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ABSTRACT

This paper presents the probabilistic collocation method as a computationally efficient
method for performing uncertainty analysis on large complex models such as those used
in global climate change research. The collocation method is explained, and then the
results of its application to a box model of ocean thermohaline circulation are presented.
A comparison of the results of the collocation method with a traditional Monte Carlo
simulation show that the collocation method gives a better approximation for the
probability density function of the model’s response with less than 20 model runs as
compared with a Monte Carlo simulation of 5000 model runs.

1. INTRODUCTION

In the study of global climate change, an understanding of the various atmospheric,
oceanographic, economic, and ecological processes relies heavily on the use of computer
models. As scientists try to capture more detail and complexity of these processes, the models
become more complex and more computationally expensive to run.

At the same time, our understanding of all of these aspectsis highly uncertain, and this
uncertainty is reflected in the models. Quantifying and characterizing the effects of these
uncertaintiesis crucial to informing the policy process. Unfortunately, most traditional methods
of uncertainty analysis of models are infeasible when applied to complex models of
climate change.

The probabilistic collocation method (Tatang, 1994) is atool designed to enable uncertainty
analysis of computationally expensive models at avery low computational cost. The general
collocation method is one of several mathematical techniques for reducing a model to asimpler
form (e.g., differential equations to algebraic equations). The probabilistic collocation described
here adapts the general technique by using random variables to represent the uncertain
parameters. This paper will explain the basic concept of the probabilistic collocation method, and
use its application to amodel of ocean thermohaline circulation to show how the method works,
when and how it can be used for uncertainty analysis, and to present a sample of the resultsit can
yield.

Before describing how the probabilistic collocation method works, we briefly discuss the two
main goals of an uncertainty analysistool as applied to the task of studying climate models. First,
it should take any model as a“black box” that has some set of inputs or parameters and some set
of outputs or responses it produces. Second, it should use a description of the uncertainty in each
parameter to be considered, usually in the form of a probability density function. Given the
model and the uncertainty descriptions of the parameters, we would like the tool to give us:

» the probability density function of the response(s) of interest,

* sengitivity analysisinformation,

» variance analysis information, and

» correlations between parameters and responses.



A traditional method of obtaining probability density functions of responses from the
probability density functions of parametersis the Monte Carlo method. Essentially, this approach
entails randomly selecting a value for each uncertain parameter from its uncertainty range,
weighted by the probability, running the model for these values, and then repeating this process
many times over. Then a histogram is made of the set of values of aresponse from the runs to
obtain the probability density function. Because the values are selected at random, this usually
requires many runs of the model, often on the order of thousands or more, to obtain reasonable
results.

Traditional approaches to uncertainty analysis such as Monte Carlo, even with structured
sampling and other techniques to improve its efficiency, are not feasible for application to
complex climate change models. The computational time needed for just asingle run of the
model can be very large. One solution to this problem isto find a simple approximation of the
model’ s behavior with information gathered from only a small number of runs of the original
model. Thisisthe approach of the probabilistic collocation method.

2. COLLOCATION METHOD
2.1 TheUnderlying Concept

The basic concept of the probabilistic collocation method isto try to approximate the
response of the model as some polynomial function of the uncertain parameters:

R =1 (P1,...,Ppn). ()

Once this simple approximation—essentially a reduced form model of the original model—is
found, it can be used with all the traditional uncertainty analysis approaches, such as Monte
Carlo, to extract the desired information. If some approximation with avery small margin of
error can be found with a small number of model runs, we have solved the problem of
performing uncertainty analysis on a complex model.

As an example, suppose we have some “black box” model:

Y= f(A B) (2
Our goal isto find an approximation:
Y =f (A B) (3)

where " isasimple polynomial function of A and B which simulates the behavior of the model.
For example, we might choose to represent Y as afunction of first order or linear polynomials of
A and B, H1(A) and H1(B) respectively:

~

Y = Yo+ YiH1(A) + Y2H1(B) (4)

Assuming that we aready know H;(A) and H»(B), we only need to find the coefficients Y,
Y1, and Y> in order to solve for this approximation. By running the model three timesto obtain
threetriplets (A, B, Y), we can solve for Yy, Y1, Y2 by substituting into Eq. (4).



The crucia step in efficiently estimating a good approximation is the choice of the values of
the input parameters. In the above example, we want to choose three pairs (A, B) in away that
captures as much of the behavior of Y as possible. Since A and B are uncertain parameters with
associated probability distributions, we want to choose the pairs of (A, B) to span the high
probability regions of their distributions.

To do this, we borrow an idea from the Gaussian Quadrature technique of estimating
integrals. In the Gaussian Quadrature method, we can estimate the integral of a polynomial asa
summation with no error by using the roots of the next higher order polynomial. Similarly, in the
probabilistic collocation method, we use the roots of the next higher order polynomial as the
points at which to solve the approximation.

Assume, for example, that we are to derive polynomials of different orders based on the
probability density function P(A). To estimate alinear approximation of Y = f (A) we need two
points that span the high probability region of P(A). The roots of the second order polynomial
H2>(A) provide these two points. Figure 1 illustrates this example. By using the two points
bounding the high probability region of P(A), we can get agood estimation for Y. The larger
deviation of Y from Y only occursin the low probability region and is thus contributes only a
small error.

Y(A) - (actual model)

Probability (A)

A
Figure 1. Estimation of afunction in the high probability region.



So what we need then is away to derive a set of polynomials from the probability density
function of each input parameter such that the roots of each polynomial are spread out over the
high probability region for the parameter. We can find these by deriving orthogonal polynomials.
The definition of orthogonal polynomialsis:

[P Hi(¥) Hj(x) dx = C;j 0j; ©)

wheredjj =1 if i=]j
=0 otherwise

Hi(x) and H;(x) are orthogonal polynomials of order i and j of X, and P(X) is some weighting
function. In other words, the integral of the product of two orthogonal polynomials of different
order isalways 0.

For any probability density function P(x), we can derive the set of orthogonal polynomials
for that distribution, by using P(x) as the weighting function. We always define the —1th order
polynomial to be 0 and the Oth order polynomial to be 1:

H_1(X) =0 (6a)
Ho(x) =1 (6b)

To find the first order orthogonal polynomial H1(x), we substitute into Eqg. (5):
JP(X) H1(x¥) (1) dx=0 (7)
X

By using the known probability density function P(x), we can solve for H1(x). Once Hy(X) is
known, it can be recursively used to find Hy(X), and so on. In thisway, we can find a set of
orthogonal polynomials derived from the probability density function of the uncertain parameter.
There are several actual techniques for analytically deriving orthogonal polynomialsfrom a
given weighting function (see, for example, Beckmann, 1973, and Gautschi, 1994).

It isimportant to remember that the orthogonal polynomials are derived solely from the
probability distribution of the parameters, before ever running the model. These polynomials are
used in two ways. Most importantly, they are used to generate the parameter values for
evaluating the model (which we refer to as the collocation points) and solving for the
approximation. We also use the orthogonal polynomialsin the polynomial approximation of the
model Y. We could actually use any form of polynomial for the approximation, but the
properties of the orthogonal polynomials make uncertainty analysis particularly efficient. For
example, the expected value or mean of the approximation Y in Eq. (4) is simply the constant Y.
Similarly, the standard deviation and other statistical measures are simple to calculate by using
the properties of orthogonality.

2.2 A Simplelllustration

To illustrate the collocation method, suppose the model to be analyzed has two parameters A
and B, and one response variable Y:

Y= A2+ B3 (8)



However, we who are analyzing its uncertainty characteristics do not know the relationship
between A, B, and Y: it is ablack box. The stepsin performing the uncertainty analysis are
illustrated in the flow diagram in Figure 2. The analysis proceeds through these steps as follows.

Specify uncertainty distribution
of paramters

Y

Derive orthogonal polynomial
for the distributions

Y

Generate a polynomial chaos
expansion of order to
approximate model response

Add higher order >+
chaos expansion
terms to polynomia

Generate collocation points
J\ for model runs

Y

Run model on collocation poink
and solve for approximation

Y

Check error of approximation

Yes

Use approximation for
uncertainty analysis

Figure 2. Uncertainty analysis with the collocation method.



Sep 1: Specify uncertainty distributions of parameters

First we must specify the uncertainty in the parameters. Suppose that A has a uniform
probability distribution from 1.0 to 10.0, and that B has a normal distribution with a mean of 2.0
and a standard deviation of 1.0.

Sep 2: Derive orthogonal polynomials for the distributions

Next we must derive the set of orthogonal polynomials for each of these distributions.
Starting with the variable A, we derive the polynomials as described above, substituting in P(A)
and Ho(A) = 1into Eq. (5) and solving for H1(A). This process is then repeated for the higher
order polynomials. The actual algorithm used for deriving the orthogonal polynomialsis called
ORTHPOL (Gautschi, 1994).

For A, thefirst five orthogonal polynomialsfor its distribution are:

Hi(A)=A-55 (93)
Ha(A) = A2 - 11A + 235 (9b)
Ha(A) = A3 - 16.5A2 + 78.6A — 99.55 (9¢)
Ha(A) = A% — 22A3 + 164.1429A2 — 474.5714A + 425.1571 (9d)
Hs(A) = AS — 27.5A% + 280A3 — 1292.5A2 + 2631.071A — 1826.393 (%)

Note that in order to ssimplify the cal culations without any loss of generality, all orthogonal poly-
nomials are generated in monic form, so the coefficient of the highest order term is always one.

While orthogonal polynomials are directly generated for uniform and most other distribution
types, gaussian distributions are treated differently. Every normal distribution for random
variable X can be represented by the transformation:

X=p+0H1(Q) (10)

where [ isthe mean of X, o isthe standard deviation of X, and Hy(§) isthefirst order orthogonal
polynomial of the standard normal distribution &, which has a mean value of 0 and a standard
deviation of 1. This has the advantage that we can use the same set of orthogonal polynomials for
any normal distribution, rather than deriving a distribution specific set for each normally
distributed parameter.

The orthogonal polynomials for the standard gaussian & are the Hermite polynomials:

H1(§) =€ (114)
Hax(€)=¢€2-1 (11b)
H3(€) = &3 - 3¢ (11c)
Ha(€) = &4 - 682+3 (11d)
Hs(8) = &5 - 1083 + 158 (11e)

From our earlier assumption that ug =2 and og = 1, parameter B is thus represented as:

B=2+1(H1(&)) (12)



Sep 3: Generate polynomial chaos expansion?

Next we need a polynomial expression to represent the response variable as afunction of the
orthogonal polynomials of random variables A and . Thisis called the polynomial chaos
expansion. Since the model is a black box, we might use alinear approximation as afirst guess.
The linear approximation is:

~

Y = Yo+ YiH1(A) + Y2H1(2) (13)

We can evaluate the model at different values of A and B (derived from &) to obtain Y. Since
H1(A) and H1(&) are known, we only have to solve for Y, Y1, and Y,. To solve for these three
unknowns, we need three triplets of (A, &, Y). Thus we need to run the model three times.

Sep 4: Generate collocation points for model runs

In order to find a good approximation for the model with the fewest number of model runs, it
isimportant to carefully select the parameter values, or collocation points. As noted earlier, the
method for selecting collocation points is derived from the same idea as the Gaussian Quadrature
method to numerically solve integrals. In the collocation method, we select the points for the
model runs from the roots of the next higher order orthogonal polynomial for each uncertain
parameter.

Since we are solving for alinear approximation, we use the second order orthogonal
polynomialsin choosing the collocation points. For A, the roots of H»(A), Eq. (9b), in order of
increasing probability? are (2.901924, 8.098076). For B, we use the second order polynomial
H2(&), Eq. (11b), to find the roots: (—1, 1). Substituting into Eq. (12), the collocation point values
for B are: (1, 3).

From these roots, we need to choose three pairs of points (A;, B;) to solve the model. The first
pair will always be the highest probability root for each parameter. Thisis called the anchor
point. The other points are selected by keeping one parameter at its highest probability value, and
choosing the next lower probability root for the other. Thus the three input sets are:

(8.098076, 3)
(8.098076, 1)
(2.901924, 3)

Sep 5: Solve approximation

We run the model for each of the three input sets, and save the corresponding response ;.
Then, substituting each triplet (A;, &;, ;) into the approximation from Eg. (13), we can solve the
three simultaneous equations for the three unknowns: Yy, Y1, Yo. For this example we get:

Yo =51
Yi=11
Y2:l3

1The term “chaos’ here is atechnical term from the literature of numerical methods, and it has no relation to the
common notion of chaos in non-linear systems. The polynomial chaos expansion is simply the term for the
polynomial approximation.

2Note: in the case of uniform probability, we sort the roots based on closeness to the mean value.



Using these valuesin Eg. (13), we get the reduced form model approximation.

Sep 6: Check error of approximation

Before using the approximation, we need to check to see how good the approximation is. To
check the error, we need to run the model afew more times, and compare the model results to
the approximation results. For the error check model runs we need more collocation points.
These points are derived from the next higher order orthogonal polynomials. We use the next
higher order because if the errors are too large and we need a higher order of approximation, we
will aready have the model solutions we need to solve the approximation.

For the first-order approximation, we generate the error run collocation points from the third
order orthogonal polynomials H3(A) and H3(§). Theroots, in order of increasing probability are:

H3(A): (8.985685, 2.014315, 5.5)
Hs(§): (1.732051, -1.732051, 0)

and using Eq. (10),
B: (3.732051, 0.2679492, 2)
The collocation point input sets, starting with the anchor point, are:

(5.5, 2)

(5.5, 0.2679492)
(2.014315, 2)
(5.5, 3.732051)
(8.985685, 2)

For each of these input sets, we solve both the real model Y and the approximation Y. The error
& for each runiscomputed as:

& = d” faz (*) (14)

where d, = Y -, and fas (+) isthejoint probability density function at the corresponding values
of uncertain parameters. Then we measure the overal error as the sum-square-root (ssr) error:

s = | > € (15)
\ 5fpe(5.5,0)

or the relative sum-square-root (rssr) error:

_ s
SSr= E) (16)

where E(Y) isthe expected value of Y. Notethat in computing the ssr, we use the joint
probability density function at the anchor point. Similarly, errors can also be computed relative
to only one of the uncertain parameters rather than al of them jointly.



Since the ssr is dependent on the magnitudes for the typical values of Y, the normalized rssr
isamore useful measure of the error. For this example, the ssr is6.114 and the rssr is0.120.
Although the degree of accuracy required may be problem specific and determined by the
modeler, therssr of O(1071) in this example is quite large and indicates that thisis a poor
approximation.

Sep 7: Try second order approximation

Since the error is large, we need to add higher order termsto try to obtain a better
approximation. As a next step, we might try adding second order terms, as well as afirst order
cross product term. The new polynomial chaos expansion is:

Y = Yo+ Y1H1(A) + Y2H1(E) + YsHa(A) + YaH2(E) + YsH1(A)H1(E) (17)

To solve this new approximation, we must solve for the six unknowns (Y, ..., Ys). Thuswe
need six sets of collocation points from the roots of the third order orthogonal polynomias. We
have already found the roots and constructed five of the six input setsin the error checking step
above. We need one more input set corresponding to the cross-product term. For this, we use the
second-highest probability root for both A and B, (2.014315, 0.2679492). Running the model for
this one point, and reusing the solutions from the error check, we can solve the coefficients for
the approximation:

Yo=51
Y =11
Y2:15
Y3:1
Y4:6
Y5:0

Next we must check the error for this approximation. Since it is a second order
approximation, we use the roots of the fourth order orthogonal polynomials, and generate eight
input sets as above. Running the model on these input sets and comparing with the
approximation results, we calculate the ssr as 1.784 and the rssr as 3.498 x 10-2. This error is
still somewhat large. (The reader of this paper knows, as the hypothetical analysts do not since
they see only ablack box, that the actual model has athird order term for B, so the lack of athird
order term in the approximation accounts for the error.) Also note that the coefficient of the
cross-product term is 0, thus there is no cross interaction between A and B (which is a correct
representation of the model).

Sep 8: Try third order approximation

In an attempt to further reduce the error of the approximation, we can increase the order of
approximation to third order:

Y = Yo+ YiH1(A) + YoH1(E) + YaHo(A) + YaH(E) +
YsH3(A) + YeHa(E) + YzH1(A)H1(E) (18)

Using the model results from the fourth order collocation points used previously to check the
error, we can solve for (Yo, ..., Y7):



Yo =51

Y, =11
Y2 =15
Y3:l
Y4:6
Y5:0
Y6:l
Y7:0

To check the error, we must again solve for the roots of the fifth order orthogonal
polynomials, generate the collocation points, run the model ten more times, and calculate the
error. Thistime the ssr error is 3.83 x 10-6 and therssr is 7.50 x 10-8, which indicates an
extremely accurate approximation.

Sep 8: Use approximation for uncertainty analysis

Now that we have found a sufficiently accurate approximation which is a simple polynomial,
we can use thisfor avariety of statistical analyses. Although thisis asimple example, if alarge
complex model can be reasonably approximated with athird order polynomial such as Eq. (18),
performing a Monte Carlo simulation to obtain the probability density function of Y becomes
feasible. Other information such as the mean or standard deviation are even simpler to obtain.
For example, the mean of Y is the expected value E(Y), which isjust the coefficient Yy of the
approximation, Thisisaresult of the use of orthogonal polynomials; the expected value of every
other termin Y is 0 because they contain products of different order orthogonal polynomials
(including Ho(x) = 1). The standard deviation is similarly simple to calculate.

3. APPLICATION OF THE COLLOCATION METHOD TO AN OCEAN MODEL

To illustrate the process of using the probabilistic collocation method to perform uncertainty
analysis, we will describe experiments performed on a box model of thermohaline circulation.
The model isthe simplest of three developed by Nakamura et al. (1994) in order to explore the
mechanisms of destabilization of different thermohaline equilibrium states.

3.1 Mode Description

The model geometry isasimplified coupled ocean-atmosphere model with two uniformly
mixed boxes representing the atmosphere, and three boxes for the ocean (see Figure 3). The
atmosphere spans one hemisphere, while the ocean is a 60° longitudinal sector from 10.44°N to
75°N representing one ocean basin based roughly on the North Atlantic. All boxes are separated
at 35°N, which is where observed zonal mean time-averaged net radiative forcing is zero and
where the annual mean northward heat and moisture transports are near their peak. The ocean is
athree box model based on (Stommel, 1961). Boxes 1 and 2 have the same surface area, so the
volume of box 1 isequal to the sum of the volumes of boxes 2 and 3. Box 1 has a depth of 4000
m and box 2 has a depth of 400 m.

10
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Figure 3. Three-box ocean model.

The temperature and salinity in each ocean box, denoted as T, and S, (n=1, 2,3)
respectively, are uniformly mixed. The temperatures of boxes 1 and 2 represent the zonal mean
surface temperatures at 55°N and 20°N, respectively. The volume flux that results from the
thermohaline circulation between two adjacent ocean boxes, g, is represented as being
proportional to the surface density flux, whichisin turn afunction of the temperature and
salinity fluxes:

q=k[a(T2 = T1) - B(S -~ )] (19)

where k is a proportionality constant, and a and 3 are the thermal and haline expansion
coefficients of seawater. A positive volume flux is assumed to be aflow from box 2 to box 1,
box 1 to box 3, and box 3 to box 2, which is a high-latitude sinking state.

The density in boxes 1 and 2 are changed by exchange of heat and freshwater with the
atmosphere, and by the advection of heat and salt. Box 3 only changes as aresult of advection.
Thus, the general equations for the time rates of changes of the temperatures and salinitiesin the
ocean boxes are given by:

ﬂ B H1 + |q|(Tm B Tl)

= m=2forq>0,m=3forq<0 (20)
ot GMy Vi
0T, __Hy AT ~ To) m=3forq>0,m=1forq<0 (21)
ot CyMy, v,
0Ts :|q|(Tm—T3) m=1forq>0 m=2forq<0 (22)
ot Vs
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a_Slz_H ﬁ+|q|(3n_sl)

m=2forg>0, m=3forq<0 23
ot A A a q &)
a_SZZHSﬁ.F'q'(S“—_SZ) m=3forq>0, m=1forq<0 (24)
aa%:h'(s{]/_sﬁ) m=1forq>0, m=2forq<0 (25)

3

where C,, is the specific heat of water, Hg isthe virtual total salinity flux out of box 1, and V,
Mwn, and H,, are the volume, mass of water, and total surface heat flux for box n. The virtual total
salinity flux Hg is derived from the total net freshwater flux into box 1, Fy, by:

Hy=§ i @9)

wil

where § isthe reference salinity, and F,, isin turn afunction of the net of evaporation and
precipitation (E — P).

The simplest model represents the atmosphere by mixed boundary conditions, in which sea
surface temperatures (SST) are restored to a prescribed state, and the freshwater flux isfixed. As
opposed to the more complex model in Nakamuraet al. (1994), in which heat fluxes depend on
the latitudinal temperature gradient and the radiative forcing, this model parameterizes the heat
flux by the Newtonian Cooling Law:

Hi _Te-T,
Cwal Th

where 1, is the thermal relaxation time and Te, is the surface equilibrium temperature that would
be attained if there were no oceanic heat transport. In this model, a further simplification isthe
specification of afixed salinity flux Hs. The model performs an Euler integration of Egs. (20)—
(25) over along time period (4000 years) to reach a stable equilibrium state from initial values.

In models of thermohaline circulation such as this one, there exist multiple stable equilibria.
For many parameter sets there exists both a high-latitude sinking equilibrium and alow-latitude
sinking equilibrium. This model and its more complex versions were built to explore the stability
of these equilibria, and the transitions between equilibria that result from perturbations
(Nakamuraet al., 1994). For this purpose, the most complex model was tuned to find a stable
high-latitude sinking state (among others), which simulates today’ s climate. The volume flux for
the North Atlantic ocean basin (ignoring transport from the Southern Ocean) is thought to be
roughly 10 Sv (1 Sv = 106 m3s~1). The tuning used the proportionality constant k, which in these
simple models represents the physics of the thermohaline circulation. Once a parameter set for a
stable high-latitude sinking equilibrium was found, this was used to find appropriate values for
the ssmpler model, including t,, Te,, and Hs. The resulting set of parameters for a stable high-
latitude sinking equilibrium for this model is shown in Table 1. These values were used as the
starting point in the following uncertainty analyses.

(27)

12



Table 1. Stable equilibrium parameter values for ocean model.

parameter value units parameter name

k=239 x 1014 m3s1  proportionality constant

S =33.897 ppt initial salinity in box 1

S =35.956 ppt initial salinity in box 2

S =33.897 ppt initial salinity in box 3
T,=-1.848 °C initial temperaturein box 1
T,=27.105 °C initial temperature in box 2
T3=-1.848 °C initial temperature in box 3
dt=30 days timestep for integration

timend = 4000 years duration of integration
Hs=1.989 x 10> ppt day-1 salinity flux

Te; = -2.619 °C restoring temperature for box 1
Te, = 27.600 °C restoring temperature for box 2
T, = 2756 day restoring time for box 1

T, =176.6 day restoring time for box 2

V; = 6.668 x 1016 m3 volume of box 1

V> = 6.668 x 1015 m3 volume of box 2

V3 =6.0012 x 1016 m3 volume of box 3
a=15x104 K-1 thermal expansion coefficient
B=8.0x104 ppt~1 haline expansion coefficient

3.2 Uncertainty Experiment

The first step of an uncertainty analysis of this model requires identifying the uncertain
parameters we wish to study. For this analysis two parameters with the greatest uncertainty were
identified. The proportionality constant k represents the physics of many of the oversimplified
processes. In practice, it is tuned to avalue that yields results consistent with empirical data, and
thus the “correct” value is highly uncertain. Another parameter with great uncertainty isthe
salinity flux Hs. It is derived from the net of evaporation and precipitation of freshwater over the
ocean and runoff from land, which are very uncertain and variable. For the response variable of
interest, we selected the equilibrium volume flux g. Thus in this experiment we are interested in
the effects of uncertainty in k and Hs on g.

Initial estimates were made of the probability distributions of k and Hs. For the specified
parameter values, stable values for k would be in therange of 1 x 1014to0 4 x 1014 m3s™1. A
uniform probability distribution between these values was used for k. The uncertainty inHgisa
function of the uncertainty in E — P, based on empirical measurements. An estimate of the
uncertainty in E — P had adistribution from 0.55 to 1.15 m yr~1. Thisgives a3 distribution? of Hg
from 1 x 1075 to 3 x 10> ppt day—1, where the highest probability isat 2 x 10 ppt day1.

However, there was a problem in applying the collocation method to this model with these
parameter ranges. Because of non-linearitiesin the model, thereis abifurcation in the
equilibrium states. This bifurcation is shown in Figure 4. For al values of k and Hg above the

3 The origina distribution of Hg was assumed to be uniform from 1 x 107> to 3 x 107>, After reviewing the initial
results, the model experts revised the distribution to be B, with the mean at 2 x 107> as shown in Figure 8. Because
of the computational efficiency of the collocation method, iterative experiments can allow the expertsto glean
insights into the model and revise uncertainty estimates.
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line, the equilibrium state may be either high-latitude sinking or low-latitude sinking, while
below the line only low-latitude sinking is possible. For the other parameter values used (see
Table 1), values of k and Hg above the line will result in a high-latitude sinking state.

Because the ocean model is small, we were able to apply the Monte Carlo method to find the
resulting probability distribution of the volume flux resulting from the assumed uncertainty
ranges of k and Hs. The results, in Figure 6, indicate the discontinuity between the low-latitude
and high-latitude sinking solutions. The problem for the collocation method isin this
discontinuity. A key assumption of the collocation method is that the response surface can be
approximated by a polynomial. A discontinuous surface is difficult if not impossible to
approximate by a polynomial, and thus the collocation method fails to find a reasonable
approximation with small errors. Figure 5 shows a scatterplot of the response surface of the
volume flux as a function of k and Hs. Thistype of surface isimpossible to approximate with a
polynomial.

Figure 6 shows the resulting discontinuity in the probability distribution of the response,
which isa product of the discontinuity in the response surface. Figure 7 compares a 9th order
approximation by the collocation to the Monte Carlo results. Clearly the collocation method is
unable to approximate the response accurately.

Although the collocation method does not work for the problem as initially formulated, the
knowledge of the bifurcation can be used to redefine the problem in away which allows the
application of the collocation method. In this case, since we are interested in realistic solutions
under today’ s climate conditions, the low-latitude sinking states are not feasible solutions.
Further, some investigation of the model yielded the aimost linear correlation between k and Hg
which locates the bifurcation. Using this relationship, we can redefine the uncertain parameters
to ensure that we only examine ranges above the line in Figure 4.
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We use alinear approximation of k as afunction of Hs, since kis arbitrary relative to Hg, and
Hg has physical meaning. The uncertainty in k is then expressed as some A above thelinein
Figure 4, thus remaining in the realistic solution space and avoiding the discontinuity. Thuskis
defined as:

k=f (Hg) + Ak (28)

The revised probability distributions for the two uncertain parameters are shown in Figure 8
and Figure 9.

To provide a benchmark for comparing the results of the collocation method, we also
performed Monte Carlo simulations on the reformulated model. Figure 10 shows the results from
the Monte Carlo for different numbers of model runs. Because Monte Carlo selects points at
random, many runs are needed to obtain a reasonably smooth probability density function of the
response. From Figure 10, it appears that at least 5000 runs are needed before the errors
associated with the random selection become small.

Using the Monte Carlo simulation with 10,000 runs as a benchmark, we compare the results
of three approximations from the collocation method in Figure 11: linear, second-order, and
second-order with a cross-product term. All of these are quite close approximations, with both
second-order approximations being barely distinguishable from the Monte Carlo results.

The linear approximation required only eight runs of the mode! (three to solve plusfiveto
check the error), while adding second-order terms required an additional seven runs, and adding
a cross-product term requires two additional model runs. Thisisasignificant savingsin
computation time over the more than 5000 runs required for equivalent accuracy from the Monte
Carlo technique.
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Numerically, in terms of the relative sum-square-root error measurement, the error of each
level of approximationis:

e linear: 9.23x 1073

» second-order: 5.16 x 1073

 second-order with cross-product: 4.38 x 103

The collocation method allows the extraction of other information besides the probability
density function of the response. The mean, standard deviation, and other moments can be easily
calculated. Also, correlations between any two parameters, two responses, or a parameter and a
response can be plotted over the uncertainty ranges.

Sensitivity analysis can be performed on the approximation far more efficiently than with the
full model. Often with non-linearities in the model, we might want to find the sensitivity at
several points, and we need at |east three model runs for each point.

Finally, the collocation method can be used to perform variance analysis. Variance analysis
isacombination of the effect of sensitivity of the model and the effect of the variance in the
parameters on the resulting variance in the response. Thisis extremely useful in situationsin
which there are many uncertain parameters and it is unclear which of them has the greatest effect
on the responses.

The collocation method provides an efficient way of ranking the importance of uncertain
parameters.

For example, in this experiment the resulting variance in g due to Ak is 2.58 while the
variance in q due to Hg is 2.51. Thiswould seem to suggest that the effect is roughly the same.
However, we are actually interested in the impact of k compared to Hs. We can treat k asa
response variable and measure the variance in k as aresult of the uncertaintiesin Ak and Hg (see
Eq. (28)). The variance in k due to Ak was 0.083 while the variance in k due to Hg was 0.342.
Since Hg has amuch larger impact on k, which in turn affects g, and since Hg also affects g
directly, it appears that the uncertainty in Hg has a greater impact than the uncertainty in k.

4. RUNNING A COLLOCATION EXPERIMENT

Here we will briefly describe the actual steps necessary to perform an uncertainty analysis
experiment, such as the one described in Section 3.2. The program that implements the
collocation method is called “ DEMMUCOM” DEMMUCOMcan actually perform either the collocation
method or a straight Monte Carlo simulation. It requires one input file that specifies:
the uncertain parameters with a description of the uncertainties,
the response variables to be approximated,
the name of the model on which to perform the uncertainty analysis,
whether collocation or Monte Carlo should be performed, and
any of aset of optionsto produce additional information for the analysis.

Appendix A shows a sample input file to DEMMUCOM Thisfileisfor the case in which the
uncertain parameters are Ak and Hg, and the response variables are q and k. The ocean model for
the uncertainty analysisis the executable file “oceanf unc,” and the collocation method is
performed on this model producing second order approximations for the response variables.

In most cases, the model code will need to be slightly modified to enable DEMMUCOMto call
the model. In UNIX environments, the default mode of operation is linkable, which means that
DEMMUCOM calls the model each time, passing the parameter values for that run and receiving the
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corresponding response values. To enable this interaction, the model code should be modified as
follows:

1) Nothing should be read in from standard input (keyboard) except the uncertain parameters,
all other input should be directly from files.

2) Nothing should be printed to standard output (screen) except the values of the response
variables.

3) A filecalled “<nmodel name>. | og” should always be created, and in the case of an error,
the error message should be written to this file. DEMMUCOMwill always check that thisfile
exists and has size 0 to make sure that each model run was successful.

Appendix B shows a sample of the ocean model code, modified to interact with DEMMUCOM
The modified lines arein bold. Note that thisisthe version that treats k = f (Hs) as described
above.

Once the model code has been modified (oceanf unc), theinput file created
(bet af unc. par se), and al necessary input files to the model placed in the current directory,
the following command will perform the analysis: “/DEMMUCOM bet af unc. par se.

The results will be stored in the following files:

* oceanfunc. err: Thisfile contains the sum-square error and relative-sum-square-error for
each response approximated. This file should aways be checked first to see whether the
approximation is sufficiently accurate.

* oceanfunc. sol : Thisfile contains for each response variable:
« the polynomial chaos expansion coefficients for the approximation,
» the mean and standard deviation of the response, and
« the contribution to variance from each uncertain parameter.

* oceanfunc. enp: Thisfile contains the results of a Monte Carlo simulation of the
approximation. The value of each parameter and response are in columns. Making a
histogram of the values for a response from this file will give an approximation of the
probability density function of that response.

Appendix C shows the corresponding file oceanf unc. err , and Appendix D showsthefile
oceanf unc. sol . In the case where the errors are too large, and a higher order approximation is
necessary, one only needs to modify theinput . par se fileto be a higher order and/or to specify
cross-product terms.

5. SUMMARY AND CONCLUSIONS

As the experiments described in this paper demonstrate, the probabilistic collocation method
isapowerful tool for analyzing the impact of uncertaintiesin large models. The ability to
approximate the probability responses of models can result in considerable savingsin
computation time.
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However, as seen in this example, the collocation method cannot be applied to just any set of
model and parameters. Cases where the response surface is discontinuous need to be
reformulated, or perhaps may not be able to be approximated at al. Application of the
probabilistic collocation method requires some intuitive knowledge of the model’ s behavior
and/or some initial investigation. In most cases, it can be formulated to work well, and provide
valuable information that might otherwise not be feasible to obtain.

Another value of the type of uncertainty analysis made possible with the collocation method
is the learning process that the modeler undergoes. With the collocation method, one can start
with simpleinitial estimates or the probability distributions of parameters, and based on the
results, revise and refine the probability estimates. Furthermore, the results of the uncertainty
analysis often help to give further intuitive insight into the model.

Finally, the variance analysis information can be used to find out which uncertainties arein
fact most important. This allows the prioritization of further research into revising the
understanding of uncertainties by finding out which ones matter most.

In an area fraught with uncertainty such as global climate change, the probabilistic
collocation method is an important tool in the research process for providing these various levels
of information about the modelsin use.
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APPENDIX A

Sample Input File to DEMVUCOM

# This is a sanple input file to DEMMUCOM
# This is for the ocean nodel version where Hs = f(deltak)
# Decl are uncertain paraneter distributions
Uncertain I nputs
deltak = uniforn(0.0,1.0),
hs = beta(1.5, 1.5, 0.9946985, 1.9893971);

# Decl are uncertain response

Uncertain Qutputs
q, k;

# Performcollocation nethod to the npdel

Do Col | ocation with
Model : oceanfunc,
Appr oxi mation: second,
Sanpling File : betafunc. sanpling,
Number of Points : 10000,
Options: estimate error (deltak, hs);
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APPENDIX B

Ocean Model Code

programt hr eebox

Aut hor :
Mot ot aka Nakanura (July 1992)
Center for Meteorol ogy and Physical Oceanography
Massachusetts Institute of Technol ogy
Room 54- 1717
Canbri dge, MA 02139
(617) - 253- 5050

Modi fied by Mort Webster, February, 1995
added conments and el i m nat ed unused code

Descri pti on:

This program nodel s the changes in tenperature and

salinity in the ocean, by using a 3-box nodel. There is one
high latitude box with depth 4000, and 2 |ow 1l atitude boxes,
one near the surface (depth 400nm and one deep ocean (depth
3600n). The tenperature changes are based on volunme flux and
a Newtonian cooling law using sonme finite time to equilibrium
( (T - Te) / Tau ). The salinity changes based on vol une fl ux
and freshwater evaporation and precipitation flux, which is
tenperature dependent. The program uses a sinple Euler tine-
stepping nethod to integrate over the tine period, unti
hopefully equilibriumis reached.

OO0 O0O00O00O0000000O000000O00O00O000O0

C _______________________________________________________________________

c I nput Variables (with potential uncertainty):

c ki - constant paraneter k for determining volume flux (nt3/s)

c sl - Salinity of Box 1 (ppt) (high Iatitude box)

c s2 - Salinity of Box 2 (ppt) (Low |latitude, near surface box)

c s3 - Salinity of Box 3 (ppt) (Low Latitude, deep box)

c tl - Tenperature of Box 1 (degrees C) (high latitude box)

c t2 - Tenperature of Box 2 (degrees C) (Low | atitude, near surface box)
c t3 - Tenperature of Box 3 (degrees C) (Low Latitude, deep box)

c dt - tinestep for integration (days)

c timend - duration of period of integration (read in as years, converted
to days)

c sflux - salinity flux due to Evap/Precip (ppt/day)

c tel - restoring tenperature for box 1 (degrees Q)

c te2 - restoring tenperature for box 2 (degrees Q)

c lanl - 1/time to restore tenperature for box 1 (1/day)

c lanR - 1/time to restore tenperature for box 2 (1/day)

doubl e precision k

doubl e precision s1,s2,s3,t1,t2,t3
doubl e precision dt,tinend

doubl e precision sflux,tel,te2,lant,|an?
doubl e precision uk
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OO0OO0OO0OO0O0O00OO00O0O0O0O00O00O00OO0

OO0 O0OO0O00O00O00O00O00O00O000O00O00O0

Const ant s:

vol 1l - Volune of box 1 (nt3) (high latitude box)

vol 2 - Volune of box 2 (nt3) (Low |l atitude, near surface box)
vol 3 - Volune of box 3 (nt3) (Low Latitude, deep box)

al pha - thernal
beta - haline expansion coefficient (1/ppt)

svgfluxk - unit conversion fromnt3/s to Sv

heat capdensity - heat capacity of water (J/kg/C) X water density (kg/ m3)
secondsi nday -

daysi nyear -

ki ntercept -

doubl e precis
doubl e precis
doubl e precis
doubl e precis
doubl e precis
doubl e precis

expansi on coefficient (1/K)

nunber of seconds in a day

nunber of days in year

inputfile - file nunber for input file

outputfile - file nunber for output file

tenptinefile - file nunber for tenperature tine series file
saltinefile - file nunber for salinity tine series file
gfluxtinefile - file nunber for volume flux tine series file
ksl ope - slope of linear function k=f(sfl ux)

i ntercept of linear function k=f(sfl ux)

on
on
on
on
on
on

vol 1, vol 2, vol 3
al pha, beta
svgf I uxk

heat capdensity
secondsi nday
daysi nyear

integer inputfile, outputfile
integer tenptinmefile, saltinefile, qgfluxtimefile
doubl e precision kslope, kintercept

I nt er nedi at e/ Wr ki ng Vari abl es:

st1l - Change
st2 - Change

st3 - Change
ttl - Change
tt2 - Change
tt3 - Change

n

5 33335

salinity of Box 1 fromone tinestep
salinity of Box 2 fromone tinestep
salinity of Box 3 fromone tinestep
tenmperature of Box 1 fromone tinestep
tenmperature of Box 2 fromone tinestep
tenperature of Box 3 fromone tinestep

gf lux - Volune flux between boxes (nt3/s)

aqflux - Absolute value of qgflux (m3/s)

curtime - tinestep counter variable (days)

deltat - difference in tenp between boxes 1 and 2/3
counter variable (only used for time series)
whet her user wants tine series data witten
I ength of input file

name of input file

dunpcount -
ti neseries -
infilelen -
i nfil ename -

outfil enane -

tfil ename -
sfil ename -
gfi l enane -

n

ame of output file

nane of tenperature tinme series file
nane of salinity time series file
name of volume flux time series file

doubl e precision stl1,st2,st3,ttl1,tt2,tt3
doubl e precision qflux,aqflux,curtine
doubl e precision deltat

i nt eger dunpcnt
character*1 tineseries
integer infilelen
character*20 infilename, outfil enane
character*20 tfil ename, sfilename, gfilenane
doubl e precision dumyl, dumy?2
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OO0O0O0O0O000O0

OO0

i nteger tine

i nteger stinme, tarray(9)
character*24 timestr, ctine
external tine

external |time

external ctine

Qut put Vari abl es:

sl - Salinity of Box 1 (ppt) (high Iatitude box)

s2 - Salinity of Box 2 (ppt) (Low latitude, near surface box)

s3 - Salinity of Box 3 (ppt) (Low Latitude, deep box)

tl - Tenperature of Box 1 (degrees C) (high latitude box)

t2 - Tenperature of Box 2 (degrees C) (Low | atitude, near surface box)
t3 - Tenperature of Box 3 (degrees C) (Low Latitude, deep box)

<decl ared above>

svgflux - volune flux at equilibrium(Sv = 1e6 nt3/s)
hflux - northward heat flux (Watts)
eqtine - total tine of integration

doubl e precision svqgflux, hflux, eqtine

Set val ues of constants

Set Vol une of boxes

paraneter ( vol 1=6. 668d+16, vol 2=6. 668d+15,
& vol 3=6. 0012d+16)

Set restoring coefficients of tenperature and salinity
paraneter ( al pha=1. 5d- 4, bet a=0. 8d- 3)

Set svqfl ux conversion constant
par ameter ( svgfl uxk=1e6)

Set heat capacity X density constant
par anmeter ( heatcapdensity=4. 185E+6)

Set nunmber of seconds in a day
par ameter ( secondsi nday=8. 64E+4)

Set nunber of days in year
par anmet er ( daysi nyear =360.)

Set file numbers

parameter ( inputfile=9)
paranmeter ( outputfile=10)
paranmeter ( tenptinefile=11)
paranmeter ( saltimefile=12)
paraneter ( gfluxtinmefile=13)
paraneter ( |ogfile=14)

Set linear function approximtions for k=f(sflux)
paranmeter ( ksl ope=1.176)
paraneter ( Kkintercept=-0.09)
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(¢]

pen files and initialize variables

Get input filename

wite(*,*) 'Enter name of input file
read(*, 105) infilelen, infilenamne
infilenane = 'indata'

infilelen = 6

Create output filenames as extensions of input filenane
outfilenane = infilename(l:infilelen)//". out

tfilename = infilename(l:infilelen)//'.t.out
sfilename = infilename(1l:infilelen)//'.s.out
gfilenane = infilenane(l:infilelen)//"'.q.out

CGet date and tine
stime = time()

call Itime(stine, tarray)
timestr = ctime(stine)
wite(*,*) '"current date and tine is ', tinestr

Open log file for collocation program
open(l ogfile, file="oceanfunc.log', status="unknown',
& forme formatted' )

Open i nput and output files
open(inputfile,file=infilenane,status="unknown',form=" formatted')
open(out putfile, fil e=outfil enane, stat us="unknown',

& form="formatted')

Find out if time series data is desired
wite(*,*) '"Do you want tine series data files?
read(*, 104) timeseries

tinmeseries = 'n'

Qpen output files for time series data

if (tinmeseries(1:1) .eq. 'Y .OR tineseries(1l:1) .eq. 'y') then
open(tenptinmefile, file=tfil enane, status="unknown'

& form=' formatted')
open(saltimefile, file=sfil ename, st atus="unknown'

& form="formatted')
open(gfluxtinefile,file=qgfil ename, status="unknown',

& fornme' fornatted')

endi f

Read in input variables

read(inputfile,*) dummyl,tinmend
read(inputfile,*) s1,s2,s3,t1,t2,t3
read(inputfile,*) dummy2,tel,te2, | ant, | ank, dt
close(inputfile)

Read in uncertain paraneters from standard i nput
read(*, *) uki,sflux

ki = f(sflux) + uncertainty factor (uki)
ki = kslope*sflux + kintercept + uk
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c Convert inputs to appropriate scale
ti mend = timend*daysi nyear
ki = ki*1l.d14
sflux = 1.e-5*sfl ux
l[anl = 1.d-4*lantl
lam2 = 1.d-3*| an®
c Wite out initial values to output file
wite(outputfile,*) 'Version 1 output
wite(outputfile,*) "k =,k
wite(outputfile,*) "salt flux is (o/oo/day)', sflux
wite(outputfile,*) 'Tel =',tel
wite(outputfile,*) 'Te2 =',te2
wite(outputfile,*) 'lanmbdal =',Ilantl
wite(outputfile,*) 'lanmbda2 =',I|an?
wite(outputfile,*) "at tine = 0,
wite(outputfile,*) "S1 =, sl
wite(outputfile,*) 'S2 =',s2
wite(outputfile,*) 'S3 =',s3
wite(outputfile,*) "T1 =',t1
wite(outputfile,*) "T2 =',t2
wite(outputfile,*) "T3 =',t3
c Format statenents for reads
101 format (6(f12.7))
102 format (3(f12.7))
103 format (f12.7)
104 format(al)
105 format (g, a20)
106 format (2(f12.7))
c Initialize working variables
dunpcnt =0
aqflux = 0.dO
curtime = 0.d0
C _______________________________________________________________________
c Start of integration |oop
c Cal cul ate volume flux fromtenperature and salinity differences
10 qgflux = ki*(al pha*(t2-t1) - beta*(s2-sl1))
c Cal cul at e absol ute val ue of fl ux
aqf l ux = dabs(qgf!l ux)
c I ncrenent timestep
curtime = curtinme + dt
c I ncrenent counter for tine series data
dunpcnt = dunpcnt + 1
c Cal cul ate change in tenp and sal for this tinmestep based on fl uxes
if (gflux .gt. 0.d0) then
stl = -sflux + aqflux*(s2-sl)/vol1l
st2 = 10.dO0*sflux + aqflux*(s3-s2)/vol 2
st3 = agflux*(sl-s3)/vol 3
ttl = lam*(tel-t1) + agflux*(t2-tl)/vol1l
tt2 = lam*(te2-t2) + agflux*(t3-t2)/vol 2
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tt3

aqf lux*(t1-t3)/vol 3

el se
stl = -sflux + aqgflux*(s3-sl1)/voll
st2 = 10.d0*sflux + aqflux*(sl-s2)/vol 2
st3 = agflux*(s2-s3)/vol 3
ttl = laml*(tel-t1l) + agflux*(t3-t1)/voll
tt2 = lam2*(te2-t2) + agflux*(t1-t2)/vol?2
tt3 = agflux*(t2-t3)/vol 3

endi f

c Perform Euler Integration for this timestep

sl = sl + sti*dt

s2 = s2 + st2*dt

s3 = s3 + st3*dt

tl =tl1 + ttl*dt

t2 = t2 + tt2*dt

t3 = t3 + tt3*dt

c wite out tine series data

if (timeseries(1:1) .eq. 'Y .OR tineseries(1l:1) .eq. 'y') then
if (dunmpcnt .eq. 12) then
wite(tenptinmefile, 102) t1,t2,t3
wite(saltinmefile, 102) s1,s2,s3
svgfl ux = gf | ux/ svgfl uxk
wite(qgfluxtinefile,103) svqgfl ux
dunpcnt =0
endi f

endi f

c Check if finished with tinestep | oop
if (curtime .gt. tinmend) then
go to 20
el se
go to 10
endi f

c Fi nished with tinestep loop => wite out final values
20 wite(outputfile,*) "at the end of run,’

wite(outputfile,*) 'Sl =',s1
wite(outputfile,*) 'S2 =',s2
wite(outputfile,*) 'S3 =',s3
wite(outputfile,*) "T1 =',t1
wite(outputfile,*) "T2 =',t2
wite(outputfile,*) "T3 =" ,t3

c Calcul ate volune flux in Sv (1 Sv = 1e6 nt3/s)
svgfl ux = gfl ux/ (secondsi nday*svqf | uxk)
wite(outputfile,*) "volume flux is (Sv)', svqfl ux

c Cal cul ate heat flux in Watts
if (gflux .gt. 0.d0) then
deltat = t2 - t1l
el se
del t at
endi f
hf l ux = svqgfl ux*heat capdensi ty*svqf | uxk*del t at

tl - t3
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wite(outputfile,*) "northward heat flux is (W', hflux

Wite out duration of period in years
eqtine = curtime/daysi nyear
wite(outputfile,*) "tinme is (years)',eqtine

Cl ean up and end
cl ose(outputfile)

if (timeseries(1:1) .eq. 'Y .OR tineseries(1l:1) .eq. 'y') then
close(tenptinefile)
close(saltinmefile)
close(qgfluxtinmefile)

endi f

Wite outputs for uncertainty analysis
ki = ki/1l.d14
wite(*,*)svgflux, ki

Close log file for collocation program
cl ose(logfile)

st op
end
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Response variable =
Sum of - square err
Rel ative sumof-s
Error anal ysi s:

Sum of - squar e
Sum of - squar e
Speci fic request
Sum of - squar e

Response vari abl e
Sum of -square err
Rel ative sumof-s
Error anal ysi s:

Sum of - squar e
Sum of - squar e
Speci fic request
Sum of - squar e

APPENDIX C

Sample Error File (oceanfunc. err)

q
or 2.889887e-02

quare error = 3.681477e-03

error fromdeltak 3. 082864e-02
error from hs 1.449880e-02
of error analysis:

error fromdeltak hs = 2.092624e-02
k
or = 3.554884e-07

1. 642245e- 07

quare error

error fromdeltak = 4.111896e- 07
error fromhs 2.752417e- 07

of error analysis:
error fromdeltak hs

2.756871e-07
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APPENDIX D

Sample Solution File (oceanf unc. sol )

Response variable = q
PCE coefficient:
PCE coefficient 1 = 7.849802e+00
PCE coefficient 2 = 5.435691e+00
PCE coefficient 3 = 3.393627e+00
PCE coefficient 4 = -9.649067e-01

PCE coefficient 5 = -2.691480e-01

Mean val ue = 7.849802e+00

Standard deviation = 1.785351e+00

Vari ance anal ysi s:
Contribution of deltak = 2.467400e+00
Contribution of hs = 7.200772e-01

Response variable = k

PCE coefficient:
PCE coefficient
PCE coefficient
PCE coefficient
PCE coefficient 3. 333333e- 06
PCE coefficient 5 4.000000e- 06

Mean val ue = 2. 164649e+00

Standard deviation = 4.109201e-01

Vari ance anal ysi s:
Contribution of deltak = 8.333340e-02
Contribution of hs = 8.552193e-02

2.164649e+00
1. 000000e+00
1. 169765e+00
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