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Analysis of Strategies of Companies under Carbon Constraint:
Relationship Between Profit Structure of Companies and Carbon/Fuel Price Uncertainty

Susumu Hashimoto*

Abstract

This paper examines the relationship between future carbon prices and the expected profit of companies
by case studies with model companies. As the future carbon price will vary significantly in accordance
with the political and economic situation, a specified probability density profile for the carbon price in
the future has been assumed in this paper and the expected profits of the model company have been
calculated on the basis of this profile. A power company has been selected as the model company
representing a typical instance of a large-scale emitter of CO2. In the case of a single-fuel using company,
it has been established that the influence on corporate profits can be assessed quantitatively by
determining the profit break-even line with the carbon price as the parameter using the company’s
carbon emission intensity and its operating profit per unit of production output. For multi-fueled
companies, it is shown that the future optimum fuel mix is determined not only by the carbon price but
also by the operating profit ratio for the fuels concerned. These studies have thus confirmed that
corporate profits are governed by the ratio of the operating profit levels achieved per unit of production
output for the different fuels and the carbon price.
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1. INTRODUCTION

There seems to be no doubt that we will face carbon constraints in the near future though it is

not clear whether the Kyoto Protocol will be in effect or not at this moment. The problem is that

we are not certain when and how these carbon constraints will come into effect and what impact

they will have. Those companies that emit tons of CO2 at present, such as companies in the

energy intensive industries, would be affected very badly.
                                                  
* Hashimoto is employed by the Electric Power Development Co., Ltd. (J-Power) and he was a visiting researcher at

the Joint Program on the Science and Policy of Global Change when this paper was written.
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In this paper, we have singled out a power company as a typical large-scale emitter of CO2 and

taken it as a model case for examining the impact of future carbon constraints in a quantitative

manner in terms of the corporate profit structure and the future carbon price. Moreover, one of

the options available to companies under such carbon constraints would be to switch fuels (for

example, from coal to gas), and we have examined this possibility to establish the pluses and

minuses of fuel switch with regard to price and operating profit of both fuels (Section 2).

In Section 3, the profit structure of the model company is generalized, and examined again to

see how the profit structure in the carbon constraint world would affect corporate profit. First, we

have examined the expected profit for a uni-fueled firm in relation to the carbon price. The profit

break-even line for the predicted carbon price is shown for such companies. Second, we have

examined the profit structure of multi-fueled companies to determine the optimum coal and gas

fuel mix by considering the carbon price and the relative price difference between these fuels.

In the conclusive part, we have noted that there is a possibility that the benefits of switching

fuels might be lost when the operating profit for gas as a fuel with lower carbon emissions is less

than a certain critical level applicable to the use of coal as a fuel with higher carbon emissions. It

is therefore necessary to accept a trade-off between the carbon price and the fuel price when

resorting to fuel switching as a means of reducing emissions.

2. MODEL COMPANY ANALYSIS

2.1 Outline of the Model Company

The model company used for this study is a power-generating company that owns coal-fired

power plants. As coal-fired power plants emit more CO2 than other plants, the effects can be seen

more clearly.

The model company owns plants with a total of eight 1,000 MW capacity coal-fired power

generation units operated at over 60% of their capacity. The plant units are assumed to be a

mixture ranging from old to state-of-the-art systems with different levels of combustion

efficiency. We have taken the average emission rate of the 8 units as being 0.22 t-C/MWh.

Table 1 is a summary of features of the model company for the reference year, which will be

the base data for our later calculations.

Table 1. Features of the Model Company

Operational/Financial Features Figures

Power generation
CO2 emissions
Operating revenue
Operating profit ratio

44,500,000 MWh/yr
9.8 Mt-C/yr
2,800 M$/yr

20 %
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In the following subsection, we will calculate the profit the model company can reasonably

expect in the future (in this paper, after 5 years) using above data.

2.2 Assumption of the Future Carbon Price

At present, we have no way of knowing what regulations might be implemented after 5 years.

Even when we assume the model company is in a country that has ratified the Kyoto Protocol,

we cannot be certain that the Protocol will actually have come into effect within the next 5 years.

Moreover, even if we assume that the Kyoto Protocol will have come into effect over the next

5 years, we would have no way of knowing what regulatory measures the government of that

country might institute. The model company might have a cap imposed on its CO2 emissions

and/or be subject to a severe carbon tax. Alternatively it is also conceivable that noregulations

might be passed for certain political or economic reasons.

In view of this uncertainty as to the future political and/or economic situation, we have

supposed in this paper that the carbon price is distributed according to a certain probability

density profile that takes into account all possible political and economic factors.

Figure 1 shows an example of a Γ profile for the probability density function with a peak

price at $25 which is expressed by following equation with q = 2 and σ = 25.

x
q

q
ex

q
xf σ

σ

1
1

)(
1

)(
−

−

Γ
=

Although we can assume various profiles for the probability density function, this Γ profile is

used in this paper as an expedient example. It is, evidently, not necessary to limit ourselves to

this Γ profile.
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Figure 1. Probability Density of Carbon Price (Γ profile peak price at $25)
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2.3 Expected Profit for the Model Company

We have made the following assumptions in order to simplify our analysis in this section:

-The model company has relatively long-term contracts with its customers (buyers) and can
reasonably expect that its electricity price will remain fixed over a period of 5 years.

-The model company can reasonably expect that the level of its power sales will remain the
same by virtue of its long-term supply contracts. (This means that this company can
reasonably expect that without carbon constraints its profits will remain the same as the
reference year.)

What amount of profit can this model company expect when the predicted carbon price

probability shown in Figure 1 comes into play? (To simplify matters, we will assume in our

calculations below that the inflation rate and the discount rate will not change during this 5-year

period.)

2.3.1 Auction case

In this subsection, we will examine the expected profits of the model company on the

assumption that cap & trade approach will be applied as the regulatory measure by the

government. As a result, companies that emit CO2 will be required to obtain CO2 emission

permits through auction procedures to acquire emission rights covering the full amount of their

CO2 emissions.

Although it is likely that the model company may negotiate with its customer (buyers) on a

possible increase in power tariff in order to pass some portion of their excess cost of purchasing

the permits on to the power price, we will assume in this paper that the model company will bear

100% of its costs for obtaining the emission permits. In this way we can study the worst scenario

case. Also, the effect on corporate profits of the different means of distributing allowances is

more clearly shown.

The expected profit of the company can be expressed by the following equation.

∫
∞

∗××−×=
0

)()( dxxfxCPpERpaEP (1)

EP: expected profit of the company ($)

a: profit per unit power generation output ($/MWh)

p: power generation output (MWh)

ER: CO2 emissions per unit power generation output (t-C/MWh)

CP(x): carbon price in relation to the probability density variable x ($/t-C)

f(x): probability density function.
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Let us substitute the values a = 12.6 ($/MWh), p = 44,500,000 (MWh), ER = 0.22 (t-C/MWh)

for the model company in the above equation and take the carbon price as being zero. It can be

seen that the model company can reasonably expect a profit of EP = 560M$, which is as same as

in the reference year.

Let us now examine the level of profit the model company can expect after 5 years, if we

predict the carbon price probability profile shown in Figure 1, that is, the Γ profile with a peak

price of $25. The profit probability density function of this case is shown in Figure 2.

As Figure 2 shows the profit PDF(probability density function) of the model company, for

example, we can see the probability of $560 million of profit for this company is zero. It is

because the probability of a zero carbon price is zero in Figure 1. The modal, most-likely, or

peak profit is $316 million that is corresponding to the peak price of $25. The expected value for

future profit of this company is approximately 70M$ according to the calculation.

The 70M$ expected profit level is much lower than the 560M$ profit of the reference year

with carbon price = 0. This means, 5 years later, the model company would face the difficult

situation of nearly a 90% fall in expected profit and of a significant probability of a loss.

2.3.2 Grandfathering case

In the former case, we have assumed that companies are required to purchase carbon emissions

permits covering their entire emissions and bear the full costs involved in the acquisition of these

permits. In view of the critical effect of this policy on company profitability, however, a

grandfathering approach might possibly be adopted in certain instances as the substantial decline

in the profit levels of carbon-intensive companies could be seen as a social problem.

In view of the above, let us assume that the government decides to grant these carbon-

intensive companies CO2 emission permits as a result of political bargaining. Let us therefore

assume that an amount corresponding to 95% of the 1990 emissions is allocated to the

companies after due political bargaining among the stakeholders.
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If, for example, the model company emitted 6.8 Mt-C of CO2 in 1990, it will thus qualify for

emission permits worth approximately 6.5 Mt-C ( = 6.8 Mt-C * 95%). In this case, the question

is how much profit the model company can reasonably expect 5 years later with the carbon price

predicted to be as shown in Figure 1. (This is the Γ profile with a peak price of $25.)

For this grandfathering case, a slight modification is needed in equation (1) as shown below.

∫
∞

∗×−×−×=
0

)()()( dxxfxCPGFpERpaEP (2)

where GF = grandfathered permits (t-C).

Calculation according to the above equation gives us an expected value of 400M$ for the

model company’s profit after 5 years in the grandfathering case (Profit PDF is shown as square

symbols in Figure 3). Moreover, the probability of a loss has been reduced to a negligible 1%.

The company can expect greater profits in the grandfathering rather than the auction case. Yet,

even in the grandfathering case, the company must still be prepared to accommodate a roughly

30% fall in its profit.

Let’s take a look at the following calculation based on a higher carbon price. Here we assume

that the carbon price is raised significantly due to certain political and economic factors. When

using the Γ profile with the peak price of $75 as the probability profile of the carbon price, the

expected value for the model company’s profit is approximately 70M$ (Profit PDF is shown as

triangle symbols in Figure 3). This entails a 80% drop from the $25 peak case and a 90% drop

from the reference year profit.
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On the other hand, if the model company reduces its output to 66%, a level of output

equivalent to the 6.5 Mt-C of CO2 emissions corresponding to the grandfathered permits, the

expected value of the company’s profit will rise to approximately 380M$ (Profit PDF is shown

as circle symbols in Figure 3). This suggests that, when the carbon price is expected to be high, it

would be wise to operate plant at an output level not requiring any extra CO2 emission permits

rather than to run the plants at full capacity in order to maximize profits.

We can also note a similar trend in the auction case. Figure 4 shows that when the carbon

price is high the extent of profit decline can be limited by reducing the output level in the auction

case. Although profits are down in both the full-capacity operation case and the reduced capacity

(66% availability) operation, plant operation at reduced capacity is more favorable.

Figure 4 also indicates that, if we expect grandfathering measures to be effective 5 years later,

the model company would be better off operating its plants at 100% availability until the

predicted peak carbon price is about $30. Yet it would be wise for this company to throttle output

if a higher carbon price peak profile of $30 or above seems likely. In the auction case, the same

strategy might be adopted although expected profits would turn negative after the predicted peak

carbon price has risen beyond the $30 level.

2.4 Asset Adjustment

2.4.1 Conversion from coal to gas

When the profit mechanism described in the previous section can be anticipated, companies

may respond by adopting some other strategy to cope with the situation. For example, companies

might resort to asset adjustment, such as the conversion of its plants from coal to gas fuel.

To make the story simple, we will assume that the model company is able to convert all of its

coal-fired power plants to natural gas while retaining the same output level of 44,500,000 MWh/yr
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through the 5 year period. We will assume, furthermore, that profit per unit power output

remains the same as before (12.6 $/MWh) and the only factor that changes is the CO2 emission

level which will be down to only 60% ( = 0.13 t-C/MWh) as compared with the coal-fired model

power plants ( = 0.22 t-C/MWh).

We can calculate the expected profit for these natural gas plants by using the various

predicted carbon price levels anticipated for the future (see Figure 5).

The square symbols in Figure 5 refer to the model company’s natural gas plants. If grand-

fathering measures are provided, the model company can expect a profit in excess of 560M$,

which is the profit level applicable in the event that no restrictions on carbon emissions are

imposed. Given an equal level of profit for coal and gas-fired generation, profit will increase as

the higher carbon price imparts more value to the “surplus” grandfathered allowances for a gas

plant.

Even in the auction case, the model company can expect positive profits for gas conversion

until the expected carbon price reaches $100 ( = peak price $50). Still, the company must be

prepared for a considerable fall in profits from the reference case of 560M$.

2.4.2 Influence of natural gas price

We must note that the conclusion reached in Section 2.4.1 holds true only on the assumption

that the price of natural gas will be the same after 5 years. However, it is reasonable to expect

some price increase for natural gas as the carbon constraint intensifies. The carbon constraint

pushes up the demand for, and with it also the price of, clean energy. The influence caused by a

price increase for natural gas will be examined in a little more detail in this section.

More detailed structure of generation cost can be expressed by the next equation,
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where I: Generation Cost ($/MWh)

C: Construction Cost ($/MW)

γ: Annual capital charge rate (interest depreciation and O&M) (%)

L: Capacity factor (%)

f: Fuel price per unit of heat ($/103kcal)

η: heat efficiency (%)

860: inverse factor for converting kilocalories into megawatt-hours assuming no heat
loss (103 kcal = 4.184*106 J = 1.162*10–3 MWh)

For the present, for example, the coal price is assumed as being 0.75 yen/103 kcal and the

LNG (liquefied natural gas) price as being 2.25 yen/103 kcal (see Figure 6). Now, let us consider

what the operating profit of the model company would be if the price of LNG were to increase to

150% and the price of coal would remain unchanged. The parameters C, γ, η shall have the

values given in Table 2 and L (plant availability) is taken as 70%.

0
0.5

1.0

1.5

2.0

2.5

3.0

1990 1992 1994 1996 1998 2000 2002

P
ric

e 
(y

en
/1

00
0k

ca
l) Oil

Oil

Coal

Coal

LNG
LNG

Year

Figure 6. Energy Price (CF Price at Japan)

Table 2. Generation Cost Input Data (by Ellerman & Tsukada [1])

Code Unit Oil Coal LNG

C yen/kW
$/MW

206,000
1,717,000

304,000
2,533,000

214,000
1,783,000

γ % 13.27 13.30 14.23

f yen/103kcal
$/103kcal
$/mmBtu

1.607307
0.01339
3.38

0.899545
0.007496
1.89

1.795355
0.01496
3.77

η % 39.98 39.10 40.00

Note: yen converted to dollars with exchange rate 120 yen/$
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Table 3. Operating Profit with LNG 50% Price Increase

Cost $ Margin unit Coal LNG LNG (f = 150%)

fuel price (f) yen/103kcal
$/103kcal
$/mmBtu

0.75
0.00625
1.58

2.25
0.01875
4.73

3.375
0.028125
7.09

Capital + O&M cost $/MWh 55 41 41

Fuel cost $/MWh 14 40 61

Operating profita $/MWh 17a 17b -4 c

Selling price $/MWh 86 98 98

Notes: a) set as 20% of selling price; b) set same margin as coal plant; c) balance of keeping the selling price as 98 $/MWh

The calculation results are shown in Table 3. The model company would lose its entire

operating profit if it maintained its selling price for power at the same as before the natural gas

50% price rise, namely at 98 $/MWh. Note that as of June 2003, the price of natural gas in North

America has risen to 6 $/mmBtu, so our assumed price of 3.375 yen/103 kcal ( = 7.1 $/mmBtu)

does not seem unrealistic in the light of this trend.

For the near future, it is most realistic to anticipate higher natural gas prices as the impact of

carbon constraint comes into its own. This calls for a great measure of caution in any attempt to

convert power plants from coal to gas fuel in an attempt to trade off the rising carbon price

against the benefits of gas due to lower emissions.

2.4.3 Operating profit in case of natural gas power plant

For fuel conversion from coal to natural gas, it is necessary to realize that, in general, natural

gas power plants are less favorable than their coal-fired counterparts in terms of profitability per

unit output. Although in the previous discussion, it has been assumed for simplicity’s sake that

the operating profit per unit power output from natural gas remains the same as that from coal,

the operating profit with natural gas is significantly lower as shown in Table 4 in the event that

the selling price of power generated with natural gas has to be kept the same as the coal-

generated power price. This may apply, for example, in the case of a liberalized power market.

Table 4. Operating Profit of Coal and LNG

Cost & Profit unit Coal LNG

fuel price (f) yen/103kcal
$/103kcal
$/mmBtu

0.75
0.00625
1.58

2.25
0.01875
4.76

Capital + O&M cost $/MWh 55 41

Fuel cost $/MWh 14 40

Operating profita $/MWh 17a 5b

Selling price $/MWh 86 86

Notes: a) set as 20% of selling price; b) balance of keeping the selling price same as coal
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Figure 7. Expected Profit for (a) Gas Margin = 30% of Coal, (b) Gas Margin = 100% of Coal

Using the operating profits in Table 4, the relationship between the future carbon price and

the expected profit of the company can be expressed as shown in Figure 7. The advantage of gas

is totally lost if the gas/coal operating profit ratio is approximately 30%. This suggests that the

operating profit for a gas-fired power plant is as important a factor for any decision to convert

the power plant from coal to gas as the possibility of future price increases for natural gas.

3. GENERAL APPROACH

3.1 Case of a Uni-fueled Company

A more generalized approach can be applied to the profit structure of companies. The

expected profit EP for companies that use only one fuel (uni-fueled company) for production can

be expressed using the equation below. This is equation (2) already introduced in Section 2.3.2.

∫
∞

∗×−×−×=
0

)()()( dxxfxCPGFpERpaEP

EP: expected profit of the company ($)

a: profit per unit output ($/unit)

p: output (unit)

ER: CO2 emissions per unit output (t-C/unit)

GF: grandfathered permits (t-C)

CP(x): carbon price in relation to the probability density variable x ($/t-C)

f(x): probability density function

Expressing GF as GF = b*ER*p (b: ratio of grandfathered permits and emissions at 100%

production) gives:

ACPERpbpaEP ∗∗∗−−∗= )1( (3)
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ACP: average or expected price of carbon

ACP = q*σ  when probability density function Γ profile can be expressed by:
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From equation (3), the expected profit, EP, of the model company will fall as the expected

carbon price increases according to the line with the slope –(1–b)*p*ER and intercept a*p.

Figure 8 shows this relationship for the grandfathering, auction, and reduced production cases.

Table 5 presents the unit price of power generation for LNG-, oil- and coal-fired plants

calculated by METI (Ministry of Economy, Trade and Industry in Japan) using model plants [2]

and the CO2 emissions per unit power generation output for LNG-, oil- and coal-fired plants

calculated by CRIEPI (Central Research Institute of Electric Power Industry) [3]. These power

generation outputs (LNG, Oil, Coal) are plotted on the ER-a plane in Figure 9 on the assumption

that each plant has a 20%1 operating profit and that permits are auctioned.
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Figure 8. Average Carbon Price (ACP) vs. Expected Profit (EP)

Table 5. Unit Price and Emissions per Generation by Fuels

Fuel Unit price per
generation calculated
based on asset life

CO2 emissions per
generation

(generation only)

ER: CO2 emissions per
power generation

(t-C/MWh)

a:  profit per power
generation ($/MWh)

operating profit = 20%

LNG

Oil

Coal

around 10 yen/kWh

around 9 yen/kWh

around 10 yen/kWh

478 g-CO2/kWh

704 g-CO2/kWh

887 g-CO2/kWh

0.13

0.19

0.24

16.7

15.0

16.7

                                                  
1 20% is not the real operating profit for each fuel. This figure is used only for simplifying the discussion here. It is

known that operating profit for coal is greater than that for LNG in Japan.
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If the average carbon price is predicted at $50 (peak price = $25), for example, a profit for

each of these plants can be expected since each plot is above the line indicating the emission rate

and pre-carbon-tax profit level that separate positive from negative profits when ACP = $50.

However, if the average carbon price increases to $100, coal and oil fired plants will be below

the break-even line of ACP = $100 so that these two plants cannot be operated profitably on the

assumption that they started out with a 20% operating profit.

We must note that, however, even if the plot is above the break-even line, this only signifies

that the profit is not zero and that the companies concerned must be prepared for significant

losses as compared with the no carbon constraint case. We have seen this in the case of our

model company.

3.2 Case of Multi-fueled Company

Although companies might be able to reduce the carbon emissions per unit output associated

with coal-fired power plants by fuel conversion from coal to gas, as seen in Sections 2.4.2 and

2.4.3, the profit achieved by fueling the power plants with gas can be easily diminished as a

result of an increase in gas price and/or a squeeze of the operating profit of the plants. While the

coal-fired and gas-fired plants have each their particular advantages, such as a relatively stable

coal price for the former, and low carbon emissions for the latter, companies may have to

consider the best mix of both fuels.

In this section, the profit structure of multi-fueled companies will be examined in a general

manner. Let us assume that a given multi-fueled company is planning to have both coal-fired

power plants and gas-fired power plants in the future and that it is studying the best coal/gas

plant mix in order to achieve the expected maximum profit.
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Thus, for example, when the company expects a future carbon price probability distribution

equivalent to the Γ profile of Figure 1 (peak carbon price $25), the question will be what coal/gas

plant mix would provide the maximum profit?

The expected profit for this multi-fueled company can be expressed by the next equation.

ACPGFpERpERpapaEP gasgascoalcoalgasgascoalcoal ×−∗+∗−∗+∗= )(

EP: expected profit of the company ($)

acoal: profit per unit power output from the coal-fired plant ($/MWh)

agas: profit per unit power output from the gas-fired plant ($/MWh)

pcoal: Power output from coal-fired plant (MWh)

pgas: Power output from gas-fired plants (MWh)

ERcoal: CO2 emissions per unit power output from coal-fired plant (t-C/MWh)

ERgas: CO2 emissions per unit power output from gas-fired plant (t-C/MWh)

GF: grandfathered permits (t-C)

ACP: average carbon price ($/t-C)

If we substitute GF with b*ERgas*p (where p is total power output and b is the ratio between

grandfathered permits and total CO2 emissions in the case of 100% gas-fired power production)

and if we substitute, furthermore, pgas with (p – pcoal), the above equation will be:

ACPpERbppERpERppapaEP gascoalgascoalcoalcoalgascoalcoal ×∗∗−−∗+∗−−∗+∗= ))(()(

If we substitute pcoal/p with p* and agas with k·acoal after dividing the above equation by the total

power output, p, the company’s expected profit per unit power output, ep ( = EP/p) can be

expressed by the following equation.

[ ] ACPERbpERERpakpaep gasgascoalcoalcoal ×∗−+∗−−−∗∗+∗= )1(*)(*)1(*

This equation suggests that the company’s expected profit per unit power output ep will be a

function of the percentage share of coal-fired power generation p*, of the gas/coal operating

profit ratio k and the average carbon price ACP, in other words, ),*,( ACPkpfep = .

The expected profit per production of the multi-fueled model company can be calculated

using the above equation on the assumption that the future carbon price probability profile will

correspond to the Γ profile with a peak of $25 (ACP = $50).

The energy price is taken as 0.75 yen/103 kcal for coal and 2.25 yen/103 kcal for gas (LNG) in

the same manner as in Section 2.4.2. This implies acoal = 17 $/MWh and agas = 5 $/MWh using

the calculation procedures of Table 4. The assumed emission rates are ERcoal = 0.22 t-C/MWh

and ERgas = 0.13t-C/MWh. Finally, allowances are assumed auctioned, that is, b = 0.
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The expected profit per unit power output for this set of assumptions is shown in Figure 10

with the coal production percentage, p*, varying from 0% to 100% and the gas/coal operating

profit ratio, k, from 0% to 100%.
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Figure 10. (a) Expected Profit per Production, (b) Expected Profit per Production Contour (ACP = $50)

Figure 10 demonstrates that for p*<1.0 the expected profit of the company will decline with a

decrease in the operating profit ratio k ( = agas/acoal). When we have large proportion of gas-fueled

power production, the profit downturn is relatively large compared with the case of a large

proportion of coal-fueled production. In the latter case, we can reasonably expect a relatively

more stable profit level the greater the share of the coal-fired power generation is. Conversely,

when we have only gas-fired power plants, the expected profit will vary substantially as the

operating profit ratio k changes.
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If we were able to predict the range of variation of k in the future, we would be in a position

to determine the optimal fuel mixture in this predicted range of k using Figure 10. However,

since k is governed by the future fuel price variations, as shown in the equation below, it would

be difficult for us to predict the range of k variation in the real world.

k
a

a

a
f

a
f

gas

coal

gas
gas

gas

coal
coal

coal

= =

−

−

'

'

860

860

∆

∆
η

η

(4)

where agas' and acoal': future operating profit of gas and coal

∆fgas and ∆fcoal: future variation of price of gas and coal

ηgas and ηcoal:  energy efficiency of gas and coal

Although, for example, our calculation uses acoal = 17 $/MWh and agas = 5 $/MWh by way of

reference (this means that k = agas/acoal = 5/17 = 29%), it cannot be taken for granted that this ratio

will remain in this range for the scheduled lifetime of the plant. Yet we will need some clue as to

the possible changes of this ratio to enable us to estimate the optimized gas/coal plant mix when

we need to develop the company’s future asset plan.

Figure 11 shows the variation of k simulated by using the historical data for the variations of

gas and coal prices during 1993-2003 and introducing the variations of the values for this period

into equation (4) on a monthly basis with keeping acoal = 17, agas = 5 and ηcoal = 0.3910, ηgas =

0.4000.

The simulation results make clear that the average k in this period is 23% and that the

standard deviation is 35%. If it were reasonable to expect that the future variations of k would

follow the same pattern as these historical variations, we would arrive at an asset mix favoring
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Figure 11. Simulation for Profit Margin Ratio of Gas/Coal using Historical Data
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coal-fired power plants, given the critical margin ratio kc in Figure 12. kc shows the critical k

with 0 slope for the expected profit per unit output ep consistent with a coal-fired share of coal%

p* (see equations below). In this case, we have kc = 74%. This means that when k is smaller than

74%, 100% coal-fired power generation would provide the maximum profit and when k is larger

than 74%, 100% gas-fired power generation would lead to the maximum profit.
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4. CONCLUSIONS

The results of this study related to a model company show that the expected profit of

companies emitting CO2 on a large scale as is the case in the energy intensive industry are

significantly affected by an increase in the carbon price. It can be seen that if the company

responds by fuel conversion from coal to gas, for example, to mitigate the profit decline, the

evolution of the gas price in the future will have a significant impact on the company’s profit and

so will the change in the future carbon price. This means that the relationship between fuel

margins determined by relative fuel prices and the expected carbon price in the future is a key

factor for the company in maintaining its profit level.

In order to examine the above relationship quantitatively, we have generalized the profit

structure of a company using two fuels for power generation. The results show evidence that the

benefits of fuel conversion might be compromised or lost when the operating profit for fuels with
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a lower carbon emissions fuel is below a certain critical level of the operating profit for a fuel

with a higher carbon emission level. This is because, a reduction in the operating profit can

cancel out, in certain cases, the benefit of the reduction in the payable carbon emissions brought

about by the change of fuel.

Applying the above relationship to multi-fueled companies that have coal and gas plants, it

can be seen that the company’s expected profit per unit power output will vary with percentage

share of coal-fueled generation and the gas/coal operating profit ratio as well as the average

carbon price. Using the predicted range of the future gas/coal operating profit ratio, we can

determine the optimized asset plan for such multi-fueled companies.

However, further study on future gas and coal price variation is needed, since it is difficult but

very important to predict the range of the gas/coal operating profit ratio in the future in order to

develop appropriate asset plans for the companies concerned.
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