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[1] Black carbon (BC) is an important aerosol constituent in the atmosphere and climate
forcer. A good understanding of the radiative forcing of BC and associated climate feedback
and response is critical to minimize the uncertainty in predicting current and future climate
influenced by anthropogenic aerosols. One reason for this uncertainty is that current
emission inventories of BC are mostly obtained from the so-called bottom-up approach, an
approach that derives emissions based on categorized emitting sources and emission factors
used to convert burning mass to emissions. In this work, we provide a first global-scale
top-down estimation of global BC emissions, as well as an estimated error range, by using a
Kalman Filter. This method uses data of both column aerosol absorption optical depth and
surface concentrations from global and regional networks to constrain our fully coupled
climate-aerosol-urban model and thus to derive an optimized estimate of BC emissions as
17.8 ± 5.6 Tg/yr, a factor of more than 2 higher than commonly used global BC emissions
data sets. We further perform 22 additional optimization simulations that incorporate the
known uncertain ranges of various important physical, model, and measurement parameters
and still yield an optimized value within the above given range, from a low of 14.6 Tg/yr to a
high of 22.2 Tg/yr. Furthermore, we show that the emissions difference between our
optimized and a priori estimation is not uniform, with East Asia, Southeast Asia, and Eastern
Europe underestimated, while North America is overestimated in the a priori inventory.

Citation: Cohen, J. B., and C. Wang (2014), Estimating global black carbon emissions using a top-down Kalman Filter
approach, J. Geophys. Res. Atmos., 119, doi:10.1002/2013JD019912.

1. Introduction

[2] Black carbon (BC) is produced due to incomplete
combustion of carbon-containing substances: fossil fuels,
biofuels, forest and agricultural fires, and other combustion-
related processes. BC is important with respect to both air
quality and the global climate system; it is a component of
particulate matter and is one of the only few species that
uniquely interacts with solar radiation through both scatter-
ing and absorption. Interactions of BC with solar radiation
lead to changes in the net energy budget of the Earth. At
the top of the atmosphere, estimated global radiative forcing
of BC covers a broad range of values as computed by a range

of models using many different assumptions, though all pos-
itive (i.e., a net warming), ranging from low to high, which
includes the following: 0.25 ± 0.15 [Forster et al., 2007],
0.26 [Kim et al., 2008], 0.35 [Wang, 2004; Cohen et al.,
2011], 0.53 [Ming et al., 2010], 0.6 [Chung and Seinfeld,
2005], 0.62 [Jacobson, 2001], and 0.9 [Ramanathan and
Carmichael, 2008] W/m2. BC has been shown to directly
heat the atmosphere through its strong absorption of visible
sunlight (unlike many other aerosol species which do not
absorb visible radiation). Additionally, both scattering and
absorbing extinction of sunlight by BC lead to a reduction
of solar radiation at the surface, or a net cooling, impacting
the general surface energy budget and thus the surface evapo-
transpiration as well as temperature. The atmospheric heating
and surface cooling by BC, either acting alone or together,
have been demonstrated to change large-scale circulation
and precipitation patterns [e.g., Satheesh and Ramanathan,
2000; Ramanathan et al., 2001; Chung and Ramanathan,
2003; Wang, 2004; Ramanathan et al., 2005; Wang, 2009].
[3] Presently, the global-scale emissions of aerosols (in-

cluding BC) are computed primarily based on various bot-
tom-up methods [Bond et al., 2004; Sokolov et al., 2009;
Zhang et al., 2009; Lei et al., 2011; Jacobson, 2012]. What
these various methods include are measures of economic
and natural activities leading to the production of BC, mea-
sures of the population and quantities of substances leading
to BC emissions, and quantification of the yield of BC from
each unit of activity. Estimations based on these bottom-up
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methods provide much needed information from spatial
distributions to emission rates of BC around the globe.
However, most of the economic indicators used in these der-
ivations are coarsely modeled or measured, the population
and quantities are often estimated from small samples, or
interpolated with assumptions where data does not exist,
and the measurements of BC production from activities are
estimated either based on idealized laboratory conditions or
only from a small sample of field experiments. Each stage
in the above described procedure introduces errors of aggre-
gation, extrapolation, or expert opinion, leading to large
uncertainties associated with the outcomes of this approach.
[4] The loadings of BC are heterogeneously distributed

over the surface of the Earth, varying by more than an order
of magnitude. This is due in part to widely varying emission
sources in space and time. For example, although cities and
open fires only cover a very small area of the Earth’s surface,
they contribute much of the total emissions. The states of the
emissions from both are also hard to predict, due to the
dynamic nature of city development and randomness in fire
events, contributing further to BC emission uncertainty.
Second, the major removal mechanism of BC in the atmo-
sphere is wet deposition, which, despite varying in space
and time, is a process generally leading to an average lifetime
of BC of about a week and thus limiting the transport dis-
tance of BC from source regions. Given the heterogeneous
nature of rainfall, this also would lead to a variable BC field,
even if the emissions sources were uniform. The concept of
wet deposition includes two components, i.e., the nucleation
scavenging that activates aerosols and forms cloud droplets
or ice crystals and the impact scavenging that collects aero-
sols during the fall of precipitating cloud drops. Since BC
tends to be more hydrophobic than other aerosols, the nucle-
ation scavenging of BC is believed to differ from other types
of more hydroscopic aerosols unless it is coated with water-
soluble materials [cf. Tao et al., 2012]. Because of these
properties, BC, unless it is coated, is even regarded as inef-
fective for ice nuclei as well [e.g., Hoose and Möhler, 2012].
[5] Here we report a new estimation of the global amount of

BC emissions from a completely different perspective, using a
top-down estimation technique called the Kalman Filter
[Kalman, 1960; Sorenson, 1970; Enting, 2002; Prinn, 2004].
While this provides us with new insight and a constraint on
the emissions of BC, neither this approach nor the bottom-up
approach alone is sufficient to provide an exact answer. The
reason for this is that the top-down approach still relies on
the bottom-up spatial a priori assumptions. Nevertheless, com-
bining top-down and bottom-up approaches is still expected to
provide improved estimation because of the use of multiple
constraints and complementary methods.
[6] There were previous efforts using different top-down

techniques to estimate BC emissions. Some of these were
applied to specific geographical regions rather than covering
the whole globe [Tarantola and Valette, 1982;Hakami et al.,
2005; Yongtao et al., 2009; Kondo et al., 2011]. Other efforts
have been applied to specific types of burning sources and
geographical regions, such as biomass burning, over a spe-
cific limited time frame [Zhang et al., 2005]. Others still have
been based on a simple linear scaling of concentration [Sato
et al., 2003; Wang et al., 2011]. However, ours is the first
known use of the Kalman Filter technique and the first to
optimize for the annual average global emissions of BC.

[7] In this paper, we first describe our method and data
in detail and compare alternative approaches (sections 2.1,
2.2, and 2.3). We then present the result of our optimization
of global BC emissions (sections 2.4 and 3.1) as well as anal-
ysis on optimized emissions in comparison with correspond-
ing a priori over several important regions (section 3.2). This
is followed by the further discussions of the results and con-
clusions (section 4).

2. Methodological Framework Used in This Study

2.1. Observational Data

[8] The backbone of a global top-down technique is using
a set of observational constraints that sufficiently sample the
span of Earth’s surface and atmosphere, sufficient to obtain
information on a variable at the global scale. In this study,
observations of column absorption, surface concentration,
and near-surface local absorption from several global or con-
tinental networks have been used. The data used are monthly
average values and the standard deviation of the daily aver-
age values that were used to produce the monthly averages.
The data cover the 8 year period of time from January 2002
through December 2009. Overall, 112 stations from the
Aerosol Robotic Network (AERONET) [Holben et al.,
1998], 8 surface measurement stations from the European
Supersites for Atmospheric Aerosol Research (EUSAAR)
network [Cavalli et al., 2010], 14 surface measurement
stations from the Chinese Atmosphere Watch Network
(CAWNET) [Zhang et al., 2012], and 4 surface measurement
stations from the NOAA Earth System Research Laboratory/
Global Monitoring Division Network (NOAA) [Delene and
Ogren, 2002] are included. A map of the locations of the var-
ious stations is given in Figure 1.
[9] In summary, there are three different types of measure-

ments compared against corresponding modeled values:
column aerosol absorbing optical depth (AAOD), surface
AAOD, and surface concentration of total BC (the sum of pure
BC and the BC component of core-shell mixed BC). The
AERONET measurements provide a measure of the total col-
umn aerosol optical depth (AOD) and an approximation of the
column single-scatter albedo (SSA) ω, the scattering fraction
in total sunlight extinction. Both quantities are dimensionless.
Since there are known issues with AERONET not being able
to compute ω correctly at low AOD values, only data corre-
sponding to an AOD greater than 0.4 were included for the
main inversion [Dubovik et al., 2000]. For the purpose of the
main analysis, we only use stations that have no more than
30% of their data points under this 0.4 limit. This assumption
is further tested and detailed by sensitivity runs (each of which
requires a full and entire rerun of the modeling system) in a
later section. The AAOD, a measure of the total column absor-
bance due to all absorbing aerosols, is derived by

AAOD ¼ AOD * 1� ωð Þ (1)

[10] The surface measurements reported from the NOAA
network were given as σabs (m�1). This measurement value
can be mapped to an AAOD value by dividing the surface
layer component of the AAOD by the height of the surface
layer Zsurf (for models this is approximately 50 m):

AAODsurf ;model=Zsurf ;model ¼ σabs;model (2)
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[11] The surfacemeasurements reported from both EUSAAR
network and CAWNET were given as concentration of
BC based on aethalometer measurements and therefore
are directly compared with modeled surface concentrations
of BC.
[12] Many of the AERONET stations over North America

report regularly measured AOD that falls below 0.4 and
thus cannot provide an AAOD retrieval for these regions.
However, a constraint of the emissions from North America
can still be obtained based on a subset of North American
AERONET stations, as well as those measuring the flow of
material from North America, which do not suffer from this
same issue. This subset specifically includes the following
stations: two Mexican Urban areas, three metro U.S. areas
(New York City, Los Angeles, and Washington DC), one
metro area in Canada (Toronto), Puerto Rico, and even a few
stations situated in Southwestern Europe and Northwestern
Africa. The surface data from NOAA stations also help to fill
the gap, providing an additional constraint in our approach.
The CAWNET and EUSAAR data similarly provide comple-
mentary constraints over both Europe and East Asia, helping
to fill in gaps in regions over where there are no AERONET
stations or the AERONET stations do not regularly report

AOD exceeding the 0.4 cutoff. This is important since
Eastern Europe and East Asia only have partial coverage by
AERONET stations, yet both are significant source regions
of BC.
[13] Column AAOD data include contributions from three

species: BC, dust, and absorbing organic carbon (OC), and
therefore, further work has to be done to extract the BC
component, as shown in equation (3):

AAODBC ¼ AAODMeasured � AAODdust � AAODOC (3)

[14] The monthly dust climatology derived by Mahowald
et al. [2003] with a correction to the fine fraction optical
properties has been used to compute the AAOD associated
with dust. This is an important factor contributing signifi-
cantly to the total AAOD at different stations located in re-
gions close to and downwind from large dust sources while
not contributing at all to the AAOD at stations far away from
dust sources, as found both in the data used for this paper as
well as byWang et al. [2009]. To address the contribution of
OC to the AAOD, the model-derived value of the AAOD
from OC, which accounts for between 2.9% and 3.2% of
the total AAOD, is also used. We make these computations
by assuming that the AAOD value calculated by considering
the internal mixtures of BC with dust and those of BC with
OC would not be substantially different than those calculated
by combining the individual AAOD values derived from
each of these involved constituents separately. This allows
the measured representation of BC to be obtained through
simple subtraction, as given in equation (3). Since the assump-
tion of the magnitude of the AAOD associated with dust is
uncertain, a couple of tests will address this issue in the
sensitivity runs section.
[15] To properly construct a full time series over the entire

8 years spanned, missing data points were interpolated. This
was done by first computing the month-by-month climatolog-
ical average over the period from 2002 to 2010 and by using
this value to fill in any missing points. If there were no data
available for a given month, then a linear interpolation was
used between the two closest points, in time, having actual
data. The data, aggregated by region, are given in Figure 2.
[16] The end result is the values of the various measure-

ments in an ordered array that can be directly compared with
the model. To achieve this mathematically, the measure-
ments and their associated errors will need to be arranged into
a single time-varying vector. Such an observation vector can
be defined as yok, where k is the index reflecting the time step
(in this case monthly). The first 112 terms respectively of yok
for each given time k are the AAODs associated with BC de-
rived from 112 AERONET stations. The next 22 terms of yok
for each given time k are the direct BC measurements from
the 8 EUSAAR and 14 CAWNET surface stations, respec-
tively, given in terms of concentration (μg/m3). The last 4
terms of yok for each given time k are the measurements of
AAODsurf from NOAA stations. This yields a time-varying
observation vector yok having a length of 138.
[17] A similar observation error vector εk is also formed.

The standard deviation of the underlying daily average
values that were used to compute the monthly average values
in yok were used to represent the observation error vector εk.
For points with missing data in yok, the values were either cli-
matologically averaged or interpolated, and hence, no

180W 135W 90W 45W 0 45E 90E 135E 180E
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90N

Figure 1. Locations of the various measurement devices
used for the inversion. While all AERONET stations are given
as open diamonds, the fraction used in Case 10 also has a rect-
angle over the diamond. Surface concentration stations
(EUSAAR and CAWNET) are given by filled triangles, while
surface absorption stations (NOAA) are given by filled circles.

COHEN AND WANG: ESTIMATING GLOBAL BLACK CARBON EMISSIONS

3



Figure 2. Monthly averaged data from AERONET AAODBC (as per equation (3)) and EUSAAR and
CAWNET surface BC (μg/m3) for each of the sites used in the inversion. Each line corresponds to the data
from one site, from 2002–2010. The individual lines also include those points that have been interpolated,
as explained in the text. The different panels show the data grouped by corresponding region (see Figure 4).
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standard observation error can be computed. In these cases,
the standard deviation was set to be the same as the value it-
self of yok, assuring that they will not contribute to the overall
solution. Furthermore, there is a fundamental uncertainty as-
sociated with the measurements themselves, and this pro-
vides an additional constraint on εk. Since the errors
associated with the absorption inversion tend to be at least
15% [Dubovik et al., 2000; Schuster et al., 2005], the mini-
mum allowable error for each term εk is set to be 0.15 yok.
The point of these decisions is to make sure that interpolated
data points have little weight on the final inversion and that
measurement error is fairly represented as being the greater
of the variation in the monthly average and the error associ-
ated with the equipment and algorithms themselves. These
assumptions are further tested in the sensitivity runs section.

2.2. Models

[18] The other component for performing the inversion is a
suitable global model that can simulate values of BC AAOD
and BC surface concentration that correspond with the re-
spective measurements of BC AAOD and BC surface con-
centration (vectors yok and εk) at the same location and
time. For this work, we have chosen to use the MIT
AERO-URBAN model [Kim et al., 2008; Cohen et al.,

2011], a state-of-the-art modeling system that simulates the
chemistry and transport at regional to global scales. The
model includes a 3-D general circulation model derived from
the Community Atmospheric Model (CAM) version 3.1
[Collins et al., 2006]. The dynamical core is coupled with a
treatment of aerosol physics, chemistry, and radiation inter-
actions, including a two-moment representation of each of
the seven anthropogenic aerosol types and time-varying
emissions of secondary organic aerosol [Kim et al., 2008].
Furthermore, both the aerosol and dynamical modules are
interconnected with a metamodel of urban-scale processing
of aerosols and their precursors. This metamodel computes
the quantitative impact of nonlinear urban-scale chemical
and physical processing on aerosols, allowing for this to be
taken into consideration even though the model is of global
spatial and temporal resolution [Cohen et al., 2011; Cohen
and Prinn, 2011].
[19] For this specific experiment, the model was used in its

atmospheric transport model mode, driven by National
Center for Environment Prediction reanalysis fields at a
6-hourly time resolution [Kalnay et al., 1996]. In terms of dy-
namical fields, the precipitation, vertical velocity, and cumu-
lus mass flux fields, along with many others, are computed by
CAM. A full list of which fields are computed by CAM and
which are used from reanalysis can be found in Cohen et al.
[2011] and other references therein. The important contribu-
tions of the aerosol model as applied to this study include
three factors that contribute to the unique representation of
both the AAOD associated with BC and OC and the surface
BC concentration fields, all on the global scale. First, that the
radiative calculations are based on the trio of external modes
of BC and OC, a core-shell representation of BC and sulfate
(MBS), and an internal mixture of OC and sulfate (MOS).
Second, that a minimum concentration of sulfuric acid is
required before aging of BC or OC can occur. Third, the aero-
sol processing includes the coupling of an urban-scale pro-
cessing model, which takes into account the nonlinearity in
chemistry, physics, and scavenging of aerosols and their pre-
cursors that occur in these high-concentration regimes, which
tend to lead to a reduction in SO2, more aging of the particles,
and a higher number concentration of smaller particles
around and downwind from urban areas. In all, these lead
to the computation of a set of global-scale fields of BC and
MBS, which in turn are used to derive AAOD and mass con-
centrations of BC, while fields of OC and MOS are used to
derive the AAOD associated with OC.

2.3. Kalman Filter

[20] The top-down estimation performed here is done
using a Kalman Filter technique. Although this technique
has been used extensively for atmospheric trace gases
[Mahowald et al., 1997; Prinn et al., 2001; Chen and
Prinn, 2006], it has not yet been applied to aerosol-related
problems on a global scale. Much of the underlying mathe-
matical representation is described in works by Enting
[2002] and Prinn [2004].
[21] Since the forward model is run at 1.9° × 2.5° resolu-

tion, the inverse problem is ill posed and cannot be solved
for each grid point, given that there are only 138 total data
points at each time step, yet there are over 2000 underlying
grid points that contain emissions. The a priori emissions,
given in Figure 3, are distributed based on underlying

Apriori BC Emissions
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Figure 3. A priori BC emissions.
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economic activity, population, and geographical regions of
the world [Kim et al., 2008; Cohen et al., 2011]. Therefore,
to make the problem tractable, the a priori emissions distrib-
uted over the globe have been aggregated spatially into nine
unique regions. Each region retains its distinct spatial charac-
teristics of emissions and is scaled up or down as a unit.
These regions were chosen such that they were tiled over
Earth’s surface in such a way that they are orthogonal to each
other, as shown in Figure 4, with the names of each of these
regions also concurrently given in Table 1. This specifically
means that not only the tiles corresponding to the emissions
are unique but also that the emitted BC from these regions,
after transport and processing have occurred, retains a partic-
ular spatial and temporal distribution of both AAOD and BC
surface concentration values.
[22] Although orthogonality of the regions is required for

the Kalman Filter equations to be mathematically precise,
obtaining this in the physical world is not strictly possible.
To approximate this as best as possible, these nine separate
spatial regions were chosen such that each encompasses a
sizeable amount of the total BC emissions. Furthermore,
these regions were chosen such that their emissions interact
with the general circulation and chemical and physical

processes in the atmosphere in as unique a manner as possi-
ble. Also, to keep the Kalman Filter numerics stable, each re-
gion has been chosen so that its emissions and sensitivity to
detection from the different measurement sites are roughly
equal (in an order of magnitude sense). This allows the ma-
trix to not be ill conditioned, allowing for fewer numerical is-
sues during the matrix inversion step.
[23] The model, which has a time step of 30 min, is inte-

grated forward, and the average monthly values are then used
to compute the sensitivity of how a change in emissions of
BC from any given region impacts on the model value
mapped to yok and εk at each model location where a mea-
surement exists. This sensitivity matrix, Hijk has dimension-
ality of i by j for each given time step k and is defined by
equation (4a).

Hijk ¼ dyik=dxjk (4a)

[24] As can be seen, the sensitivity matrix relates how a
change in the BC emissions from any given region j= (1…
9) at any time k, xjk, quantitatively relates to a change in the
given respective model value (AAOD, surface concentration,
or surface AAOD), yik, at the same spatial location corre-
sponding to each measurement location i = (1…138) given
by yok at each monthly time step k. Specifically, this perturba-
tion is applied equally in each region for all kmonths that the
model is run.
[25] To calculate equation (4a), further assumptions are

required. The first is to assume that the sensitivity matrix
components behave roughly linearly for small changes in
emissions (due to BC lifetime and spatial locations of stations
within model grid boxes). This allows the underlying model
to be run a total of 10 times, one with the a priori emissions
and nine more as perturbations cases. Each perturbation case
j = (1,…,9) is identical to the a priori case with the exception
that the emissions for a given single region j are increased by
a uniformly distributed constant amount of 0.2 Tg/year. In
this way, the underlying model values corresponding to yik
are approximated for the a priori case and each of the pertur-
bation cases j, at each point and for each time step. All of this
computation is based on the monthly varying meteorology,
concentrations, chemistry, and physics. Then the terms of the
sensitivity matrix given in equation (4a) can be approximated
by the first-order difference, as shown in equation (4b):

Hijk ≈ yik�pert � yik � base

� �
= xjk�pert � xjk�base

� �
(4b)

[26] Here the subscript “pert” and “base” represent the per-
turbation case j and base case, respectively. The values of the
sensitivity matrix for the 20 stations for each of the 9 regions j

Emissions Regions
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Figure 4. Nine geospatially defined regions used in this
inversion.

Table 1. Name List of Corresponding Regions as Given in Figure 4
and Used in Tables 2 and 3

Region Number Region Name

1 North and Central America
2 South America
3 Europe
4 Africa and Middle East
5 Northern East Asia
6 Southern East Asia
7 Southeast Asia and Australia
8 South Asia
9 Russia and Eastern Europe
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Figure 5. Time series plots of the 20 sites contributing the largest average amount to the sensitivity matrix
Hijk (see equations (4a) and (4b)). These are plotted for the sensitivity over each of the nine regions
(see Figure 4) used in the base inversion calculation.
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with the largest 8 year average sensitivity value Hijk are given
in Figure 5.
[27] Two additional variables are required before the filter

is applied. The first, Qk, is a measure of the uncertainty asso-
ciated with the model itself. For this case here, it is assumed
to be 10% of the prior state covariance estimate at time k = 0,
Po (which is equal to xj,0

T × xj,0, where T is a transpose oper-
ator). This assumption is further explored in the sensitivity
runs section. The second is a matrix responsible for updating
the emissions from one time step to the next, Mk, which in
this work is a unit matrix, since the emissions are treated as
time invariant. Given that Mk is a unit matrix in this work,
it has no impact on the filter equations and hence will not
be considered further.
[28] The Kalman Filter (equations (5a)–(5d)) is then

applied in sequence for each of the 96 monthly observations
available. The first part of the filter (equation (5a)) describes
that the forecast state covariance estimate Pf

k is updated by
summing together the prior state covariance estimate Pa

k � 1

(the posterior from the previous time step) and the model error
Qk � 1. Physically, this is just stating that the state covariance
estimate (error) is increase by the model error at each step.
Note that the superscript a represents the filter step while f
represents the step before the filter step.

P f
k ¼ Pa

k�1 þQk�1 (5a)

[29] The second stage of the filter defines the Kalman gain
matrix,Kk. This represents a balance between the error in the

measurements, Rk, and the sensitivity in the model’s ability
to predict how a change in emissions from region j will im-
pact the respective variable i at the measurement’s location,
Hijk*P

f
k*Hijk

T. Large values of the measurement error Rk

or a high model sensitivity to the respective change in a
given variable as a function of emissions,Hijk*P

f
k*Hijk

T, imply
that Kk will be smaller. This will then provide a lower prob-
ability for the present state to be updated or influenced by
the observational data of interest. Note that Rk = εkT * εk is
a diagonal matrix, where εk is the vector containing some
quantification of the measurement error at all measurement
locations, for each time step k. Note that �1 is the matrix
inversion operator.

Kk ¼ P f
k*Hijk

T* Hijk*P
f
k*Hijk

T þ Rk

� ��1
(5b)

[30] The third step in the filter process is updating the
present state of the system with the measurement data.
This involves the difference between the measurement yi0
and the model value at the point of the measurement yik
and multiplying this difference by the Kalman gain matrix,
Kk. If the Kalman gain matrix is large (i.e., the measure-
ment error and the model representation error of the state
are both small), then greater significance will be placed
on the measurement. Similarly, if the measurement error
or the model representation error is large, then the
Kalman Gain is small, and the added value of the new
observation is not very significant. Finally, the larger the
difference between the measurement and the model, the

Table 2. Definitions of the Base Case and Various Sensitivity Cases Used for Testing the Optimization Under Different Model,
Measurement, and Filter Assumptionsa

Emissions Σ(xjk,0) (Tg/yr) Interpolation Error εk=Xxy
o
k Model Error Qk=XXPk Aeronet Data Optical Properties

Base 14 1.0 0.1 AOD> 0.4 Base
Differences in a Priori Emissions

Case 1 (8) 1.0 0.1 AOD> 0.4 Base
Case 2 (17) 1.0 0.1 AOD> 0.4 Base
Case 3 (20) 1.0 0.1 AOD> 0.4 Base

Differences in Interpolation Error
Case 4 14 (2.0) 0.1 AOD> 0.4 Base
Case 5 (8) (2.0) 0.1 AOD> 0.4 Base
Case 6 (17) (2.0) 0.1 AOD> 0.4 Base
Case 7 (20) (2.0) 0.1 AOD> 0.4 Base

Differences in Model Error
Case 8 14 1.0 (0.00) AOD> 0.4 Base
Case 9 14 1.0 (0.05) AOD> 0.4 Base
Case 10 14 1.0 (0.15) AOD> 0.4 Base
Case 11 14 1.0 (0.20) AOD> 0.4 Base

Differences in the AERONET Cutoff
Case 12 14 1.0 0.10 (20% Filter) Base
Case 13 14 1.0 0.10 (All data) Base

Differences in SSA Assumptions of MBS
Case 14 14 1.0 0.10 AOD> 0.4 (High SSA)
Case 15 14 1.0 0.10 AOD> 0.4 (Low SSA)

Differences in BC Density
Case 16 14 1.0 0.10 AOD> 0.4 (High ρ)
Case 17 14 1.0 0.10 AOD> 0.4 (Low ρ)

Differences Using a Much Higher BC Density
Case 18 14 1.0 0.10 AOD> 0.4 ( ρ= 1.5)
Case 19 14 1.0 0.10 AOD> 0.4 ( ρ= 1.9)
Case 20 14 1.0 0.10 AOD> 0.4 ( ρ= 2.23)

Differences in Dust AAOD
Case 21 14 1.0 0.10 AOD> 0.4 (dust +20%)
Case 22 14 1.0 0.10 AOD> 0.4 (dust �20%)

aDifferences from the base case are given in parentheses.
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more added value that the measurement carries, in terms of
updating the state.

xajk ¼ xaj;k�1 þKk* yoik–yikð Þ (5c)

[31] The final step in the filter is updating the model covari-
ance estimate. As can be seen, the model covariance estimate
is decreased at each time step through two different factors.
The first factor leading to the decrease in the model covariance
is that when there is a high Kalman gain, Kk, there is a low
measurement error, thus implying that the measurement will
have a large influence on the state and provide useful informa-
tion to the update. The second is when themodel is particularly
sensitive to a measurement,Hijk, from a specific region, which
implies that even if the gain is small, that it is still more rele-
vant to reducing the uncertainty of the model state. Note that
I is the identity matrix.

P a
k ¼ I–Kk*Hijk

� �
*P f

k (5d)

[32] Alternatively, the procedures described in equations
(4a) and (4b) could be replaced with a least square regression,
a nonlinear least squares regression, or a three-dimensional
variational data assimilation (3DVAR) approach. An obvious
benefit of using the Kalman Filter compared to least square re-
gression is that it is a series of best fits, continuously updated
with new information at each time step. For example, in this
paper, the Kalman Filter technique updates itself 96 times,
one per month, for 8 years and therefore captures the
nonlinearity of the response between a change in emissions
in and the measured values of AAOD as a 96-piecewise linear

approximation would, which is far better than a least squares
fit, which is equivalent to a single tangent. Although a
nonlinear least squares or other nonlinear-optimized regres-
sion may be able to take care of outliers and offer a possibly
better fit, they also do not take into account the temporal vari-
ability in the field. As demonstrated in the example above,
such temporal information provides a much better way to fit
a nonlinear response. In this way, this method does not only
provide a best fit for any given time step but instead will con-
verge to the value sought by constantly minimizing the error
with each update in the time series. And while a 3DVAR ap-
proach can take into account the temporal variability in the
field, its performance relies upon the data being of high to ex-
cellent quality, with both the measurements and underlying
model being assumed to be perfect, as any errors in the mea-
surements or model will propagate through the system [e.g.,
Courtier et al., 1994;Wergen, 1992]. Given the large amount
of uncertainty associated with the measurements used for BC,
it is not certain whether a 3DVAR approach would even con-
verge or not, with the reason being that data are required at
each time step, otherwise uniform errors are generated which
then cannot be quantified, and thus, these errors propagate
through the system. Studies such as Houtekamer et al.
[2005] and Whitaker et al. [2008] show that for global meteo-
rological models with respect to assimilation of meteorological
data, the Kalman Filter method works out better. Therefore, a
further advantage of the Kalman Filter technique is that it quan-
tifies the uncertainty of the estimate due to errors present in
both the measurements and the model and therefore allows
the end user to know the quantity of the contribution of the

Table 3. A Priori and a Posteriori (Optimized) BC Emissions by Regiona

Region 1 2 3 4 5 6 7 8 9 Global

A priori 1.14 1.26 1.04 3.51 1.68 (1.89) (1.19) 1.93 (0.73) 14.37
Base 1.03 1.39 1.19 3.67 2.10 3.62 1.73 1.90 1.21 17.83

Differences in a Priori Emissions
Case 1 0.96 1.30 1.11 3.44 1.97 3.39 1.62 1.78 1.13 16.70
Case 2 1.05 1.42 1.21 3.76 2.15 3.71 1.77 1.94 1.24 18.27
Case 3 1.07 1.45 1.24 3.83 2.19 3.78 1.81 1.98 1.26 18.60

Differences in Interpolation Error
Case 4 1.09 1.47 1.26 3.89 2.22 3.84 1.83 2.01 1.28 18.89
Case 5 1.03 1.39 1.18 3.66 2.10 3.61 1.73 1.89 1.21 17.79
Case 6 1.11 1.50 1.28 3.97 2.27 3.92 1.87 2.05 1.31 19.29
Case 7 1.13 1.53 1.30 4.03 2.31 3.98 1.90 2.08 1.33 19.61

Differences in Model Error
(Case 8) (0.87) (1.18) (1.00) (3.10) (1.77) (3.06) (1.46) (1.60) (1.02) (15.07)
Case 9 1.00 1.34 1.15 3.55 2.03 3.50 1.67 1.83 1.17 17.24
Case 10 1.05 1.42 1.21 3.74 2.14 3.70 1.77 1.93 1.23 18.20
Case 11 1.07 1.44 1.23 3.80 2.17 3.75 1.79 1.96 1.25 18.46

Differences in the AERONET Cutoff
Case 12 0.91 1.24 1.05 3.26 1.86 3.22 1.54 1.68 1.07 15.84
Case 13 0.85 1.14 0.97 3.01 1.72 2.97 1.42 1.56 0.99 14.63

Differences in SSA Assumptions of MBS
Case 14 1.01 1.37 1.17 3.61 2.06 3.56 1.70 1.86 1.19 17.53
Case 15 1.03 1.39 1.19 3.68 2.10 3.63 1.73 1.90 1.21 17.87

Differences in BC Density
Case 16 0.88 1.19 1.01 3.13 1.79 3.09 1.48 1.62 1.03 15.21
Case 17 1.28 1.73 1.47 4.56 2.61 4.50 2.15 2.35 1.50 22.15

Differences Using a Much Higher BC Density
Case 18 1.43 (1.94) 1.65 (5.11) 2.92 (5.04) (2.41) 2.64 1.68 (24.83)
(Case 19) (1.74) (2.35) (2.00) (6.20) (3.55) (6.12) (2.92) (3.20) (2.04) (30.13)
(Case 20) (1.99) (2.69) (2.29) (7.09) (4.06) (7.00) (3.35) (3.66) (2.34) (34.46)

Different Dust AAOD Values
Case 21 0.97 1.31 1.12 3.46 1.98 3.42 1.63 1.79 1.14 16.82
Case 22 1.18 1.60 1.36 4.21 2.41 4.16 1.99 2.18 1.39 20.48

aNote that values in parentheses are outside the uncertainty range of the base value, even in the sensitivity cases (see Table 2).
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model error to the a posteriori state. This allows for the useful-
ness of each of themeasurement to be determined and provides
information on which component of the system is contributing
the most to this uncertainty [Enting, 2002; Prinn, 2004].

2.4. Base Experimental Setup

[33] To successfully run the filter, a set of filter, model, and
measurement variables and uncertainties needs to be defined.
These values are chosen so that they are as representative as
possible. Specifically, we have included the initial emissions
estimate as (Σ(xj,0) = 14 Tg/yr) [Wang, 2004; Cohen et al.,
2011]. To compute AAOD and AAODsurf from the model re-
sults, we have used the values of mass density (ρ) and single-
scattering albedo (ω) of BC taken fromKim et al. [2008]. The
measurement error of interpolated data points is set to be
100% of the measurement value, or εk= 1.0yoik; the model
error is 10% or Qk = 0.1Pk, and station data is only included
from AERONET stations if the corresponding AOD is
greater than or equal to 0.4. These values are outlined as
the base case in Table 2. The a priori values and results of
the Kalman Filter, both region-by-region as well as the global
totals, are given in Table 3. The uncertainty bands computed
from the square root of the diagonal elements of Pk for the
base case, region-by-region, are given in Table 4.

3. Results

3.1. Main Experiment

[34] We find that this method converges when the results are
annually averaged in time, showing that the time series of
data points used for the filter are sufficiently long enough to
obtain a mathematically precise optimization. As is shown in

Figures 6 and 7, the error bars are gradually decreasing around
an annually varying cycle, which is shown by the fact that the
12 month running average value is not changing after the first
4 to 5 years worth of the analysis procedure. The convergence
of the optimized emissions and associated uncertainty band,
over the sequence of the Kalman Filter application to each data
point, is shown in Figure 6 for the global total and in Figure 7
for each of the nine regions. A comparison between our global
total top-down optimized emissions values (including uncer-
tainty range), those from our a priori and those from other
works, is given in Table 5. The net global results show that
the optimized annual average values, even at the lowest
value found by subtracting the uncertainty range from the
optimized value, is still larger than those corresponding to
various bottom-up methods [Bond et al., 2004; Zhang et al.,
2009; Lei et al., 2011] as well as those adopted by the
Intergovernmental Panel on Climate Change (IPCC) [Moss
et al., 2010]. The only case where this is not true is our own
a priori [Wang, 2004; Kim et al., 2008], which at about 14
Tg/yr is still lower than the optimized global value but is
within the error range. When looking at the results on a
region-by-region basis, we see that five regions have an opti-
mized value quite different from their a priori, with Region 1
having an optimized emissions value lower and Regions 5,
6, 7, and 9 higher than the a priori. However, only Regions
6, 7, and 9 have an a posteriori that falls outside the range of
the a priori plus and minus the error.
[35] We also find that there is a large month-to-month vari-

ation in the optimization. Since we have assumed that the
emissions are time invariant, this month-to-month variation
is due to factors unrelated to seasonal variation of emissions
[e.g., Cooke et al., 2002; J. Cohen, in preparation, 2013],

Table 4. BC Emissions Uncertainties (Tg/yr) by Region

Region 1 2 3 4 5 6 7 8 9 Global

Error 0.32 0.44 0.37 1.16 0.66 1.14 0.54 0.60 0.38 5.63
Differences in a Priori Emissions

Case 1 0.25 0.33 0.28 0.87 0.50 1.24 0.41 0.45 0.29 4.24
Case 2 0.35 0.47 0.40 1.25 0.71 1.23 0.59 0.64 0.41 6.06
Case 3 0.37 0.50 0.43 1.32 0.76 1.30 0.62 0.68 0.44 6.42

Differences in Interpolation Error
Case 4 0.34 0.46 0.39 1.21 0.69 1.19 0.57 0.62 0.40 5.87
Case 5 0.25 0.34 0.29 0.90 0.52 1.29 0.43 0.47 0.30 4.39
Case 6 0.37 0.49 0.42 1.30 0.74 1.28 0.61 0.67 0.43 6.33
Case 7 0.39 0.52 0.45 1.38 0.79 1.36 0.65 0.71 0.46 6.71

Differences in Model Error
Case 8 0.10 0.13 0.11 0.34 0.20 0.34 0.16 0.18 0.11 1.67
Case 9 0.28 0.38 0.33 1.01 0.58 1.00 0.48 0.52 0.33 4.91
Case 10 0.35 0.47 0.40 1.25 0.71 1.23 0.59 0.64 0.41 6.06
Case 11 0.37 0.50 0.42 1.31 0.75 1.30 0.62 0.68 0.43 6.38

Differences in the AERONET Cutoff
Case 12 0.34 0.46 0.39 1.22 0.70 1.20 0.58 0.63 0.40 5.93
Case 13 0.30 0.41 0.35 1.09 0.62 1.07 0.51 0.56 0.36 5.28

Differences in SSA Assumptions of MBS
Case 14 0.32 0.43 0.37 1.14 0.65 1.13 0.54 0.59 0.38 5.55
Case 15 0.32 0.44 0.37 1.15 0.66 1.14 0.54 0.60 0.38 5.60

Differences in BC Density
Case 16 0.29 0.39 0.33 1.03 0.59 1.02 0.49 0.53 0.34 5.02
Case 17 0.37 0.50 0.43 1.33 0.76 1.31 0.63 0.69 0.44 6.45

Differences Using a Much Higher BC Density
Case 18 0.40 0.54 0.46 1.43 0.82 1.41 0.67 0.74 0.47 6.94
Case 19 0.45 0.61 0.52 1.61 0.92 1.59 0.76 0.83 0.53 7.82
Case 20 0.49 0.66 0.56 1.74 1.00 1.72 0.82 0.90 0.56 8.47

Different Dust AAOD Values
Case 21 0.32 0.43 0.36 1.13 0.65 1.11 0.53 0.58 0.37 5.48
Case 22 0.34 0.45 0.39 1.20 0.69 1.18 0.57 0.62 0.40 5.82
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which are not considered in this paper, and the time-varying
information contained within the observations. This is par-
tially due to temporal changes in the sensitivity matrix and
partially due to variation in the observations of BC AAOD.
For example, even in this context where we assume constant
emissions, it is already demonstrated that there is a time-varying
component of the column BC AAOD, as explained by
Cohen et al. [2011]. Besides the seasonality of rainfall, this
is also related to how the aging of BC leads to significant
changes in its size, optical properties, and lifetime, and that
this aging is strongly controlled by the season of the year,
through its connection with sulfuric acid availability.
Although it is expected that time variation of emissions will
also contribute to this phenomenon, especially over certain
regions of the world where seasonal fires occur, this is
not explicitly considered in this analysis. A comparison
between the annual average AAOD computed from our
global total top-down optimized emissions values, inclu-
ding uncertainty range, the AAOD computed from our a
priori, and those from other works is given in Table 6.

3.2. Sensitivity Experiments

[36] To ensure that these results are robust, we have
recomputed the Kalman Filter results under many different

conditions (Table 2). The first set of sensitivity tests ad-
dresses the suitability of the Kalman Filter equation initial
conditions. The second set of tests addresses the impact of
broadening the uncertainty associated with interpolated
data points. The third set looks into the impact of general
model errors and how they propagate and compare with
measurement errors. The fourth set addresses the critical
issue of the measurement unreliability of AAOD when the
AERONET AOD is below 0.4. The fifth set focuses on un-
certainties in terms of relating how black carbon interacts
with radiation and absorption. The last set tests the sensitivity
of optimized BC emissions to the uncertainty in dust AAOD.
The results of the Kalman Filter for the sensitivity tests are
given in Table 3, while the associated uncertainty bands for
the sensitivity cases are given in Table 4.
[37] The first set of sensitivity tests are designed to see how

changes in the initial emissions used for the Kalman Filter
impact the optimized results. Since the optimized value of
emissions is considerably larger than the a priori emissions
of 14Tg/yr, two higher values were selected. In Case 2, a
value of Σ(xjk,0) = 17Tg/yr was used, and in Case 3, a value
of Σ(xjk,0) = 20Tg/yr was used. Although starting with a higher
initial value leads to a slightly higher optimized emission, it is
only a very small change, always less than 5% of the original
value, whether on the global total or a region-by-region basis.
Furthermore, to compare against the commonly used a priori
values that are around 8Tg/yr, a further lower value was se-
lected, and these results are shown in Case 1. Here starting
with a lower initial value leads to a slightly lower optimized
emission, but it is again only a very small change, always less
than 10% of the original value. These changes are small com-
pared with the error bounds and are not significant statistically.
The reason for the higher (or lower) optimized values is that
since the starting emission is at a higher (or lower) value, the
values at the next time step are higher (or lower) as the filter
steps forward. However, the results rapidly converge within
the first year in all cases (except for the low case, where it takes
roughly 4 years of time), leading to the minor end impact.
[38] The second set of sensitivity tests looks into the im-

pact of broadening the uncertainty associated with interpo-
lated data points on the optimized results. In these cases,
the measurement error of all climatologically averaged and
interpolated data points is set to 200% of the measurement
value, or εk= 2.0yok. This effectively causes these data points
to carry almost no weight in filter step 5c. These results are
shown as Case 4 when Σ(xj,0) = 14 Tg/yr, Case 5 when
Σ(xj,0) = 8 Tg/yr, Case 6 when Σ(xj,0) = 17 Tg/yr, and Case 7
when Σ(xj,0) = 20 Tg/yr. The first thing to observe from these
results is that by weighting these values less, there is a
roughly 1 Tg/yr increase in all of the optimized emissions re-
sults. The second thing is that the error range has increased
by just fewer than 5% as compared to the base cases. These
changes are in fact small compared with the error bounds
from the base case and are not statistically significant. One
rationale for this across the board increase in the optimized
emissions as compared with the base value is that there might
be bias toward lower AAOD values during months in which
the data are not available. The slight increase in the error
bounds also is consistent, since increasing the measurement
error overall leads to a larger Rk value.
[39] A third set of sensitivity tests addresses the impact of

general model errors, as represented via the Kalman Filter
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Figure 6. Annual average global-optimized emissions for
the base inversion, with uncertainty bands, a priori average
annual emissions, and the optimization sequence for the
global BC emissions given by the Kalman Filter as it assim-
ilates each data point.
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Figure 7. Annual average optimized emissions for the base inversion, by region (see Figure 4), with un-
certainty bands, a priori average annual emissions, and the optimization sequence for the BC emissions
given by the Kalman Filter as it assimilates each data point.
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equations. In these cases, the value for Qk is defined as 0%
(or perfect) in case 8, 5% in case 9, 15% in case 10, and
20% in case 11. There are two effects of increasing model er-
ror: first, the weighting of measurements is made to be more
important, and second, the impact of the sensitivity matrix is
weaker. Conversely, the opposite is true when there is a de-
crease in model error. The single most important result is that
when model error is 0%, the estimated emissions are 2.6
Tg/yr lower than the base case, with a rapid rise in the a
posteriori as the model error is increased. However, the
majority of this increase occurs when the model error is
increased from 0% to 5%, with subsequent 5% increases in
model error leading to increasingly small increases in a
posteriori. The second corresponding observation is that the
error bound is extremely small in the case of 0% model error
and that the error bound rises rapidly with the first increase
from 0% to 5% model error (an increase of 3.4 Tg/yr).
Subsequent 5% increases in model error lead to a consider-
ably smaller increase in uncertainty bound. Third, it is impor-
tant to point out that in reality the model is not perfect and
that therefore some model error should exist. Given this
point, it seems that just applying a small amount of model er-
ror, even just 5%, is already sufficient to find that the mea-
surement values are indicative of a higher amount of
emissions than the model itself allows for, when not consid-
ering model error. Finally, even in the case of 0% model er-
ror, all of the results are still found to lie within the error
range given by the base case results.
[40] The next set of sensitivity tests attempts to examine

the impact of the measurement unreliability caused by the
lack of AAOD retrievals when AERONET AOD is below
0.4. This is addressed in two different manners. In Case 12,
only the subset of AERONET stations that have at least
80% of their total data points with an AOD greater than 0.4
is considered. Therefore, this addresses the issue of how
much a low bias in a large fraction of data points might
influence the emissions estimate. In Case 13, a different
data-processing technique from the one used by the
AERONET program is applied to level 1 AERONET data
to obtain AAOD values (S. Kinne, personal communication,
2011). In this case, the value of ω is also computed, even
when the AOD is smaller than 0.4. Specifically, it treats ω
in these cases as being exactly equal to the case where
AOD equals 0.4, therefore fixing the AAOD to AOD ratio
and in turn yielding a value for the AAOD. Notice that this
method is different from those that the AERONET stations
currently use. The results show that the emissions are consid-
erably lower in Case 12, at 15.8 Tg/yr (which is 2.0 Tg/yr
lower than the base value), and even slightly lower yet in
Case 13, at 14.6 Tg/yr (which is 3.2 Tg/yr lower than the base
value). However, these values still fall within the range given
in the base case. One reason why Case 12 behaves this way is
because the error range is now wider. A second possible
reason is that some stations have more variability in their

concentration levels, where often quite high values are
recorded during certain times of the year but not during
others. If these stations happen to have very high values only
1 or 2 months a year, such as those downwind from seasonal
biomass burning, then they will be excluded, since they do
not meet the 20% threshold in terms of the time series aver-
age, and hence, a bias may be introduced. Otherwise, if they
meet the minimum 20% threshold (for example have 3 or 4
months of sufficiently high AAOD), since this procedure
assumed that the emissions are annually averaged, the com-
puted emissions will be an annualized average of these
values, showing a high bias during certain months and a
low bias during other months. With respect to Case 13, it is
possible that assuming ω for low AOD conditions really does
constrain the system, by providing far more information
under cleaner conditions. However, since aerosols under
different AOD levels at the same location likely have differ-
ent chemical ages, this assumption may not be accurate.
Furthermore, it is important to point out that two additional
factors about the data set used in Case 13, as compared with
AERONET Level 2 Data. First, the overall AOD values from
this data set tend to be slightly lower than the same stations in
AERONET Level 2 Data (the 2003 annual average AAOD
from the Case 13 data is different from the AERONET data
at 58 sites, with the maximum, average, and minimum differ-
ence of 0.04, 0.01, and�0.03, respectively), even when con-
sidering all measurements. Second, the seasonal variability is
not the same. Perhaps there is a significant difference in how
the inversions were done that merits further investigation.
[41] The next four sensitivity tests are focused on two im-

portant uncertainties in terms of relating how black carbon
aerosol interacts with radiation, and hence the impact on par-
ticulate absorption. The first two of these cases examine the
effect of placing a minimum on ω of aged black carbon
(core-shell structured BC-sulfate mixture MBS only, not ex-
ternal BC) of 0.5 for Case 14 and a maximum value on ω of
aged black carbon of 0.5 for Case 15 on aged black carbon.
This corresponds to the values currently computed by the
model, of a mixing ratio of roughly 15% sulfate in the mixed
form of MBS, and which can be found in detail in Kim et al.

Table 5. Summary of Global Total BC Emissions From This Current Work as Well as Other Works Found in the Literature (Tg/yr)

Global Emissions (Tg/yr) Uncertainty Range (Tg/yr)

This work 17.8 12.2–23.4
A priori [Wang, 2004; Cohen et al., 2011] 14.4 None Given
Bond [Bond et al., 2004] 7.95 4.7–19.8 or 4.3–22
IPCC representative concentration pathways [Van der Werf et al., 2006; Bond et al., 2007] 7.662 7.662–8.800

Table 6. Summary of Annual Average Anthropogenic Component
of AAOD Computed Based on this Work and Others Found in the
Literature (AAOD×10�3)

AAOD
(×10�3)

Uncertainty Range
(×10�3)

This work: Global average 8.3 5.9–11
This work: 30°S to 0°N average 6.9 5.1–9.1
This work: 0°N to 30°N average 16 11–21
This work: 30°N to 60°N average 11 8.5–16
A priori [Cohen et al., 2011] 10.7 None given
Chung [Chung et al., 2012] 9.5 8.0–10
Chin [Chin et al., 2009] 8.6 None given
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[2008, Figure 3]. The latter two cases look at the impacts of
mass density, ρ, on the optical properties of black carbon,
using a lower value of ρ= 0.84 g/cm3 for Case 16 and a
higher value of ρ= 1.27 g/cm3 for Case 17. The first finding
is that the limitations of ω seem to have little effect. The sec-
ond finding is that changes in ρ seem to have a large effect;
the decreased value of ρ (case 16) yields an optimal value
of 15.2 Tg/yr (which is 2.6 Tg/yr lower than the base value),
while the increased value of ρ (case 17) yields an optimal
value of 22.2 Tg/yr (which is 4.3 Tg/yr higher than the base
value). The optimized values in both of these cases still fall
within the bounds of the base case. However, the spread be-
tween these two extremes is quite large, with these two re-
sults falling outside of the bound of error of each other. The
reason for this is that the value of how strongly black carbon
absorbs directly influences the AAOD. This is due to the fact
that the mass extinction coefficient inversely varies with the
density, as is born out in the results. However, an increase
of density of 27% (Case 17) led to an increase in emissions
of 24%, and a decrease in density of 16% (Case 16) led to a
decrease in emissions of 15%. This shows that the direct lin-
ear scaling in density (and hence mass absorption efficiency)
leads to a less than linear response in emissions. The small
changes in emissions based on limiting ω are more interest-
ing. It is possible that at the stations of interest, the total
amount of aged black carbon has ω slightly under 0.5, which
is why Case 14 had a larger effect, but that the actual ω was
not significantly different from 0.5. A final possibility is that
the quantity of sulfate in MBS, which in turn controlsω, does
not vary substantially as a function of the emissions of BC,
but perhaps more so for other species not explored in this pa-
per such as SO2, and hence, the mixing state is not that very
sensitive to perturbations in BC emissions. This is a poten-
tially interesting point to be explored in further work.
[42] A further set of cases look into the impacts of using

even higher values than used in Case 17 for the mass density
of BC, ρ, on the optical properties of black carbon. The den-
sity of external BC is assumed to be roughly 1 g/cm3 in our
model; however, Bond and Bergstrom [2006] and Schuster
et al. [2005] recommend a considerably higher value.
Specific cases tested include values ranging from the low
end given by Schuster et al. [2005] of ρ = 1.5 g/cm3 (Case
18), to the value recommended as ideal by Bond and
Bergstrom [2006] of ρ= 1.9 g/cm3 (Case 19), to the maxi-
mum value given by Schuster et al. [2005] of ρ= 2.23 g/cm3

(Case 20). As expected from the results in Case 17, the opti-
mized emissions calculated for Cases 18–20 are each respec-
tively higher than the base case and that this increase is larger
for higher values of ρ. Respectively, these optimized values
are 24.8 Tg/yr (which is 7 Tg/yr higher than the base value),
30.1 Tg/yr (which is 12.3 Tg/yr higher than the base value),
and 34.5 Tg/yr (which is 16.7 Tg/yr higher than the base
value). It is interesting to note that again, the percentage in-
crease in the optimized emissions, respectively, 39%, 69%,
and 94%, continues to increase slower than the percentage in-
crease in the value of ρ, respectively, 50%, 90%, and 123%.
This indicates that the Kalman Filter method is indeed
accounting for some of the higher-order nonlinearity in the
response to this linear change in the extinction coefficient.
[43] The final set of sensitivity tests involves the AAOD of

dust. Since this is an important component of the overall
AAOD over certain regions of the world, any uncertainty in

the dust absorption may impact on the value of the absorption
associated with BC in or near those regions. To test this, two
additional runs have been performed: one increases the
AAOD of dust by 20% everywhere (Case 21), and the other
decreases the AAOD of dust by 20% everywhere (Case 22).
As can be observed from the results, Case 21 has a decrease
in optimized emissions of about 1 Tg/yr, while Case 22 has
an increase in optimized emissions of about 2.7 Tg/yr.
While these results are not statistically significant and are
further less important than some of the other tested sensitivity
inputs, the response is a bit different. In this case, an increase
in dust AAOD seems to have a considerably smaller impact
on BC emissions than a same-sized decrease in dust
AAOD. It is also important to note that the most heavily
dust-laden areas, Africa, Northern East Asia, and India, opti-
mized BC emissions do not particularly change in a different
manner than other regions due to these changes made in dust
AAOD. This suggests that sites heavily influenced by dust
have little impact on our inversion. The changes in dust
AAOD are more sensitive for regions that are only moder-
ately or lightly impacted by dust in the first place. This result
actually demonstrates that our data selection procedure is
quite successful in avoiding the heavy dust regions. On the
other hand, a decrease in dust AAOD requires a considerably
larger increase in BC to offset, possibly due to the fact that
the source regions of the dust and BC are from different loca-
tions. This result further shows that the impact of uncertainty
in dust is also likely not too important unless its current
AAOD is strongly overestimated.
[44] In conclusion, all of the sensitivity tests performed

generate a spread of optimized emissions values but always
still lying within the range of the base case. The only excep-
tion is the case for extremely high values of ρ, in which case
the emissions lie above the range of the base case.
Furthermore, we have identified that the mass density of
black carbon, ρ, as it relates to optical absorption, is the most
important sensitive parameter, while data error and con-
straints, and model error, also play an important role.

4. Discussion and Conclusions

[45] It is interesting to consider the reasons why the opti-
mized emissions for Eastern Europe, Southern East Asia,
and Southeast Asia are all significantly higher than the a
priori, as displayed in Figure 8. The a priori in turn is already
significantly higher than emissions values commonly found
in the literature. In addition to these statistically significant
cases, there are two borderline cases. The optimized value
from Northern East Asia is higher than the a priori, while
the optimized value from North and Central America is lower
than the a priori. However, both of these results are not
outside the boundaries of the optimized value and therefore
are not statistically significantly different.
[46] In the case of East Asia, it is well documented that BC

is consistently underpredicted by current bottom-up emis-
sions inventories. Three possible factors for this are
explained by assumptions used for generating the a priori:
the economic growth in China has been consistently
underpredicted by the MIT Emissions Predictions and
Policy Analysis (EPPA) model [Sokolov et al., 2009] be-
tween 2000 and 2010; the locations of major cities on the
coasts have been modeled with populations lower than their
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actual values by the EPPA model, since movement of people
from interior regions to these coastal cities was not accounted
for in terms of the population contribution of the emissions
inventory; and that certain large emissions sources were
completely missing, in both the EPPA a priori and in other
cases [Zhang et al., 2009]. All three of these would lead to
a systematic low emissions bias, as well as possibly an im-
proper distribution. This third point is a possible reason
why Northern East Asia was not completely outside the
bounds while Southern East Asia was, since there are possi-
bly agricultural sources of biomass burning in the South
which are more prevalent than in the drier north; something
that the a priori emissions estimates did not account for.
This is further corroborated by the fact that there is no obvi-
ous bias in either the locations of the measurements in and
downwind from these regions or in corresponding sensitivity
matrix elements corresponding to these regions. This point is
further supported by the addition of surface station measure-
ments, which again are mostly influenced by local emissions
in the two parts of East Asia, respectively.
[47] For the case of Southeast Asia, similarly to China,

there has been a growing increase in economic activity and
urbanization as well as a large migration of people from rural

areas to those of the economic activity. This is confirmed by
the fact that the EPPA model has consistently underpredicted
the economic activity for Vietnam and Indonesia, from 2000
to 2010. A similar case of economic models underestimating
activity in East Asia is a cause of the a priori being
underestimated too. Given both of these examples, the fact
that the a priori is underestimated is reasonable. This region
has a reasonable number of stations to provide adequate spa-
tial coverage, and no obvious bias in either the measurements
or sensitivity matrix, therefore increasing the likelihood that
these factors are not what is contributing to the large frac-
tional increase in emissions due to the optimization process.
However, the fact that a large amount of BC in this area is
due to biomass burning, which is thus temporally variable
while the emissions were assumed to be temporally invariant,
could introduce some error into the inversion over this region
[Jeong and Wang, 2010]. While this is an important potential
contribution deserving of further study, this effort is focused
on the annual average emissions.
[48] The case of Eastern Europe and Russia is more similar

to that of East Asia, with the particular focus being on eco-
nomic growth tending to be underestimated by the emissions
prediction models. There is also no obvious bias among the
stations in this region nor any obvious low or high value of
the sensitivity matrix in this area. Furthermore, some of the
European surface stations are located in this area and there-
fore provide a higher level of local certainty, similarly to
the East Asia case.
[49] In the case of North and Central America, the inclu-

sion of surface stations has led to a less negative estima-
tion. Before including the surface stations, the optimal
estimation of emissions was even lower than what it is
found to be after the inclusion of these stations. This is
because this region has one of the highest values of the
sensitivity matrix for any region, there are few other mea-
surements covering the northwestern and central portions
of North America, and the error associated with these sur-
face measurements is generally smaller than that with the
AERONET measurements. Therefore, any reduction in the
error term introduced to the sensitivity calculation should
lead to greater numerical certainty, causing the value to
be more reliable. The surface measurement terms help to
offset this, since their impact almost exclusively impacts lo-
cal emissions estimates.
[50] The final interesting case is the result for South Asia.

In the case of South Asia, there are two special factors in-
volved that may leave the result further open to investigation.
First of all, a single AERONET station has an extremely high
sensitivity value compared with the others for a given region,
contributing 65 ± 30% to the total sensitivity matrix associ-
ated with the region. Therefore, the optimization is heavily
dependent on this one station’s result. Because of this, any
bias or error in this station’s data will heavily impact the re-
sult. Second, the two stations in South Asia have a far lower
mean AAOD than those in the other regions and are both lo-
cated in more remote sites, possibly leading to a bias.
Furthermore, there are multiple surface and column measure-
ments [Lawrence and Lelieveld, 2010] showing that BC
concentrations and column loadings are higher than those
predicted based on the a priori emissions. Therefore, it is
hoped that as access to more stations in the outflow of the
emissions sources over South Asia come online and as they
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base case posteriori and a priori emissions.
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become more representative of the geographical locations in
South Asia, this discrepancy can be resolved.
[51] In conclusion, we have introduced a Kalman Filter

method, using BC AAOD measurements from AERONET,
ground surface measurements from the EUSAAR, CAWNET,
and NOAA networks, and the state-of-the-art MIT AERO-
URBAN model, as a means of optimizing for the emissions
of BC aerosol. Our results, the first in the literature to use this
method to produce a global top-down estimation of the emis-
sions of BC aerosol, lead to an optimized value of 17.8 ± 5.6
Tg/yr. This result is far larger than the bottom-up estimates
currently used in the majority of global aerosol modeling
efforts. It is hoped that this work will open the door to further
efforts to better quantify and reduce the uncertainty of the
emissions of primary aerosol species so that the ultimate
uncertainty of the impact that aerosols play on global- and
regional-scale climate systems can be minimized.
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