
Influence of air quality model resolution on 
uncertainty associated with health impacts* 

Tammy M. Thompson and Noelle E. Selin

*Reprinted from
   Atmospheric Chemistry and Physics: 12: 9753–9762
  Copyright © 2012 with kind permission from the Authors 

Reprint 2012-25



The MIT Joint Program on the Science and Policy of Global Change combines cutting-edge scientific 
research with independent policy analysis to provide a solid foundation for the public and private 
decisions needed to mitigate and adapt to unavoidable global environmental changes. Being 
data-driven, the Program uses extensive Earth system and economic data and models to produce 
quantitative analysis and predictions of the risks of climate change and the challenges of limiting 
human influence on the environment—essential knowledge for the international dialogue toward a 
global response to climate change.  

To this end, the Program brings together an interdisciplinary group from two established MIT research 
centers: the Center for Global Change Science (CGCS) and the Center for Energy and Environmental 
Policy Research (CEEPR). These two centers—along with collaborators from the Marine Biology 
Laboratory (MBL) at Woods Hole and short- and long-term visitors—provide the united vision needed 
to solve global challenges.  

At the heart of much of the Program’s work lies MIT’s Integrated Global System Model. Through this 
integrated model, the Program seeks to: discover new interactions among natural and human climate 
system components; objectively assess uncertainty in economic and climate projections; critically 
and quantitatively analyze environmental management and policy proposals; understand complex 
connections among the many forces that will shape our future; and improve methods to model, 
monitor and verify greenhouse gas emissions and climatic impacts.  

This reprint is one of a series intended to communicate research results and improve public 
understanding of global environment and energy challenges, thereby contributing to informed 
debate about climate change and the economic and social implications of policy alternatives.    

Ronald G. Prinn and John M. Reilly,
Program Co-Directors  

For more information, contact the Program office:

MIT Joint Program on the Science and Policy of Global Change
Postal Address: 
Massachusetts Institute of Technology
77 Massachusetts Avenue, E19-411
Cambridge, MA  02139 (USA)
Location: 
Building E19, Room 411
400 Main Street, Cambridge
Access: 
Tel:  (617) 253-7492
Fax: (617) 253-9845
Email: globalchange@mit.edu
Website:  http://globalchange.mit.edu/

© International Monetary Fund. Reprinted with Permission. The views expressed in this paper 
belong solely to the authors. Nothing contained in this paper should be reported as repre-
senting IMF Policy or the views of the IMF, its Executive Board, member governments, or an 
other entity mentioned herin. 



Atmos. Chem. Phys., 12, 9753–9762, 2012
www.atmos-chem-phys.net/12/9753/2012/
doi:10.5194/acp-12-9753-2012
© Author(s) 2012. CC Attribution 3.0 License.

Atmospheric
Chemistry

and Physics

Influence of air quality model resolution on uncertainty associated
with health impacts
T. M. Thompson and N. E. Selin
Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, 77 Massachusetts, Ave.,
Bldg E19-411, Cambridge, MA 02139, USA

Correspondence to: T. M. Thompson (tammyt@mit.edu)

Received: 28 March 2012 – Published in Atmos. Chem. Phys. Discuss.: 8 June 2012
Revised: 7 September 2012 – Accepted: 3 October 2012 – Published: 26 October 2012

Abstract. We use regional air quality modeling to evalu-
ate the impact of model resolution on uncertainty associated
with the human health benefits resulting from proposed air
quality regulations. Using a regional photochemical model
(CAMx), we ran a modeling episode with meteorological in-
puts simulating conditions as they occurred during August
through September 2006 (a period representative of condi-
tions leading to high ozone), and two emissions inventories
(a 2006 base case and a 2018 proposed control scenario,
both for Houston, Texas) at 36, 12, 4 and 2 km resolution.
The base case model performance was evaluated for each
resolution against daily maximum 8-h averaged ozone mea-
sured at monitoring stations. Results from each resolution
were more similar to each other than they were to measured
values. Population-weighted ozone concentrations were cal-
culated for each resolution and applied to concentration re-
sponse functions (with 95 % confidence intervals) to esti-
mate the health impacts of modeled ozone reduction from
the base case to the control scenario. We found that estimated
avoided mortalities were not significantly different between
the 2, 4 and 12 km resolution runs, but the 36 km resolu-
tion may over-predict some potential health impacts. Given
the cost/benefit analysis requirements motivated by Execu-
tive Order 12866 as it applies to the Clean Air Act, the un-
certainty associated with human health impacts and there-
fore the results reported in this study, we conclude that health
impacts calculated from population weighted ozone concen-
trations obtained using regional photochemical models at
36 km resolution fall within the range of values obtained us-
ing fine (12 km or finer) resolution modeling. However, in
some cases, 36 km resolution may not be fine enough to sta-
tistically replicate the results achieved using 2, 4 or 12 km

resolution. On average, when modeling at 36 km resolution,
an estimated 5 deaths per week during the May through
September ozone season are avoided because of ozone re-
ductions resulting from the proposed emissions reductions
(95 % confidence interval was 2–8). When modeling at 2,
4 or 12 km finer scale resolution, on average 4 deaths are
avoided due to the same reductions (95 % confidence inter-
val was 1–7). Study results show that ozone modeling at a
resolution finer than 12 km is unlikely to reduce uncertainty
in benefits analysis for this specific region. We suggest that
12 km resolution may be appropriate for uncertainty analy-
ses of health impacts due to ozone control scenarios, in ar-
eas with similar chemistry, meteorology and population den-
sity, but that resolution requirements should be assessed on
a case-by-case basis and revised as confidence intervals for
concentration-response functions are updated.

1 Introduction

Ground level ozone air pollution has been linked to adverse
human health impacts and is regulated by numerous gov-
ernment authorities with the goal of protecting health. Pre-
dicting ozone concentrations and health impacts is subject
to a number of sources of uncertainty (including emissions,
chemistry, and health impacts), and thus uncertainty analy-
ses for future regulations, including the potential impacts of
climate change on ozone production, would be advantageous
in a policy context. However, the ability to model ozone pro-
duction is sensitive to model resolution, and it has been sug-
gested that fine-scale modeling (at resolutions up to 2 km
by 2 km) is often necessary to reproduce ozone chemistry
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if results are to be used to inform policy decisions (US EPA,
2007). Such computationally-intensive modeling at fine scale
may limit uncertainty analyses or be infeasible for assessing
future climate influence. Here, we compare the variation as-
sociated with simulated ozone at various model resolutions
with uncertainty in estimated human health impacts, using
population-weighted concentrations. We use the results of
this analysis to evaluate the potential for using coarser-scale
model resolution for uncertainty analyses of policies that im-
pact future ozone.

Extensive analyses in the atmospheric chemistry litera-
ture have evaluated the impact of model resolution on ozone
production (Arunachalam et al., 2006, 2011; Cohan et al.,
2006; Jang et al., 1995; Tie et al., 2010; Valari and Menut,
2008) as well as ozone precursor concentration (Valin et
al., 2011). Eulerian photochemical air quality models in-
stantly and homogeneously disperse low level emissions (in-
cluding ozone precursors Nitrogen Oxides and Volatile Or-
ganic Compounds, NOx and VOCs) throughout the grid cell.
Spatial averaging impacts the chemistry by smoothing con-
centration gradients of precursors over large areas; in some
cases, this smoothing has been shown to reduce modeled
ozone titration effects and ozone formation hotspots. As a
result, many studies have found that larger scale resolu-
tion (> 12 km grid cells) leads to an under-prediction of
daily maximum 8-h ozone averages, and an over-prediction
of daily minimum 8-h ozone averages (Arunachalam et al.,
2006; Jang et al., 1995; Tie et al., 2010). Some studies in-
dicate that 12 km resolution is often not fine enough to cap-
ture sharp ozone concentration gradients that can occur near
large sources of precursors, like power plants or dense urban
areas with a lot of traffic (Kumar and Russel, 1996; Valeri
and Menut, 2008). Similarly, Valin et al. (2011) found that
12 km resolution or finer is often needed in order to accu-
rately represent NO2 chemistry near large NOx emissions
sources. At a minimum, the US Environmental Protection
Agency (EPA) requires a model grid resolution of 12 km by
12 km or smaller for regulatory-focused analyses using ap-
proved air quality models (with a coarse resolution modeling
domain extending over all potentially contributing sources),
but recommends that each case be evaluated independently
to identify the potential model prediction improvements as-
sociated with finer scale resolution.

While previous studies have assessed the errors in pre-
dicted ozone versus measured concentrations, the influence
of resolution-based errors on human health impacts remains
uncertain. Arunchalam et al. (2011) assessed the health im-
pacts associated with particulate matter from aircraft take
off and landing at two airports in the US using 12 km and
36 km model resolution. They found that the estimated hu-
man health impacts varied by only 2 % between the two
model resolutions. The US EPA (2011a) conducted an uncer-
tainty analysis as part of an evaluation of the US Clean Air
Act (CAA). The goal of the study was to estimate the human
health impacts of ozone and particulate matter concentrations

in 2020 under the environmental regulation mandated by the
CAA, versus likely concentrations of those two pollutants if
the CAA were not implemented. While the uncertainty anal-
ysis addressed relative potential impacts of many uncertain-
ties, probability distributions were included only for concen-
tration response functions. With respect to uncertainties re-
lated to air quality modeling results, the US EPA argued that
uncertainties in ozone benefits using a 12 km grid are likely
minor, but primarily because the health benefits due to reduc-
tions in ozone are far outweighed by health benefits due to
reductions in particulate matter (PM); they did not quantita-
tively compare results obtained by varying model resolution.
Wesson et al. (2010) used calculated human health impacts
to compare the performance of multi-pollutant versus single
pollutant control strategies, and argued that assessing human
health impacts is a better way to evaluate prospective policies
than evaluating changes in ambient concentrations at moni-
tored locations. The US National Research Council (NRC)
has called for probabilistic multi-source uncertainty analyses
in evaluating environmental policy (NRC, 2002).

A growing literature has used global models to approxi-
mate regional modeling to assess the potential impacts of cli-
mate change and future emissions on ozone concentrations.
Several studies have used resolution of 36 km or coarser from
climate models, often due to the coarse resolution at which
most global scale models are run (Chang et al., 2010; Selin
et al., 2009; West et al., 2007). Another common procedure
is to use downscaling to model the regional air quality im-
pacts of global change (Bell et al., 2007; Chen et al., 2009;
Knowlton et al., 2004; Lam et al., 2011; Tagaris et al., 2009).
Downscaling takes the output from global scale models and
converts it to input for regional models. These input files can
be gridded meteorological files covering the entire domain
(instructing the regional model on meteorological conditions
such as wind direction/speed and temperature), and/or initial
and boundary conditions (instructing the regional model on
initial concentrations of pollutions and concentrations of pol-
lution that might move into the modeling domain from out-
side the boundary). While downscaling is most often applied
to run regional models at 36 km, 12 km resolution modeling
(Lam et al., 2011) is also possible. Results from downscal-
ing can be applied to evaluate human health impacts as well.
Bell et al. (2007) calculated a 0.11 % to 0.27 % increase (the
95 % confidence interval) in mortality across 31 cities in the
US based on the difference between modeled maximum daily
ozone concentrations in five summers each around 2050 and
the 1990s. Similarly, Knowlton et al. (2004) projected a
4.5 % increase on average in mortality from acute exposure
to ozone in New York state in 2050 due to climate change.
Tagaris et al. (2009) evaluated the uncertainty associated with
meteorological conditions based on the range of temperature
and humidity values modeled by several global change mod-
els, concluding that uncertainty due to future meteorology
was larger than uncertainty associated with human health im-
pacts. Because of the increasing use of human health impact
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analyses from both global scale modeling and downscaling,
it is important to evaluate how model resolution impacts the
uncertainty associated with human health impacts of air pol-
lution and to move towards identifying a resolution target for
human health impact analyses.

Here, we evaluate the impact on modeled potential ozone
exposure and calculated human health response uncertainty
resulting from the temporal and spatial smoothing seen in
coarse grid domains (Arunachalam et al., 2006; Jang et
al., 1995; Tie et al., 2010) due to the spatial smoothing of
ozone precursors, which can eliminate NOx titration and hot
spot formation. Section 2 introduces the air quality model-
ing episode and the methods and equations used to evalu-
ate model performance by spatial resolution, and calculate
population weighted ozone metrics. Section 3.1 presents the
results of the performance evaluation, which indicates that
model output from each of the resolutions are more similar
to each other than they are to measured values. Sections 3.2
and 3.3, respectively, present the population weighted ozone
concentrations for each resolution and the changes in those
values due to the proposed emissions controls. In Sect. 4,
we focus on comparing the relative uncertainty associated
with model resolution and resulting predicted ambient con-
centrations, with uncertainty associated with projected hu-
man health impacts by applying the changes in population
weighted ozone concentrations calculated in Sect. 3.3 to con-
centration response functions obtained from the literature. In
Sect. 5 we discuss possible sources of error. In Sect. 6, we use
our results to identify a resolution appropriate for impacts
analysis uncertainty for this case, taking into account rela-
tive errors and computational limitations. We finish in Sect. 6
with conclusions based on our analysis.

2 Methods

2.1 Comprehensive Air Quality Model with Extensions
(CAMx)

We use CAMx version 4.5.3 (www.camx.com), a US EPA-
approved regional air quality model (US EPA, 2007). We
use a well-documented air quality episode developed in part
during the Texas Air Quality Study II (TexAQSII) and se-
lected as representative of high ozone episodes in this re-
gion (TCEQ, 2006, 2010a). The episode was created by the
Texas Commission on Environmental Quality (TCEQ) for
the Houston/Galveston/Brazoria (HGB) non-attainment area
and includes a 2006 base case and a 2018 control policy
scenario. Emissions inventories were speciated, and spatially
and temporally processed using the Emissions Preprocess-
ing System (EPS3). The 2006 base case inventory represents
actual 2006 emissions, while the 2018 emissions invento-
ries include proposed controls on ozone precursors (TCEQ,
2010b). On average, low level NOx emissions decrease by
44 % from base case to control case, and low level CO

emissions decrease by 30 %. The change in low level VOC
from the 2006 base year to the 2018 control case is less than
±5 %. The change in total emissions (low level plus ele-
vated) is as follows for NOx, CO, and VOCs respectively:
−35 %, −23 %, +10 %. Please see the Supplementary Infor-
mation for more detail on the changes in emissions. Elevated
emissions are treated using the Plume In Grid capabilities in
CAMx where the emissions plume is tracked and remains in-
tact in the model until it reaches the size of a grid cell after
which it is dumped to that grid cell.

Resolution of the original episode includes a coarse par-
ent grid at 36 km, and three nested grids at 12 km, 4 km,
and 2 km (Fig. 1). Meteorological inputs are the same in
both scenarios and were developed using the fifth genera-
tion Penn State/NCAR mesoscale model MM5 (Grell et al.,
1994) to represent conditions as they occurred on 13 August–
15 September 2006. MM5 was used to create meteorological
input files for the 36, 12 and 4 km modeling domain; for the
2 km domain, meteorological data is interpolated by CAMx
from 4 km. A detailed description of the episode is provided
by the TCEQ and includes a performance evaluation of the
meteorological data (2010a). Meteorological inputs provide
an additional source of uncertainty that is beyond the scope
of this study (Vautard et al., 2012). Emissions totals are con-
sistent across all resolutions, with > 2 % variation in spatial
distribution between resolutions. Performance of the episode
was evaluated previously by the TCEQ (TCEQ. 2010a), and
according to that evaluation met US EPA weight-of-evidence
performance criteria (US EPA, 2007).

2.2 Multiple Grid Performance analysis

We focus here on what we will call the HGB area, or the area
covered by the 2 km modeling domain (Fig. 1, red box). We
conduct four simulations each for the two cases (2006 base
case and 2018 control case), with increasingly coarse reso-
lution over the HGB area (2 km, 4 km, 12 km, and 36 km).
We evaluate the performance of the 2006 base case in re-
producing daily maximum 8-h averaged ozone concentra-
tions at air quality monitors in the region. This metric is se-
lected for evaluation because it is necessary for input into
concentration-response functions for impact analysis. We use
the statistical measures Mean Normalized Bias (MNB) and
Mean Normalized Gross Error (MNGE) as shown in Eqs. (1)
and (2), respectively.

MNB = 1
N

N∑
1

(
(Model − Obs)

Obs

)
× 100 % (1)

MNGE = 1
N

N∑
1

( |Model − Obs|
Obs

)
× 100 % (2)

2.3 Health impacts

For our analysis of health impacts and potential benefits, we
use maximum daily population weighted 8-h concentrations
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Fig. 1. CAMx Modeling domain. For each resolution, only the modeling results within the area covered by the 2 km domain (the HGB area),
shown above in the red box, are used.

(Mpop) as a surrogate for exposure for both model and mea-
surement calculated using Eq. (3).

Mpop =
∑
g

(
pg × {

cg

})
∑
g

pg

(3)

where pg is the population in grid cell g, and cg is the daily
maximum 8-h ozone concentration in grid cell g. Population
distribution is from US Census data, provided with census
block spatial detail, and is projected by GeoLytics (GeoLyt-
ics, 2010) and mapped to our modeling domain grid cells
using Geographical Information System (GIS) software. For
the base case, year 2007 is used, and for the 2018 policy
case, projected 2015 population is applied. For population-
weighted analysis of monitor data, only those grid cells with
monitors located in them are used in the calculation, other-
wise, all grid cells within the HGB area are included in the
calculation. This metric represents a rough but best avail-
able and commonly-used estimate for the potential for hu-
man exposure. In reality, exposure depends not only on the
ambient concentration of pollutants at any given time and
location, but also on the daily patterns of people being ex-
posed: when, where and how they travel to and from activ-
ities and their initial health (US EPA, 2010). The potential
impacts on human health from changes in ozone concentra-
tions are calculated by multiplying population-weighted con-
centrations by concentration response functions (and related
95 % confidence intervals) for mortality from acute exposure.
In order to evaluate sensitivity of our results to the selec-
tion of response function, we used three response functions
generated by Anderson et al. (2004), Bell et al. (2004) and

Zanobetti and Schwartz (2008). The response functions se-
lected for this study are those with published responses for
daily maximum 8-h averaged ozone concentrations consis-
tent with the latest EPA’s Environmental Benefits Mapping
and Analysis Program (BenMAP) (Abt, 2010) and the Eu-
ropean ExternE study (Bickel and Friedrich, 2005). All re-
sponse functions used here are nationally averaged, assume
a linear relationship between daily maximum 8-h ozone con-
centrations and impacts, and assume no minimum health im-
pact threshold (US EPA, 2011b). For baseline mortality rate,
we used 2006 May through September (summer ozone sea-
son) average mortality for the city of Houston, as reported to
the US Center for Disease Control (CDC, 2006). The use of
nationally averaged concentration response functions could
introduce an additional source of uncertainty that is not quan-
tified in this paper. However, that uncertainty is tempered
by the use of spatially and temporally averaged population-
weighted ozone concentrations, and city-specific mortality
data. Health response function data is often only available by
county or city, meaning that for the purposes of health impact
evaluation, these response functions are typically applied to
large spatial domains covering multiple grid cells. Therefore
we feel our methods are appropriately representative of com-
mon procedures.

Atmos. Chem. Phys., 12, 9753–9762, 2012 www.atmos-chem-phys.net/12/9753/2012/
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(a)

(b)

Fig. 2. (a): Mean Normalized Gross Error (MNGE) comparing
CAMx results for four grid resolution runs for the 2006 base case to
measured concentrations at all air quality monitor sites in the HGB
area. Bias (MNB) and error (MNGE) results are approximately the
same due to a high bias of the model, so only MNGE is shown in (a).
Results are shown for 36 km (blue line), 12 km (green line), 4 km
(orange line) and 2 km (purple line). 4 km results are very similar
to 2 km results and as a result are mostly hidden by the 2 km line.
(b): Difference between modeled “coarse” resolution ozone con-
centrations (36, 12 and 4 km) and modeled 2 km “fine” resolution
ozone concentrations calculated using Eq. (2) – MNGE.

3 Comparison of monitor-based and population-based
performance evaluation

3.1 2006 base case: monitor-based analysis

We first evaluated the performance of the 2006 base case
episode with respect to the daily maximum 8-h ozone con-
centrations modeled for each of the air quality monitors lo-
cated in the HGB area for each of the four spatial resolution
runs (these values do not take population into account). Fig-
ure 2a shows the MNGE (Eq. 2) in comparing ozone concen-
trations measured at monitor sites to model-simulated ozone
concentrations in the grid cell containing the monitor (at each
resolution). MNB is not reported because the model showed
a constant positive bias and therefore MNGE and MNB are
approximately equal. MNGE increases from 25 % to 74 %

Fig. 3. Population-weighted maximum ozone concentration for
each resolution from the 2006 episode compared to the population-
weighted maximum ozone concentration calculated from the mea-
sured values at the monitors using the 2 km resolution. Modeled
results are shown for 36 km (blue), 12 km (green), 4 km (orange)
and 2 km (purple) and measured results are shown for 2 km (red).

as model resolution increases from 2 km to 36 km. While an
MNGE value of 74 % does fall outside the commonly tar-
geted range as reported by the US EPA (US EPA, 2007), we
will show that estimated human health impacts are much less
sensitive to model resolution choice than is pollutant concen-
tration. Figure 2b compares the difference between the three
coarser resolutions relative to the 2 km fine scale modeling
result (also calculated using Eq. 2 – MNGE); the difference
in predicted ozone between coarser and finer scale resolution
ranges from 1 %–15 %. We conclude from this comparison
that results from the different resolutions are more similar to
each other than they are to actual measured values.

3.2 2006 base case: population-weighted analysis

To assess a metric more relevant to health impacts, we com-
pared the ability of the model run at different resolutions
to reproduce population-weighted concentrations. Figure 3
shows the impact of resolution on the population-weighted
concentrations as modeled using the 2006 base case. These
results are compared to the measured concentrations at the
monitors within the HGB area by multiplying the popula-
tion within each monitor-containing 2 km by 2 km grid cell
by the 8-h maximum ozone concentration measured at the
corresponding monitor. In each case, for the values shown
in Fig. 3, only the grid cells containing monitors and falling
within the HGB area (as defined in Fig. 1) were used to cal-
culate the population weighted ozone concentration. (For the
human health impact analysis reported later in this paper,
all grid cells within the HGB area were used to calculate
population-weighted ozone concentrations.) Finer-resolution
modeling (4 or 2 km) exhibits no clear benefit in compar-
ison with 12 km resolution when considering population-
weighted concentrations. The 36 km simulation is biased

www.atmos-chem-phys.net/12/9753/2012/ Atmos. Chem. Phys., 12, 9753–9762, 2012
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Fig. 4. Population weighted daily maximum 8-h averaged ozone
concentrations calculated using fine scale 2 km population, and
ozone concentration data measured at monitors (green), or modeled
ozone values from only the grid cells containing monitors from both
the 2006 (red) and 2018 (purple) runs.

high (by 3 ppb resolution relative to finer scale model re-
sults); however, on average across all monitor locations,
modeled concentrations are 10 ppb higher than measured
concentrations. On average, the difference between popula-
tion weighted ozone concentration calculated using modeled
concentrations in all grid cells within the HGB area versus
only grid cells containing monitors was less than 1 % for the
2006 base case and less than 2 % for the 2018 control case
for each of the four resolutions.

The 2006 base case episode overestimates the population
weighted ozone concentrations derived from measured val-
ues on most days (as shown in Fig. 3). This bias is consistent
with the monitor-based results presented in Sect. 3.1 above.
Additionally, the model is not able to consistently capture
the daily variability of the measured results. However, the
results are improved over the standard performance evalua-
tion statistics for 12 km and 36 km resolution as presented in
Fig. 2. The MNGE of the population weighted daily maxi-
mum 8-h ozone concentrations modeled using the 2006 base
case (and only cells containing monitors) compared to popu-
lation weighted measured concentrations at air quality moni-
tors average across the episode is 26 %, 27 %, 24 % and 32 %
for 2 km, 4 km, 12 km, and 36 km resolution respectively.
The performance of the modeling episode at 2 km resolution,
however, was judged adequate for regulatory purposes in the
US based on modeled ozone concentrations.

3.3 2006 base case vs. 2018 control case:
population-weighted comparison

We compared population-weighted ozone changes between
the 2006 base case with the 2018 control case, to identify the
variation in concentration between different resolutions for
benefits analysis. Figure 4 shows a comparison of popula-
tion weighted ozone concentrations (Eq. 3), calculated using
only the HGB area grid cells containing monitors, for the

Fig. 5. Impact of 2018 control scenario (2018 Control case – 2006
Base case) on daily maximum 8-h ozone population weighted ozone
concentration by resolution using all grid cells within the HGB area.
Results are shown for 36 km (blue), 12 km (green), 4 km (orange)
and 2 km (purple).

measured 2006 values, the 2006 base case modeled values
modeled at 2 km resolution, and the 2018 control case val-
ues, modeled at 2 km resolution.

Figure 5 shows the change in population weighted 8-h
ozone concentrations from base case 2006 model data to con-
trol case 2018 model data for all grid cells and population
within the HGB area. Based on these results, the control sce-
narios in the 2018 episode clearly impact the modeled ozone
concentrations in the HGB area, with an average 10 ppb de-
crease in both population weighted concentrations and max-
imum daily 8-h ozone concentration from 2006 base case
results. The calculated population weighted ozone decrease
differs depending on what model resolution is used: the aver-
age decrease is 8 ppb for both the 2 km and 4 km model reso-
lutions, 7 ppb for the 12 km model resolution, and 10 ppb for
the 36 km resolution. For comparison, the average change in
the fourth highest daily maximum 8-h ozone at all monitors
located within the HGB area is 8 ppb, 7 ppb, 7 ppb and 6 ppb,
respectively.

The benefits to air quality that are seen in the 2018 con-
trol scenario are due to the 35 % and 23 % average decrease
in NOx and CO emissions, respectively, from the 2006 base
case to the 2018 control case, within the HGB area. VOC
emissions increase by 10 % from 2006 to 2018.

4 Uncertainty analysis of health impacts at varying
model resolution

We use the change in population weighted daily maximum
8-h ozone in the HGB area, shown above in Fig. 5, aver-
aged across all days of the episode, to calculate the expected
health benefits from the policy case (the control scenario).
We use these values to compare the estimated benefits that
would be calculated based on concentrations predicted us-
ing modeling results at each of the four resolutions, and

Atmos. Chem. Phys., 12, 9753–9762, 2012 www.atmos-chem-phys.net/12/9753/2012/
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concentration-response functions with 95 % confidence in-
tervals as described above.

Table 1 shows the calculated change in mortalities per
week during the May through September ozone season, be-
tween 2006–2018, based on modeled population-weighted
concentration data within the HGB area, from the four dif-
ferent modeling resolutions. Also shown is the total number
of mortalities per week in 2006 calculated using concentra-
tions measured at air quality monitors in the HGB area. For
each endpoint, the mean value is based on the concentration
response functions, and is followed by the 95 % confidence
interval, the uncertainty is associated with concentration re-
sponse functions only. The mean (5) and 95 % confidence
interval (2–7) for the change in mortalities per week cal-
culated using data from Anderson et al. (2004) is identical
up to 12 km. For 36 km resolution, the mean is 6 and 95 %
confidence interval 2–9 for decrease in mortalities based on
the 2018 control case. Base year (2006) mortality based on
monitored data is calculated to be between 14 and 60 deaths
per week during the May through September ozone sea-
son due to acute exposure, with a mean of 42. The avoided
mortalities due to acute exposure calculated using national
functions developed by Bell et al. (2004) and Zanobetti and
Schwartz (2008) both show slightly lower mean values to
the mortalities calculated using functions from Anderson et
al. (2004). Results obtained using functions from Bell et
al. show a smaller uncertainty range while Zanobetti and
Schwartz functions show a larger uncertainty range. These
three results are presented to help show that the general re-
sult is insensitive to the function used. The spread of the con-
fidence interval will determine how accurate the air quality
data needs to be. As confidence in human health functions
improves, there will be less overlap between results calcu-
lated from each resolution and therefore differences between
resolutions may become significant. However, more recently
published functions (Zanobetti and Schwartz, 2008) show
wider uncertainty ranges than the two older functions pre-
sented.

We also evaluated two additional morbidity health im-
pacts (minor restricted activity days and bronchodilator us-
age) and drew the same conclusions as from the mortality re-
sults (specifically that 36 km resolution could over-estimate
the benefits from control scenarios versus finer scale model-
ing). Morbidity estimation was based on nation-wide health
incident baseline occurrences.

The US EPA has found, however, that most of the mone-
tary benefits associated with health improvements come from
reduction in mortalities due to the high value of a statistical
life (US EPA, 2011a).

It is important to note that in all health impacts shown
in Table 1, the mean value predicted by the model at 36 km
resolution falls within the 2 km uncertainty range, indicating
that by using the mean coarse resolution results, one would
not make an error in prediction according to the finer reso-
lution results. This result is supported by the similar results

Table 1. Change in mortality for each week of the May through
September ozone season for the population located within the HGB
area, due to the control scenarios proposed as part of the 2018 Hous-
ton Attainment Demonstration versus the 2006 base case. The top
row shows baseline weekly mortality due to ozone measured at
monitors in 2006. Each entry shows mean value with the 95 % con-
fidence interval (based on uncertainty associated with concentration
response functions only) given in parentheses.

Mortality in HGB Area Mean with 95 % Confidence Interval
(Deaths per Week during May through September)

Anderson Bell Zanobetti

Total Basecase Mortality Calculated Using Population Weighted
Concentrations as Measured by Air Quality Monitors in 2006

(Monitor-containing cells only)

06 Monitor Data 42 (14, 60) 30 (19, 41) 35 (4, 68)

Change (Decrease) in Mortality between the 2006 Modeled
Basecase and the 2018 Modeled Control Case

(All cells within the 2 km domain)

Model 2 km 5 (2, 7) 4 (2, 5) 4 (0, 8)
Model 4 km 5 (2, 7) 4 (2, 5) 4 (0, 8)
Model 12 km 5 (2, 7) 3 (2, 5) 4 (0, 8)
Model 36 km 6 (2, 9) 5 (3, 6) 5 (1, 10)

obtained by Arunchalam et al. (2011) who evaluated the im-
pact of model resolution on human health impacts from sec-
ondary fine particulate matter associated with emissions from
aircraft take-off and landing. They found that calculated hu-
man health impacts were not sensitive to model resolution up
to 36 km.

5 Process analysis

We use the CAMx Process Analysis (PA) tool to calcu-
late individual contributions from each physical and chem-
ical process within the model, to the final concentration
of ozone. This allows us to better understand the cause of
the resolution-dependent differences in our study. We used
PA and the python based Process Analysis (pyPA) post-
processing tool developed by Henderson et al. (2011) to ana-
lyze results for 12 September because that day had the largest
difference between the 2006 base case and the 2018 control
case (Fig. 5). For each resolution, the area included in the
Process Analysis was the HGB area in the horizontal, and up
to the mixing height (determined for each hour of the day
by the pyPA program) in the vertical. Our results indicate
that the resolution difference is due to chemistry: ozone de-
struction due to excess NOx in the 12 km and 36 km resolu-
tion models reduces the contribution to ozone from chemistry
during the hours of 10 a.m. to 12 Noon (12 ppb per hour in
the fine resolution models vs. 6 ppb per hour in the coarse
resolution models).

To aid the process analysis evaluation, the NOx emissions
totals were summed up for each of the three “fine” model
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resolution domains and compared to the NOx totals in each
corresponding grid cell within the 36 km resolution. The fine
resolution domains were also compared to each other. The
same procedure was used to compare the total CO, and VOC
emissions between the resolutions. In all cases, the spatial
distribution of NOx, CO and VOC emissions were within 2 %
between the resolutions. This result and the process analysis
findings both indicate that the large differences in ozone con-
centrations that occur on 12 September are a function of the
model resolution and the resulting differences in spatial dis-
tribution of emissions, not the emissions totals.

6 Conclusions and implications for benefits analysis

To evaluate the uncertainty associated with air quality mod-
eling resolution for calculating health benefits of proposed
policies, we ran one modeling episode with two emissions
inventories (a base case and a control scenario, both for
Houston, Texas) at 36, 12, 4 and 2 km resolution. We eval-
uated base case model performance for each resolution for
monitor-based calculations of 8-h maximum ozone. Results
from each resolution were more similar to each other than
they are to actual measured values. Additionally, we evalu-
ated the model predicted values of population-weighted cal-
culations of 8-h maximum ozone using the same statistics we
used to evaluate the daily 8-h maximum. We found the model
was better able to reproduce these derived values than the 8-
h maximum concentrations (the latter being the focus of the
regulatory process).

We compared the difference in the population weighted
ozone concentrations, calculated using the overlapping area
of the four resolutions between resolutions and between the
2006 base case and the 2018 control case. The coarse scale
resolution (36 km) showed the largest decrease from base
case to control scenario case. The average change in daily
maximum 8-h ozone population weighted concentrations are
10 ppb, 7 ppb, 8 ppb and 8 ppb for 36 km, 12 km, 4 km, and
2 km resolution respectively.

We used the population-weighted ozone concentration dif-
ference to calculate change in mortality from acute expo-
sure due to the proposed control scenario. The mean value
for change in mortality, calculated using coarse resolution
model results, fell within the health impact response range of
uncertainty as calculated by the 2 km resolution for all three
mortality response functions evaluated. However, the 36 km
results have the potential to overestimate the benefits to hu-
man health when compared to the results obtained using fine
scale modeling.

Given the uncertainty associated with human health im-
pacts and therefore the results reported in Table 1, we con-
clude that population weighted ozone concentrations ob-
tained using regional photochemical models at 36 km reso-
lution have the potential to overestimate the benefits associ-
ated with human health impacts relative to values obtained

using fine (12 km or finer) resolution modeling. However,
because the median values of all health impacts evaluated
that were calculated using coarse modeling do fall within
the health impact uncertainty range of fine resolution results,
there does exist the possibility for uncertainty analyses (for
example: Monte Carlo analysis) on 36 km resolution air qual-
ity modeling results, which are on average 300 times more
computationally efficient than running the same episode and
same domain with 2 km resolution. Further applications of
this methodology to different regions are necessary to ad-
dress whether similar resolution requirements apply to ozone
production regimes different from the Houston area with its
complicated mix of petrochemical industry and transporta-
tion emissions, and coastal meteorological challenges (Par-
rish et al., 2011). However, as human health response be-
comes better known and the span of the uncertainty range
decreases, more accurate air quality modeling results will be
needed, potentially requiring the use of finer scale modeling.
This result is important given the increasing use of global
scale models in research related to human health as many
global scale models are run at resolutions coarser than even
36 km.

Supplementary material related to this article is
available online at: http://www.atmos-chem-phys.net/12/
9753/2012/acp-12-9753-2012-supplement.pdf.
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