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Abstract. Wind resource in the continental and offshore
United States has been reconstructed and characterized
using metrics that describe, apart from abundance, its
availability, persistence and intermittency. The Modern
Era Retrospective-Analysis for Research and Applications
(MERRA) boundary layer flux data has been used to con-
struct wind profile at 50 m, 80 m, 100 m, 120 m turbine
hub heights. The wind power density (WPD) estimates at
50 m are qualitatively similar to those in the US wind at-
las developed by the National Renewable Energy Laboratory
(NREL), but quantitatively a class less in some regions, but
are within the limits of uncertainty. The wind speeds at 80 m
were quantitatively and qualitatively close to the NREL wind
map. The possible reasons for overestimation by NREL have
been discussed. For long tailed distributions like those of the
WPD, the mean is an overestimation and median is suggested
for summary representation of the wind resource.

The impact of raising the wind turbine hub height on met-
rics of abundance, persistence, variability and intermittency
is analyzed. There is a general increase in availability and
abundance of wind resource but there is an increase in in-
termittency in terms of level crossing rate in low resource
regions.

1 Introduction

1.1 Characterization of wind resource

The US national wind energy resource estimates were devel-
oped by the National Renewable Energy Laboratory (NREL)
(Elliott et al., 1987, 1991) and the wind resource was
remapped at a higher resolution for the midwestern US
(Schwartz and Elliot, 2001). Several data sources were used

to collect the wind data. Most importantly, National Climate
Data Center (NCDC) archives constituted the major propor-
tion of the data. The atlas preferred to use wind power den-
sity and not wind speed as a measure of the resource because
the former combines the effect of changes in air density. The
air density was estimated using measured temperature and
station pressure and the equation of state. When temperature
and pressure were not available, air density at the surface was
assumed to be 1.225 kg m−3 and extrapolated to the height of
the wind speed record. The wind speed at the surface or 10 m
was adjusted to 50 m using an exponential law with an expo-
nent of 1/7. Because the seasonal and geographical variation
of density is not taken into consideration, the wind resource
has been overestimated in the wind atlas. Further, the wind
atlas depicts the mean WPD. Below, we discuss some of the
key caveats when using such distributions to estimate wind
power resources.

1.1.1 Implications of Weibull distribution

Several researchers used the two-parameter Weibull distribu-
tion to fit wind speed frequency distributions (Elliott et al.,
1987; Schwartz and Elliot, 2001; Dorvlo, 2002; Lun and
Lam, 2000; Pavia and O’Brien, 1986; Chang et al., 2003;
Ucar and Balo, 2009; Pryor and Barthelmie, 2010; Zaharim
et al., 2009; Eskin et al., 2008).

The Weibull distribution (Eq. 1), which is commonly used
to fit wind speeds, is a function of two parameters: c, the
scale factor and k the shape factor which is dimensionless.
Here, V is the wind speed.
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Some of the merits cited are the flexibility and ease of use as
only two parameters need to be determined to fit the distri-
bution. Tuller and Brett (1984) describe the conditions under
which wind speeds approximately follow Weibull distribu-
tion. He et al. (2010) pointed out that buoyancy fluxes force
the distribution away from Weibull behavior. They reported
that the daytime winds are near-Weibull but the nighttime
winds showed greater positive skewness than the Weibull
distribution. Thus the use of Weibull distribution underesti-
mates the frequencies of the higher wind speeds. As argued
by Morrissey et al. (2010), the first step in computing a WPD
distribution is to study the WPD distribution rather than the
wind speed distribution. Jaramillo and Borja (2004) found
that the two-parameter Weibull distribution can not be gen-
eralized since it is not accurate in the case of some wind
regimes. Morrissey et al. (2010) give an example of wind
speed distribution for Boise City, Oklahoma and point out
that the two-parameter Weibull distribution does not fit the
wind speed distribution well. When the Weibull distribution
is used for that wind speed data, the frequencies of lower
speeds are underestimated and those of the higher speeds are
overestimated which results in an overestimation of the re-
source.

1.1.2 Shape factor

The shape factor of the Weibull distribution has a great im-
pact on the fit of wind speeds because as shape factor in-
creases, the tail of the Weibull distribution decreases. Thus,
the extreme wind speeds decrease and the distribution trans-
forms towards a normal one. Usually, the measured wind
speeds are fit to the Weibull distribution and the mean WPD
is computed using the Weibull distribution. This is done be-
cause the wind speed record is usually small. In doing so,
the WPD is not estimated accurately because the Weibull is
only an approximate fit for the wind speeds and also because
the WPD involves cube of the wind speed, any error in wind
speed gets amplified in WPD. Also, sometimes, as in the US
wind energy atlas (Elliott et al., 1987), a constant shape fac-
tor of 2 is assumed for using the Weibull distribution. The
implication is that if the actual shape factor is less than 2,
the frequencies of very high wind speeds are lowered and the
mean WPD is underestimated. Similarly, if the actual shape
factor is greater than 2, the frequencies of very high wind
speeds are increased and the mean WPD is overestimated.

The skewness of a Weibull distribution is only a function
of its shape parameter c. Hennessey Jr. (1977) studied the sta-
tistical behavior of wind speeds and WPD and inferred that
the locations that have the highest mean wind speeds have the
lowest shape parameters for the wind distributions and hence
greatest skewness. Thus, using a constant shape parameter
of c = 2 increases the WPD in the distribution. Because of
the cubic relationship between the WPD and the wind speed,
small changes in wind speed can mean large increases in the
wind power density.

To compute the wind resource in a geographical region,
most researchers used measurements using dedicated mete-
orological towers, airport measurements or the observational
data from the National Climatic Data Center (NCDC) (El-
liott et al., 1987; Archer and Jacobson, 2003, 2007; Brower,
2008). Since the data size in most of these records is small,
the data is fit to the Weibull distribution. Also, such small
records fail to capture the longer term variations in wind
speeds. For example, Atkinson et al. (2006) has studied the
correlation between the North Atlantic Oscillation (NAO)
and wind speeds in Europe and found that there is a wind
flood during the early 1990s followed by a return to the long
term average after 1995. Thus, if the measurements taken
during this high wind period are used to construct the wind
resource maps, the wind resource is overestimated.

1.1.3 Wind droughts

Boccard (2009) pointed out that the average wind capacity
factors in several countries in Europe have been estimated to
be in the range 30–35 % while the realized values are very
low, averaging at 21 %. For the US, he reports 25.7 % for the
whole US and 22.45 % for California while that claimed by
The American Wind Energy Association (2005) is 35 %. He
argues that one of the reason for the overestimation of wind
energy potential is the short record of observations used to
estimate. He reasons that atmospheric oscillations like NAO
need to be taken into account (Atkinson et al., 2006).

1.1.4 Characterizations or variables used to describe
the wind resource

In many of the studies preceding this, a mean value was used
as a measure of the central tendency of the WPD. A cur-
sory plot of the histogram of WPD at a site or for a region
shows that it is a highly skewed and long-tailed distribution.
Thus, the mean may not faithfully represent the distribution’s
central tendency of the WPD accurately. Thus, estimates of
backup or power produced tend not to be estimated accu-
rately. Further, Hennessey Jr. (1977) showed that wind power
studies based only on the total mean WPD do not give an ac-
curate picture of the wind power potential of a site and omit
valuable information in terms of intermittency and variabil-
ity.

Many researchers used data from meteorological towers or
observations from airports. Many of these observations are
at different heights, and different schemes have been used to
adjust the wind speeds to the wind turbine hub heighs. Kiss
and Jánosi (2008) used the ECMWF’s (European Center for
Medium-range Weather Forecasting) ERA-40 (ECMWF Re-
Analysis) reanalysis eastward and northward winds at 10 m
to study wind field statistics over Europe. Larsen and Mann
(2009) also used reanalysis data from NCEP/NCAR (Na-
tional Center for Environmental Prediction/National Center
for Atmospheric Research) to estimate the geostrophic wind
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and extrapolated the geostrophic wind to 10 m height. Elliott
et al. (1987) used a power law with the exponent 1/7 as men-
tioned above. Archer and Jacobson (2007) used the upper air
measurements from balloons and rawinsondes at the near-
est meteorological stations to extrapolate the wind speeds at
10 m to the hub height at 50 m or 80 m. Similarly, many re-
searchers used a power or logarithmic law assuming rough-
ness length and friction velocity in the boundary layer that
did not vary with seasons, terrain and stability of the atmo-
sphere.

To overcome these shortcomings, we chose to use the
Modern Era Retrospective-Analysis for Research and Ap-
plications (MERRA) reanalysis data (Rienecker et al., 2011)
that has a resolution of 1/2◦ × 2/3◦ and a long record of
hourly data for 31 years to reconstruct the wind field at 50 m,
80 m, 100 m, 120 m. The details of the methodology adapted
for this reconstruction of the WPD field across the US are
described in the Sect. 2. Instead of using the wind speeds, we
computed the wind speed at different heights using boundary
layer flux data and boundary layer similarity theory.

While trying to look at the wind resource as a system, we
tried to characterize the reliability using some metrics from
reliability theory. Most of the wind atlases of many coun-
tries describe the wind resource in terms of only the mean
WPD and only some atlases show maps of the variability in
terms of the standard deviation. In this attempt, we studied
the statistics of the episode lengths of the WPD runs using a
threshold of 200 W m−2 (Gustavson, 1979). Although these
statistics have not been looked at earlier, these metrics that
describe the persistence of WPD are important considera-
tions considering the enormous impact variability of wind
power has on the power grid, electricity prices and the re-
source itself. Further, the level crossing statistics of the wind
power density are presented, as these raise important consid-
erations in the maintenance of backup for the times of lulls.

2 Methodology

The domain considered for the study spans the contiguous
states of the US bound between 20◦N and 50◦N latitudes and
130◦W and 60◦W longitudes. This domain also takes into
account the offshore regions on the east and west side of the
US.

2.1 MERRA Data

The data needed for this study has been taken from the
MERRA, which is a reconstruction of the atmospheric state
by assimilating observational data from different platforms
into a global model (Rienecker et al., 2011). The data as-
similation included conventional data from many sources and
also data from several trains of satellites. MERRA was con-
ducted at the NASA Center for Climate Simulation as three
separate analysis streams. The initial key goal of MERRA

was to improve upon the water cycle analysis in previous
generation reanalyses like NCEP Reanalysis 1 and 2 and,
ERA-40. Overall, MERRA aims to provide a more accurate
dataset using the comprehensive suite of satellite based in-
formation for climate and atmospheric research. The present
data set has been constructed with GEOS-5 (Goddard Earth
Observing System-5) Atmospheric Data Assimilation Sys-
tem (version 5.2.0) (ADAS). The system consists of the
GEOS-5 model and the Grid-point Statistical Interpolation
(GSI) analysis. GSI is a system developed by Global Model-
ing and Assimilation Office (GMAO) and NOAA’s (National
Oceanic and Atmospheric Administration) National Centers
for Environmental Prediction jointly. The data set has a spa-
tial resolution of 1/2◦ × 2/3◦, and a time resolution of an
hour. The data spans the time from 00:30 h UTC on 1 Jan-
uary 1979 to 23:30 h UTC on 31 December 2009. Thus the
dataset provides an opportunity to look at the variation of the
winds over several scales up to the decadal scale. The dataset
is averaged in time. So, if there are any jumps in any of the
quantities at scales lower than 1 h, they will be represented in
the average.

WPD is used to describe wind resource as it is independent
of the wind turbine characteristics and also because it will
ease comparison with other estimates like that by NREL. It
indicates how much wind energy can be harvested at a loca-
tion by a wind turbine and has the units W m−2. The WPD
at each time step is calculated using the expression:

P = 1
2
ρV 3 (2)

where P , ρ and V are the wind power density, density of the
atmosphere and the wind speed at the point. MERRA dataset
has hourly density ρ and wind speed V values. The MERRA
2D surface turbulent flux diagnostics data set provides these
values at a single level corresponding to the top of the sur-
face layer. We use this wind speed data at the top of the sur-
face layer to illustrate the analysis that we apply at different
heights.

2.1.1 Wind resource at different heights

During the 1990s the general wind turbine height was 50 m.
With the advancement of technology, the hub height of the
turbine could be raised to 80 m, 100 m and 120 m although
turbines of 80 m hub height are more common now. Thus,
the estimation of wind resource and its variability at these
different heights is imperative to study the behavior of wind
power over the US.

The similarity theory in boundary layer dynamics is used
to estimate the wind speed at the different heights.

The atmospheric boundary layer is controlled most impor-
tantly by (Stull, 1988) the aerodynamic roughness length of
the surface and the surface heat flux. Further, the stability of
the atmosphere also plays a key role in the maintenance of
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winds in the boundary layer. The shear-stress in the bound-
ary layer is estimated by the friction velocity u∗.

Using these variables, the wind speed at a height z in the
boundary layer is expressed as

Vz = (
u∗
k
)

[
log(

z− d
z0

)−ψ
]

(3)

where d is the displacement height, z0 is the roughness length
and k is the von Karman constant. z is the height at which the
wind speed is estimated.
ψ depends on the stability of the boundary layer. For this

study, the boundary layer is assumed to be neutrally sta-
ble. This assumption is reasonable because at the high wind
speeds at which wind power is generated, the boundary layer
has large wind shear and so, the boundary layer is approxi-
mately neutrally stable. Thus, Eq. (3) becomes:

Vz = (
u∗
k
)log

[
(z− d)
z0

]
. (4)

2.2 Resource metrics

Taking the hourly-average values of u∗, d, z0, the wind speed
at height z is determined. Using this relationship, the wind
speed at the heights 50 m, 80 m, 100 m and 120 m was com-
puted. Thus, a dataset of hourly wind speed from 00:30 h on
1 January 1979 to 23:30 h on 31 December 2009 has been
constructed for each of the heights. It is assumed that the air
density does not differ appreciably at these heights through
the well-mixed boundary layer. Thus, using the air density at
the surface ρ and the wind speed computed using the loga-
rithmic wind profile above, the wind power density at these
heights is estimated using:

Pz = 1
2
ρVz

3 (5)

The US wind atlas developed by NREL (Elliott et al., 1987,
1991) used a power law for wind speed or wind power den-
sity of the form:(
V̄r

V̄a

)
=

(
zr

za

)α
or

(
P̄r

P̄a

)
=

(
zr

za

)Sα
(6)

where V̄a and V̄r are the mean wind speeds and P̄a and P̄r
are the mean WPD at heights za and zr (the anemometer
height za and the reference level zr respectively) and α is
the power law exponent. S is the nondimensional wind shear.
Based on empirical fits of the anemometer measurements at
some airport locations, the value of 1/7 was used for the ex-
ponent α to adjust the mean wind speed to 50 m height. But
Schwartz and Elliot (2005), using anemometers mounted at
higher hub heights, found that the shear exponent α is sig-
nificantly higher than 1/7 used in making the wind atlas. As
described above, our estimates take into account the effects
of surface heat flux on the friction velocity, the time varia-
tion in displacement height and roughness length. As such,
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Fig. 1. Illustrative WPD profile showing the fluctuations in wind.

our estimates are more explicit and comprehensive in the an-
alytic formalism. Conventionally, WPD is used as the physi-
cal quantity to describe the wind energy potential or the wind
resource at a place. The US wind atlas (Elliott et al., 1987,
1991), for instance, maps the mean WPD over the contiguous
states of the US To describe the quality of wind resource, it
is proposed that more metrics of location and dispersion be
taken into account. So, the median as another measure of lo-
cation has been computed.

2.2.1 Fluctuations

In the aforementioned studies discussed in Sect. 1, all looked
at mean WPD over the US Since a key objective of this study
is the investigation of the fluctuations in WPD, fluctuations
of two kinds are distinguished. Figure 1 shows the WPD for
two hundred consecutive hours at a grid point in the central
US This figure is used to define and differentiate two kinds
of fluctuations.

According to the classification of WPD (WPD) into dif-
ferent classes (Table A1), 200 W m−2 is the upper bound
for the class 1, defined as the poor class. That is, if a loca-
tion has WPD less than 200 W m−2, usable power cannot be
produced. In the plot, the red line marks this lower limit of
200 W m−2.

For the initial 22 h, there is usable WPD (above
200 W m−2) at this location but the value fluctuates from
�200 W m−2 to �650 W m−2, then dips to �400 W m−2,
rises to slightly above 700 W m−2 and falls to less than
100 W m−2. So, although during this time, the turbine can
produce useful power, the power produced fluctuates very
much. For the sake of differentiation, this kind of fluctuation,
herein, is termed variability.

Since power density less than 200 W m−2 is equivalent to
no power, during the 200 h shown, there is power initially
for 22 h, then there is no power for 10 h, then there is power
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for �7 h and then, there is no power for �110 h and so on.
This phenomenon of switching between power and no-power
states is, herein, termed intermittency.

2.3 Intermittency metrics

As mentioned, our analyses not only focus on characteriz-
ing the extent of wind power resource, but also its intermit-
tent and variable behavior. As such, the following metrics are
considered to investigate the intermittency of WPD.

1. Statistics of wind power episode lengths.

2. Statistics of no-wind power episode lengths.

3. Availability/unavailability of power density.

4. Probability distribution of wind episode lengths.

5. Probability distributions of no-wind episode lengths.

These metrics measure the persistence of wind power, or
lack thereof, and it is generally acknowledged that persis-
tence of WPD is important for reliability of power genera-
tion. Sigl et al. (1979) investigated the episode length distri-
butions and developed a model for the episode length dis-
tributions based on a simple composite distribution. They
showed that the shorter episode lengths obeyed a power law
and the longer ones followed an exponential law. Following
Sigl et al. (1979), the episode lengths in this study are mod-
eled according to a composite distribution which is a mixture
of a power law and an exponential law. The probability den-
sity function of this composite distribution is described by:

f (n)=
{
a t−b if 0 ≤ t ≤ t1
Aλe−λt if t1 ≤ t ≤ ∞ (7)

where the first equation describes power law for episode
lengths t less than the partition parameter t1 and the second
equation is the exponential law for longer durations than t1.

The episode lengths in hours are fitted to these distribu-
tions using the maximum likelihood estimation method. The
parameters a, b, A, λ are found for each location.

Run duration analysis is mostly used for estimating or pre-
dicting the performance of a future wind energy installation
at the location. For greater persistence of wind power, the
probability of the shorter runs should decrease and that of the
longer ones should increase. In terms of the equation above,
the power law factor should decrease and the exponential fac-
tor should increase.

The scaling factor, a, is the scaling factor in the power law
that is applicable for the short duration run lengths. For the
wind power to persist for longer durations, the probability of
the short runs should fall very fast. So, for the locations that
have this scaling factor a low, the probability of shorter runs
is low. The exponent, b, is the exponent in the power law.

So, if the b is larger, because of the negativity in the expo-
nent, the probability of the short runs is rendered small. Thus
the median run length is longer. Similar to a, if A is large,
the probability of the longer runs increases. So, A should be
greater. For small values of λ, the probability curve described
by exponential part of the above Eq. (7) has a shallower tail
and hence the longer episodes have greater probability com-
pared to the cases when the λ is greater. As λ increases, the
probability of the shorter run lengths increases drastically.

For the discussion of the characteristics of WPD episode
lengths in the next section, their statistics are computed from
the WPD time series by explicitly counting the number of
hours with WPD greater than 200 W m−2 and not from these
distributions.

3 Results and discussion

3.1 Descriptive statistics of wind power from
MERRA wind

3.1.1 Mean and median WPD

Figure 2 shows the mean WPD at the center of the surface
across the US The Midwest region has power density in the
range of 300–600 W m−2 whereas most of the regions flank-
ing the Midwest on the east and west sides have WPD less
than 200 W m−2 which is classified as poor. The offshore
regions in the east and west have wind power densities in
excess of 800 W m−2. Texas, Oklahoma, Kansas, Nebraska,
Indiana, Minnesota, North Dakota and South Dakota – have
WPD classified at least as fair and some pockets have “good”
and “excellent” quality wind power densities corresponding
to 400–500 W m−2 and 500–600 W m−2. The eastern half of
Wyoming has the greatest onshore WPD of 500–800 W m−2.
The offshore regions on the east and west coasts which are
closer to the coastline have power densities of ˜700 W m−2

whereas the offshore region near northern California falls
into the “outstanding” class with ˜1000 W m−2.

Figure 3 shows the median WPD at the center of the sur-
face in W m−2 across the US Comparing with the mean
WPD in Fig. 2, the median values are almost half of the mean
values. For any distribution, 50 % of the values are below the
median and 50 % of the values are above the median. So, this
figure implies that for at least 50 % of the time, the mean
WPD is less than half of the mean wind power density. Thus,
we should regard the mean WPD as an overestimate to the
true central tendency of this resource. Figure B1 shows the
histogram of the wind power density at an illustrative point
from the domain. Since the distribution is very skewed, the
mean is not a robust measure of the center of this distribution.
Given this long-tailed distribution, the very extreme values
cause the deviation of the mean from the actual center of
this distribution. We therefore view the median to be a more
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Fig. 2. Geographical variation of mean WPD ( W m−2) across
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Fig. 3. Geographical variation of median WPD ( W m−2)
across the US.

robust indicator of central tendency and a more appropriate
metric to represent WPD.

3.1.2 Variability of the WPD

The variability of a quantity is best captured in terms of coef-
ficient of variation because it is desirable that the wind power
is constant as much as possible. The robust coefficient of
variation defined as:

RCoV = median(absolute deviation about the median)
median

has been used to study the variability of WPD in different
regions of the US.

For two regions with the same mean power density, the
one with a lower median absolute deviation will have lower
RCoV and is preferable (i.e. less variable power quality).
Similarly, for two regions with the same median absolute
deviation, the one with greater median wind power density
is preferable and this has lower RCoV. Given the impact of
variability in wind power on the electric grid and the eco-
nomics of power generation and distribution, it is desirable
to lay wind farms in regions of low RCoV of wind power.
Figure 4 shows the robust coefficient of variation of WPD
over the US.

Eastern and southwestern North Dakota, central and
Southern Wisconsin, northwestern Illinois, Nebraska, south-
ern Kansas and western Oklahoma have high mean WPD and
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Fig. 4. Geographical variation of coefficient of variation of WPD
across the US.
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Fig. 5. Unavailability of WPD across the US.

moderate RCoV. The near offshore regions have large RCoV
and hence greater variability. The central US has an RCoV
that is moderate. It is interesting that the western Gulf coast
that has higher meanWPD has lower RCoV whereas the east-
ern Gulf coast that has lower mean WPD has greater variabil-
ity as measured by RCoV. The Great Lakes region has the
same variability as the offshore regions. Largely, the east-
ern half of the US has moderate RCoV whereas the western
half of the US has slightly greater RCoV. Similar asymme-
try is shown by the far offshore regions: Pacific has moderate
RCoV and the Atlantic has greater RCoV implying greater
variability.

Inter-quartile range (IQR) is a robust measure of statistical
dispersion. The IQR shows the possible ’swings’ of the WPD
at a location. Thus it is a measure of the backup power that
needs to be maintained. The central US region has an IQR
of 300–600 W m−2 whereas for the rest of the continental
US, the values are very low – below 200 W m−2. The non-
central US has a median WPD of 100 W m−2 and also the
75th percentile is 200 W m−2 or less. Thus, this region has
very low IQR. The offshore regions along the east and west
coast have IQR �700 W m−2 except the offshore region near
northern California which has an IQR of �1000 W m−2. It
should be noted that this region also has greater mean WPD
of about �1000 W m−2. The far offshore Atlantic region on
the east also has very large IQR – �1000 W m−2.
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Fig. 6. Geographical variation of the median wind power episode
length (h) across the US.
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Fig. 7. Geographical variation of the mean wind power episode
length (h) across the US.

3.1.3 Availability of power

In reliability theory, availability is a measure of the reliabil-
ity of a system. Extending the concept to wind power, the
availability of wind power at a location has been estimated
as:

Availability = No. of hours with WPD ≥ 200W m−2

Total number of hours
(8)

Figure 5 shows the unavailability, which is (1–availability),
of wind power in the US The central US has the lowest un-
availability onshore whereas most of the offshore region has
the lowest unavailability of 40 % or lower. The non-central
US region has the greatest unavailability of 70 % or more.
This representation of wind resource is very important be-
cause it provides the temporal distribution of the resource.

3.1.4 Wind episode lengths

Episode lengths of WPD above 200 W m−2 are an important
facet in understanding the persistence of the WPD and the
nature of intermittency.

Figure 6 shows the median wind power episode lengths
across the US The central US region has median episode
lengths that range from 10 to 15 h. Oklahoma, Kansas, East-
ern Nebraska, Iowa and North Dakota have median episode
lengths close to 15 h whereas the offshore regions on both

200

300

400

500

600

800

Fig. 8a. Geographical variation of the mean WPD ( W m−2) at 50 m
in the US.

sides of the US have long median episodes of 20 h or more.
The non-central US states have very short median episodes
of 10 h or less.

Figure 7 shows the geographical variation of the mean
wind episode lengths across the US Comparing the median
and mean values of episode lengths, while the central US has
greater median episode lengths than some regions in West
Virginia, Virginia, Louisiana, Mississippi, Alabama, Geor-
gia, Tennessee, the latter regions have greater mean episode
length. These states in the east and southeast have mean
episode lengths as large as 120 h. The consistency between
mean and median values indicates that the wind episodes in
the central US region are evenly distributed whereas in the
southeastern states, the wind power is very steady only for
isolated periods.

According to the reliability theory, the “time to repair” is
an important metric of the reliability of a system. In wind
power, it corresponds to the no-wind episode length, that is,
the time for which the wind power is below the critical lower
limit (200 W m−2) between two wind power episodes. The
geographical variation of no-wind episode lengths is con-
sistent with the mean and median episode length variation
shown in the Figs. 7 and 6.

This knowledge of persistence of WPD should prove valu-
able in planning and developing a robust deployment strategy
for harvesting wind power.

4 WPD at different altitudes

4.1 Comparison with NREL map at 50 m

Comparison of the mean wind power density at 50 m height
estimated in this study, Fig. 8a, and the estimate developed
by NREL, Fig. 8b, shows that the regions with consider-
able wind resource – most of the midwest region viz. eastern
Montana, North Dakota, South Dakota, eastern Wyoming,
Nebraska, eastern Colorado, Kansas, Iowa, western Min-
nesota, the Gulf of Mexico coast of Texas, the Great Lakes
– are all common features in both the estimates. The re-
mainder of the US contains widespread areas of wind power
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Fig. 8b. US WPD map at 50 m developed by NREL.
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Fig. 9a. Geographical variation of the mean wind at 80 m in the US
The white-shaded regions have annual mean wind speeds that are
less than or equal to 4 ms−1.

density that corresponds to the ’poor’ class (Class 1). Thus
the wind resource estimation using the MERRA dataset is
qualitatively similar to the wind resource at 50 m estimated
by Elliott et al. (1987, 1991) for NREL.

Further, Elliott et al. (1987), based on the three criteria –
abundance and quality of the observational data used to es-
timate the wind speed, the complexity of the terrain and the
geographical variability of the resource – described the con-
fidence in the wind resource estimate using certainty rating
from 1 to 4, 1 being highly uncertain and 4 being very un-

certain. In regions where the certainty rating is 1, the actual
WPD may vary by a few wind power classes. When these
certainty ratings are taken into consideration, the WPD esti-
mated at 50 m is well within the bounds of uncertainty.

Justus et al. (1976) observed that across the US, the shape
parameter for Weibull distribution of wind speeds varies be-
tween 1.1 and 2.7 and the mean value is 2.0. As discussed
above, a larger shape parameter is used for larger wind speed
regions. Note also that a unit of difference in wind speed cor-
responds to greater change in WPD for the larger wind speed
region than the lower wind speed regions. Thus, in addition
to the uncertainty in the data, the Weibull-fitted estimate may
be prone to systematic overestimations in regions of greater
resource, for instance in the Midwest.

4.2 Comparison of wind speed at 80 m with the
NREL map

Figure 9a shows the mean wind speed at 80 m developed in
this study. The figure shows the wind speed from 4 ms−1 to
10 ms−1. Figure 9b shows the estimates of annual mean wind
speed at 80 m height developed by AWS Truepower NREL
(2010). A mesoscale model, MASS, was run at a higher reso-
lution with boundary conditions from NCEP Reanalysis. The
simulated winds were downscaled using a statistical model to
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United States - Annual Average Wind Speed at 80 m
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data: 2.5 km. Projection: Albers Equal Area WGS84.

�

Fig. 9b. US wind map at 80 m developed by NREL.

a resolution of 50 m× 50 m. The figure shows the mean wind
speed from 4 ms−1 to 10.5 ms−1 with 0.5 ms−1 interval.

Remarkably, the two figures match very well qualitatively
and also are very close in their geographical variation. For
example, the central US region consisting approximately of
eastern New Mexico, northern Texas, western Oklahoma,
Kansas, Nebraska, South Dakota, North Dakota, western
Iowa, southwestern Minnesota, eastern Montana, eastern and
southeastern Wyoming have wind speeds between 7 ms−1

and 8.5 ms−1. Wisconsin, eastern Minnesota, eastern Iowa,
Illinois, northern Indiana and Ohio, large parts of Texas and,
Missouri and Michigan have wind speeds roughly between
5.5 ms−1 and 7.0 ms−1.

The eastern region of Florida has a mean wind speed
of 5 ms−1, whereas a large tract of land covering northern
Florida, Georgia, South Carolina, North Carolina, Alabama,
a large part of Mississippi, Kentucky, Tennessee, Virginia,
West Virginia, southern Ohio, southeastern New York, New
Jersey, Connecticut, non-coastal Massachusetts, New Hamp-
shire, Vermont and western Maine have wind speeds in the
lower end of the spectrum below 5.5 ms−1.

On the west side, most of the regions have low wind speeds
except the mountainous stretches. Some small patches of re-
gions in southern California, western Utah, central Arizona,
southwest New Mexico, southwest Wyoming, southeast Ore-

gon, southwest Idaho, and southwest Washington have con-
siderable wind speeds between 6.0 ms−1 and 7.5 ms−1.

Although the NREL estimate is at a higher resolution of
2.5 km compared to 1/2◦ in this estimate, this estimate com-
pares very well with the NREL estimate in almost all regions.
There are some small regions in the central US where the
NREL estimate shows wind speeds of 8.5 ms−1 and greater
which this estimate misses because of the lower resolution.

Archer and Jacobson (2003, 2007) used measurements
from surface stations and soundings and extrapolated winds
at 10 m to 80 m assuming a power law profile. The measure-
ment data was for the year 2000. The wind speed estimates
at 80 m in this study are largely similar to the estimates by
Archer and Jacobson (2003, 2007).

4.3 WPD at different hub heights

With the confidence gained out of the close match of the two
estimates as described above, we now look at the effect of
raising the altitude on the different metrics and quality of the
wind resource.

To complete the picture of wind resource, in addition to
the description of wind speeds, we discuss WPD variation
across the US Fig. 10 shows the mean WPD for an 80 m hub
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Fig. 10. Geographical variation of the mean WPD at 80 m
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Fig. 11. Difference mean WPD between 80 m and 50 m (W m−2).

height in the contiguous US and over the off-shore regions
on both sides of the US.

The central US consisting of the areas from north Texas
in the south, Oklahoma, Kansas, Nebraska, South Dakota
to North Dakota and the regions around the Great Lakes –
northeastern Illinois, eastern Wisconsin, northern Indiana,
southern Michigan, and northwest Ohio – are regions of
high resource, generally in the range of 300–400 W m−2. The
southwest region of Wyoming has the greatest inland WPD
of 400–500 W m−2.

Even though the mountainous regions on the west coast
have high wind speeds, as can be seen in Fig. 9a, those re-
gions have low WPD (Fig. 10). Similarly, the wind speeds
on the Appalachians are high but the WPD is low. This is a
result of the lower density of air on these high altitude re-
gions. The air density and altitude of a location are related
as:

ρ = 1.225 − (1.19 × 10−4 × z) (9)

This Eq. (9) shows that a difference in altitude of 2000 m
makes a difference of about 20 % in the mean WPD. Further,
it also erroneously characterizes the mountainous regions as
high wind resource locations. Thus, wind speed is not a suit-
able measure for the wind resource. If WPD is used, it is
more comprehensive as it covers the variation of air density.

Although the coastal states have very poor wind resource,
the offshore regions abutting the coast have high wind re-

source. Particularly, the coasts of Connecticut, Rhode Island,
Massachusetts and Maine have WPD of 600–700 W m−2.
Similarly, the offshore region near the coast of northern Cal-
ifornia also has very high resource in the range of 700–
800 W m−2. The Gulf of Mexico region also has appreciable
wind resource of 300–400 W m−2 although it is in general
less than the offshore WPD on the east and west coasts.

Figure 11 shows the difference in mean wind power den-
sity between 80 m and 50 m. Clearly, in general, there is an
increase in the quantity as the height is raised. The increase
is higher in the central US region and in the New England
region, along the Appalachian mountain region, New Jersey,
New York and some regions of Pennsylvania.

Intuitively, the change is dependent on the wind resource
at the lower level and the roughness length. In regions where
the resource is high at the lower level, even a small gradient
in the vertical profile would mean an appreciable increase
at the upper level. Also, in regions which have high surface
roughness length, the wind profile has a sharper gradient and
so, even a smaller wind speed at the lower level may mean
an appreciable increase in the wind speed at the upper level.
Thus, the greatest advantage of raising the altitude is in re-
gions that have higher surface roughness length, for instance
due to vegetation, and also in regions that have higher re-
source at the lower level.

Another important reason for the large increase in the cen-
tral US is the presence of a strong nocturnal low level jet that
has a maximum between 500 m and 800 m. This low level jet
induces a gradient in the vertical wind profile that is consid-
erable and is maximum at 06:00 in the morning. Schwartz
and Elliot (2005) measured the wind speed using towers fit-
ted with anemometers at several sites in the central US as
a part of wind resource assessment at higher altitudes. They
reasoned that the nocturnal jet is an important cause of the
increase in wind resource at night in these regions.

As discussed above, the hub height of most wind turbines
installed in the last decade is 80 m. Therefore, in the subse-
quent sections, the wind resource, its variation and intermit-
tent character is discussed accordingly.

As discussed above, there is a general increase in the
resource as the altitude is increased. As the hub height is
increased, the mean WPD increases fast initially and with
further rise in height, the increase in the mean resource is
less. Although increase in the mean wind resource decreases,
there does not seem to be a saturation in the benefit even with
reasonable increase in hub heights beyond the present 100 m
and 120 m.

It was argued that both mean and median should be used
to describe the wind resource. Figure 12a shows the geo-
graphical distribution of median WPD at 80 m. It shows that
most of the central US has median WPD ranging between
100 W m−2 and 200 W m−2. As the height is increased from
80 m to 120 m, the median increases (Figs. 12b and c) . That
is, frequencies of higher wind power densities than those of
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Fig. 12. Variation of median WPD (W m−2) at different heights.
(a) shows the median wind power at 80 m and, (b) and (c) show the
difference median WPD at 100 m and 120 m from that at 80 m.

the the median at 80 m increase. But similar to the mean re-
source, the increase in median WPD decreases with altitude.

Schwartz and Elliot (2005) found that the shear exponent
for vertical adjustment of wind speed is considerably greater
than the conventionally used 1/7. Also, they reported that the
windy sites, for instance those in the central US, have lower
αs than the less windy sites. Thus, the increase in the mean
and median WPD in the central US, and the less windy sites
like the New England region, may be the same because of
the higher shear exponent in the less windy regions. Thus the
altitude variation shown in these Fig. 12b and c are consis-
tent with the recent measurements and the patterns of vertical
variation.

Because the mean wind resource increases with altitude,
as seen in the previous subsection, it implies that the fre-
quency distribution of the wind power density shifts to the
right. Also, the frequency distribution is broadened. Thus,
the inter-quartile range increases with height, but the increase

Fig. 13. Variation of the coefficient of variation of WPD at different
heights. (a) shows the RCoV of WPD at 80 m and (b) and (c) show
the difference RCoV of WPD at 100 m and 120 m from that at 80 m.

diminishes with height. Going from 80 m to 100 m, the inter-
quartile range increases by half a class in the central US,
whereas in the offshore regions the increase is larger. Rais-
ing the turbine hub height from 80 m to 120 m results in more
than a class of increase in the wind resource quality.

Coefficient of variation describes the variability of a quan-
tity globally. Figure 13 shows the variation of RCoV across
the US Fig. 13b and c are the differences in RCoV at 100 m
and 120 m from that at 80 m. It is interesting to note that
while the RCoV decreases over land, it increases slightly
over the oceans. This is because the wind resource increases
in general and by a large amount over the ocean. The RCoV
decreases with increasing mean for a steady standard devia-
tion. Thus, this phenomenon means that the variance in the
offshore regions increases much more than the mean. An im-
portant implication of this phenomenon is that the back-up
required to compensate the variability in the wind power is
greater.
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Another interesting feature of the difference plots is that
the RCoV decreased in the northeastern states of Maine,
Vermont, New Hampshire, New York, New Jersey, Pennsyl-
vania, West Virginia and southern Ohio. Thus, the largest
increase in persistence of wind power with altitude is in
these northeastern states. The distribution of the wind power
episode lengths are important in estimating and planning the
back-up requirements. Thus, the knowledge of the changes in
the statistical behavior of episode lengths at different heights
may help in planning the utilization of the wind resource at a
location or the enhancement of existing deployment facilities
with higher turbines.

The geographical distribution of the mean wind episode
length at 80 m shows great variation between 6 h to 38 h.
The central US and the offshore regions have longer WPD
episodes whereas teh rest of the inland areas have shorter
WPD episodes. The Gulf of Mexico and the Gulf coast too
have longer mean WPD episodes, more than that in the cen-
tral US. Thus, it is possible that these regions have very
highly consistent wind power resource due to cyclonic ac-
tivity in the Gulf of Mexico. The moderate episode lengths
of the central US are due to the stong diurnal cycle in these
regions. Thus, the episode length in these regions is very pre-
dictable compared to the regions where the episode length is
very low or very high.

A similar picture is shown by the median WPD episode
length at 80 m, shown in Fig. 15. For the non-central US re-
gion, the mean and median values are close. The central US
and the offshore regions have greater median values than the
rest of the areas. The two figures also show that as the mean
and median episode lengths increase, the distributions of the
episode lengths are positively skewed.

Figure 15b and c show the geographical variation of the
mean wind episode lengths at 100 m and 120 m compared to
the mean WPD episode lengths at 80 m. It is interesting to see
that the mean wind episode increases everywhere except the
mountaineous region in the west. Further, like in the case of
the other measures, the change in mean wind episode length
also slowed down with height.

It is interesting that teh greatest change in mean episode
lengths in the continental US is in the northeast and easter
US. Because of the greater roughness length of this re-
gion, wind speeds increase with height resulting in longer
episodes. Thus, these regions benefit the most due to increase
in hub heights.

While geographic patterns are discerneable in mean
episode lengths, patterns are not clean until 120 m in the
case of the median episode lengths. The difference median
episode length plots seem to show random variation. The
reason for this appearance is that median is a rank statistic
and so, the difference is an integer number of h (1 h or 0 h in
the present plots) and in cases of even number of episodes, a
0.5 h difference in red color is seen at some points.

But at 120 m, the pattern clearly emerges that in the north-
east, east coast, in some regions in the central US and in Cal-

Fig. 14. Variation of mean WPD episode lengths (h) at different
heights. (a) shows mean wind power episode length at 80 m and,
(b) and (c) show the difference WPD episode length at 100 m and
120 m from that at 80 m.

ifornia, the median increases by an hour. Thus, these regions
benefit the most in terms of raising the turbine hub height.

Robust coefficient of variation of WPD episode lengths at
80 m is shown in Fig. 16. The central US region consisting
of Montana, North Dakota, South Dakota, Nebraska, Kansas,
Oklahoma and northern and southeast Texas, Iowa and Wis-
consin have higher variability in episode lengths compared
to the rest of the inland USA. The offshore regions have the
greatest variability in episode lengths.

Figure 16b and c show the change in the robust coefficient
of variation of the episode lengths as the hub height is raised
to 100 m and 120 m respectively. The lack of geographical
patterns at 100 m and their presence at the 120 m atltitude
are explained by the fact that robust coefficient of variation
is a rank statistic. The evoloving patterns at 120 m show in-
creases and decreases in variability of episode lengths and
the difference in variability from that at 80 m is negligible.
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Fig. 15. Geographical variation of the median wind power episode
length (h) at different heights. (a) shows median wind power
episode length at (80 m) and, (b) and (c) show the difference WPD
episode length at 100 m and 120 m from that at 80 m

5 Conclusions

5.1 Limitations and key assumptions

Before summarizing the results and inferences of our study,
we note the key assumptions and limitations of the study.

1. The data used for construction of the wind resource is
a result of the assimilation of measurement and satellite
remote sensed data into a global model. Thus the imper-
fections of the model and the assimilation schemes are
bound to influence the computed output.

2. The assumption that the atmosphere is neutrally stable
may not hold when the buoyancy fluxes dominate in
the afternoons (the atmosphere is unstable) or at nights
when the atmosphere is highly stable. Thus uncertain-

ties in the estimates of WPD are possible under very
unstable or very stable conditions.

3. The spatial resolution of the data is 0.5◦ × 0.67◦and the
temporal resolution is one hour. So, some local effects
that change wind speeds like mountain passes and val-
leys are not represented in this study. Further, since the
time resolution is an hour, intermittency and other phe-
nomena of higher scale and their effects can only be
studied.

4. It is assumed that all the wind resource that is available
is harnessed.

5. While studying the variation of wind resource the de-
mand or load and the economic feasibility are not taken
into consideration.

6. Magnitudes of some of the results are dependent on
the minimum WPD threshold (200 W m−2). But qual-
itatively, the results are very robust as a lower threshold
(140 W m−2) produced the same qualitative results.

5.2 WPD at the surface

We have undertaken an assessment of the wind power re-
source for the US WPD time series at each grid point in the
domain between 20◦and 50◦ N, and 130◦and 60◦ W has been
constructed using the MERRA atmospheric reanalysis which
has a spatial resolution of 0.5◦ × 0.67◦and hourly time reso-
lution for the period 1979–2009. The effective wind speed at
the center of the surface from the reanalysis has been used for
this purpose. This dataset has been used to study and charac-
terize the quality of onshore wind resource across the US and
our analysis has also considered offshore regions. The con-
structed mean WPD map shows the established qualitative
abundance of wind resource across the US The median wind
power densities are approximately half of the mean values.
Thus, for substatially more than 50 % of the time, the WPD
at a place is less than half of the mean WPD.

Conventionally, wind resource has been summarized in
terms of the mean wind speed or the mean WPD at a location.
Since the mean wind speed does not include the effects of
variations in density, the mean wind speed does not compre-
hensively represent the wind resource at a location. Also, the
wind atlases produced by the energy agencies of many coun-
tries represent the wind resource in terms of the mean WPD.
Although WPD is a good variable to encompass the effects
of wind speed and air density simultaneously, our results in-
dicated that the mean as a central tendency overestimates the
resource as can be seen from the frequency distribution of
WPD which is a positively skewed and long tailed distribu-
tion. Thus, to more accurately represent this distribution, me-
dian should be used. The variability of the wind resource as
measured by the coefficient of variation shows that, usually,
the regions with higher wind resource have higher variabil-
ity. But among those regions, the Atlantic offshore region has
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greater variability than the central US region. Unavailability
of wind resource, as a measure of the reliability of the sys-
tem, has been mapped as the number of hours with no usable
WPD at a location. The map shows that the central US has
the lowest unavailability and the offshore regions have un-
availability of 40 % or lower.

Maps of statistics of the wind and no-wind episode lengths
have been developed for the US region. They help in un-
derstanding the persistence characteristics of WPD and the
lumped nature of intermittency. The maps of median and
mean episode lengths show that for the central and non-
central US, the distributions of wind episode lengths have
distributions that are differently skewed. The wind episodes
in the central US are symmetrically distributed where as in
the southeastern states, the wind power is very steady for
some periods. Such knowledge of steadiness of WPD is very
helpful in planning the development of wind power harness-
ing.

5.3 Altitude dependence of WPD

The boundary layer flux parameters friction velocity, sur-
face aerodynamic roughness length and displacement height
– and the similarity theory of boundary layer dynamics have
been used to estimate the wind speed at different wind tur-
bine hub heights – 50 m, 80 m, 100 m and 120 m – and the
variation of the wind resource and its characteristics have
been studied with respect to altitude. Since time varying pa-
rameters have been used in our estimation, they are likely to
be more robust than those in the studies that used a logarith-
mic law or a power law with empirically determined expo-
nents. Comparison of the WPD at 50 m constructed in this
study and that developed by NREL shows that the regions of
appreciable wind source are similar in both the estimates. But
there are some quantitative differences. Taking into account
the uncertainty rating of the estimates in different regions in
the NREL atlas, our estimates fall well within the bounds of
the uncertainty estimates of the NREL atlas.

For the wind resource at 80 m, comparison of mean wind
speed at 80 m estimated in this study and that estimated by
NREL shows that both the estimates are very close quali-
tatively and also quantitatively. There are a few patches of
regions in the central US where NREL estimates show wind
speeds greater than 8.5 ms−1 which this estimate misses be-
cause of slightly lower resolution than the NREL study. To
complete the picture, mean WPD at 80 m has been examined
(although a direct comparison with the NREL study was not
possible). The central US and offshore regions (especially off
the coast of New England and central California) show the
greatest potential. An interesting fact that this plot shows is
that even though the mountainous regions on the west coast
have high wind speeds, these regions have low WPD because
of the lower air density. This also shows that mean wind
speed can not be a reliable measure of wind resource.

Fig. 16. Variation of the coefficient of variation of WPD episode
lengths at different heights. (a) shows the RCoV of episode lengths
at 80 m and (b) and (c) show the difference RCoV of episode lengths
at 100 m and 120 m from that at 80 m.

As the altitude is increased from 50 m to 80 m, there is a
general increase in the wind resource while the increase is
greater in the central US region and in New England along
the Appalachian region. The variation in wind resource with
altitude is dependent on the wind resource at the lower height
and the surface roughness length of the boundary layer. The
wind resource increased rapidly in the central US because of
the higher wind speeds at lower altitudes and it increased in
the New England due to the large roughness length. Another
reason for the large increase in WPD with altitude in the cen-
tral US is the presence of a strong nocturnal low level jet that
has a maximum between 500 m and 800 m.

As the hub height is increased from 80 m to 100 m and
120 m, the mean WPD increases fast initially and then the
increase subsides. Although the change decreases, there does
not seem to be a saturation even with reasonable increases
beyond 120 m. The median wind power density also shows a
similar change profile.
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As the mean WPD increases with altitude, it implies that
the frequency distribution of the WPD shifts to the right.
Also, the frequency distribution is broadened. Thus, the wind
resource and the variability of the resource increase with a
rise in hub height from 80 m to 120 m. The increase in WPD
corresponds to almost to more than one NREL wind-power
class.

The CoV of WPD with altitude shows different variation
in different regions. Interestingly, while the CoV decreases
over the land, it increases slightly over the oceans. It im-
plies that the variance increases faster than the mean in the
offshore regions. Further, the CoV decreases with altitude
in the northeastern states. Interestingly, the largest increase
in persistence of WPD with altitude is in these northeast-
ern states. The central US and offshore regions have similar
mean and median episode lengths whereas the non-central
continental US regions have longer mean episode lengths
and shorter median episode lengths leading to the inference
that the episode length distributions in the non-central US
are very skewed and are dominated by a few long episode
lengths. With altitude, the mean episode length decreases less
in the resource-rich regions but more so in the low-resource
regions (e.g. northeast). Conversely, the median increases al-
most everywhere by about an hour or less. This leads to
the important inference that as the turbine hub height is in-
creased, a few very long episodes are replaced by a greater
number of shorter episodes and hence more intermittent wind
resource.

Appendix A

Wind power classes

Table A1. Wind power classes at 50 m height.

Class WPD at 50 m ( W m−2) Quality

1 0–200 Poor
2 200–300 Marginal
3 300–400 Fair
4 400–500 Good
5 500–600 Excellent
6 600–800 Outstanding
7 > 800 Superb

Appendix B

WPD distribution

The following figure shows that the distribution of WPD is
longtailed and skewed.
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Fig. B1. Illustrative distribution of the WPD. The histogram corre-
sponds to an example grid point in the central US.
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