passenger
activity, and the activity reduction (or increase) is similar across passenger modes—an effect con-
strained by the substitution elasticities between the commercial passenger modes, and between
these and household vehicle transport. In the case of Qinghai, transport activity decreases even
with a slight consumption increase under Policy 1, then further as consumption decreases under
the tighter policy.

To assist with interpretation of the passenger transport results, Figure 17 juxtaposes the change
in activity with the change in total household consumption, showing a generally strong relation-
ship with some nuances. For the slight majority of provinces below the line of proportional de-
crease, a substitution away from transport to other consumption occurs in response to a reduced
household budget, due to the high energy/carbon intensity of transport relative to other goods in
the consumption bundle. If this relationship is symmetric, it would indicate that a situation that
increased household income in these provinces—such as economic growth—would induce a shift
of consumption into transport, increasing the travel money budget. For provinces above the line
in Figure 17, the inverse relationship exists.

3.3.3 Combined Results for Provincial Transport Systems

To consider the effects on the entire transport systems of individual provinces, we return to the
lens of aggregate refined oil demand for all transport sectors.

Figure 18 gives the change in total provincial oil demand, and for the combined transport sec-
tors. Recalling the observation from Figure 13 that transport contributes about half of the national
oil demand reduction, we see that in most provinces the percentage reduction from transport is
much higher than the total percentage reduction. This relationship represents two effects: reduced
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Figure 15. Total freight activity of Chinese provinces vs. (a) GDP, (b) the ratio of industrial output to GDP,
(c) energy intensity of GDP and (d) energy intensity of total freight.
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Figure 16. Policy impact on passenger transport by mode and Chinese province.
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Figure 17. Change in consumption versus change in passenger activity level.

20



AH BJ CQ FJ GD GS GX GZ HA HB HE HI HL HN JL JS JX LN NM NX QH SC SD SH SN SX TJ XJ YN ZJ

−40

−35

−30

−25

−20

−15

−10

−5

0
C

ha
ng

e
in

O
IL

co
ns

um
pt

io
n

[%
]

P1 transport P1
P2 transport P2

Figure 18. Change in total refined oil use, Chinese provinces, with the aggregate change in the national
total (solid lines).

demand for transport sector output; and improvements in emissions intensity of transport coming
from substitution away from OIL to lower-intensity fuels (GAS), or away from energy- to non-
energy inputs.

Figure 19 illustrates the relationship between freight and passenger transport systems impacts
in individual provinces. We observe significant heterogeneity across provinces in terms of the
absolute and relative impact on the transportation system, as well as whether freight or passen-
ger travel are most affected. In many provinces, freight and passenger activity are fairly evenly
affected (close to the 45-degree line of Figure 19) under Policy 1. Among those exhibiting un-
even reductions in freight and passenger activity, some (e.g. Yunnan) see the effects become more
even as the stringency of policy increases, while in others (e.g. Heilongjiang) the effect becomes
more skewed. In a few provinces, effects on freight and passenger transport activity have oppo-
site signs. In Guizhou passenger activity increases while freight activity decreases; in Fujian and
Jiangxi, freight activity increases while passenger activity decreases.

The magnitude of freight sector impacts can also potentially be explained by whether the
province is a supplier of raw materials (especially if energy-intensive) to other provinces, and
if and this activity is large relative to total provincial GDP—the impact on freight could be more
severe in Inner Mongolia, Gansu, Guizhou, and Shanxi, which are all in this category.

4. DISCUSSION & CONCLUSIONS

CGE models such as the C-REM assume reductions—to emissions intensity, in this case, but
equivalently to energy intensity, total energy or total emissions—are taken starting from the most
cost-effective opportunities. It may be difficult in practice to assess whether or where within the
transport sector these opportunities lie, and then to incentivize actors to make them. The suc-
cess of any transport-focused policy or economy-wide policy that includes the transport sector
depends critically on how individual actors experience and respond to the incentives that policy
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Figure 19. Policy impact in freight vs. passenger activity, by province.

creates.
Our work uses the same value of 0.2 for the elasticity of substitution between household ve-

hicle transport and commercial passenger transport as in the MIT EPPA model (from which our
household vehicle transport sector is derived). We also use a substitution elasticity of 0.2 between
the commercial passenger modes, while we model a greater substitutability (elasticity of 1) be-
tween freight modes. These choices are somewhat reflected in the results. The sensitivity of out-
puts to changes in transport elasticities is an initial task for verification of our conclusions; better
still would be values derived from empirical research specific to China.

The relatively large contribution of freight transport to emissions abatement suggests that it
is important to include these modes in national carbon reduction efforts; so accounting for (and
assessing reductions in) freight transport sector emissions will be important to national policy.
Some regions—Europe, for instance—initially excluded transport and its opportunities for emis-
sions abatement from trading systems, using the rationale that fuels were already heavily taxed,
which resulted in a high implicit carbon price (Abrell, 2010). Refined oil taxes harmonized with
an emissions pricing scheme may also be an option for China.

The results indicate the relative cost of improving energy intensity is higher in transport than
in other sectors. These results are consistent with China’s passenger transport system currently
being relatively efficient per passenger-kilometre, in part because of the model split. Also, a
reliance on smaller vehicles may allow China’s fleet to be more fuel efficient on average than,
for instance, that of the United States. However, as manufacturers bring to market more spa-
cious, heavier, higher performance vehicles with more amenities and consumers develop tastes
for these, it is uncertain how the future will evolve.

Regarding provincial impacts, we find ready explanations for many of the differences in im-
pacts across modes and provinces, yet the identified drivers vary across provinces, sector uses,
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and modes. The energy intensity of provincial GDP, industrial structure, present mode share and
energy intensity of modes all modify policy impacts on freight transport activity. Further study
is warranted on the intermediate demand for freight transport services, to identify whether the
movement of certain freight goods (e.g., raw materials, including coal) responds more strongly to
climate policy than others.

Road transport is more carbon-intensive at present, so we would expect any policy focused
on carbon to reduce the road share. Purchased modes generally offer lower carbon intensity and
mode shifting could reduce emissions per passenger-kilometre. Further research could quantify
the magnitude of this effect in each province.

China’s transport system, and its response to policy, is hardly uniform, reinforcing the les-
son that treating the entire system as an undifferentiated whole leads to a “flaw of averages.”5

Regional analysis reveals relative winners and losers—sometimes both in one province. These
results could inform the discussion between provincial and central government officials on the
type, stringency, and allocation (if any) of policies on climate, energy, and particular transport
technologies and modes.

4.1 Future Work

In addition to providing insights about different responses of transport in Chinese provinces to
a national emissions intensity target, we have established a framework for planned further study
of regional transport. The newly developed modeling capacity will allow future work to:

• represent existing policies which differ from province to province, or are piloted in some
provinces before being adopted more widely;

• represent policies proposed or considered by individual provinces, or national policies
which may have regionally heterogeneous impact; and

• incorporate improved understanding of the characteristics of regional transport systems.

The latter point may include improving calibration (with additional data sources, aggregation of
bottom-up data, or survey-based information on—for instance—mobility habits and preferences
of consumers), endogenous representation of phenomena such as congestion (as demonstrated by
Conrad (1997) generally and Gorman (2008) for freight), or increasing the supply of non-road
modes according to statistics on investment in urban and intercity rail.

Karplus, Paltsev, Babiker, Heywood, et al. (2012) describe a production function in which
NEV technologies—including pure electric (EV), plug-in hybrid electric (PHEV), and com-
pressed natural gas vehicles (CNGV)—provide household vehicle transport using different en-
ergy inputs, at different emissions intensities and costs. We included only an internal combustion
vehicle (ICEV) technology, but adoption of NEVs in response to policy can be assessed by cali-
brating these as backstop alternatives to ICE technology.

Finally, in addition to GHGs, road vehicles and other energy inputs to transport are associ-
ated with emissions of precursor pollutants which contribute to the variable and occasionally
5 For a detailed treatment of this term, see Neufville et al. (2011, Chapter 2).
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Table 4. Transport sector policies for future study.

Policy C-REM Sectors(s)
1 Tailpipe emission standards/fuel quality standards HVT
2 New vehicle fuel economy (CO2 emissions) standards HVT, FR, and/or PR
3 Alternative fuel vehicle subsidies HVT, FR, and/or PR

A. Pure electric (EV) and hybrid electric (HEV) vehicles ”
B. Methanol vehicles ”
C. Compressed natural gas (CNG) vehicles ”

4 Vehicle ownership or usage taxes HVT and/or PR
5 National cap-and-trade system focused on CO2 emissions (all)
6 Incentives to retire high emitting vehicles early HVT, FR, and/or PR

dangerously poor air quality in some of China’s cities. Each categories of transport sources al-
lows different methods of pollution control, with distinct costs per unit of abatement. Assigning
emissions factors of these pollutants to individual transport modes will yield total emissions of
precursors pollutants by province, a critical step in assessing whether policies such as those in
Table 4 can improve air quality—and if so, where.

4.2 Summary

Motivated by rapid growth, a variety of national and regional policies, and hetereogeneity in
regional characteristics of China’s transport system (Section 1, Section 2.3), we added detail in
both household vehicle transport and commercial freight and passenger transport to the C-REM
CGE model of China’s provinces (Section 2). To investigate the variation of responses across
provinces and sectors (including the new transport sectors), we imposed national policies on the
CO2-emissions intensity of GDP (Section 3). We found that percentage changes in provincial
freight activity related strongly to the demand for the freight transport service, which decreased
most in provinces with high energy (and thus emissions) intensity of production and low-cost
opportunities for emissions abatement. While passenger modes decreased in both activity and
energy intensity under policy, their small share of transport energy demand meant that their con-
tributions to transformation of the overall transport energy system were modest. While our work
here focused on the impacts of national and economy-wide policy, we outlined how the additional
transport detail will allow further study of China’s existing transport policies, some of which are
narrowly targeted at particular provinces and/or transport subsectors (Sections 1.1 and 4.1).
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APPENDIX A: C-REM Regions and Calibration Data
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Figure A1. Provinces of China, with regional colouring scheme used in Figure 1. Hong Kong (HK), Macau
(MC) and Xizhang (Tibet, XZ) are not included in the C-REM.
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Table A1. Energy intensity by mode from literature, with values used in this study in bold. (1) Citing the
China Ministry of Railways Statistical Bulletin for 2008, a value of 5.78 t coal equivalent per 105t·km. (2)
Citing Cherry et al. (2009), for bus. (3) For heavy-duty gasoline or diesel bus in Shanghai, (4) for light-duty
bus, (5) for liquid propane gas (LPG) taxi, all citing Huang et al. (2005). (6) This official statistical publi-
cation reports an aggregate indicator of air traffic in t·km which includes pass.·km converted at the given
rate.

Mode
Source Air Road Rail Water
Freight [MJ/t·km]
Cai et al. (2012) 9.01 1.7 0.1694(1) 0.219
Ou et al. (2010) — 1.362 0.24 0.148
Passenger [MJ/pass.·km]
Cai et al. (2012) — — — 1

3
t·km

pass.·km =0.073
Yan & Crookes(2010) — 0.31–0.94(2) — —

0.53(3)

1.658(4)

3.411(5)

Girod et al. (2012) — 0.9 1.04 —
CCTA (2008; 2009) 0.09 t·km

pass.·km =0.81(6) — — —
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