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A Strategy for a Global Observing System for Verification of  
National Greenhouse Gas Emissions # 

Ronald G. Prinn*,†,§,•, Patrick Heimbach*,†,°, Matthew Rigby*,†,§, Stephanie Dutkiewicz*,†,§, 
Jerry M. Melillo‡, John M. Reilly§, David W. Kicklighter‡ and Caleb J. Waugh§  

Abstract 
With the risks of climate change becoming increasingly evident, there is growing discussion regarding international 
treaties and national regulations to lower greenhouse gas (GHG) emissions. Enforcement of such agreements is 
likely to depend formally upon national and sectoral emission reporting procedures (sometimes referred to as 
“bottom-up” methods). However, for these procedures to be credible and effective, it is essential that these reports 
or claims be independently verified. In particular, any disagreements between these “bottom-up” emission 
estimates, and independent emission estimates inferred from global GHG measurements (so-called “top-down” 
methods) need to be resolved. Because emissions control legislation is national or regional in nature, not global, it 
is also essential that “top-down” emission estimates be determined at these same geographic scales. This report 
lays out a strategy for quantifying and reducing uncertainties in greenhouse gas emissions, based on a 
comprehensive synthesis of global observations of various types with models of the global cycles of carbon dioxide 
and other greenhouse gases that include both the natural and human influences on these cycles. The overall goal is 
to establish a global observing and estimation system that incorporates all relevant available knowledge (physical, 
biogeochemical, technological and economic) in order to verify greenhouse gas emissions, as a key component of 
any global GHG treaty. 
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EXECUTIVE SUMMARY 
For treaties or legislation to control greenhouse gas (GHG) emissions to be effective, and 

considering that enforcement is likely to be practical only by national emission reporting or 
“bottom-up” methods, it is essential that these reports or claims be independently verified. In 
particular, any disagreements between these bottom-up emission estimates and independent 
emission estimates inferred from global GHG measurements (“top-down” methods) need to be 
resolved. Because emissions control legislation is national or regional in nature, not global, it is 
also essential that “top-down” emission estimates be determined at these same geographic scales.  

This report lays out a strategy for quantifying and reducing uncertainties in greenhouse gas 
emissions, based on a comprehensive synthesis of global observations of various types with a 
model of the global cycles of carbon dioxide and other greenhouse gases that includes the natural 
and human influences.  

The goal is to establish a system that incorporates all available knowledge (physical, 
biogeochemical, and economic) to verify greenhouse gas emissions, as a key component of a 
global greenhouse gas treaty. The needed model consists of four sub-models: 

(1) A model of the global transport and chemical processes affecting GHGs in the atmosphere;  
(2) A model of the air-sea exchange of GHGs and the subsequent relevant transport, chemical, 

and biological processes affecting them in the ocean;  
(3) A model of the exchange of GHGs with the land vegetation and soils and subsequent 

relevant biological and chemical processes in the land (terrestrial) system;  
(4) A model that calculates emissions based on reliable national economic data regarding 

sectoral activities (agriculture, energy, production, transport) and trade among nations.  
These sub-models each consist of numerical calculations, encapsulated in complex software 

or code. The overall global model requires that these sub-models be “coupled” to one another, 
so that the fate of GHGs (both natural and anthropogenic) is followed through the four systems, 
and fluxes or flows from one to the other are coordinated so that the full system is consistent, 
meaning that at any time the total budget of gases is fully accounted for. This fully-coupled 
system model we refer to as the “forward model”. 

The “forward model” would be a complex system that would produce estimates of GHG 
distributions in the terrestrial, ocean, atmosphere and human systems from some initial time 
(say the beginning of 1990, which is the reference year for the U.N. Framework Convention on 
Climate Change) forward to the present. This is referred to as the “forward model integration”. 
Model results of, for example, global maps of CO2 levels could be provided at any interval 
(e.g., every hour, day or year).  

However, there will be significant deviations between the forward model and real world 
“observations” of GHGs (and other components that influence the distribution of GHGs, for 
example human activity and the amount of carbon that temporally resides in land plants and 
the ocean). These deviations will be a result of several factors: 

• uncertainties in the observations, 
• uncertainties in the GHG emissions, 
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• uncertainties within the model components (the sub-models are not completely faithful 
representations of the real world and they also need to make assumptions about the “initial 
conditions” for the integration). 

Fortunately, there are advanced methodologies that can significantly decrease the 
discrepancies between model results and the observations (and which still encapsulate 
knowledge of the observational uncertainties). This is true even if there is a suite of observations 
that are on very different spatial and time scales. The application of an “adjoint” model that 
follows the “forward model” through its integration can in retrospect provide quantitative 
information on how changes in model outputs are linked to the inputs, that is, it very efficiently 
calculates the sensitivities of model outputs to any model input. This “adjoint model” which is as 
complex as its “parent” forward model, is produced using computer software that systematically 
works through the forward model code (so called automatic differentiation tools). 

The information that the adjoint model gives can be used in several ways: 
• it can suggest the value that the model parameters should be for the forward model to 

produce GHG values that are in closer consistency with the real world observations; 
• it can suggest how first-guess (or reported) GHG emissions should be corrected such as to 

obtain a better fit between observed and simulated GHG concentrations everywhere; 
• it can suggest what the initial values of GHG concentrations need to be at the start of the 

integration (e.g., January 1990, as in our example above) so that the GHG model values 
are most consistent with the observations. 

In short, the adjoint model weighs all available ingredients (model, observations, and prior 
uncertainties) to provide quantitative information on how a very large set of uncertain variables 
(parameters, first-guess emissions, initial conditions) ought to be modified such as to produce 
optimal consistency among all ingredients. In this way the forward model can be “constrained” 
by the observations to produce an “optimal estimate” in terms of consistency between the model 
and the real world. Importantly, the adjustment of uncertain parameters is performed within their 
expected or prior error bounds, and the optimal estimate comes with posterior uncertainties that 
quantify the remaining uncertainties after all ingredients have been used. 

Other estimation techniques are available (some of which are subsumed under the category of 
ensemble or Monte Carlo methods), but many of these suffer from the “curse of dimensionality”; 
that is they are not suitable for dealing with a very large set of uncertain variables such as 
encountered in the problem at hand. The adjoint method is among the most powerful methods to 
tackle the dimensionality problem. In the framework suggested here, each sub-model 
(atmosphere, ocean, terrestrial, and economics) would have to be adjoined. The fully-coupled 
system (all components linked together) would then be adjoined, so that sensitivity and error 
propagation among the components could be quantified and corrected. 

We argue that an accurate estimation system can only be successful in a fully-coupled context 
that can account for the significant variability in background fluxes (both emissions and sinks) as 
a result of internal climate variability in the atmosphere, ocean, and land systems, and variability 
in biological activity on land and in the ocean. Comprehensive verification efforts such as the one 
proposed are looking to the relevant agencies (notably NASA, NOAA, and their international 
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counterparts) to ensure the sustained provision and improvement of optimal flow fields, suitable 
for accurate tracer transport purposes. A long-term vision would be the combined inversion of 
both the trace gas evolution and physical flow field used to advect them. 

With this “fully-coupled and adjoined” estimation system we could address the critical 
questions: what are the errors in the national emission reports; how can we correct the reports 
in order to bring the forward model into optimal consistency with the observations of GHGs and 
other components of the coupled system that influence the GHG distributions; and, how large are 
the residual uncertainties in the emissions reports?  

In this way the estimation system provides an extremely powerful tool to verify national 
greenhouse gas emissions. There are however many challenges in developing such a tool and 
producing such estimates: 

(a) the uncertainties in, and scarcity of, the current observations of GHG distributions in the 
Earth system (land, ocean, atmosphere); 

(b) the uncertainty, scarcity or lack of observations of components that have substantial 
influence on GHG distributions (e.g., carbon stored in plants or in the deep ocean); 

(c) the fidelity of our model components and our parameterization of key features (e.g., 
transport of carbon from the surface ocean to the deep ocean); 

(d) continued access to best-possible estimates of atmospheric and oceanic flow fields of ever 
increasing quality through sustained estimation efforts supported by the relevant agencies. 

The Global Emissions Estimation System 
The proposed research path involves merging the above fully-coupled and adjoined model 

with a rigorous application of advanced optimal estimation and control methods that are well 
known in engineering. The merger comprises several steps:  

(1) All available observations (satellite and in situ) would be brought into consistency with 
the above fully-coupled model through a weighted least-squares optimization, based on 
the adjoint method. The coupled model is driven by best-possible estimates of the actual 
atmospheric and oceanic circulation fields provided by so-called reanalysis or state 
estimation procedures. These are not altered in the estimation procedure and are referred to 
as “passive” variables. “Control” variables, that are uncertain and adjusted as a part of the 
inversion process, include model parameters, initial conditions in GHG concentrations, as 
well as first-guess distributions of surface fluxes of greenhouse gases (including 
anthropogenic emissions from economic modeling and reported bottom-up emissions). 
Any variable (e.g., atmospheric CO2 levels) that can be affected by changes in any of the 
control variables is referred to as “active” and is generally observable. 

(2) The adjusted control variables then provide information on the extent to which prior 
information is consistent with the observations and the known dynamics. Large adjustments 
in the surface fluxes point to inconsistencies between prior (or bottom-up) values and what 
is estimated from observation and model synthesis (posterior or top-down values);  

(3) The second-derivative information obtained at the minimum of the least-squares misfit 
function provides information about output (posterior) uncertainties of the controls in the 
context of all the observations used. The calculation of such posterior uncertainties is a 
crucial step in the process as it provides error bounds on the adjusted surface fluxes;  
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(4) The inferred surface fluxes along with their error bounds are used as best estimates in an 
inversion of an economic model that links emissions reports and cross-sectoral economic 
activity (agriculture, energy, transportation) with surface fluxes. The result is an estimate 
of corrected economic parameters, and the correction of reported (bottom-up) emissions in 
particular, together with residual (posterior) error bounds. 

The Figure below illustrates the coupled-model framework or system for estimation of GHG 
fluxes of the three major GHGs with both anthropogenic and natural influences on their global 
cycles (CO2, CH4, N2O). Model names represent models available at MIT and are for illustration 
only. More simplified frameworks are applicable to purely anthropogenic greenhouse gases 
(chlorofluorocarbons (CFCs), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), etc.).  
The availability of such a formal estimation system also provides a powerful quantitative basis 
for informing observing-system design. Specifically, in the design phase of the needed new 
global system, application of this coupled model to so-called “Observing System Simulation 
Experiments (OSSEs)” will be a critical contribution as discussed below. The success of the 
application phase of the system will furthermore depend on taking maximum advantage of all 
available observations of the diverse relevant variables of the various components, and accurate 
knowledge of their uncertainties. Design studies can address questions such as: which existing or 
proposed observations contribute most to constraining greenhouse gas emissions?; what does an 
optimal observing system that minimizes uncertainties in estimated emissions look like (i.e. 
which variables to measure, where to measure them and at what resolutions, precisions and 
accuracies)?; and, which new sensors would best serve the targeted purposes? 
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No framework currently exists that attempts to account for all the tasks described above. Yet, 
various reports, including the recent study by the National Research Council (NRC) on “Verifying 
Greenhouse Gas Emissions: Methods to Support International Climate Agreements” make strong 
calls for the need of such a system. Conceptually, the system we propose is not unlike those used 
in operational numerical weather prediction, although our emphasis is on quantifying and 
reducing uncertainties, rather than prediction. While there are substantial technical challenges to 
be overcome, studies in more limited settings (atmosphere-only, ocean-only, land-only inversions) 
are showing promising results. Given the societal and economic implications, tackling the 
rigorous coupled end-to-end problem is a worthwhile and timely endeavor.  

The Global Observing System: Present and Future 

The current Global Observing System is measuring various aspects of the evolving 
composition of Earth’s atmosphere, oceans and land ecosystems and is providing the fundamental 
understanding needed to construct accurate process models. These measurements include: 

• Surface-based in situ measurements of all major GHGs at high-frequency stations 
augmented by flask sampling; 

• Remote sensing of mole fractions of atmospheric CO2, CH4 and N2O, and other GHGs both 
from the surface and from space; 

• Vertical profiles of GHGs using aircraft and balloons; 
• Land GHG flux measurements, using eddy covariance and smoke-stack monitoring; 
• In situ and satellite observations of land vegetation, soil moisture and other relevant 

biogeochemical and hydrologic variables for land GHG flux determination; 
• Oceanic measurements of partial pressures of CO2, N2O (pCO2, pN2O in the Figure above) 

and other GHGs for flux determination; 
• In situ and satellite measurements of biologically and biogeochemically important oceanic 

tracers, and relevant material fluxes; 
• Economic data on production and trade flows associated with industrial and agricultural 

activities that generate GHGs. 
The combination of all of these complementary data with state-of-the-art global models of 
atmospheric chemistry and circulation, land ecosystems, oceanic circulation and 
biogeochemistry models is already providing a significant advance in our understanding of the 
global sources, chemistry, transport and sinks of the trace substances determining atmospheric 
composition and air quality, and the radiative forcing of climate change. 

However, while it is essential that this system continue to operate, in order to address the 
challenge of accurate GHG emissions verification it will need significant improvements: 

(a) For the current atmospheric GHG monitoring systems, future treaty verification will 
require significant improvements in the precision and accuracy of the remote sensing 
measurements, new approaches for inverting satellite radiance measurements over partially 
clouded regions, and order of magnitude increases in the spatial coverage of the high-
frequency in situ measurements.  
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(b) For the current oceanic monitoring systems, future treaty verification will require 
continued and consistent remote sensing of ocean color properties, significant increases in 
the spatial coverage of the in situ measurements of carbon, pCO2 (partial pressure of CO2, 
which is the typical measure of CO2 content in the ocean, whereas mole fractions tend to 
be used in the atmosphere) and other important biogeochemical properties, both at the 
surface and deeper in the water column of the oceans. New networks (perhaps vertical 
profiling floats) will need to be established as ship-board measurements alone will not 
provide the needed spatial and temporal coverage. 

(c) For the current land monitoring systems, future treaty verification will require: significant 
improvements in remotely-sensed measurements of changes in vegetation cover, above-
ground plant biomass and soil moisture; tracking of major ecosystem disturbances (e.g., 
insect outbreaks, fire, wind damage); increases in the number of in situ measurements of 
CO2, N2O and CH4 fluxes along climatic gradients within major vegetation types (biomes) 
and for various management regimes (e.g., fertilization, irrigation, tillage) in agro-
ecosystems; and increases in the number of in situ measurements of nitrogen deposition, 
which can affect net fluxes of CO2, N2O and CH4. 

For the future Global Observing System, new measurement technologies are beginning to 
emerge that have the potential to dramatically reduce the uncertainty of GHG emissions estimates. 
Also, further advances in the knowledge of source and sink processes and oceanic and 
atmospheric circulations, and the resultant improvements in the accuracy of process models will 
lower uncertainties in the significant background fluxes of GHGs, which are due to intrinsic 
climate variability in the atmosphere, ocean, and land. Finally, the inclusion of reliable economic, 
production and trade flow data along with the GHG measurement data could also improve 
emission estimates. Some examples of these potential breakthroughs are briefly outlined below. 

(i) High-frequency carbon dioxide, methane and nitrous oxide isotopologue observations 
For GHGs that have natural, anthropogenic, industrial and biogenic emissions, such as CO2, 

CH4 and N2O, measurements of atmospheric abundances alone are often inadequate to differentiate 
precisely among these different sources. High frequency in situ measurements of not just the total 
mole fractions of these gases, but also their isotopic compositions (12C, 13C, 14C, 14N, 15N, 16O, 18O, 
H, D) are a new frontier in global monitoring and hold the promise of revolutionizing understanding 
of the natural cycles of these gases and verifying claims of emission reductions. High-frequency 
in situ isotopic measurements are now becoming feasible using optical (laser) detection. Recent 
improvements in mid-infrared quantum cascade lasers (QCL) enable continuous wave (CW) 
operation near room temperature with higher power, narrower line-widths, and higher spectral 
mode purity than previously possible. For CH4 and N2O, automated cryogenic pre-concentration 
will be necessary to measure their isotopic compositions with the precision necessary to 
differentiate their various surface fluxes (biogenic, anthropogenic) and photochemical sinks.  

(ii) Space-Based Differential Absorption Lidar (DIAL) 
Current space-based GHG observations rely on spectral measurements of backscattered or 

reflected sunlight (particularly in the near-infrared). This limits these observations to the daytime 
and at low-latitude, and therefore could induce a bias in the derived emissions. Plans are 
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underway for active systems in which space-based instruments detect CO2 concentrations using 
lidar. Such potential missions are NASA’s Ascends and ESA’s A-SCOPE. The use of lidar will 
allow measurements throughout the day at all latitudes. Furthermore, a measurement of the 
atmospheric path is obtained, providing information about scattering by aerosols. 

(iii) Enhanced coupled Forward Models and their Adjoints 
In this report we recommend a modeling framework that will:  
• Contain a detailed economics model that will provide initial estimates of release rates of 

anthropogenic GHGs to the atmosphere, and will help attribute emissions to the nations 
responsible through use of trade-flow information on fuels, agricultural products and 
energy-intensive goods; 

• Simulate atmospheric and oceanic trace gas transport and chemistry using the highest 
resolution meteorological and oceanic analyzed flow fields available; 

• Simulate terrestrial sources and sinks of CO2, CH4 and N2O using a natural and managed 
ecosystem model, constrained offline by meteorological data and hydrological measurements; 

• Simulate natural oceanic sources and sinks of CO2, CH4 and N2O using a physical-
biogeochemical-ecosystem model; 

• Be fully coupled between each model component such that global budgets of all GHGs are 
fully accounted for at all times and change strictly, in addition to emissions, according to 
known physical and biogeochemical conservation laws; 

• Be fully adjoined in order to quantify the sensitivity of all of the described measurements 
throughout the model environment, to changes in each uncertain model parameter. This 
adjoined system will allow the incorporation of the current measurements, and desired 
future observations, to improve the accuracy of estimates of both emissions and uncertain 
model parameters. The simultaneous determination of uncertain anthropogenic and natural 
model parameters is crucial, since this will allow covariance information between various 
model components and residual uncertainties in emissions estimates to be quantified. 

(iv) Incorporation of Reliable Economic Data 
The accuracy of emission estimates is expected to be significantly improved by inclusion of a 

reliable data-based economics model that will provide initial estimates of release rates of 
anthropogenic GHGs to the atmosphere, and will help attribute emissions to the nations 
responsible through use of trade-flow information on fuels, agricultural products and energy-
intensive goods. The most efficient way to incorporate economic data is to develop an 
accounting framework that in the first step takes advantage of available data. The required model 
could follow the IPCC three-tier methodology with the tier level being determined based on data 
availability, the level of detail needed to adequately constrain emissions estimates, and the 
degrees of freedom in the inverse approach. Within the model, the trade of emission-containing 
goods between countries will be accounted for using trade data so that measured emissions from 
in situ stations and satellite networks will match the emissions of country consumption, not 
production. Although the methodology is laid out, additional work will need to be done to 
construct a system for mapping the economic data to a global grid. 
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1. INTRODUCTION 

1.1 The Scientific, Technological and Policy Challenge 

The uncertainties of current regional emission estimates either by top-down or bottom-up 
approaches are commonly greater than 10-20% – sometimes much greater – and thus are grossly 
inadequate for verifying claims of emission reductions by nations. Looking to the future, it is 
clear that the spatial density of precise high-frequency atmospheric trace gas measurements, 
whether using in situ or remotely sensed methods, needs to be increased by an order of 
magnitude or more. Equally important, the knowledge (theory, observations) embedded in 
models of industrial and ecosystem fluxes should be incorporated into the model and estimation 
system to enable estimation of uncertain parameters in these flux models as opposed to simply 
the fluxes themselves. In essence, this approach combines the best features of the bottom-up and 
top-down methods in flux estimation. 

1.2 Previous Work 

Interest in this area has increased substantially in the past two years spurred by a number of 
meetings and reports. Some ones of significance to our study are discussed briefly below. 

(a) DOE/NASA/NOAA Greenhouse Gas Information System Workshop, Sandia National 
Lab., May 2009: This workshop was the first significant meeting devoted specifically to assessing 
the potential requirements and completing a gap analysis for an operational Global Greenhouse 
Gas Monitoring and Information System. While international cooperation was an important 
consideration, this workshop was focused on U.S. national capabilities. The goal was to identify 
key requirements that need to be addressed in developing a scientifically and operationally robust 
system for verifying compliance with potential climate agreements. The workshop was conducted 
as a series of plenary and breakout working sessions by topic. The desired outcome of the meeting 
was to stimulate a community consensus regarding the specific requirements for a scientifically 
and operationally robust global greenhouse gas information system, an integrated assessment of 
the gaps between those requirements and current capabilities, and options for closing the gaps.  

(b) 8th Quadrennial International Carbon Dioxide Conference (ICDC8), Jena, Germany, 
September 2009: In what has become an authoritative scientific platform on carbon dioxide, the 
conference in Jena highlighted the multi-disciplinary nature of the carbon cycle problem, from 
basic science to operational monitoring and economic mitigation approaches. Crucial questions 
addressed at the conference are summarized by Heimann (2010), and a collection of latest 
findings was published in a special issue of Tellus B, Vol. 62(5), November 2010. 

(c) Royal Society, London meeting on “Greenhouse Gases in the Earth System”, February 
2010: This meeting discussed the use of long-term monitoring to understand greenhouse gases in 
the Earth system. The papers presented showed overall that new scientific advances promise 
regional audit of emissions, assessment of uptakes, and better understanding of controlling and 
feedback processes. The participants assessed these issues that are shaping the agenda for the next 
20 years. This meeting was held as a part of 350th Anniversary of the Society. The papers will be 
published in a special issue of the Philosophical Transactions of the Royal Society A. 
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(d) NRC 2010 Report, “Verifying Greenhouse Gas Emissions: Methods to Support 
International Climate Agreements”: This report by the National Research Council (Pacala et 
al., 2010) reviewed national inventories of greenhouse gas emissions, measuring fluxes from 
land-use sources and sinks, emissions estimated from atmospheric and oceanic measurements, 
and provided a set of recommendations for future research. Very relevant to our study here was 
their recommendation for CO2: “Develop a state-of-the-art carbon data assimilation system that 
is coupled and/or synergistic with meteorological, land, and oceanographic data assimilation 
systems for the United States. This would require new approaches for coupling circulation and 
biogeochemical models and for deriving biogeochemical properties (and hence surface fluxes) 
from the observations. It would also require enhanced collaboration among federal agencies with 
carbon observations, especially between NASA and NOAA, so that the best estimates and the 
uncertainties in the meteorology become integral components of emission estimation from a 
replacement OCO”. 

(e) NIST Greenhouse Gas Emissions Quantification and Verification Strategies 
Workshop, May, 2010: The purpose of this 2010 workshop was to better understand the 
constraints and uncertainties incurrent “bottom-up” emissions quantification methods, and then 
to define a path that will reduce these uncertainties. It is one of a series sponsored by the 
National Institute of Standards and Technology (NIST) to identify the key technology and 
measurement areas related to issues of national and global importance. Emissions of primary 
interest will be those defined by regulation and legislation: carbon dioxide, methane, nitrous 
oxide, sulfur hexafluoride, and fluorinated gases. NIST’s interest was stimulated by the Energy 
Policy Act of 2005, Title XVI, Sec. 1610 (H), that includes a mandate for the Department of 
Energy to collaborate with NIST to develop standards and best practices for calculating, 
monitoring, and analyzing GHG intensity.  

(f) NASA Carbon Monitoring Scoping Study Workshop, Boulder, July, 2010: The 
primary objective of this workshop was to provide background, context, and input for NASA’s 
Carbon Monitoring System strategic development, both in the near and long term. A particular 
focus was to report on information that will integrate the agency’s efforts related to carbon 
decision support. This study was intentionally focused on potential roles for NASA in supporting 
GHG/carbon monitoring efforts by the U.S. and/or international community. Topics covered 
included GHG emissions from area sources and urban “domes”, carbon stocks and stock 
changes, ocean carbon fluxes, observations, modeling and data assimilation, and decision-
support issues. A Final Report on the workshop is available online (NASA, 2010). 

(g) This general subject has also been a focus of research over the past decades resulting for 
example in a number of books (e.g., Kasibhatla et al., 2000; Enting, 2006). Papers that have 
appeared in the scientific literature on this subject so far have focused on quantifying the benefits 
of various measurement systems for flux estimation in single aspects of the Earth system (e.g., 
carbon dioxide flux estimates from satellite observations; Kaminski et al., 2010; Chevallier et 
al., 2007, 2009).  
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1.3 Goals and Scope of This Report 

This report outlines our current ability to estimate global greenhouse gas (GHG) emissions 
and examines how we might move towards an Earth observation system that can accurately verify 
emissions on national and regional scales, as will likely be required by future climate treaties.  

The greenhouse gases that will be the major focus of this report are broadly defined by the 
gases regulated under the Kyoto protocol: 

• Carbon dioxide (CO2) 
• Methane (CH4) 
• Nitrous oxide (N2O) 
• Chlorofluorocarbons (CFCs) 
• Hydrofluorocarbons (HFCs) 
• Perfluorocarbons (PFCs) 
• Sulfur hexafluoride (SF6) 

Although CO2 will be the major focus of future verification systems since it is the major 
contributor to anthropogenic long-lived greenhouse gas (LLGHG) radiative forcing, it is highly 
important to also consider the non-CO2 GHGs since, they collectively contribute one third of the 
LLGHG radiative forcing (Forster et al., 2007) and many have extremely large global warming 
potentials (GWP), making them likely first targets of emissions reduction strategies. It should be 
noted that additional compounds that strongly absorb infrared radiation might also fall under 
future climate treaties (e.g., nitrogen trifluoride, NF3). 

At the center of this discussion will be an outline for the development of the needed 
comprehensive coupled atmosphere-ocean-biosphere-economics modeling and optimal 
estimation framework and its application to defining the structure and observational assets of the 
desired emissions verification system. Specific goals for this subsequent development will be: 

• To create a modeling and estimation framework that is capable of performing the most 
accurate emissions verification and Earth system model parameter optimization possible 
using diverse types of existing observations, and that will be in place to refine these 
estimates as new measurements become available. 

• To perform extensive Observing System Simulation Experiments (OSSEs) for greenhouse 
gas emissions verification and GHG cycle dynamics. These OSSEs will rigorously test the 
ability of the current observing systems to resolve surface fluxes and emissions model 
parameters. More important, they will also allow us to explore where gaps exist in our 
current measurement capabilities, and quantitatively determine the specifications for future 
observing systems. 

In this report we propose a modeling and optimal estimation framework that will be able to fulfill 
these aims. The proposed system will: 

• Simulate atmospheric and oceanic trace gas transport and chemistry using the highest 
resolution and best-possible meteorological and oceanic physical flow fields available 
from the existing major reanalysis and estimation projects. 
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• Contain a detailed economics model that provides first-guess estimates of release rates of 
anthropogenic GHGs to the atmosphere, and helps attribute emissions to the nations 
responsible through use of trade-flow information on fuels, agricultural products and 
energy-intensive goods.  

• Simulate terrestrial sources and sinks of CO2, CH4 and N2O using a natural and managed 
ecosystem model, constrained offline by meteorological data and hydrological 
measurements. 

• Simulate natural oceanic sources and sinks of CO2, CH4 and N2O using a physical-
biogeochemical-ecosystem model. 

• Be fully coupled between each model component such that global budgets of all GHGs are 
fully accounted for at all times and change strictly, in addition to emissions, according to 
known physical and biogeochemical conservation laws. 

• Be fully adjoined so that extremely large quantities of data can be used to constrain surfaces 
fluxes and model parameters using a variational assimilation technique, and provide 
residual (posterior) error bounds. 

To frame this discussion, we will outline the current state-of-the-art models that could be used 
in such a coupled framework (Section 2). We will then go on to discuss the current observations 
relevant to trace gas emissions verification (Section 3). A key feature of the proposed collection 
of models is that the system should be fully adjoined. This will allow us to quantify the 
sensitivity of all of the described measurements throughout the model environment, to changes in 
each model parameter. Ultimately this adjoint system will allow the incorporation of the 
measurements described above, and future observations, to improve uncertain parameters. 
The theoretical framework for such a coupled adjoint-based optimal estimation system is 
outlined in Section 4.  

The initial step after the creation of the framework will be to perform a series of OSSEs where 
emission outputs from a simulation will be used as “truth”, and “pseudo-datasets” will be 
constructed using “measureable” outputs from the model (e.g., atmospheric concentrations). 
Realistic pseudo-data are created by adding random noise to the simulated measurements, the 
magnitude of which can informed by specifications of existing and future observations. These 
experiments will determine the level of model parameter uncertainty reduction (compared to 
prior estimates) that can be obtained by existing observations. They will then allow us to 
quantify the additional error reduction that may be achievable by future monitoring systems. 
These OSSEs will inform observation system design, by highlighting areas of the world which 
require increased measurement coverage, by identifying new variables that should be measured, 
and by determining precisions that are required in order for maximum error reduction to be 
achieved using the fewest additional observations. Future directions and potential OSSEs are 
discussed in Section 5. 
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2. FORWARD MODEL FRAMEWORK AND COMPONENTS 

In reviewing the state of knowledge in Section 1, a compelling case has been made for the 
strongly coupled nature of the carbon cycle problem, and the significance of background fluxes 
of CO2 within and across the components due to natural fluctuations in the climate system, such 
as ENSO or volcanic eruptions. Section 2 describes in detail the component models used to 
simulate the coupled carbon cycle. Corresponding observations available to constrain each of 
these components will be described in Section 3. 

2.1 Ocean circulation and biogeochemistry 
Ocean biogeochemical models are designed to capture the cycling of bio- and geochemically 

important elements (e.g., nitrogen, phosphorus, carbon) within the surface and deep waters of the 
global oceans and their fluxes to and from the atmosphere (although recent developments are 
underway to also include riverine fluxes to the ocean, e.g., Manizza et al., 2009). These models 
typically capture the transformation of elements between inorganic and organic compounds as 
well as their repositioning within the oceans by ocean currents and mixing. It is only over the last 
two decades that such global three-dimensional (3-D) models have become feasible due both to 
the computational cost and to prior lack of knowledge on how to parameterize the processes 
involved. The ocean carbon modeling intercomparison project (OCMIP) produced some of the 
first comprehensive studies of ocean biogeochemical cycles, and many of the chemical protocols 
developed in that project are employed in most current, more sophisticated models. One of the 
findings of OCMIP was that the integrity of the physical environment was crucial to obtain 
reasonable biogeochemical fluxes (Doney et al., 2004). 

In this section we review some of the key features needed to capture the cycling of key 
greenhouse gases in the oceans. For the purposes of the coupled Earth system model framework 
described in this report, the ocean biogeochemical model needs to provide the global patterns 
and timings of the flux of greenhouse gases to and from the ocean surface. This pattern requires 
knowledge of the redistribution of that gas by the physical circulation and mixing within the 
ocean, and through chemical and biological interactions within the water column. First we 
review the needs of the physical environment and the recent developments of ocean state 
estimates (sometimes somewhat inadequately referred to as “reanalysis” products) that we 
believe are essential. We then discuss how to parameterize the fluxes of gases between the ocean 
and the atmosphere. We provide a rationale for the biogeochemical parameterizations we believe 
are important for capturing the cycling of carbon (and therefore CO2) in the ocean, and highlight 
a few of the many models that are available. 

2.1.1 Ocean circulation 

Knowledge of the physical state of the ocean (temperature, salinity, flow field) and its 
evolution in time through advection and diffusion is a crucial ingredient to modeling 
biogeochemical cycles in the ocean. Oceanic variability on seasonal to inter-annual to (multi-) 
decadal time scales and associated oceanic teleconnections (e.g., Liu and Alexander, 2007) 
strongly influence the air-sea fluxes of trace gases and are thus responsible for a significant part 
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of the background tracer concentration variability in the atmosphere. Examples are the 
El Niño/Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), or the Atlantic 
Meridional Overturning Circulation (AMOC). 

An optimal way to provide a complete time-evolving state is through synthesis of all available 
observations (satellite and in situ) with the best-possible physics and dynamics as encapsulated 
in a general circulation model. The result is a product that optimally fits all observations within 
prior errors, that is consistent with the dynamics and physics that will drive tracer simulations, 
and that fulfills known physical conservation laws at any moment in time. Several groups have 
produced such state estimates for the global ocean over the past few decades. A compilation of 
these efforts is summarized in the Community Whitepaper for OceanObs’09 (Lee et al., 2009). 
An important distinction between available products is in the estimation (or data assimilation) 
scheme used in the inversion. Research indicates that the requirement of dynamical consistency 
over the entire estimation period considered seriously limits the number of suitable estimation 
products for driving biogeochemical models (e.g., McKinley et al., 2004). Artificial sources or 
sinks that are incurred at analysis times in sequential estimation (or filter-based) schemes (e.g., 
optimal interpolation or Kalman filtering) prohibit faithful representation of tracer advection and 
diffusion processes over time scales relevant to the carbon cycle modeling. 

One of the few products that is fully variational (or smoother-based) in that it fulfills the 
known conservation laws exactly is the one produced by the “Estimating the Circulation and 
Climate of the Ocean” (ECCO) consortium which has been developed in part to support the 
Global Ocean Data Assimilation Experiment (GODAE). The so-called ECCO-GODAE model is 
a 1º horizontal resolution, 23-layer configuration with a KPP mixed-layer (Large et al., 1994), 
Gent and McWilliams (1990) eddy mixing scheme and dynamic sea-ice. ECCO is applying a 
technique known as the adjoint or Lagrange multiplier method (similar, but in important ways 
different to 4DVar in meteorology) to determine the global, time-dependent ocean circulation. It 
uses the MIT ocean general circulation model (Marshall et al., 1997a,b), a state-of-the-art 
general circulation model, as dynamical interpolator, and almost the entirety of the oceanic 
observations available from 1992 to present (Stammer et al., 2002; Wunsch and Heimbach, 
2006, 2007). The results (http://www.ecco-group.org) involve about 410 million data constraints, 
each of which is weighted by an estimate of the observational error. The backbone of the data 
constraints is formed by the quasi-global satellite altimetric data, the mean dynamic topography 
derived from a satellite gravity-derived geoid, the in situ observations collected during WOCE, 
and the recent global Argo profiling program. The NCEP/NCAR reanalysis serves as 
atmospheric forcing (Kalnay et al., 1997), and is modified by the fitting procedure. The adjoint 
model used in the gradient-based optimization procedure has been derived using automatic/ 
algorithmic differentiation (AD; see Giering and Kaminksi, 1998; Marotzke et al., 1999; 
Heimbach et al., 2005; Heimbach, 2008) permitting the use of constrained least-squares. The 
ECCO-GODAE results are believed to be “best” estimates of the ocean circulation for 1992-
2008. The same ocean model and estimation procedures have been used in an offline mode to 
study transient tracers (tritium, CFCs, etc.; Li and Wunsch, 2003, 2004; Khatiwala, 2007), 
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simple biogeochemical model to look at CO2 and O2 fluxes (Verdy et al., 2007) and for a more 
sophisticated ecosystem model (Follows et al., 2007; Dutkiewicz et al., 2009). 

The use of the state estimates in the context of a global carbon cycle estimation system will be 
in so-called “passive mode”, in the same way as atmospheric flow fields taken from reanalysis 
products will be used to drive atmospheric transport models. What this means is that neither of 
these physical states will be modified in trying to match observed and simulated trace gas 
concentrations, and they are not an active part of the underlying control problem (see Section 4). 
It is believed that the determination of optimal flow fields for the atmosphere and ocean is, for 
the time being, best pursued separately from the determination of time-varying passive tracer 
concentrations such as pursued here. We emphasize, however, that optimal estimation of such 
flow fields and their provision through sustained efforts are essential. The passive nature of the 
physical states is reflected in Figure 2.5.1. 

2.1.2 Ocean biogeochemistry 

For the purposes of the coupled model framework described in this report, the ocean 
biogeochemical model needs to provide the global patterns and timings of the flux of greenhouse 
gases to and from the ocean surface. In this section we review the parameterization of fluxes of 
greenhouse gases between air and ocean, and between land and ocean. We also expand on the 
elements needed to capture the cycling of carbon dioxide through the system. 

The standard air-sea gas transfer formulation for a gas A is:  
 )][]([ satw AAkF != "  (2.1.1) 

where F is upward flux of A, kw is the gas transfer coefficient specific for gas A, ρ is the density 
of the surface water, [A] is ocean surface concentration of gas A and [A]sat is the concentration of 
the gas if the gas was in equilibrium with atmosphere (the saturated concentration). The gas 
transfer coefficient kw is a function of sea surface temperature and wind speed, though the exact 
formulation remains an uncertainty in models. kw is usually expressed as a power function of the 
wind speed, but the value of the exponent has been estimated to be anywhere from 1 to 3 (Liss 
and Merlivat, 1986; Wanninkhof, 1992; Wanninkhof and McGillis, 1999; Nightingale et al., 
2000; Ho et al., 2006; Wanninkof et al., 2004), and the estimates of the scaling factor for carbon 
dioxide of the power function (usually derived from ocean bomb 14C inventories) ranges from 
0.26 to 0.39 (Wanninkhof, 1992; Sweeney et al., 2007). This and other coefficients are however 
in general specific for the individual gases. Usually not parameterized is the impact of bubble 
injection, which may be important (see for instance Stanley et al., 2010). Surface seawater 
density is calculated from the sea surface temperature and salinity. For gases that do not 
chemically interact in seawater and are not consumed or produced during biological activity 
(e.g., CFC’s) [A] is straightforward, and is set by the advection and diffusion of the gas within 
the ocean. However for more complex gases (e.g., CO2) finding [A] is more complicated (see 
below). [A]sat is a function of the atmospheric concentration of A, atmospheric pressure, ocean 
surface temperature and salinity and the coefficients of the function are specific for the type of 
gas. 
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2.1.2.1 The Carbon Cycle 

The ocean stores more than 50 times the inorganic carbon as the atmosphere and at least 15% 
of the atmospheric inventory of carbon passed through the ocean every year: there is a dynamic 
and crucial interaction between the two systems that will be essential to parameterize well for any 
attempt to follow the pathway of emissions. The oceans take up about 20 to 35% of anthropogenic 
CO2 emissions, though the capacity of the ocean to continue this uptake is changing (Khatiwala et 
al., 2009; LeQuere et al., 2009). The growth of atmospheric CO2 varies considerably more than 
the estimated anthropogenic emissions (Conway et al., 1994; Peylin et al., 2005) suggesting that 
there is large variability in terrestrial and ocean CO2 uptake. While the atmospheric carbon 
inventory is mostly in the form of CO2 gas, in the ocean dissolved inorganic carbon (DIC) is 
composed of [CO2], [HCO3] and [CO3]. The amount of [CO2] at any place and time is a function 
of the total DIC, but also temperature, salinity, alkalinity, boron, silicate and phosphate 
concentrations. Since the individual patterns of these variables are quite different and can vary 
significantly over the seasons, the pattern of [CO2] (or pCO2) varies over a range of about 
200 ppmv spatially and temporally (see Figure 2.1.1). Since it is assumed that the three chemical 
forms of inorganic carbon are influenced by physical and biological redistribution in the same  

 
Figure 2.1.1. Spatial and temporal variability in ocean surface pCO2. (a) Global map interpolated from 
ship board observations for January 2000 (from Takahashi et al.,2009); (b) Timeseries at location of 
Bermuda Atlantic Timeseries Station (BATS), black from in situ observations (Bates, 2007), red from 
biogeochemical model of Ullman et al. (2009); (c) Timeseries from northwest Atlantic ocean, black from in 
situ observations (Corbiere et al.,2007), red from biogeochemical model of Ullman et al. (2009). pCO2 
varies widely as a function of (mainly) temperature and dissolved inorganic carbon (DIC) concentrations 
in the water: warmer water has higher pCO2 and upwelling water rich in DIC has higher DIC. Where pCO2 
is higher than the air concentration there will be outgassing of CO2 from the ocean to the atmosphere. 
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way, ocean biogeochemical models usually consider the fate of total dissolved inorganic carbon  
and determine the local pCO2 only for the purpose of the air-sea flux calculations ([A] in Eq. 2.1.1). 

The seasonal cycle of pCO2 seen in Figure 2.1.1b,c is to a large part determined by the seasonal 
cycle of sea surface temperature, upwelling of carbon rich waters and uptake of carbon (DIC) due 
to photosynthesis. It is essential to capture all these processes in a model of the ocean carbon 
cycle. Thus a biogeochemical model which hopes to accurately capture the pattern global air-sea 
fluxes of carbon requires a parameterization of the biological uptake of inorganic carbon during 
photosynthesis and the sinking of the organic matter to depths where it undergoes remineralization 
back to an inorganic form. This “biological” pump stores as much as 200 ppmv of carbon in the 
deep ocean (Figure 2.1.2). The combination of temperature and DIC patterns drive patterns of 
pCO2 (Figure 2.1.1a) that are regionally greater than or less than the atmospheric saturated value. 
Following from Equation 2.1.1, this leads to some regions where there is a flux of carbon dioxide 
into the ocean and others where carbon dioxide comes out of the ocean (Figure 2.1.3). 

Relatively simple formulations of the biological processes, which do not explicitly represent 
the organisms (phytoplankton) that photosynthesize, have been widely used (e.g., OCMIP 
(Matsumoto et al., 2004; Orr et al., 2001; Dutkiewicz et al., 2006; Galbraith et al., 2010) and have 
been successful in capturing the large temporal (annual) and spatial scale patterns of air-sea fluxes 
of carbon dioxide. The 3-D ocean component of the MIT Integrated Global Systems Model 
(IGSM2.3) uses such a formulation (Dutkiewicz et al., 2005; Table 2.1.1, Figure 2.1.2). However 
the timing of pCO2 cycle (Figure 2.1.1b,c) in these models can never be accurate as the biological 
draw-down is over-simplified and does not capture, for instance, the intense spring blooms of 
phytoplankton in the higher latitudes. A framework to verify CO2 emissions will need an explicit  

 
Figure 2.1.2. Impact of biological pump on ocean inventory of carbon. Latitudinal averaged dissolved 
inorganic carbon (DIC) with depth of the oceans from simulations with the MIT IGSM2.3 (Dutkiewicz et al., 
2005). (a) Current-day ocean with parameterization of biological pump adapted to match observations of 
DIC (GLODAP, Key et al., 2004); (b) Simulation where ocean biology has been removed; (c) Simulation 
where all phytoplankton are assumed to be large species which export all of their organic carbon to 
depth. The no-biology ocean (b) has released almost 200 ppmv to the atmosphere and the surface 
patterns of carbon are set by the temperature-driven exchange of carbon dioxide (“solubility pump”) only. 
In the simulation with higher export of organic carbon (c) 30 ppmv more carbon is removed from the 
atmosphere and stored it in the deep ocean than in (a). 
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Figure 2.1.3. Spatial patterns of air-sea flux of carbon dioxide as estimated from the data compilation of 
Takahashi et al., 2009. Positive values indicate outgassing of carbon from ocean to atmosphere, while 
negative indicates the ocean is taking CO2 out of the atmosphere. In general where pCO2 (Figure 2.1.1a) 
is higher than the air concentration there will be flux of CO2 from the ocean to the atmosphere. The 
strength of this flux will be determined by the gas transfer coefficient kw (see Equation 2.1.1). 

ocean ecosystem model, including: uptake of carbon by phytoplankton during photosynthesis, 
passage of carbon to higher trophic levels (e.g., zooplankton) by grazing, formation of organic 
detrital matter, gravitational sinking of detrital matter to the deep ocean and subsequent 
degradation of the organic matter through bacterial processes to an inorganic form (DIC). 
The amount of carbon and the depth to which it is exported is strongly determined by the type of 
phytoplankton in the sunlight upper ocean. For instance blooms of larger phytoplankton such as 
diatoms and coccolithophers lead to significantly more export of organic matter to depth (see 
Figure 2.1.2c) than small phytoplankton that are more tightly linked in a microbial loop where 
organic matter is recycled in the surface oceans. Additionally, calcium carbonate forming 
phytoplankton (e.g., coccolithophers) alter the alkalinity of the oceans, which in turn alters the 
ability of the ocean to take up CO2. At a minimum an ocean biogeochemical/ecosystem model 
that will capture the seasonal and complex spatial patterns of CO2 fluxes (Figure 2.1.3) will need 
to explicitly resolve several “functional” types of phytoplankton (see Table 2.1.1). Detailed 
discussions on these and other biogeochemically important plankton functional types can be found 
in Hood et al. (2007) and Le Quere et al. (2007). Biogeochemical models must also resolve the 
cycling of several macro and micro-nutrients which limit the growth of phytoplankton in the 
world’s oceans in order to capture the required patterns of photosynthesis and export of organic 
carbon to the deep ocean. At a minimum these should include nitrate, silicic acid and iron. 

There are many biogeochemical models currently available, most of which capture some level 
of the complexity of the ocean ecosystems. A few representative models and their features are 
shown in Table 2.1.1. Such models have been validated against existing in situ and satellite 
derived observations of the ocean (see Section 3.1), and their ability to capture interannual 
variability (such as ENSO) in surface chlorophyll and phytoplankton assemblages (see e.g., 
Wang et al., 2005) is an essential feature of such validation. However as yet the impact of 
variability on CO2 fluxes in the ocean remains an open question that models are attempting to 
address (e.g., McKinley et al., 2004; Ullman et al., 2009; Bennington et al., 2009). 
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Table 2.1.1. Features of some existing ocean biogeochemical models. This is not an exhaustive list and 
additional well-established models such as PISCES (Aumont et al., 2003), TOPAZ (Dunne et al., 2005), 
NEMURO (Kishi et al., 2001) also include many of the features listed here.  

 MIT-simple DICa MIT-ecosystemb NOBMc PlankTOMd BECe 
nutrient cycling C,P,Fe,O2 C,N,P,Si, Fe, O2 C,N,Si, Fe C,N,P,Si, Fe C,N,P,Si, Fe, O2 
alkalinity yes yes no no yes 
Phyto-plankton 
functional types 

none Diatom, large and 
small eukaryotes, 
Synecoccous, 
Prochloroccus, 
Coccolithopheris, 
Trichodesmium, 
Unicellular 
diazotrophs 

Diatom, 
Coccolithophes, 
Cyanbacteria, 
Chlorophytes 

Diatoms, 
Coccolithophers, 
Pico-autotrophs, 
Diazotrophs, DMS-
producers, mixed 

Diatom, 
Coccolithophers, 
Pico-autotrophs, 
Diazotroph 

zooplankton none at least 2 one pico, proto, meso one 
explicit sinking 
detritus 

no yes yes yes yes 

nitrogen fixation/ 
denitrification 

no yes no yes yes 

air-sea exchange 
of CO2 

yes yes yes yes yes 

DMS no no no yes no 
N2O  no no no yes no 
Methane no no no no no 
spectral radiation 
module 

no in development in development no no 

adjoined yes partly no no no 
References: (a) Dutkiewicz et al. (2005, 2006); (b) Darwin Project Model (Follows et al., 2007; Dutkiewicz et al., 2009; 

Hickman et al., 2010); (c) NASA Ocean Biogeochemistry Model (Gregg et al., 2003); (d) Green Ocean Model (Le 
Quere et al., 2007); (e) BEC, Coupled Biogeochemistry/Ecosystem/Circulation model (Moore et al., 2004). 

Although there are significant observations of various aspects of the ocean biogeochemistry 
(see Section 3.1), there are nevertheless significant gaps in spatial and temporal coverage, and 
often the measurements that are available do not necessarily match the output of models. One 
such mismatch is that between satellite observations (upwelling radiation at the sea surface) and 
model outputs (chlorophyll and primary production). Though satellite derived products (through 
empirical algorithms) of chlorophylls and primary production are available there is considerable 
uncertainty in them. In fact biogeochemical model derived primary production captures in situ 
measurements almost as well as satellite derived values (Saba et al., 2010). In a proof of concept 
study, Kettle (2009) showed that backscattering coefficients could be a more useful constraint on 
a 1-D ecosystem models than chlorophyll alone. The MIT biogeochemical model and NOBM 
(Gregg et al., 2003) are working to incorporate explicit radiative transfer parameterization and 
phytoplankton specific optical properties. These parameterizations will provide variables 
(upwelling irradiance) closer to that seen by satellites. Though considerable work is still needed 
in the implementation of these model derived optical properties, these developments may 
provide better validation and optimization context than previous model outputs. 

2.1.2.2 Methane Cycling 
In general global 3-D biogeochemistry models have not included the cycling of methane, and 

separate model development would have to be undertaken to address this gas. Air sea exchange 
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parameterization will follow the formula given above, with coefficients specific for methane. 
Methane is thought to be supersaturated in surface ocean waters. A small percentage of 
tropospheric CH4 is of marine origin; however data coverage is rather poor. Contributions from 
estuaries and shallow coastal shelves are far larger per unit area (e.g., Bange et al., 1994; Upstill-
Goddard et al., 2000), implying that such estimates require revision. Marine sources of methane 
include production by benthic organisms in anoxic sediments, release from deep-sea sediments in 
geologically active areas, and hydrates. Much of the methane produced deep in the ocean is 
degraded and transformed into CO2 before reaching the surface waters. This process is currently 
not parameterized in models. Methane hydrates (crystalline methane molecules) occur abundantly 
in marine sediments, especially in the Arctic, are stable and do not enter the marine water or 
atmosphere except in extreme circumstances (though potentially 2-9 TgCH4/y reaching the 
atmosphere from hydrates; EPA, 2010). Very little is known on how much marine produced 
methane reaches the atmosphere, though current isotropic studies may prove useful in this research. 
Current estimates of the ocean source of methane is small (between 1 and 13.3 TgCH4/y; EPA, 
2010), and much of this comes from the coastal ocean with additional input from rivers (Bange et 
al., 2009) and methane in the ocean appears to have a very strong gradient from shallow waters to 
deep (Bange et al., 2009). In the past, atmospheric inversion studies have generally neglected the 
ocean as a source or sink of methane (e.g., Chen and Prinn, 2006; Rigby et al., 2008).  

2.1.2.3 Nitrous Oxide 
The ocean is one of the largest natural sources of on N2O (2.3 to 8.7 TgN/y, IPCC 4th 

assessment; Huang et al., 2008; Hirsh et al., 2006). Sources of N2O in the ocean include 
nitrification and denitrification by microbial communities both in the water column and in the 
sediments. Denitrification occurs mostly in the low oxygen regions of the deep ocean and N2O 
production is highly sensitive to oxygen concentrations (e.g., Suntharalingham et al., 2000; Jin 
and Gruber, 2003). Enhanced emissions to the atmosphere are found in coastal upwelling region 
where deep water is brought to the surface. Reduced oxygen concentrations in the future warmer 
ocean will lead to an increase in the natural production (Schmittner et al., 2008). The 
anthropogenic component of N2O is large, most reaching the oceans via rivers. 

The processes of N2O production have been represented in some biogeochemical models, 
leading to much insight into the distributions and emissions (e.g., Suntharalingham and 
Sarmiento, 2000; Suntharalingham et al., 2000; Jin and Gruber, 2003; Yakushev et al., 2007). 
Models planning to capture N2O emissions need to explicitly include the processes of 
nitrification and denitrification and capture changing oxygen distributions. 

2.1.3 Adjoint model 

An essential feature of the model framework proposed in this report is that each component, 
including the ocean biogeochemistry, and the fully-coupled system will be adjoined. This will 
enable comprehensive sensitivity propagation within each and across the coupled components. 
Full three dimensional ocean biogeochemical models of simpler complexity than described 
above have been adjoined in the past. Dutkiewicz et al. (2006) used the adjoint of the MIT 
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simple DIC model (see Table 2.1.1) to explore the sensitivity of air-sea CO2 exchange on iron 
supply to the ocean. Kwon and Primeau (2008) used an even simpler biogeochemical model to 
explore optimizing several key parameters, for instance the remineralization timescale for 
organic matter, and Tjiputra et al. (2007) have used satellite chlorophyll measurements to 
constrain parameters in a simple ecosystem model, finding that the most sensitive parameters 
were those controlling the grazing terms. Additionally, Kurado and Kishi (2004), with limited 
success, used an adjoint of a regional ecosystem model to assimilate information from a single 
ocean station to constrain several of the ecosystem parameters. In a more formal evaluation, 
Friedrichs et al. (2007) used single water column frameworks (as opposed to 3-D models) with 
several different ecosystem models and their adjoints to explore parameter optimization. In 
particular, they found that only a handful of the many model parameters could be optimized with 
the observations available. The paucity of data is a strong constraint on parameter optimization 
seen by other authors (e.g., Ward et al., 2010). We should be mindful of the need to be selective 
in choosing parameters to optimize and we suggest a few key parameters as suggested by 
Friedrichs et al. (2007) and Tjiputra et al. (2007) (see Table 2.1.2). Friedrichs et al. (2007) also 
found that more complex models (greater number of plankton groups and limiting nutrients) 
were better optimized between different regions of the ocean than simple models. From a 
coupling perspective work has also been conducted to propagate adjoint sensitivities through a 
coupled terrestrial and atmospheric transport model in an attempt to estimate parameters from 
measured carbon fluxes (e.g., Scholze et al., 2007; Kaminski et al., 2010). These early studies 
indicate the feasibility and timeliness of the proposed system. 

Because of the reverse nature of the adjoint integration, the nonlinearity of the problem, and 
the non-self-adjointness, in general, of the underlying operators, developing an adjoint is 
generally as demanding as developing the forward model itself. The adjoint model development 
can be significantly facilitated through the use of automatic differentiation (AD) tools (Griewank 
and Walther, 2008) such as TAF (Giering and Kaminski, 1998) or OpenAD (Utke et al., 2008). 

Of key importance for the deployment of AD to generate an adjoint of a complex coupled 
biogeochemical/ecosystem model needed in a project such as described in this report, is that the 
model and its components should be formulated to be compatible with AD. Within ECCO we 
have gained substantial experience in the use of AD to state-of-the-art coupled ocean/sea-ice 

Table 2.1.2. Potential parameters to be optimized (partial listing). See Dutkiewicz et al. (2009) for 
additional parameters and values. 

Parameter Definition Prior Range Units Reference 
µP Phytoplankton growth rate 

(Prochlorrocuccus) 
1-1.5 1/d Shalalpyonok et al. (1998), 

Partensky et al. (1999) 
µD Phytoplankton growth rate 

(Diatoms) 
2-3 1/d Tang (1995) 

rC remineralization rate for organic 
carbon 

1/150-1/700 1/d Hansell et al. (1995), 
Kwon & Primeau (2008) 

fDOC fraction mortality to DOC vs. POC 0.2-0.7 unitless Estimate 
G Zooplankton grazing rates 0.033-0.2 1/d Estimate 
Kp grazing half saturation 10-50 mmol C/m3 Estimate 
Mz zooplankton mortality 1/10-1/30 1/d Estimate 
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models. Other groups have acquired similar experience in the context of terrestrial carbon cycle 
modeling. The experiences gained lend confidence to the prospect of successful application of 
AD to coupled carbon cycle models such as envisioned here. 

2.2 Atmospheric Circulation and Chemistry 

Atmospheric chemical transport models (CTMs) attempt to calculate realistic dispersion of 
pollutants throughout the atmosphere, based on surface emissions fields, boundary conditions, 
chemical reaction schemes and meteorological fields. We will focus here on Eulerian CTMs (in 
which transport is calculated from the reference frame of some grid) that determine pollutant 
transport off-line, using reanalyzed meteorology. The term ‘off-line’ refers to the pollutant 
transport being determined separately from the estimation of meteorological fields, which have 
to be calculated in advance. Several ‘reanalysis’ products are available for this purpose, and need 
not be developed as part of the proposed work. However, it should be noted that uncertainties in 
these fields will have a significant influence on derived emissions or model parameters. 
Quantification of this uncertainty will form a key component of the proposed methodology. 

In this section, we will briefly discuss the physical and chemical processes that determine the 
transport and chemistry of the species of interest, before examining the specific requirements of 
a CTM that can accurately perform the proposed work and then investigating the current state-of-
the-art models available. The following is not intended to be an exhaustive description of 
transport model development, but rather is intended to highlight key features and frame 
differences between models. 

2.2.1 Atmospheric Chemistry and Transport – Background 
2.2.1.1 Transport  
Transport of chemicals in the atmosphere is determined by large-scale phenomena such as 

advection, which largely takes place at the resolution of current reanalysis products, and by sub-
grid-scale processes that are parameterized in the models. Tracer advection in the models 
outlined here is calculated off-line using reanalyzed wind-fields. However, given the discretized 
nature of these fields, care must be taken to ensure pollutant mass conservation (e.g., Lin and 
Rood, 1997). Sub-grid-scale transport processes that need to be parameterized include boundary 
layer turbulence (the boundary layer is the part of the atmosphere closest to the Earth’s surface) 
and convection (e.g., Holtslag and Boville, 1994; Hack, 1995; Zhang and MacFarlane, 1995). 
Each CTM offers different solutions to these issues, even if the same reanalysis is used, with 
various advection schemes and convection and boundary layer parameterizations. 

2.2.1.2 Chemistry 

For the species simulated in the proposed work, simplified chemistry schemes can be 
implemented with little loss of accuracy. The major GHGs can either be considered to be inert in 
the atmosphere, become oxidized by one or more oxidants, or in the case of CO2, be an oxidation 
product themselves. 
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Several potent greenhouse gases: SF6, the PFCs, and CO2, can be considered to have no 
chemical ‘sink’ in the atmosphere. This is because the chemical or photochemical processes 
responsible for their destruction are relatively weak, or take place in very limited regions of the 
atmosphere, leading to chemical lifetimes of the order of thousands to tens of thousands of years 
(e.g., Muhle et al., 2010; Rigby et al., 2010). 

The majority of greenhouse gases regulated under the Kyoto protocol are reduced species that 
exhibit oxidation reactions and have lifetimes of tens to hundreds of years (CH4, HFCs, HCFCs, 
CFCs). The main oxidant in the atmosphere for these gases is the hydroxyl radical (OH). OH is 
formed by the photolysis of ozone in the presence of water vapor, and has a maximum 
tropospheric concentration in the tropics. With a lifetime of around 1 second, it is hard to scale in 
situ measurements of OH concentration to global scales. Therefore, its global concentration is 
often inferred through its influence on one or more reduced species. In particular, 1,1,1-
trichloroethane (CH3CCl3), whose emissions are relatively well known, has been used 
extensively to ‘calibrate’ the global OH field (e.g., Prinn, 2001). More minor chemical sinks for 
these gases include the O(1D) radical and tropospheric and stratospheric chlorine. 

To accurately simulate the global distribution of OH and O(1D), an extremely detailed and 
computationally expensive chemical scheme is required (e.g., Emmons, 2010). For the purpose 
of this modeling framework, however, it is anticipated that OH and O(1D) fields can be specified 
off-line, based on the output of full photochemical models. While this approach prevents 
feedbacks on the OH or O(1D) field from being accounted for, the changes associated with such 
feedbacks are small enough for all of the reduced greenhouse gases that little loss of accuracy is 
anticipated. The OH fields used can be calibrated using measurements of CH3CCl3, to ensure that 
the lifetimes of the reduced species are realistic. 

Photolysis of several GHGs in the stratosphere plays a key role in their destruction. In fact, 
this represents the main sink for atmospheric N2O. CTMs can generally calculate photolytic 
destruction either by implementing a reduced photolysis scheme, in which wavelength-
dependent cross sections are specified in conjunction with a simple radiative transfer model, or 
by specifying fields of the pre-calculated photolytic destruction rates (so-called ‘J-values’). It is 
anticipated that the latter will be the most appropriate for the proposed atmospheric modeling, 
given that it will be more computationally efficient and more straightforward for adjoint coding. 

While CO2 can be considered to exhibit no chemical destruction in the atmosphere, it does 
have an in situ source: as an oxidation product, particularly of carbon monoxide. Similarly to the 
OH fields and photolysis parameters above, it is anticipated that this source can be included off-
line by imposing a time-varying CO field. This field has been estimated in previous studies using 
satellite observations (e.g., Kopacz, 2009). 

2.2.2 Meteorological fields 

A vital component of the proposed modeling framework will be the meteorological reanalysis 
fields used to drive the CTMs. These fields will not be modified in the proposed work, and 
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therefore their accuracy will be critically important in determining pollutant sources using 
atmospheric measurements. 

Meteorological analysis refers to the assimilation of meteorological observations (from 
surface sites, radiosondes and satellites) into an atmospheric model to generate a 3-D estimate of 
the entire state of the atmosphere at a particular instance. They are typically used to generate 
initial conditions for weather forecasts. A reanalysis product is the re-assimilation of historical 
observations using a single version of a model, to obtain a consistent estimate of the history of 
the atmosphere at some frequency (usually 6-hourly) over several decades. 

Several meteorological features are embedded in reanalysis products that will be vitally 
important for the simulation of pollutant transport from sources to receptors. These range from 
small-scale features such as the passage of fronts and ‘weather-systems’, to large-scale 
phenomena such as the movement of the Intertropical Convergence Zone (ITCZ). These features 
also span timescales from hours, such as the diurnal cycle of the boundary layer height, to 
decade-long changes such as the influence of the El-Niño ‘oscillation’. 

Several reanalysis products will be available for the proposed modeling framework. They 
include reanalysis from the National Center for Environmental Prediction/National Centers for 
Atmospheric Research (NCEP/NCAR; Kalnay, 1996), the National Oceanic and Atmospheric 
Administration’s Global Forecasting System (NOAA GFS), European Center for Medium Range 
Weather Forecasts (ECMWF; Uppala, 2005) and the NASA Modern Era Restrospective-Analysis 
for Research and Applications (NASA-MERRA). Given the critical role of these reanalyses in the 
proposed framework, it is desirable that a modeling framework be set up that can readily 
incorporate as many different reanalysis fields as possible, so that an estimate can be made of the 
influence of structural model uncertainties on the derived emissions fields or model parameters. 

2.2.3 Existing Chemical Transport Models 

Given the above considerations, and taking computational efficiency into account, the 
desirable characteristics that a CTM should possess for the proposed modeling framework are:  

• The ability to simultaneously model the transport and chemistry of many (~50) chemical 
species 

• The capability to add off-line OH, O(1D), CO and photolysis rates 
• A high level of parallelization 
• Compatibility with several reanalysis data sets 
• The ability to substitute advection, convection and boundary layer schemes 
• An adjoint of the transport and chemistry 
• A list of several currently available chemical transport models is given in Table 2.2.1. 

2.2.4 Adjoint Chemical Transport Modeling 

In recent years, several studies have used adjoined CTMs to address problems in atmospheric 
chemistry. For example, global estimates of CO2 emissions were estimated using NOAA 
observations (see Section 3.2.1) and the TM3 chemical transport model (Kaminski et al., 1999;  
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Table 2.2.1 Example chemical transport models. 

Model name Institution Reference Meteorology Adjoint 
MOZART NCAR Emmons et al. (2010) NCEP/NCAR N 
   NASA GEOS-5  
CAM-CHEM NCAR Lamarque et al. (2005),  NCEP/NCAR N 
  Pfister et al. (2007) NASA GEOS-5  
GEOS-CHEM Harvard (and global collaborators) Bey et al. (2001) NASA GEOS-5 Y 
PCTM NASA-JPL Kawa et al. (2004) NASA GEOS-5 Y 
TM5 Global collaborators Krol et al. (2005) ECMWF, ERA Y 

NASA GEOS-4 N IMPACT Lawrence Livermore National Lab., CA Rotman et al. (2004) 
NCAR MACCM3 N 

TOMCAT University of Leeds, UK Chipperfield (2006) ECMWF / UKMO N 
Details are given for meteorological datasets that are currently available for each model. Only global, Eulerian 

models with offline advection schemes are outlined here. 

Kaminski and Heimann, 2001). More recently, adjoined CTMs have been used to extract 
emissions information from satellite observations of methane (Frankenberg et al., 2005, 2008; 
Bergamaschi et al., 2009) and carbon monoxide (Kopacz et al., 2010) as well as other species. 
Adjoined CTMs have also been used to estimate the sensitivity of proposed observations to 
emissions fields. For example, Chevallier et al. (2009) estimated the sensitivity of the space-
based Orbiting Carbon Observatory observations to surface CO2 emissions, while Kaminski et 
al. (2010) performed a similar investigation into the proposed A-Scope measurements, and 
Zhang et al. (2009) conducted an intercontinental source attribution study of ozone pollution 
based on observation sites located in the western U.S. 

2.3 Terrestrial ecosystem biogeophysics and biogeochemistry 

Land surface models attempt to simulate the influence of landscape characteristics and 
ecosystem processes on global energy dynamics. Biogeophysical characteristics (e.g., albedo, 
surface roughness) and processes (e.g., latent heat exchange associated with evapotranspiration) 
have a direct influence on the exchange of energy between land ecosystems and the atmosphere, 
whereas biogeochemical processes associated with the cycling of carbon (e.g., photosynthesis, 
respiration, decomposition, methanogenesis) and nitrogen (e.g., nitrification, denitrification) 
affect the uptake and release of greenhouse gases (e.g., CO2, methane, nitrous oxide) to influence 
global energy dynamics indirectly. These biogeophysical and biogeochemical characteristics and 
processes may be influenced by many environmental factors including land-use change (e.g., 
Houghton et al., 1983; Melillo et al., 1988; McGuire et al., 2001; Strassmann et al., 2008), land 
management (e.g., fertilizer application (Felzer et al., 2004, 2005; Tian et al.,2011), irrigation 
(Mariko et al.,2007; Jabro et al., 2008), tillage (Curtin et al., 2000; Alluvione et al., 2009; Ussiri 
and Lal, 2009; Galford et al., 2011), natural disturbances (e.g., wildfire (Thonicke et al., 2001; 
Bond et al., 2005; Balshi et al., 2007, 2009), insect infestations (Kurz and Apps, 1999; Kurz et 
al., 2008), wind damage (Chambers et al., 2007; Zeng et al., 2009)), climate (Cox et al., 2000; 
Friedlingstein et al., 2003, 2006), atmospheric CO2 concentration (Friedlingstein et al., 1995; 
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Post et al., 1997; Kicklighter et al., 1999; Sokolov et al., 2008), atmospheric nitrogen deposition 
(Melillo et al., 1983, 1989; Jain et al., 2009, Thornton et al., 2007), air pollution (e.g., ozone 
(Felzer et al., 2004, 2005, 2007; Sitch et al., 2007), and the redistribution of vegetation (Cramer 
et al., 2001; Gritti et al., 2006, Euskirchen et al., 2009). The influence of environmental factors 
on biogeophysics often counteracts simultaneous effects on biogeochemistry (Brovkin et al., 
2006) so that the net effect on global energy dynamics is not easily determined.  

The influence of these environmental factors on terrestrial biogeophyics and biogeochemistry 
are not independent of each other. For example, nitrogen limitations on plant productivity 
reduces the potential benefits of CO2 fertilization from increasing atmospheric carbon dioxide 
concentrations (Kicklighter et al., 1999; Oren et al., 2001; Hungate et al., 2003; Thornton et al., 
2007; Bonan, 2008; Sokolov et al., 2008; Zaehle et al., 2010a). Improvements in the availability 
of nitrogen for plant uptake either through the application of nitrogen fertilizers, atmospheric 
deposition or warming-induced nitrogen mineralization associated with decomposition can 
enhance the benefits of CO2 fertilization on terrestrial carbon sequestration (Melillo et al., 1983, 
1989; Xiao et al., 1998; Felzer et al., 2004, 2005; Thornton et al., 2007; Bonan, 2008; Sokolov et 
al., 2008; Jain et al., 2009; Zaehle et al., 2010a; Bonan and Levis, 2010; Tian et al., 2011). In 
another example, wildfires can change the albedo of landscapes to enhance warming of the soil, 
which in turn, enhances permafrost degradation and changes the hydrological dynamics in Arctic 
ecosystems (Yi et al., 2009). Changes in soil thermal and hydrological regimes, either from fires, 
land-use change or global warming, influence plant phenology and productivity along with 
decomposition rates to influence the net flux of atmospheric carbon dioxide and methane to the 
atmosphere (Euskirchen et al., 2006; Wickland et al., 2006; Zhuang et al., 2006, 2007; Balshi et 
al., 2007, 2009; Hayes et al., 2011) and the contribution of water, carbon and nitrogen from land 
to river networks (McClelland et al., 2004; Frey et al., 2007; McGuire et al., 2010). 

Besides interactions, the influence of these environmental factors also occurs over a range of 
spatial and temporal scales. For example, large regions (many square kilometers), especially 
away from mountainous areas, may experience similar air temperatures, whereas neighboring 
small plots of land (few square meters) can experience very different land uses and land 
management practices. Natural and anthropogenic disturbances cause land ecosystems to rapidly 
lose carbon and nitrogen to the atmosphere or neighboring river networks, whereas carbon 
sequestration associated with recovery may take decades to centuries. While the uptake and 
release of CO2 by land ecosystems to the atmosphere and the emissions of methane (CH4) from 
wetland ecosystems (e.g., Baker-Blocker et al., 1977; Bartlett et al., 1990; Roulet et al., 1992; 
Segers, 1998; Wickland et al., 1999; Zhuang et al., 2004; Bohn et al., 2007) are rather 
continuous, these fluxes vary in magnitude with seasonal variations in air temperature. In 
contrast, nitrous oxide (N2O) emissions may be very ephemeral and depend on rapidly changing 
environmental conditions associated with snow melt during the spring, soil drainage following 
large rain events or fertilizer application events (e.g., Vitousek et al., 1989; Matson et al., 1991; 
Li et al., 1992; Smith et al., 1997; Wagner-Riddle and Thurtell, 1998; Hall and Matson, 1999; 
Kiese and Butterbach-Bahl, 2002; Kiese et al., 2003; Butterbach-Bahl et al., 2004; Davidson et 
al., 2004, 2008; Rees et al., 2006; Werner et al., 2007). 
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While many land surface models have been used to examine global carbon dynamics in Earth 
system modeling frameworks (Plattner et al., 2008; Sitch et al., 2008; Qian et al., 2010), most 
have not considered the influence of carbon/nitrogen interactions on carbon dynamics until 
recently (Raich et al., 1991; Melillo et al., 1993; Xu-Ri and Prentice, 2008; Thornton et al., 
2007; Levis et al., 2009; Bonan and Levis, 2010; Zaehle and Friend, 2010; Zaehle et al., 
2010a,b). Although the models that simulate both terrestrial carbon and nitrogen dynamics have 
many common features, there are still a number of differences in the ecosystem processes and 
disturbances (both human and natural) considered by the models, and the temporal resolutions 
used for the simulations (Table 2.3.1). In all of these process-based models, work is moving 
towards a full implementation of N cycle structure, inclusion of natural disturbances beyond fire 
(e.g., insect infestations, wind damage), better tracking of the effects of land-use change (e.g., 
conversion of natural ecosystems to agriculture, reversion of agriculture to natural ecosystems 
with abandonment, urban expansion, wetland drainage), implementation of land management 
schemes (e.g., nitrogen fertilizer application, irrigation, tillage), and mechanistically-based 
vegetation community dynamics that include dispersal, establishment, and survival. 

In the MIT IGSM, terrestrial ecosystem biogeophysics is simulated using the Community 
Land Model (CLM) whereas biogeochemistry is simulated using the Terrestrial Ecosystem 
Model (TEM). The TEM is a process-based biogeochemistry model that simulates the cycling of 
carbon, nitrogen and water among vegetation, soils and the atmosphere (e.g., Raich et al., 1991; 
McGuire et al., 1992, 1993, 1995, 1997, 2001, 2010; Melillo et al., 1993, 2009; Tian et al., 1998, 
1999, 2003, 2011; Pan et al., 2002; Zhuang et al., 2003, 2004, 2006; Felzer et al., 2004, 2005, 
2009; Balshi et al., 2007, 2009; Sokolov et al., 2008, 2009; Euskirchen et al., 2009; Galford et 
al., 2010, 2011; Hayes et al., 2011) and includes consideration of permafrost effects on soil 
thermal dynamics (Zhuang et al., 2001; Euskirchen et al., 2006; Yi et al., 2009). The model uses 
numerous parameters to describe the effects of temperature, soil moisture, photosynthetically 
active radiation, nitrogen availability, atmospheric CO2, and atmospheric ozone on the uptake of 
carbon and nitrogen into plant biomass, the release of carbon from plants biomass and soil 
organic matter, the release of nitrogen from soil organic matter and the loss of inorganic nitrogen 
through leaching and trace gas emissions (Raich et al., 1991; Tian et al., 1999, 2003; McGuire et 
al., 2001, 2010; Felzer et al., 2004; Hayes et al., 2011). Some parameters are assumed to be 
constant across biomes and are based on literature reviews whereas other parameters are 
assumed to vary across biomes and are calibrated to data collected at intensively studied field 
sites. Uncertainty in these model parameters contributes to the uncertainty of the estimates 
projected by TEM. To date, the importance of parameter uncertainty on TEM estimates have 
only been examined for a few TEM parameters (e.g., Webster et al., 2003, 2010; Sokolov et al., 
2008, 2009). To conduct a more comprehensive analysis of the importance of parameter 
uncertainty on model estimates, we have been determining the range and distribution of 
parameter values within different biomes for all the algorithms used in TEM based on a review 
of the literature (Table 2.3.2).  

 



29 

Table 2.3.1. Features and expected improvements of existing terrestrial models. 
Models Features 
TEMa LPJ/DyNb CLM-CNc O-CNd 

Carbon 
dynamics 

Carbon storage, primary 
production (GPP, NPP), 
plant respiration, plant 
allocation, litterfall, 
decomposition, CH4 
consumption, production, 
diffusion, plant-assisted 
transport and ebullition, 
DOC leaching 

Carbon storage, primary 
production (GPP, NPP), 
plant respiration, plant 
allocation, reproduction, 
litterfall, decomposition 

Carbon storage, 
primary production 
(GPP, NPP), plant 
respiration, plant 
allocation, litterfall, 
decomposition 

Carbon storage, 
primary production 
(GPP, NPP), plant 
respiration, plant 
allocation, litterfall, 
decomposition 

Nitrogen 
dynamics 

Organic and inorganic 
nitrogen storage, N 
fixation, plant uptake of 
DIN, plant allocation, 
litterfall, mineralization, 
immobilization, nitrification, 
denitrification, DON and 
DIN leaching 

Organic & inorganic 
nitrogen storage, N 
fixation, plant uptake of 
DIN, plant allocation, 
litterfall, mineralization, 
nitrification, denitrification, 
diffusion of NO, N2O and 
N2, NH3 volatilization, 
DIN leaching 

Organic & inorganic 
nitrogen storage, 
N fixation, plant 
uptake of DIN, plant 
allocation, litterfall, 
mineralization, 
immobilization, 
denitrification, 
NH3 volatilization, 
DIN leaching 

Organic & inorganic 
nitrogen storage, N 
fixation, plant uptake 
of DIN, plant 
allocation, litterfall, 
mineralization, 
immobilization, 
nitrification, 
denitrification 

Water 
dynamics 

Soil water storage, 
evaporation, transpiration, 
water yield 

Soil water storage, 
percolation, evaporation, 
transpiration, surface 
runoff, drainage 

Soil water storage,  
percolation, evaporation, 
transpiration, surface 
runoff, drainage 

Soil water storage, 
percolation, evaporation, 
transpiration, surface 
runoff, drainage 

Energy 
exchange 

Soil thermal dynamics Soil thermal dynamics Soil thermal dynamics, 
albedo, sensible heat, 
latent heat 

Soil thermal dynamics, 
albedo, sensible heat, 
latent heat 

Permafrost  Effects on soil 
temperature, carbon, 
nitrogen & water dynamics 

Effects on soil 
temperature, carbon and 
water dynamics 

Effects on soil 
temperature and 
water dynamics 

Effects on soil 
temperature and water 
dynamics* 

Air pollution CO2, ozone, atmos. N 
deposition  

CO2, atmos. N deposition CO2, atmos. N 
deposition 

CO2, atmos. N 
deposition 

Natural 
disturbances 

Wildfire Wildfire, extreme 
temperatures, invasive 
species 

Wildfire Wildfire, extreme 
temperatures 

Land use 
and land-use 
changes 

Row-crop agriculture, 
pastures, timber harvest, 
land conversion/ 
abandonment 

Row-crop agriculture, 
pasture, land conversion/ 
abandonment 

Row-crop agriculture, 
timber harvest, land 
conversion 

Agriculture 

Land 
management 

N fertilizer application, 
irrigation, tillage 

Irrigation, treatment of 
residues, intercropping 

N fertilizer 
application*, irrigation* 

N fertilizer application 

Land-
atmosphere 
interactions 

CO2 uptake/emissions, 
CH4 uptake/emissions, 
NO, N2O, and N2 
emissions*, evaporation, 
transpiration 

CO2 uptake/emissions, 
NO, N2O, N2 and NH3 
emissions, evaporation, 
transpiration 

CO2 
uptake/emissions, 
NH3 emissions, 
evaporation, 
transpiration 

CO2 uptake/ 
emissions, NO, N2O, 
N2, NH3 emissions, 
evaporation, 
transpiration 

Land-water 
linkages 

Water yield, leaching of 
DOC, DON and DIN 

Water yield, leaching of 
DIN 

Water, yield, leaching 
of DIN 

Water yield, leaching 
of DIN 

Dynamic 
vegetation 
modeling 

Climatically-favored PFTs 
compete for light, water 
and nitrogen 

Climatically-favored PFTs 
compete for light, water 
and nitrogen* 

Specified PFTs 
compete for water and 
nitrogen 

Climatically-favored 
PFTs compete for 
light, water & nitrogen* 

Time step Monthly Daily Hourly Half-hourly 
*anticipated  
a Raich et al., 1991; Melillo et al., 1993; McGuire et al., 2001; Tian et al., 1999, 2003, Felzer et al., 2004; Zhuang et 

al., 2003, 2004; Galford et al., 2011; McGuire et al., 2010; Hayes et al., 2011. 
b Sitch et al., 2003; Gritti et al., 2006; Beer et al., 2007; Bondeau et al., 2007; Xu-Ri and Prentice, 2008. 
c Thornton et al., 2007; Levis et al., 2009; Bonan and Levis, 2010. 
d Krinner et al., 2005; Zaehle and Friend, 2010; Zaehle et al., 2010a,b. 
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Table 2.3.2. Uncertainty in TEM parameters for black spruce forests (Tang and Zhuang, 2009). 
Parameter Definition Prior Range Units Reference 
Initial Pool Sizes 
CV Initial carbon in vegetation [2000,20,000] g C m–2 McGuire et al. (1992); 

O’Neill et al. (2003) 
CS Initial reactive organic carbon in soils  [6000, 20,000] g C m–2 McGuire et al. (1992); 

O’Neill et al. (2003) 
NV Initial nitrogen in vegetation [10, 40] g N m–2 McGuire et al. (1992); Van 

Cleve et al. (1983) 
NS Initial reactive organic nitrogen in soil  [250, 1000] g N m–2 McGuire et al. (1992); Van 

Cleve et al. (1983) 
NAV Initial available inorganic nitrogen in 

soil 
[0.1, 0.9] g N m–2 McGuire et al. (1992); 

Weber & Van Cleve, (1984) 
Soil Texture Properties 
Θ Soil porosity [30, 60] cm3 cm–3 Frolking et al. (1996) 
FLDCAP Soil field capacity [25, 40] cm3 cm–3 Frolking et al. (1996) 
WILTPT Soil wilting point [20, 25] cm3 cm–3 Frolking et al. (1996) 
Vegetation Parameters 
VEGC2N Mean C:N of vegetation [200, 600] g C (g N)–1 estimate 
MINLEAF Minimum photosynthetic capacity of 

vegetation 
[0.2, 0.8] none McGuire et al. (1992) 

ALEAF Coefficient to model the relative 
photosynthetic capacity of vegetation 

[0.1, 1.0] none McGuire et al. (1992) 

BLEAF Coefficient to model the relative 
photosynthetic capacity of vegetation 

[0.1, 1.0] none McGuire et al. (1992) 

CLEAF Minimum relative photosynthetic 
capacity of vegetation 

[0.0, 0.5] none McGuire et al. (1992) 

ROOTZ Effective rooting depth [0.7, 2.5] m estimate 
CFALL Proportion of vegetation carbon lost in 

monthly litterfall 
[0.0001, 0.015] gC (gC)–1mo–1 estimate 

NFALL Proportion of vegetation nitrogen lost 
in monthly litterfall 

[0.003, 0.012] gN (gN)–1mo–1 McGuire et al. (1992) 

CMAX Maximum carbon uptake by plants 
from photosynthesis 

[50, 1500] gC m–2mo–1 McGuire et al. (1992) 

kC Half saturation constant for CO2-C 
uptake by plants 

[20, 600] µL L–1 Raich et al. (1991) 

kI Half saturation constant for PAR use 
by plants 

[20, 600] µL L–1 Raich et al. (1991) 

Tmin Minimum temperature for CO2 uptake 
by plants 

[-12, -1] oC estimate 

Toptmin Minimum optimum temperature for 
CO2 uptake by plants 

[0, 15] oC estimate 

Toptmax Maximum optimum temperature for 
CO2 uptake by plants 

[15, 25] oC estimate 

Tmax Maximum temperature for CO2 uptake 
by plants 

[25, 35] oC estimate 

KRC Logarithm of plant respiration rate at 
0oC 

[-7.5, -1.5] none McGuire et al. (1992) 

RAQ10A0 Leading coefficient of the Q10 model 
for plant respiration 

[1.3502, 3.3633] none estimate 

RAQ10A1 First order coefficient of the Q10 
model for plant respiration  

[-0.054577, 
-0.051183] 

(oC)–1 estimate 

RAQ10A2 Second order coefficient of the Q10 
model for plant respiration 

[0.0022902, 
0.0024381] 

(oC)–2 estimate 

RAQ10A3 Third order coefficient of the Q10 
model for plant respiration 

[-0.0000417, 
-0.0000397] 

(oC) –3 estimate 

NMAX Maximum nitrogen uptake by plants [0.05, 0.7] g N m–2 mo–1 McGuire et al. (1992) 
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Parameter Definition Prior Range Units Reference 
kn1 Half saturation constant for N uptake 

by plants 
[0.5, 10] g N m–3 Raich et al. (1991) 

Microbial Parameters 
MOISTOPT Optimum soil moisture content for 

heterotrophic respiration 
[20, 80] % McGuire et al. (1992) 

RHQ10 Change in heterotrophic respiration 
due to 10oC temperature increase  

[1,3] none Raich et al. (1991) 

KDC Heterotrophic respiration rate at 0oC [0.0005, 0.0007] gC m–2 mo–1 McGuire et al. (1992) 
NUP Ratio between N immobized and C 

respired by heterotrophs 
[0.005, 0.1] gN (gC)–1mo–1 McGuire et al. (1992) 

kn2 Half saturation constant for N uptake 
by heterotrophic organisms 

[0.5, 10] gN m–3 Raich et al. (1991) 

 
Adjoint methods have already been used with some land surface models, e.g., the CSIRO 

Biospheric Model (CBM; Wang et al., 2001, 2007), the Carnegie Ames Stanford Approach 
Model (CASA; Randerson et al., 2002), the Simple Diagnostic Biosphere Model (SDBM; 
Kaminski et al., 2002), the Biosphere Energy Transfer Hydrology Scheme (BETHY; Rayner et 
al., 2005; Scholze et al., 2007; Knorr et al., 2010), to infer optimal parameter combinations from 
observations and to explore parameter sensitivities and the uncertainty in estimated carbon fluxes 
between the land surface and the atmosphere, particularly net ecosystem exchange (NEE). 
Although the structure of the models vary, the studies have generally found that parameters 
associated with photosynthesis are relatively well-constrained by observations. In contrast, most 
of the uncertainty in NEE appears to be associated with parameter uncertainties associated with 
storage of soil carbon. One of the key issues with soil carbon storage is the appropriateness of 
using simple Q10 relationships to describe the influence of temperature on the dynamics of soil 
organic matter decay (Davidson and Janssens, 2006). 

2.4 Economics 

2.4.1 Introduction 
The motivation behind considering economics in a coupled atmosphere-ocean-biosphere 

modeling framework is that since anthropogenic emissions are associated with economic 
activity, total emissions resulting from an activity can be estimated if the amount of activity and 
the emissions corresponding to that activity are known. Fortunately, much of the data needed to 
construct such a model is available and, when combined with estimates from other top-down and 
bottom-up methods, the addition of an economic model could play a significant role in reducing 
overall uncertainty in emissions estimates. 

In this section we review the structure of existing economic models that are used to give both 
historic estimates and future projections of greenhouse gas emissions and address the relevance 
of the structure of these models for constructing an economic model for climate treaty 
verification (CTV) purposes. Following discussion on the structure of these models, we address 
special considerations that must be taken into account in using economic data in a coupled 
modeling framework. We conclude by identifying areas for additional development as well as 
next steps towards implementation. 
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2.4.2 Existing Models and Model Structure 

Economic models used to estimate greenhouse gases consist mainly of two kinds: models to 
predict historic greenhouse gas emissions and models to project future emissions. Most 
economic models used to project emissions of greenhouse gases are founded on basic 
microeconomic theory where producers seek to maximize profits while consumers seek to 
maximize utility. These models include endogenous projections of GDP, energy demand, energy 
supply, the price of goods, and other industrial activities. Emissions of greenhouse gases are 
estimated by multiplying a coefficient by the level of economic activity. This coefficient is 
commonly referred to as the emissions factor. 

Due to significant computational intensity and data limitations, forecasting models are 
typically highly aggregated both spatially and in terms of economic activity. In most models the 
world is spatially aggregated into 12-30 regions while economic activity is usually aggregated 
among 20-50 sectors. These models typically make estimates over a 100-year horizon in 5 to 15 
year time steps. Some of the more prominent models for projecting future GHG emissions based 
on economic activity are given in Table 2.4.1. The resolution of CO2 emissions from coal, oil, 
and gas combustion are fairly adequate in these models, but other activities related to non-CO2 
GHG emissions and other sources of CO2 (e.g., land use change) are probably too highly 
aggregated to be of use for CTV purposes. More importantly, the principal purpose of these 
economic models is to simulate future prices and incomes as they affect industrial activities that 
emit greenhouse gases. For historical estimation there are direct measurements of the industrial 
and agricultural activities of interest so there is no need to project them. 

More relevant for CTV purposes are relatively simple accounting models used to generate 
bottom-up inventories of greenhouse gas emissions. Emissions estimates are derived by 
multiplying the level of an emitting economic activity by an emission factor. Some of the more  

Table 2.4.1. Greenhouse Gas Emissions Forecasting Models. 

Model Regions Greenhouse Gases Timeline; Time Step Sectors Source 
EPPA 16 CO2, CH4, N2O, PFCs, 

HFCs, SF6 

2100; 5 year Energy, Industrial, 
Agriculture 

Paltsev et al. 
(2005) 

IMAGE† 26 CO2, CH4, N2O, PFCs, 
HFCs, SF6 

2100; 10 year Energy, Industrial, 
Agriculture 

PBL (2010) 

MESSAGE 11 CO2, CH4, N2O, PFCs, 
HFCs, SF6 

(Variable); 10 year Energy IIASA (1995) 

AIM 21 CO2 2100; 10 year Energy, Industrial, 
Agriculture 

AIM (2008) 

GCAM 14 CO2, CH4, N2O, PFCs, 
HFCs, SF6 

2095; 15 year Energy, 
Agriculture 

GCAM (2006) 

ReMIND 11 CO2, CH4, N2O 2100; 5 year Energy Potsdam 
(2008) 

GEM-E3 21 CO2 2030, 1 year Energy, Industry, 
Agriculture 

Leuven (2008) 

MERGE 9 CO2, CH4, N2O 2150; 10 year Energy MERGE 
(2004) 

WITCH 12 CO2, CH4, N2O, PFCs, 
HFCs, SF6 

2100; 5 year Energy Fondazione 
(2010) 

† MAGE consists of multiple sub-models (PHOENIX, TIMER, GTAP, HYDE, FAIR, etc.) with various time-steps. 
The time step recorded here is for HYDE. 
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notable inventories that use accounting models include the EPA Global Anthropogenic Non-CO2 
Greenhouse Gas Emissions: 1990-2020 (EPA, 2006), the GTAP v7 Non-CO2 GHG Emissions 
Dataset (Rose et al., 2008), and the Emissions Database for Global Atmospheric Research 
(EDGAR) version 4.1 (Van Aardenne et al., 2010). Because their focus has been on country-
level reporting with the goal of defining activities with a common or default emissions factor, the 
spatial and sectoral disaggregation is much greater than that of forecast models. In addition to 
economic data, the models underlying these inventories also depend largely on emissions 
reporting data that has been compiled by the U.N. Framework Convention on Climate Change 
(UNFCCC, 2010). 

Overall these historical inventories produce relatively consistent predictions in aggregate; 
however, because of their dependence on emissions reporting data obtained by the UNFCCC, 
their usefulness for CTV purposes is limited. All of the aforementioned historic models derive 
some of their estimates directly from the emissions reported by Annex 1 and non-Annex 1 
countries in both the Common Reporting Format (CRF) and National Inventory Report (NIR) 
data. For CTV purposes this is obviously a major concern since any model that is to be used to 
verify emissions reporting data must be independent of the data it is trying to verify. 

Although both historic and forecasting models are inadequate for CTV purposes, the common 
structure of estimating emissions as a coefficient—i.e. emission factor—multiplied by a given 
amount of economic activity is relevant. This structure underscores the fundamental framework 
of the Intergovernmental Panel on Climate Change three-tier methodology for emissions reporting 
(IPCC, 2006). In this approach three tiers or methods are outlined for estimating emissions from 
economic activity. Each subsequent tier provides improved emissions estimates with less 
uncertainty but also requires more detailed data and parameters that may be difficult to obtain. 
In what follows, we present a generalized version of the three-tier framework and discuss how this 
approach could be used in a coupled atmosphere-ocean-biosphere-economics modeling framework. 

Tier one methodology is the simplest of the three and is the least intensive in terms of the data 
required. It involves multiplying the total amount of activity in a given economic sector by a 
global emissions factor for activity in that sector. For example, if one wanted to calculate the total 
amount of CO2 emissions for the U.S. from electricity production, one would multiply the total 
output of the electricity sector in the U.S. by the global emissions factor of CO2 for electricity 
production. In general, the emissions from gas i in country j for sector k are expressed as: 

 

! 

Emissionsi, j ,k (kg) = EmissionFactori,k
kg
unit

" 
# 
$ % 

& 
' ( Activity j ,k (unit)

 
(2.4.1) 

The activity unit varies by activity. For fossil energy the unit is typically the energy content of 
the fuel (e.g., GJ). For emissions of methane from agriculture, units might include the number of 
ruminant livestock, tons of manure, or hectares of paddy rice.  

Tier two methodology differs from tier one only in that emissions factors are country specific. 
This is done to account for the fact that inputs to economic activity vary across countries such 
that the emissions intensity in a given sector of one country may not be the same in the same 
sector of another country. For example, methane emissions from ruminant livestock may vary 
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depending on the type of livestock and the quality of feed. For tier two methodology, the 
emissions of gas i in country j for sector k are expressed as: 
 

! 

Emissionsi, j ,k (kg) = EmissionFactori, j ,k
kg
unit
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& 
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(2.4.2) 

Tier three methodology is based on either taking direct measurements of emissions from the 
source—e.g., a CO2 monitor on a coal-fired power plant—or detailed emissions modeling that 
takes into account specific technologies or conditions under which an activity is conducted. For 
example, tier three methods for methane would distinguish different ruminant livestock (sheep, 
beef cattle, dairy cattle) and consider the typical feeding regime. Or, for N2O, tier three methods 
would model different forms of nitrogen applied (anhydrous ammonia, urea, compound nitrate and 
phosphate), soil types, and weather as it affects the nitrogen cycle. In this case, the emissions 
factor becomes a technology-specific factor that is equivalent across countries. For tier three 
methodology the emissions of gas i in country j for sector k using technology t is expressed as: 
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(2.4.3) 

The substantive difference between the different tiers is largely the level of disaggregation. 
The underlying assumption is that a more precise description of the activity will result in a more 
precise estimate of the emissions factor and hence less potential error introduced by virtue of the 
fact that a more grossly determined average emission factor inadequately represents the variation 
of sub-types of activities in different regions. An economic component of a coupled atmosphere-
ocean-biosphere-economic model could be built using this approach based on the availability of 
data and on requirements for detail. For economic sectors where data is sparse, tier one methods 
would be used. For other sectors where data is more widely available, tier two or tier three 
methods could be used. Although tier two and tier three methods may be feasible, they may not 
necessarily be needed. One goal of the Observing System Simulation Experiments (OSSEs) is to 
determine the sensitivity of the overall coupled atmosphere-ocean-biosphere-economic model to 
changes in input parameters. If it were found that a tier three representation of an economic 
sector provided no advantage over a tier one representation, the tier one representation would be 
preferred since it would require fewer input parameters. 

Also, another purpose of having a coupled atmosphere-ocean-biosphere-economic model is to 
use observational feedback data to optimize the model input parameters. In theory either the 
economic activity or the emissions factors could be considered the parameters being optimized in 
an economics model. However, since we would expect the emissions factors to remain less 
variable over time, we treat them as the parameters that are optimized and allow economic 
activity to vary. 

2.4.3 Consideration for Using Economic Models in a Coupled Framework 

When coupling an economic model with a comprehensive Earth systems model some special 
considerations must be taken into account. First, the temporal and spatial resolution of the 
economic data can be vastly different than that of the Earth systems model. Earth-systems data is 
often allocated in daily/hourly time-scales on a global grid with geographical resolution of 0.1º 
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latitude by 0.1º longitude. In contrast, most economic data are reported at annual levels, and 
commonly available data typically has geographical resolution limited to entire countries. Because 
of this, using an economic model as part of a coupled model framework will require mapping 
aggregate country economic data to individual grid cells, or aggregating finer spatial and temporal 
scale data from Earth system models to an annual and country level. For verification purposes, the 
annual and country level is all that is required since that is the level at which commitments are 
made, but more detailed spatial data would likely help constrain the inverse methods approach. 
For example, urban areas near country borders often have suburbs in the neighboring country and 
attributing emissions accurately to each of the countries would require a finely resolved inverse 
modeling approach. Economic activity data that, with a fair level of confidence, could distinguish 
economic activity on one side of the border from the other could be of high value. Given that 
economic data is collected by political jurisdictions, it is much more likely that it would attribute 
correctly to the spatial scale that matters for verification—the nation. Although many integrated 
assessment models have approaches for allocating emissions spatially, these are often based on 
relatively crude indicators such as population density. Since the data is originally aggregated for 
an entire country, this could contribute to uncertainty in the spatial allocation within a country, 
even though the aggregation for the country may be relatively certain. 

Although mapping of national aggregate economic data to individual grid cells can give rise 
to large uncertainty, less uncertain spatial allocation of estimates from economic activity is 
possible if highly disaggregated regional economic data is used. An example of how this might 
be done is given by (Ichihara et al., 2009) for the state of São Paulo, Brazil. In their approach, 
detailed input/output tables for regional economic activity within a country are combined with 
advanced geographic information systems (GIS) that provide the specific location of various 
economic activities. This combination reduces uncertainty since the source economic data is 
already disaggregated within a country to begin with. The main disadvantage is that such data 
has only been developed for a few countries. 

Another important consideration that must be taken into account is the role of regional and 
global trade-flow when attributing emissions to specific countries. By this we refer to goods that 
physically contain the emission source—e.g., carbon content in agricultural products—that are 
transported across regions and countries. This does not refer to energy intensive goods—e.g., 
cement production—that may have produced a large amount of emissions in the country or 
region of origin, but that physically do not contain the emission source. The problem arises in 
the following circumstances: A growing crop of corn in the Midwest U.S. will be detected via 
inversion methods as a carbon sink. If that crop is harvested, exported, and fed to cattle 
somewhere else in the world it will be detected via inversion methods as a source of CO2 from 
respiration of the livestock and decomposition of waste, and also partly as a methane source. 
Similarly, forest growth in one region will be detected via inversion methods as a sink, and if 
timber or paper products are exported these would be attributable as a sink for the exporting 
region but may show up eventually as a source in the importing region. This is generally not the 
attribution convention in international agreements. In general, the carbon dioxide emissions from 



36 

decomposing waste and sinks due to the harvest of crops and forest products do not enter the 
carbon budget for policy purposes. The general convention is that stocks in products are rapidly 
cycling so no one takes credit or is penalized for them. In contrast, changes in stocks on land that 
are permanent –or at least not part of an annual cycle—can create credits or penalties in national 
reporting. On the other hand, methane and nitrous oxide from ruminant digestion, manure, etc. 
are penalized where they occur even if the food source was imported. For applicable sectors of 
the economy, we can incorporate this attribution convention by adding imports and subtracting 
exports from the original production of a particular sector. In general, the net economic activity 
in country j for sector k is a country’s own production minus exports to countries l plus imports 
from countries m. Mathematically this is represented as:

 
 

 

€ 

Activity j ,k =Output j ,k − Exportsk
l
∑ + Importsk

m
∑  (2.4.4)

 
where j is not contained in l or m. 

The activities and products where this phenomenon is important are those products that 
absorb carbon as they grow, and then re-emit it when they are used. Mostly these are food, feed, 
forest, and fiber products and perhaps more important in the future, biomass energy products 
(for further discussion see Reilly and Asadoorian, 2007). A related issue is the attribution of 
emissions from international transportation or from defense operations. Here the treatment of 
“bunker fuels” in international negotiations remains unresolved. Possible conventions are to 
attribute them to the nation where the fuels are sold or to the nation with which the carrier that 
purchased the fuels is registered. Inverse methods will detect the source of these emissions as 
flight, shipping, trucking, and rail paths that may cross international waters and third party 
countries unrelated to either the source of the bunker fuel or the nation with which the carrier is 
registered.  Inverse methods will need to be able to attribute these emissions following the legal 
conventions established for them if they are to contribute to the verification process. 

2.4.4 Adjoint models 

Compared to transport and (biogeo)chemical models of the atmosphere, ocean, and land, 
economic models rely mainly on linear response functions which relate economic activity to 
regional emissions estimates. While potentially complex in terms of book-keeping, the derivation 
of adjoint expressions which provide sensitivities of emissions to changes in economic activity 
are conceptually simple since these are essentially just the emissions factors. We thus expect 
straightforward implementation within a coupled adjoint framework. We note, that optimal 
emissions strategies have also been investigated in which an adjoint of a coupled integral climate 
response and macro-economic model was used to “optimize” a CO2 emissions path with respect 
to climate change mitigation vs. adaptation costs (Hasselmann, 1997; Hasselmann et al., 1997). 

2.4.5 Economics Summary 

In summary, the most efficient way to incorporate economic data is to develop a simple 
accounting framework that in the first step takes advantage of available data (as discussed in 
Section 3.4). The proposed model could follows the IPCC three-tier methodology with the tier 
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level being determined based on data availability, the level of detail needed to adequately 
constrain emissions estimates, and the degrees of freedom in the inverse approach. Within the 
model, the trade of emission-containing goods between countries will be accounted for using 
trade data so that measured emissions from in situ stations and satellite networks will match the 
emissions of country consumption, not production. Although the methodology is laid out, 
additional work will need to be done to construct a system for mapping the economic data to a 
global grid. 

2.5 Driver and Couplings 

The overall framework for a coupled forward and inverse model is presented in Figure 2.5.1 
and Figure 2.5.2. Fluxes of the main GHGs between components will link the different models. 
In general the different components (ocean, terrestrial, economics) will be connected through the 
atmosphere component. However, it is likely that a link between the terrestrial component and 
the ocean will also need to be developed to account for riverine sources of some of the 
greenhouse gases to the ocean. In order to couple the different model components, a coupler 
program that serves as a driver for the whole system will need to be built. All the component 
models and the coupler will need to be made to run on the same computer platform.  

The coupled system consists of several layers, which are summarized as follows: 

• The core layer consists of a set of prognostic component models which simulate the space 
and time evolution of trace gas concentrations and associated biogeochemical tracer cycles. 
These components are: 

• an atmospheric transport and chemistry model (ATM), 
• an ocean biogeochemical and ecology model (BioECCO), 
• a terrestrial carbon cycle and nitrogen model (TEM/CLM), 
• an economy/emissions model linking human trade to emissions. 

The combined set of variables simulated by this coupled system constitutes the prognostic 
coupled model state of active variables; 

• Corresponding to each element of the coupled state are observations of active variables 
which can be used for formal misfit evaluation and which are indicated in red in each 
component; 

• Inter-component fluxes of active variables (mostly air/sea and air/land) are indicted in 
purple; of particular importance are the anthropogenic emissions whose sensitivities are 
propagated through the coupled system; 

• Active parameters, indicated in yellow; these are uncertain parameters which are adjusted 
as part of the estimation/optimization process, along with the anthropogenic emissions; 

• Passive time-varying flow fields of the atmosphere and the ocean which “drive” the 
atmospheric and oceanic transports, as well as the land hydrology; the “passive” attributes 
indicates that these fields are not adjusted as part of the optimization, but are assumed to be 
already optimized; these fields are indicated by the orange cycle in Figure 2.5.1; 

• Passive boundary conditions, such as ozone levels, trade flows, and land use change, 
which are not modified in the estimation, and are represented in dark grey. 
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Figure 2.5.1. Coupled framework for estimation of the cycling of GHGs that have significant natural 
sources and sinks such as carbon (CO2), nitrous oxide (N2O) and methane (CH4) through the full Earth 
system. There are four sub-models to this system (names are based on those used at MIT and are for 
illustration only): an atmospheric transport and chemistry mode (“atmosphere”, lightest blue box); and 
ocean transport and biogeochemical mode (“ocean”, dark blue box), a “terrestrial” model composed of 
both land vegetation (green box) and land hydrology (brown box); emissions model (“economics”, bright 
blue box). The two components of the terrestrial system are significantly linked already (indicated by dark 
black arrow between green and brown box), and they will be treated as one sub-model in this framework. 
The four sub-models will be linked to each other by the fluxes of the GHG from one to another (illustrated 
by the purple boxes and arrows). It is assumed that the best possible ocean and atmospheric circulation 
and mixing will be available for the transport of GHG (and other necessary elements) through these 
systems. As such these will be treated as “passive” in our system and the adjoint machinery will not 
examine them. Certain datasets that are inputs to some of the sub-models (e.g., ozone concentrations, 
land use changes) are not actively predicted by the model and will be instead also treated as “passive” 
parts of the system (grey ovals). A subset of the observations that are available for each sub-model are 
indicated in red and full sets are provided in Tables 3.1.1, 3.2.1, 3.3.1, 3.4.1. These are also variables 
that each sub-model will carry as a “state variable” (e.g., CO2, N2O) or quantities that the model will 
calculate (e.g., biomass change). The models have a significant number of parameter values (e.g., 
maximum growth rates of phytoplankton and plants) that are based often on observed quantities, but that 
have uncertainties associated with them. Subsets of these are given in the yellow boxes in the figure, and 
more are given in Tables 2.1.2 and 2.3.2. In the adjoint these are called “control” parameters and 
simulations including the adjoint will be able to “optimize” these values so that the model system will be 
brought closer to observed system. 
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Figure 2.5.2. Coupled framework for estimation of cycling of purely anthropogenic greenhouse gases 
(that do not have significant natural sources and sinks). These gases can be treated much more simply 
than those shown in Figure 2.5.1. Emitted gases enter the atmosphere from the ocean or the economics 
model, and are then transported and chemically transformed. Some of these gases are transferred back 
into ocean, where they are simply transported. Observations (red) of these gases in the ocean and 
atmosphere will be used to constrain the full system, and control parameters (shown in yellow in the 
figure, such as solubility of these gases) can be optimized by the framework. 

The various component models have different temporal and spatial scales. The coupler will 
bring the models together and integrate them forward by adopting a time-splitting scheme. The 
atmospheric component will have the shortest temporal scale and thus likely produces the fastest 
changes in fluxes over interfaces with the ocean and land. The coupler will therefore need to be 
built with the atmospheric component temporal scale as the base scale. The fluxes into oceans 
and land from the atmosphere will be accumulated and then averaged before being supplied to 
their respective components. The fluxes to the atmospheric module from the slower component 
models will be kept constant during the integration time step. The model components will also 
likely have different spatial resolutions and the coupler will also be required to re-grid 
greenhouse gas fluxes between components. Several flux interpolation/extrapolation methods 
will need to be examined to find an optimal solution. 

Models linking some of these components in a forward configuration are in existence (e.g., 
see the coupled model intercomparison project, CMIP, http://www-pcmdi.llnl.gov/projects/cmip/).  
However, these models have not generally included an economic/human driven component. 
There is significant experience at MIT in the coupling of complex atmospheric, oceanic, land 
biogeophysical and land ecosystem models together with economic modules through the 
construction of the MIT Integrated Global System Model (IGSM; Prinn et al., 1999; Sokolov et 
al., 2005, 2009), which includes in its latest version TEM/CLM (McGuire et al., 2010; Bonan 
and Levis, 2010) and the MIT ocean general circulation model (Marshall et al., 1997a,b) with 
simple biogeochemistry (Dutkiewicz et al., 2005). A significant difference in the framework 
needed for the assessment and validation of the emissions to the fully-coupled models described 
above, is that each component and the driver will need to be adjoined. This will require 
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considerable development in each component and new and innovative ideas when approaching 
the coupled system. These issues are discussed further in Section 4. 

3. DATA AND OBSERVATIONS 

3.1 Oceans 
In this section we briefly review the types of observations that are available to constrain the 

ocean biogeochemical model. These observations include nutrients, organic pools, and estimations 
of the phytoplankton (in terms of chlorophyll) as well as pCO2 and air-sea fluxes. We focus here 
on datasets that have been already produced and quality controlled. These are summarized in 
Table 3.1.1. Acronyms and relevant websites for the different datasets are provided in the 
glossary. Once again we stress the importance of observations of the physical flow fields, but 
whose use in constraining the dynamical models is regarded as a separate, albeit crucial, effort. 

3.1.1 Satellite derived products 

The datasets with the most coverage globally and temporally are those derived from satellite 
imagery. Several satellites have missions that include the investigation of ocean biota. The NASA 
Sea-viewing Wide Field-of-view Sensor (SeaWiFS) was launched in August 1998 and has since 
then, with only a few short interruptions, been providing images of the Earth. The sensor detects 
visible light in 6 wavebands. Additional NASA satellites Aqua (launched 1999) and Terra 
(launched 2002) have the Moderate-resolution Imaging Spectroradiometer (MODIS) instrument 
on board. MODIS has 9 wavebands in the visible spectrum. These satellites cover the Earth surface 
in 8-day intervals with resolution of 1 to 9 km. There are several additional satellite observing 
systems (e.g., OCTS, POLDER) that capture ocean color relevant properties, but useable and 
widely disseminated products from these are less available. The satellite retrieval from MODIS and 
SeaWiFS is reflectance in several specific wavebands. The sea surface upwelling irradiance must 
be corrected for the atmospheric contamination. The most commonly used products from these 
measurements are chlorophyll and primary production. However both these products use empirical 
formulas (models) to calculate values from these irradiance values. There has been considerable 
effort put into evaluating these output (e.g., the “Primary Production Algorithm Round Robin” 
PPARR projects; Carr et al., 2006; Friedrichs et al., 2009; Saba et al., 2010), but there is still much 
(possible 50%) uncertainty in these values. Thus, although the temporal and spatial coverage is 
good, care will be needed when assimilating these data. The uncertainties are even larger in coastal 
(Case II) waters where turbidity can mask the chlorophyll signal. 

Additional newer products have been deduced from the satellite waveband retrieval. Though 
there are still large uncertainties in these products, they may be useful for constraining aspects of 
the ecosystem model. These products include estimates of surface particulate organic carbon (e.g., 
Stramski et al., 1999), particulate inorganic carbon (e.g., Balch et al., 1999), plankton size (Ciotti 
and Bricaud, 2006; Uitz et al., 2006; Hirata et al., 2008; Kostadinov et al., 2009; Mouw and 
Yoder, 2010) and phytoplankton functional types (Alvain et al., 2009; Bracher et al., 2009; 
Raitsos et al., 2008). A useful discussion of the protocols used in ocean color products is provided 
by Mueller et al. (2003).  
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3.1.2 In situ datasets 

Collecting data directly from the oceans is a costly and difficult. Though “ships of 
opportunity” (merchant vessels that offer to take scientific measurements while underway) may 
sample the surface ocean along certain transects frequently, deep-sea measurement require a 
dedicated research ships. Casts to many 100 m even 1000 m depth in the ocean to collect water 
are time consuming and often only a few such casts (10’s) can be achieved on a single cruise. 
The water collected must then be analyzed (usually separately) for properties such as various 
nutrients, carbon content, phytoplankton and organic matter. International co-operations have led 
to several repeat transects of the oceans during the last 20 years as part of WOCE, JGOFS and 
CLIVAR programs leading to a large influx of biogeochemical data. These data along with 
others collected on other cruises have been collected, quality controlled and interpolation to data 
sparse regions have been undertaken. Nutrient (PO4, NO3, silicic acid) and oxygen monthly 
climatologies are available (World Ocean Atlas, Garcia et al., 2009a,b). GLODAP has provided 
an annual climatology of ocean carbon and alkalinity (see Figure 3.1.1). While these provide 
essential climatologies that will be needed for this project, there are uncertainties that are derived 
from the interpolation and extrapolation schemes involved. Dataset specific for the North 
Atlantic, in particular additional data for the Arctic (CARINA; Tanhua et al., 2009) has recently 
become available. More sparse, but extremely important are the observations of iron an 
important micro-nutrient that limits primary production in large sections of the ocean. An ad hoc 
collations of iron is available (Moore and Braucher, 2008), though should be updated. 

Particularly important datasets are those from long timeseries such as the Bermuda Atlantic 
Timeseries (BATS) and Hawaii Ocean Timeseries (HOTS). Here shipboard measurements of 
physical, chemical inorganic and organic properties are taken regularly (often monthly) at the 
same location. At Bermuda such measurements have been taken since 1955 (Hydrostation “S”) 
and since 1997 at BATS itself. These stations provide unprecedented temporal view of the ocean 
biogeochemistry which will be essential for data assimilation, in particular for capturing 
interannual variability. Several other shorter timeseries data are also available (see Table 3.1.1).  

 
Figure 3.1.1. Location of data samples on the transects in the GLODAP database, and used in the 
GLODAP gridded climatologies. 
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The most comprehensive compilation of pCO2 measurement is that of Takahashi et al. (2009) 
and includes 3 million measurement and have been averaged onto 4º x 5º grid, though there are 
significantly areas of the global ocean with sparse or no coverage (Figure 3.1.2). CO2 fluxes 
cannot be measured directly, but must be derived from measurements of seawater pCO2 and 
estimate of the gas transfer coefficient (a function of sea surface temperature and salinity, and 
wind speeds). CO2 fluxes cannot be measured directly, but must be derived from measurements 
of seawater pCO2 and estimate of the gas transfer coefficient (a function of sea surface 
temperature and salinity, and wind speeds). Takahashi et al. (2009) also have compiled estimates 
of CO2 fluxes from these data. Though uncertainties from the scarcity of pCO2 measurements are 
amplified in the flux calculations by the assumptions that must be made about the gas transfer 
coefficient (see Section 2.1.2) and could be as much as 50%. 
Table 3.1.1. Datasets of ocean biogeochemistry observations. For abbreviation and websites see below. 

Extent/type Variable Measurement type Frequency Period Reference 
global gridded 
(9 km) 

upwelling radiation Satellite, Level 3 8-day 1998 to 
present 

SeaWiFs, MODIS-
Aqua, MODIS-Terra 
OCTS 

global gridded 
(9 km) 

Chl, PAR, POC, PIC, 
primary production 

Satellite+empirical 
model 

8-day 1998 to 
present 

SeaWiFs, MODIS-
Aqua, MODIS-Terra 
OCTS 

global gridded 
(1o x 1º) 

DIC, alkalinity in situ (from WOCE, 
JGOFS, TTO,  
GeoSecs), interpolated 

annual 
climatology  
 
 

1980s and 
1990s 

GLODAP 
(Key et al. 2010) 
 

 PO4, NO3, SiO2 In situ, interpolated monthly  
climatology 

1950s-2000s WOA09 (Garcia et al. 
2009a) 

 Oxygen in situ, interpolated monthly  
climatology 

1950s-2000s WOA09 (Garcia et 
al., 2009b) 

global gridded 
(4ox5o)  

pCO2, CO2 fluxes in situ, interpolation monthly 
climatology  

1968-2006 (Takahashi et al., 
2009) 

site specific 
(bottle) 

DIC, alkalinity, CFC in situ periodic 1978-2006 CARINA (Tanhua et 
al., 2009) 

site specific 
(bottle) 

DIC, alkalinity, pH, CFC, 
C14, C13 

in situ periodic 1980s and 
1990s 

GLODAP (Sabine et 
al, 2005) 

site specific 
(bottle) 

HPLC pigments in situ periodic 1975 to 
present 

SeaBASS (Werdell 
et al., 2005) 

repeat 
transects 
(bottle) 

DIC, PO4, O2, NO3, Fe, 
SiO2, Chl, TOC, TON, 
pCO2 

in situ  periodic 2003-2012 
1989-1993 
1990-1998 

CLIVAR 
JGOFS 
WOCE 

ocean time 
series stations 

DIC, PO4, Chl, NO3, O2, 
pCO2, alkalinity, DOC, 
DON, POC, PON, 
primary production, 
particle fluxes 

in situ time-series mostly 
monthly 

1980s to 
present 

BATS, HOT, PAPA, 
OWS-M, OWS-I, 
Kerfix, CARIACO 
(Kleypas & Doney 
2001) 

repeat transect Chl, PO4, NO3, DIC, DOC, 
DON, DOP, pCO2, N2O, 
O2, primary production, 
HPLC pigments 

in situ once or twice 
yearly 

1995 to 
present 

AMT 

transects zooplankton and large 
phytoplankton species 

in situ periodic 1931 to 
present 

CPR (Richardson et 
al., 2006) 

sparse particle fluxes sediment traps infrequent 1980s to 
present 

(Dunne  et al.,2007) 

sparse Fe in situ infrequent 1980s to 
present 

(Moore and 
Braucher, 2008) 

*Abbreviations and acronyms are provided in the glossary. 
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Figure 3.1.2. Sample location and coverage used in Takahashi et al. (2009) estimates of pCO2 (see Figure 
2.1.1a) and air-sea fluxes. (a) Dots indicate measurement sites (black pre 2002, red post 2002). (b) Number 
of months since 1970 where at least one surface water pCO2 measurement was made in 4º x 5º boxes. 

Direct observational data of the ecosystem itself are even sparser. Research cruises have 
occasionally (though with more regularity) obtained fluorescence data and chlorophyll 
measurements. High-performance liquid chromatography (HPLC) is a technique to separate 
mixtures of compounds and has provided pigment data that can help validate satellite products. 
Many of these data have been collected by SeaBASS (Werdell et al., 2005) and could be useful 
for model optimization. The Atlantic Meridional Transect (AMT) program has conducted over 
19 cruises from the UK to either the Falklands Islands or Cape Town, South Africa over the last 
15 years. These cruises have obtained unparalleled data on the optical, phytoplankton size 
distribution as well as species specifics. Though only covering a slice of the ocean, these data 
will be useful for establishing the fidelity of an ecosystem model in capturing phytoplankton 
species distributions. Additional data of zooplankton, and some larger phytoplankton types 
comes from the 40 year collections in the North Atlantic from the Sir Alistair Hardy Foundation 
in the form of the continuous plankton recorder (CPR; Richardson et al., 2006). 

Measurements of fluxes of organic matter through the water column are essential for 
understanding and capturing the strength of the biological pump (the amount carbon exported as 
organic matter to depth in the ocean and therefore “stored”). These measurements are often done 
with instruments that float or are moored deep in the water column and “catch” particles as they 
sink out (“sediment traps”). However more sophisticated techniques using radioactive isotopes 
(e.g., thorium) in organic matter captured in the water column provides a means to determine how 
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fast particles sinking (Buessler et al., 1992). Ad hoc organic flux measurements are available and 
hopefully more will be available soon through projects such as VERTIGO (Buessler et al., 2007). 

3.1.3 Upcoming datasets 

Several currently activities will produce data products that will also be useful for this project. 
The MOMENTO (Bange et al., 2009) program, jointly funded by SOLAS and the European 
Cooperation in the Field of Scientific and Technical Research, will pull together available N2O 
and methane measurements in the oceans into a single dataset. Cruises have just begun on the 
multi-national GEOTRACES study which will provide much more comprehensive global 
datasets on trace element (e.g., iron) and their isotopes. 

A significant step forward in the monitoring the temperature of the oceans was the 
development of Argo floats (Roemmich and Owens, 2000). These instruments drift at depth in 
the ocean, and occasionally profiling up to surface. At regular intervals at depth and more 
frequently during a profile these instruments measure the temperature, salinity and pressure of 
the water. Once at the surface the float transmits the collected data (and the location) via satellite. 
These floats are relatively inexpensive and have mission lengths of 4-5 years. An international 
collaboration has led to over 3000 of these floats deployed worldwide. Recently developments 
have been undertaken for “Bio-Argo”, Argo floats with biological relevant sensors attached. In 
particular the U.S. Argo program has decided to equip 25% of the future floats with chlorophyll 
and back-scattering sensors. These will be a great importance to the observing system needed for 
projects such as described here. 

3.2 Atmospheric Greenhouse Gas Observations 

In this section we will briefly examine the major existing GHG monitoring networks. The 
networks and measurement techniques will be discussed individually, and are summarized in 
Table 3.2.1. We will only discuss networks with a global extent here. Several regional networks 
exist that are beyond the scope of this report.  

3.2.1 The National Oceanic and Atmospheric Administration, Earth System Research 
Laboratory (NOAA-ESRL) 

NOAA-ESRL Global Monitoring Division (GMD) carries out measurements of GHGs and 
ozone depleting species through the Carbon Cycle Greenhouse Gases group (CCGG) and the 
Halocarbons and other Atmospheric Trace Species program (HATS). These programs measure 
several species using flasks, in situ stations, tall towers and aircraft. Standards for a very large 
range of species are prepared by the various groups at NOAA-ESRL and are often adopted by 
measurement networks worldwide (e.g., Montzka, 1993; Hall et al., 2007). 

The CCGG collects flasks at approximately weekly intervals through a collaborative air-
sampling network of over 80 surface sites worldwide (Dlugokencky et al., 1994; Figure 3.2.1). 
Flasks are analyzed at Boulder, Colorado for CO2, CH4, CO, SF6, H2 and N2O. A subset of flasks 
is also analyzed for stable isotopologues of CO2 and CH4 under the NSTARR program (Trolier, 
1996). CCGG flasks are collected at a number of tall tower sites across the U.S. at approximately 
daily intervals (e.g., Zhao et al., 2009), and from a network of aircraft sites. Aircraft profiles are 
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also taken at a frequency of approximately one profile per week, with each flight sampling at 
12 heights. 

The HATS in situ monitoring network consists of six stations chosen to be in remote locations 
(see Figure 3.2.1). Measurements are performed using gas chromatographs (GC) with electron 
capture detectors (ECD) and mass spectrometric (MS) instruments (Geller et al., 1997; Hall et 
al., 2007). Using this setup, measurements of N2O, SF6, CFC-11, CFC-12 and CFC-113, CCl4, 
CH3Cl, CH3CCl3, bromochlorodifluoromethane (halon-1211) and HCFC-22 and -142b are 
measured at hourly time resolution.  

In addition to the baseline in situ program, the HATS group also makes measurements of a 
larger number of gases from flask samples collected at approximately weekly frequency from 
12 sites (e.g., Montzka, 1993; 1994). The gases measured include several CFCs, HCFCs and 
HFCs, chlorinated hydrocarbons, methyl halides, halons, benzene, bromoform (CHBr3) and COS. 

 
Figure 3.2.1. NOAA sampling locations. Red dots indicate surface flask sampling sites, red dots within 
blue squares show high-frequency in situ monitoring stations, crosses are aircraft profile locations and 
green triangles show tall-tower sites. (http://www.esrl.noaa.gov/gmd/ccgg/) 

3.2.2 The Advanced Global Atmospheric Gases Experiment (AGAGE) 

The Advanced Global Atmospheric Gases Experiment (AGAGE: 1993-2010), and its 
predecessors (Atmospheric Lifetime Experiment, ALE: 1978-1981; Global Atmospheric Gases 
Experiment, GAGE: 1981-1993) have measured the composition of the global atmosphere 
continuously since 1978 (Prinn et al., 2000). The case for real-time high-frequency measurement 
networks like AGAGE is very strong and the observations and their interpretation are widely 
recognized for their importance to ozone depletion and climate change studies. AGAGE is 
distinguished by its capability to measure globally, at high frequency, 51 trace gases including all 
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of the important species (except CO2) in the Montreal and Kyoto Protocols. The scientific 
objectives of AGAGE are of considerable importance in furthering our understanding of 
important global chemical and climatic phenomena. 

The current ALE/GAGE/AGAGE stations are coastal or mountain sites located around the 
world (Figure 3.2.2): (a) on Ireland’s west coast at Mace Head (53ºN, 10ºW); (b) on the U.S. 
west coast at Trinidad Head, California (41ºN, 124ºW); (c) at Ragged Point, Barbados (13ºN, 
59ºW); (d) at Cape Matatula, American Samoa (14ºS, 171ºW); (e) at Cape Grim, Tasmania, 
Australia (41ºS, 145ºE); (f) on the Jungfraujoch, Switzerland (47°N, 8°E; 3.57 km), (g) on 
Zeppelinfjellet, Ny-Alesund, Svalbard, Norway (79°N, 12°E; 0.47 km); (h) at Gosan, Jeju Island, 
Korea (33ºN, 126ºE); (i) at Shangdianzi, China ( 40.7ºN, 117.1ºE, 0.29 km); (j) at Hateruma 
Island, Japan (24ºN, 123ºE); and (k) on Monte Cimone, Italy (44°N, 11°E, 2.17 km). 

AGAGE uses in situ gas chromatography with mass spectrometry (the “Medusa” GC-MS 
system) to measure hydrochlorofluorocarbons (e.g., HCFC-22) and hydrofluorocarbons (e.g., 
HFC-134a), which are interim or long-term alternatives to CFCs now restricted by the Montreal 
Protocol, other hydrohalocarbons (e.g., CH3Cl), halons (e.g., H-1211), perfluorocarbons 
(e.g., CF4), and trace CFCs, all of which (except CH3Cl) are involved in the Montreal or Kyoto 
Protocols. At its 5 original stations, AGAGE also uses in situ gas chromatographs (GC) with 
electron-capture detection (ECD), flame-ionization detection (FID), and (at two of the stations) 
mercuric oxide reduction detection (MRD) to measure five biogenic/anthropogenic gases (CH4, 
N2O, and CHCl3 at all sites; CO and H2 at Ireland and Tasmania only), and five anthropogenic 
gases at all sites (CFCs-11, -12, -113, CH3CCl3, and CCl4) 36 times per day. The list of gases 
measured with these ‘GC-multidetector’ or GC-MD systems includes the major 
chlorofluorocarbons (CFCs) restricted by the Montreal Protocol and the major long-lived non-CO2 
greenhouse gases. Each instrument system is under computer control. The data are calibrated 
against on-site air standards, calibrated relative to off-site parent standards before and after use at 
each station. AGAGE depends upon well-defined absolute gravimetric calibration procedures that 
are repeated periodically to assure the accuracy of the long-term measured trends. 

 
Figure 3.2.2. Locations of the original 
5 AGAGE stations (red boxes), and 
the 6 more recent AGAGE sampling 
stations. AGAGE and the other major 
global air-sampling network, NOAA-
ESRL-GMD, are independent, but 
closely cooperating, including 
frequent inter-comparisons, especially 
at the Samoa shared site.  

Notation: SOGE=System for 
Observation of Halogenated 
Greenhouse Gases in Europe,  
CMA= Chinese Meteorological 
Administration, NIES=National Institute 
for Environmental Studies, Japan, 
SNU=Seoul National University, Korea. 

 
(http://agage.eas.gatech.edu/) 



47 

3.2.3 Network for the Detection of Atmospheric Composition and Change (NDACC) 

Using a variety of ground-based remote sensing instruments, NDACC aims to monitor 
stratospheric and upper-tropospheric composition. Relevant to this report are several solar 
absorption Fourier transform infrared spectrometers (FTIR) that can obtain tropospheric- and 
column-averaged CH4 and N2O at 22 locations (Warneke et al., 2006).  

3.2.4 Total Carbon Column Observing Network (TCCON) 

The NASA-run TCCON network obtains Fourier transform near-infrared spectra from which 
CO2, CH4, and N2O columns can be retrieved (e.g., Wunsch et al., 2010). The ground-based 
network consists of 19 sites across the globe. 

3.2.5 Scanning Imaging Absorption Spectrometer for Atmospheric Chartography 
(SCIAMACHY) 

Aboard the Envisat satellite, SCIAMACHY measures atmospheric trace species from 
transmitted, backscattered and reflected solar radiation in a range of spectral regions (Burrows et 
al., 2005). Using the nadir-viewed near infrared channel, observations of reflected sunlight allow 
SCIAMACHY to retrieve column abundances of CO2, CH4 and N2O (along with other species 
not directly relevant to this report). The typical spatial resolution of these observations is of the 
order of 30km North-South and 60 km East-West, with global coverage every 6 days. Pixels with 
a high cloud fraction and aerosol loading are generally removed, since high sensitivity to the 
surface is desired for inverse modeling purposes. Further, many ocean observations must be 
discarded, due to the low reflectance of the ocean surface. The CH4 product has been used in 
inverse estimates of surface emission rates, and has an estimated absolute uncertainty of 2% 
(Meirink et al., 2006; Frankenberg et al., 2008; Bergamaschi et al., 2009). 

3.2.6 The Greenhouse Gases Observing Satellite (GOSAT) 

Launched in 2009, the Japanese Aerospace Exploration Agency (JAXA) GOSAT satellite 
aims to produce global measurements of CO2 and CH4 from space (Yokota et al., 2009). The 
satellite follows a sun-synchronous orbit at 666km above the surface, with a return time of 
3 days. The main instrument onboard is the Thermal and Near-infrared Sensor for Carbon 
Observation–Fourier Transform Spectrometer (TANSO-FTS), which has a circular field of view 
of 10 km at nadir, and has an across-track scanning capability to extend the scanning range 
between orbital tracks. Over the ocean the instrument tracks the solar glint to overcome the low 
reflectivity of the ocean surface. The simulated density of measurements over a three-day period 
is shown in Figure 3.2.3. Work to characterize biases and accuracy of the GOSAT-TANSO-FTS 
instrument is ongoing, although for CO2, the overall uncertainty is expected to be between 
1.2 and 3.2 ppm, depending on solar zenith angle (Chevallier et al., 2009). 

3.2.7 The Orbiting Carbon Observatory (OCO) 

The original OCO satellite failed to launch in February 2009. However, a follow-up mission 
is expected to fly in the next few years (OCO-2). The OCO was designed to follow a sun-  
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Figure 3.2.3. Simulated GOSAT retrieval locations during a 3-day period in July (Chevallier et al., 2009). 

synchronous orbit with a return period of 16 days (Crisp et al., 2004). By measuring reflected 
sunlight in the near infrared, the instrument was designed to have maximum sensitivity close to 
the boundary layer. The anticipated precision, and spatial resolution are expected to be somewhat 
higher than GOSAT, at ~1 ppm (for CO2) and 1 x 1.5 km respectively (Connor et al., 2008). The 
specified accuracy and anticipated spatial coverage of the OCO instrument (taking into account 
rejection of pixels due to cloud and aerosol contamination) has been shown to lead to significant 
error reduction in surface CO2 flux estimates (Chevallier et al., 2007). However, potential 
regional biases (related to e.g., aerosol scattering) have been shown to lead to significant 
uncertainty in the derived emissions fields (see below).  

3.2.8 NASA Atmospheric Infrared Sounder (AIRS) 

The AIRS instrument, flying on the NASA Aqua satellite, follows a near-pole, sun-
synchronous orbit and allows CO2 and CH4 to be retrieved throughout the day and with global 
coverage (Chahine et al., 2008; Xiong et al., 2008). The peak sensitivity of the instrument lies in 
the mid- to upper troposphere. However, some sensitivity has been found to surface emissions 
(Chahine et al., 2008, Xiong et al., 2009). The spatial resolution of the observations is around 
90km x 90km, with an accuracy of around 0.5% for CO2 and 2% for CH4. 

3.2.9 Civil aircraft for the regular investigation of the atmosphere based on an instrumented 
container (CARIBIC) 

The CARIBIC system uses commercial aircraft to carry an instrumented container that can 
make measurements of a number of species in the upper troposphere (Brenninkmeijer et al., 
2007). CO2 measurements are made in situ at high frequency and 28 flask samples are collected 
per flight, for laboratory measurement of CH4, N2O, SF6 and halocarbons. Flights from Frankfurt 
to South America or South-East Asia are flown approximately once per month. 

3.2.10 Other atmospheric observations 

In addition to the global monitoring networks outlined above, there are regional networks that 
submit their data to the World Meteorological Organization’s Global Atmosphere Watch 
program (WMO-GAW, http://www.wmo.int/pages/prog/arep/gaw/gaw_home_en.html).  
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Table 3.2.1. Existing atmospheric measurements of Kyoto protocol greenhouse gases. 

Pollutant Type  Network Spatial Coverage Temporal 
Resolution 

Approximate 
Uncertainty 

Flask sampling NOAA-ESRL 84 sites ~weekly 0.1 ppm 
Ships NOAA-ESRL 3 ship tracks ~monthly 0.1 ppm 
In situ NOAA-ESRL 6 sites hourly 0.1 ppm 
Flask/in situ Other WMO-

GAW contributors 
~100 sites hourly - 

monthly 
0.1 ppm 

Tall tower NOAA-ESRL 9 sites, N. America only ~daily 0.1 ppm 

Surface 

Isotopologue NSTARR 20 sites ~monthly  
Flask NOAA-ESRL 31 sites ~ weekly 0.1 ppm 
 NASA-

CONTRAIL 
W. Pacific ~monthly 0.1 ppm 

Aircraft 

High frequency HIPPO Pole-to-pole 6-monthly 0.1 ppm 
Satellite GOSAT ~60S-60N ~3-day return 

time 
3 ppm 

 AIRS 30S to 90N, 90km x 90km, 
mid-troposphere 

~3 day return 
time 

1.5-2ppm 

 OCO ~60S-60N  6-day return 
time 

1ppm 

CO2 

Remote 
sensing 

Surface column 
FTIR 

TCCON 21 sites high 
frequency 

1ppm 

In situ AGAGE 11 sites hourly 2ppb 
Flask sampling NOAA-ESRL 84 sites ~weekly 2 ppb 
Ships NOAA-ESRL 3 ship tracks ~monthly 2 ppb 
In situ NOAA-ESRL 6 sites hourly 2 ppb 
Flask/in situ Other WMO-

GAW contributors 
~100 sites hourly - 

monthly 
1-4 ppb 

Surface 

Tall tower NOAA-ESRL 9 sites, N. America only ~daily 2 ppb 
Aircraft Flask NOAA-ESRL 31 sites ~weekly 2 ppb 

Satellite SCIAMACHY 60S-60N   15-30 ppb 
 AIRS 30S to 90N, 90km x 90km, 

upper troposphere 
~3 day return 
time 

30 ppb 

CH4 

Remote 
sensing 

Surface column 
FTIR 

TCCON 21 sites high 
frequency 

4ppb 

In situ AGAGE 11 sites hourly 0.4ppb 
Flask sampling NOAA-ESRL ~ 20 sites? ~monthly 0.4ppb 

Surface 

In situ NOAA-ESRL 6 sites hourly 0.4ppb 

N2O 

Remote 
sensing 

Surface column 
FTIR 

TCCON 21 sites high 
frequency 

1.5ppm 

In situ AGAGE 9 sites hourly <1% HFCs Surface 
Flask sampling NOAA-ESRL ~ 20 sites  ~monthly <1% 
In situ AGAGE 11 sites hourly <1% 
Flask sampling NOAA-ESRL ~ 20 sites? ~monthly <1% 

CFCs Surface 

In situ NOAA-ESRL 6 sites hourly <1% 
In situ AGAGE 9 sites hourly <1% PFCs Surface 
Flask sampling NOAA-ESRL ~ 20 sites (C2F6 only) ~monthly <1% 
In situ AGAGE 11 sites hourly 1-2% 
Flask sampling NOAA-ESRL ~ 40 sites ~weekly 1-2% 
Ships NOAA-ESRL 1 ship track ~monthly 1-2% 
In situ NOAA-ESRL 6 sites hourly 1-2% 
Flask Other (e.g., U. 

Heidelberg) 
~10 sites ~monthly 1-2% 

Surface 

Tall tower NOAA-ESRL 6 sites, N. America only ~daily 1-2% 

SF6 

Aircraft Flask NOAA-ESRL 31 sites ~weekly 1-2% 
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Many other atmospheric measurements exist which will be useful to incorporate into a global 
trace gas observing system. For example, estimates of CO2 fluxes (and many other GHGs) at the 
scale of urban areas can be measured using eddy covariance techniques (e.g., Helfter et al., 2010). 
These measurements must be made at elevated locations well above the urban canopy layer (e.g., 
communications towers). Similarly, small-scale flux estimates can be made through measurement 
of the vertical profile of atmospheric gases, combined with observations of boundary layer 
turbulence. At even smaller scales, the outflow from chimneys at individual industrial facilities 
can be monitored and included in very detailed emissions estimation schemes. 

3.3 Natural and Managed Land Ecosystems 

A variety of data at site, regional and continental-to-global scales have been used to 
parameterize and evaluate land surface models (Table 3.3.1). Information from intensively 
studied field sites are normally used to calibrate the models; and data from other field sites or 
times other than the calibration period are used to evaluate the models (Raich et al., 1991; 
McGuire et al., 1992, 2002; Melillo et al., 1993; Kicklighter et al., 1994; Tian et al., 1998; 
Amthor et al., 2001; Clein et al., 2002; Zhuang et al., 2001, 2002, 2003; Hayes et al., 2011).  

Site-specific data have included field-based estimates of standing vegetation biomass, stocks 
of soil organic carbon and nitrogen, stocks of inorganic nitrogen, litterfall, net primary 
production (NPP), net nitrogen mineralization, net ecosystem exchange (NEE) from eddy 
covariance studies, soil respiration, evapotranspiration, soil temperatures, soil moisture, soil 
methane emissions and uptake, and soil nitrous oxide emissions.  

Model estimates have also been evaluated through comparisons with site-specific experimental 
responses to warming, nitrogen fertilization, and increased atmospheric CO2 concentration (Clein 
et al., 2000). In addition, the results of chronosequence studies have been used to evaluate the 
ability of models to simulate the recovery of ecosystems after a disturbance (Pan et al., 2002; 
Zhuang et al., 2002). At the regional scale, model estimates of carbon storage have been compared 
to inventory-based estimates of NPP (Jenkins et al., 2001), vegetation biomass (Jenkins et al., 
2001; Zhuang et al., 2003; Balshi et al., 2007; Hayes et al., 2011) and soil carbon (Tian et al., 
2011). In addition, model estimates of water yield have been evaluated against river discharge for 
watersheds across the United States (Gordon et al., 2004; Felzer et al., 2009).  

At continental-to-global scales, model “bottom-up” estimates for carbon exchange have been 
evaluated with comparisons to “top-down” inverse modeling results based on atmospheric CO2 
data at seasonal (Heimann et al., 1998; McGuire et al., 2000; Dargaville et al., 2002; Zhuang et 
al., 2003), inter-annual (McGuire et al., 2001; Dargaville et al., 2002; Hayes et al., 2011; Tian et 
al., 2011), and longer term (Balshi et al., 2007) scales. Model estimates have also been compared 
with remote-sensing estimates for gross and net primary production (Kimball et al., 2007; Tian et 
al., 2011), snow cover (Euskirchen et al., 2006), soil freeze thaw (Euskirchen et al., 2006), and 
growing season length (Euskirchen et al., 2006). 
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Table 3.3.1. Terrestrial ecosystems and biogeophysical data sets.  

Extent Variable Measurement type Frequency  Period  Sources  
global leaf area index, 

biomass and biomass 
increment 

satellite (NDVI, EVI): 
modeling 

once every 8 to 
15 days 

1980s to present AVHRRa, 
MODISb 

 Net primary production satellite: modeling Annual 2001 to present MODISb 
 Gross primary 

production 
satellite: modeling once every 8 days 2001 to present MODISb 

 Snow water equivalent satellite: modeling Monthly 1978-2003 NSIDCc 
 surface temperature satellite 4 times per day 1980s to present AVHRRa/SSMId 
subglobal/ 
large  

biomass and biomass 
increment 

field measurements 
from long-term plots 

once every 5 to 
10 years 

1920s to present Forest 
Inventoriese 

areas Water yield,  
water chemistry 

gaged watersheds Periodic 1960s to present USGS reportsf 

Site  Latent heat exchange, 
net ecosystem 
exchange 

Eddy covariance 
tower measurements 

Hourly 1992 to present FLUXNETg  

 biomass and biomass 
increment 

field measurements Periodic 1960s to present FLUXNETg, 
ILTERh, IBPi 

 litterfall, leaf area 
index, net N 
mineralization 

field measurements Periodic 1960s to present ILTERh, IBPi 

 Net primary production field measurements periodic 1960s to present FLUXNETg, 
ILTERh, IBPi 

 methane, nitrous oxide field measurements periodic 1990s to present ILTERh, 
TRAGNETj, 
DNDCk, 
CarboEuropel, 
literaturem 

a Advanced Very High-Resolution Radiometer (AVHRR) 8-km data (Chen and Cihlar, 1997; Myneni et al., 2001). 
b Moderate Resolution Imaging Spectroradiometer (MODIS) 1 km data (http://modis.gsfc.nasa.gov). 
c Available from National Snow and Ice Data Center (NSIDC) as described by Armstrong et al. (2005). 
d Spatial resolutions of retrievals are 3 km for AVHRR and 25 km for Special Sensing Microwave Imager (SSMI).  
e Data available from forest inventories conducted in the USA, Canada, Russia, Finland, Norway and Sweden 

(Birdsey and Heath, 1995; Penner et al., 1997; Caspersen et al., 2001; Myneni et al., 2001; Janssens et al., 
2003; Zhuang et al., 2003; Smith et al., 2001, 2004; Smith and Heath, 2005). 

f Water discharge and quality data from ~1.5 million sites in the USA & Puerto Rico (http://waterdata.usgs.gov/nwis). 
g Data from over 300 tower sites from the global FLUXNET network (http://www-eosdis.ornl.gov/FLUXNET) are 

potentially available after obtaining agreements with the corresponding PIs at each site. TEM estimates have 
been compared to FLUXNET data (Clein et al., 2002; Amthor et al., 2001; Potter et al., 2001; Felzer et al., 2006). 

h Data from the International Long Term Ecological Research (ILTER, http://www.ilternet.edu) network, which 
consists of a series of research networks of intensively studied field sites within 28 countries.  

i International Biological Programme predates the LTER. Data collected at IBP sites, along with other less intensively 
studied sites (NPP, biomass, LAI, soil characteristics), are freely available (http://www-eosdis.ornl.gov). 

j Data from 29 sites of the Trace Gas Network (Ojima et al., 2000; http://www.nrel.colostate.edu/projects/tragnet/). 
k Global DNDC Network (http://www.globaldndc.net) reports field measurements of nitrous oxide and methane 

emissions used to evaluate the DNDC model. 
l Soil observation network of CarboEurope (Schulze et al., 2009) 
m Surveys include 143 sites reported in Xu et al. (2008) and Schulze et al. (2009) 
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3.4 Economics Datasets 

The data needed for an economic model consists primarily of two kinds: data on the economic 
output of greenhouse gas emitting sectors, and emission factors that give the ratio of emissions per 
unit of economic activity. In addition, trade-flow information will also be needed. For an initial 
model, much of the economic activity data is readily available from international organizations 
such as the International Energy Association (IEA) and the Food and Agriculture Organization 
(FOA). The IPCC Guidelines for National Greenhouse Gas Inventories (IPCC, 2006) and 
scientific literature provide estimates of emissions factors. An overview of data identified to 
construct an economic model for GHG producing economic sectors is given in Table 3.4.1. 

Although the data identified covers the majority of GHG emissions, additional data will need 
to be identified for certain specific industrial processes that are largely related to HFC, PFC, and 
SF6 emissions. 

As part of a coupled atmosphere-ocean-biosphere-economics model, estimates of the 
uncertainty surrounding this data must also be available. Uncertainty in emissions factor 
estimates is thoroughly considered in the 2006 IPCC Guidelines for National Greenhouse Gas 
Inventories as well as in scientific literature. In their guidelines, the IPCC provides upper and 
lower limits for the 95% confidence interval for emissions factors across all major greenhouse 
gas emitting sectors. The uncertainty in these estimates varies widely depending on the specific 
technology being considered. Emissions factors for fuels are tightly bound since the carbon 
content of each fuel is precisely known. In crude oil for example, the emission factor for carbon 
is 20.0±0.6 (kg C GJ-1). In contrast, emissions factors for enteric fermentation in cattle can range 
from 27-128 (kg CH4 head-1 year-1) depending on the kind of cow—i.e. dairy or beef—and the 
livestock’s environment.  

As mentioned in Section 2.4.3, having higher geographical resolution of the economic data 
within each country would be useful in decreasing uncertainty when mapping emissions 

Table 3.4.1. Source Data for Economic Activity and Emissions Factors. 

Description IPCC Code Economic Activity Data Emissions Factor Data 
Mobile and Stationary 
Combustion 

1A, 1C IEA, FAO IPCC (2006) 

Fugitive Emissions: 
Coal, Oil, Gas 

1B IEA, CDIAC, EIA, FAO IPCC (2006), CIAB (1994), EURACOAL 
(2008), Kirchgessner et al. (1993) 

Industrial Processes 
and Solvents 

2, 3 USGS, IEA, UN Industrial Commodity 
Statistics, IFA, AFEAS, McCulloch et al. 
(2000), ESIA, Chemical Week (1999) 

IPCC (2006) 

Livestock 4A, 4B, 4D2 FAO IPCC (2006) 
Rice cultivation 4C FAO, IRRI IPCC (2006) 
Agricultural soils 4D IFA IPCC (2006), Bouwman et al. (2002), 

Van Drecht et al. (2003) 
Large scale biomass 
burning 

4E, 4F, 5A, 
5C, 5D, 5F 

FAO, GFED Andreae and Merlet (2001) 

Soild waste and waste 
incineration 

6A, 6C CRF/UNFCCC IPCC (2006) 

Wastewater handling 6B U.N. Industrial Commodity Statistics IPCC (2006), Doorn and Liles (1999), 
Doorn et al. (1997) 
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estimated from economic activity to a global grid. As was explained earlier, this can be achieved 
through the use of detailed input/output (I/O) data of each country combined with geographical 
information systems (GIS). In this approach the emissions factors provided by the IPCC and 
scientific literature would still be used, but the more aggregate economic activity data presented 
in Table 3.4.1 would be replaced with the more detailed I/O data. Although the process of 
collecting extensive I/O data for the world would require significant effort, examples of some 
I/O data that could be used are given in Table 3.4.2. 

Table 3.4.2. Input/Output Databases. 

I/O Database Regions Source 
EXIOPOL EU25 EXIPOL (2010) 
WIOD All major countries WIOD (2010) 
IDE Asia, Middle East, Africa, Latin America IDE (2010) 
OECD OECD countries OECD (2005) 

4. ESTIMATION METHODS, UNCERTAINTY QUANTIICATION, AND OBSERVING 
SYSTEMS 

4.1 Introduction 

A comprehensive framework which combines the two main knowledge reservoirs, observations 
(+ errors) and models (+ errors), is essential for quantifying global and regional CO2 concentrations 
and fluxes, along with their uncertainties. The framework serves several goals: 

• Combine diverse types (in terms of variables measured) of (mostly) disparate (in terms of 
spatial and temporal sampling) observations, 

• Use best-possible knowledge of the dynamics and physics encapsulated in a model as dynamical 
interpolator between all available observations, and which fulfills known conservation laws, 

• Combine all sources of prior uncertainty estimates for model parameters, observation errors, 
and representation errors, 

• Inverse uncertainty propagation: use inverse methods to infer optimal parameter estimates 
along with posterior parameter uncertainties, in the context of the available observations, 
their errors, and prior parameter uncertainties, 

• Forward uncertainty propagation: use optimal parameter estimates and their posterior 
uncertainties to calculate prognostic fields and derived target variables (e.g., regional or 
country-based CO2 emissions, atmospheric concentrations and their changes, fluxes 
between different components, etc.). 

The framework enables optimality studies of various types:  
• Optimal estimation: infer best estimates of emissions and their posterior uncertainties, 
• Optimal control: determine target CO2 emissions, which optimize (usually minimize) a pre-

defined target quantity (objective function), such as global or regional CO2 emissions or 
derived physical properties (global-mean surface air temperature, sea level, etc.), 

• Optimal observing systems: assess, which observations (types, spatial and/or regional 
sampling, required accuracy) have the most impact on reducing uncertainties in target 
quantities. 
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Without such a quantitative framework, no rigorous data-synthesis is available, no systematic use 
of basic conservation laws or knowledge of transport processes is made, and no connection can 
be made between observation and sampling errors on the one hand and parameter and target 
uncertainty on the other hand. Thus, what appears as an added-on effort is in fact a central 
ingredient to any comprehensive observation/verification system strategy. 

In the following we lay out the different steps required for end-to-end uncertainty 
quantification (from observations to estimated or projected target quantities). These steps are 
(1) the definition of target quantities (emission rates), (2) the formulation of a control problem 
which involves a model that relates uncertain control variables (also called active variables) to 
the target quantity, subject to passive boundary conditions, (3) the formulation of an 
inverse/optimization problem, in which the model is fit to the observations through adjustment of 
the uncertain control variables, (4) an inventory of the sources of error in the observations, model 
parameters, structural model error, and estimation procedure, (5) inverse propagation of prior 
observation uncertainties to posterior control variable uncertainties as part of the solution of the 
inversion/optimization, (5) forward propagation of control uncertainties to target or projection 
uncertainties.  

We realize that the described pipeline is fairly specific and discards alternative UQ methods 
available (in general, ensemble-based or Monte Carlo methods). Justification for the proposed 
route is what has been termed “the curse of dimensionality”, i.e. the need to deploy methods that 
can handle high-dimensional uncertain parameter (control) spaces (see e.g., the Department of 
Energy 2009 report on “Scientific Grand Challenges in National Security: The Role of 
Computing at the Extreme Scale”; Bishop et al., 2009). This requirement precludes many of the 
mathematically elegant methods as unfeasible in practice. 

4.2 The coupled forward model 

The overall model-coupling framework was presented in Figure 2.5.1. We re-iterate that the 
coupled approach is essential to better constrain the significant background fluxes and to isolate 
anthropogenic contributions. The generic components of such a system consist of an atmospheric 
chemical transport model (A-CTM), an ocean biogeochemical transport model (O-BioTM), a 
land biogeophysical, hydrology, and ecosystem model (L-BPHEM), and an economics model 
(E). Each of these models is driven by physical flow fields (atmospheric circulation, ocean 
circulation, land surface fluxes), which are obtained from state-of-the-art “reanalysis” or state 
estimation projects (e.g., http://ecco-group.org/). We re-emphasize the crucial role of such flow 
fields, whose availability and improvement is critical, but not pursued as part of this proposal. 
Instead, we are looking to the relevant agencies to ensure the sustained production of fields of 
ever-increasing quality. A long-term perspective would envision the joint treatment of both 
dynamical and tracer fields in a comprehensive Earth-system model inversion. 

For the sake of clarity, we describe in the following a specific coupled framework which is 
composed of a concrete set of model components, all of which have either been directly 
developed at MIT, with significant MIT contributions, or which are considered as well-suited for 
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use in a formal estimation framework such as described here. The key models considered are 
(i) for the ocean: the MIT ecosystem model driven by the ECCO state estimates (BioECCO), 
(ii) for the atmosphere: MOZART driven by atmospheric reanalyses, and (iii) for the land: 
TEM/CLM. Critical coupling interfaces are those between BioECCO and MOZART, as well as 
between MOZART and TEM/CLM. The coupling procedures are well established, and have 
been implemented in part in the context of the specific framework through construction of the 
MIT Integrated Global System Model (Prinn et al., 1999; Sokolov et al., 2005), which includes 
in its latest version TEM/CLM (McGuire et al., 2010; Bonan and Levis, 2010) and a simplified 
version of the MIT ocean general circulation model (Marshall et al., 1997a,b) including 
biogeochemistry (Dutkiewicz et al., 2005). We also have significant experience in coupling an 
atmospheric dynamics model with the above MIT ocean model through the MIT Climate 
Modeling Initiative (http://paoc.mit.edu/cmi).  

Following essentially the notation of Wunsch (2006) we write the basic structure of the 
equations for the coupled system. We first consider separately the atmospheric component 
(subscript A), and the combined ocean and terrestrial system (subscript TO): 
 

 
(4.2.1) 

where LA is the atmospheric transport model, and LTO refers to the Terrestrial Ecosystem Model 
(T) and ocean (O) biogeochemistry model. LA carries forward in time the model state of 
atmospheric CO2 concentrations, xA, and is modified by boundary fluxes BqTO of CO2 (from the 
terrestrial and the oceanic components). Although very different in nature, they can be 
conceptually described by the same operators and, therefore, are combined here. Both components 
T, O, are forced by atmospheric partial pressure qA = pCO2, plus other passive fluxes. 

For our system, the required time steps for atmospheric (DtA), ocean (DtO), and land terrestrial 
(DtT) component models are: DtA < DtO < DtT. The whole system synchronizes at the end of 
every time step of TEM/CLM. The commonly used data, such as atmospheric ozone 
concentration and reanalysis meteorological data, will be distributed by the coupler to each of the 
component models when needed. 

In addition to the equations for the separate models we have available equations, linking the 
state of one component to fluxes required by the other component, which establishes the coupling: 
 

 
(4.2.2) 

In the present case, the coupler MA2TO converts partial pressures pCO2 into mean concentrations 
qTO = c(CO2) needed by the BioECCO and TEM models. MTO2A converts terrestrial and 
oceanic CO2 concentrations into CO2 fluxes required by the atmosphere. In the coupled system 
qA and qTO are no longer boundary values, but part of the coupled model state: 
  (4.2.3) 

and one full timestep of the coupled system may be written, as a composition (we assume 
synchronous coupling, the asynchronous case is just a matter of index bookkeeping): 

LA :xA(i) �−→xA(i+ 1) =LA

�
xA(i), BqA(i),ΓuA, t

�

LTO :xTO(i) �−→xTO(i+ 1) =LTO

�
xTO(i), BqTO(i),ΓuTO, t

�

MA2TO :xA(i) �−→ qTO = MA2TO

�
xA(i)

�

MTO2A :xTO(i) �−→ qA = MTO2A

�
xTO(i)

�

xC(i) =
�
xA(i), qA(i), xTO(i), qTO(i)

�T
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  (4.2.4) 

with composition: 
  (4.2.5) 
The flow through the active coupled system then has the following structure: 
 

 

(4.2.6) 

Forward integration of the coupled model will first be performed with the initial or reference 
values for all state vector elements (x), control parameters (u), etc., followed by a series of 
integrations and use of the tangent linear versions of the models to examine key sensitivities of 
carbon fluxes, etc., to oceanic, land ecosystem, land hydrology and human activity. Table 4.2.1 
lists potential state vector elements and Tables 2.1.2 and 2.2.3 list potential controls. 
Tables 3.1.1, 3.2.1, 3.3.1 and 3.4.1 list potential observations to compare with the state vectors. 

Table 4.2.1. State vectors (partial list); see Tables 3.1.1, 3.2.1, 3.3.1, 3.4.1 for other potential candidates. 
Atmosphere greenhouse gas mole fraction, column CO2, CH4, etc., flux CO2 

Ocean Biogeochemistry tracer distributions (PO4, alkalinity, DIC, O2), ocean surface pCO2, air-sea flux, 
biological export through 100 m, surface chlorophyll  

Terrestrial Vegetation C, vegetation structural N, vegetation labile N, reactive soil organic C and N, 
soil inorganic N 

4.3 Inverse method and inverse uncertainty propagation 
4.3.1 Gradient-based solution of the least-squares model-data misfit problem 
The first step in the uncertainty quantification framework consists in the model vs. data 

synthesis or state estimation procedure, i.e. the optimal fit of the coupled model to all available 
observations, as well as its associated inverse uncertainty propagation from observation 
uncertainties to control variable uncertainties. Using the notation of control theory, we formulate 
the state estimation system as an objective function, J, which maps a set of so-called independent 
variables, or controls, u, which can be varied/tuned to a scalar-valued dependent variable that is a 
diagnostic (i.e. function) of the model state variables, x. Here, the model L refers to a mapping 
that carries a set of model state variables forward in time from ti to ti+1 (note that the model is 
thus a partial function of the full objective function). 

Any variable that can be affected by changes in any of the control variables is referred to as 
active, variables that remain unaffected are passive. For the coupled problem we distinguish two 
branches. In the first branch, the coupling of the active components is considered, in the present 
case the carbon fluxes between the components. This branch is the one that will be modified as 
part of the estimation problem to minimize the objective function. In a second branch, all 
remaining aspects of the system are considered that will not change during the optimization. 
This branch includes the atmospheric and oceanic dynamics, which we assume as given. 

LC : xC(i) �−→ xC(i+ 1) = LC

�
xC(i), BqDYN , ΓuC , t

�

LC = MTO2A ◦ LTO ◦MA2TO ◦ LA

�
xA(i), qA(i)

� LA−→ xA(i+ 1)� �
qA(i+ 1) qTO(i)� �

xTO(i+ 1)
LTO←−

�
xTO(i), qTO(i)

�
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Through variation of the controls uC (and initial conditions xC(t = 0)) of the coupled system 
we seek a solution of the coupled state xC(t), which minimizes J. A schematic of the iterative 
method is given in Figure 4.3.1. The general structure of J consists of four sums measuring: 
(1) the departure of the initial state xX(0) from a first guess xX0; (2) the misfit between 
observations yX(t) at time t and the model projected onto the observation E(t)xX(t); (3) the 
deviation of the controls uX(t) from a prior; and (4) imposing that xC(t) satisfy the model 
equations LC through the introduction of Lagrange multipliers µC(t). 

 

 

(4.3.1) 

Instead of absorbing all three model components under the subscript C we have written them out 
here as sum over X = {A,T,O} in order to show that each component is constrained by its own set 
of observations yX, and is endowed with its own set of controls uX. We have also separated LC, 
µC into the contributions from the individual models LX,µX and the coupling functions MA2TO, 
µA2TO and MA2TO, µTO2A. 

A crucial element of the system are the weight matrices P(0), R(t), Q(t), which for weighted 
least-squares can be interpreted as inverse error covariances, or prior uncertainties. The solution 
will depend on the availability of estimates of the uncertainties for the initial state vector values, 
observations to be compared with the state vector, and the model control parameters as discussed 
in Section 2. In general, the full covariances are not available, and are approximated by diagonal 
matrices representing estimated variances, potentially augmented by a Laplacian operator as an 
approximation to the covariance structure and acting de facto as a smoothness constraint. 

From a control theory point of view, J is a scalar-valued function of control space: 
  (4.3.2) 
The model constraints impose equations that lead to the composite mapping: 
  (4.3.3) 

 

J =
A,T,O�

Ξ

�
xΞ(0)− xΞ0

�T
P (0)−1

�
xΞ(0)− xΞ0

�

+
A,T,O�

Ξ

tf�

t=0

�
E(t)xΞ(t)− yΞ(t)

�T
R(t)−1

�
E(t)xΞ(t)− yΞ(t)

�

+
A,T,O�

Ξ

tf−1�

t=0

uΞ(t)
TQ(t)−1uΞ(t)

− 2
A,T,O�

Ξ

tf�

t=0

µΞ(t)
�
xΞ(t)− LΞ[...]

�

− 2

tf�

t=0

µA2TO(t)
�
qTO(t)−MA2TO[xA(t+ 1)]

�

− 2

tf�

t=0

µTO2A(t)
�
qA(t+ 1)−MTO2A[xTO(t+ 1)]

�

J : uC −→ J(uC)

J : uC −→ xC = LC(uC) −→ J
�
LC(uC)

�
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Figure 4.3.1 Schematic of the iterative minimization of the modeled (red trajectory) vs. observed (blue dots) 
concentration misfit J, through variation of the control variables. The optimal fit is achieved for adjusted 
controls (parameters and emissions) u = uc(n), which leads to best-estimate concentrations x = xc(n). 

We seek to vary uC such as to minimize J via gradient-based optimization algorithms (steepest 
descent, conjugate gradient, Newton method). The gradient is obtained by applying the chain 
rule to the composite mapping. We obtain the general structure: 

 
 

(4.3.4) 

The terrestrial and the oceanic components are influenced, not only by the control parameters 
for each model (see Tables 2.1.2 and 2.3.2), but also by variables that relate to the passive 
coupling branch (e.g., shortwave radiation for the ocean, hydrological quantities for the 
terrestrial system). These variables cannot be made control variables. If they were, the dynamical 
state of the system, i.e. the atmospheric and oceanic transport, would become active and change 
as a consequence of changes to these controls. This control problem is much more complex, and 
is not attempted here. We will instead explore methods to capture aspects of these sensitivities 
without altering the dynamic state, or violating energy, momentum or water budgets. 

The global carbon adjoint system depicted in Figure 2.5.1 consists of four main components: 
(i) MOZART (CTM), (ii) TEM, and (iii) BioECCO (iv) ECONOMICS. The Community Land 
Model (CLM) will be regarded, in the context of a coupled control problem, as a sub-component 
of TEM. The coupled dynamical cycle consists of: (1) the momentum cycle, (2) the hydrological 
cycle (precipitation, freshwater, runoff, moisture, etc.), and (3) the energy cycle (temperature, 
radiation, etc.).  

∇uCJ =

�
∂xC

∂uC

�T �
∂xJ

∂xC

�T

δJT
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The set of all relevant variables could be termed the dynamical state: dC(t) = [dA(t), dTM(t)]T. 
This state is fully prescribed by the combined NCEP, ECCO, and CLM-derived fields (in short 
NEC), and is not altered as a consequence of the state estimation. All associated variables are 
thus passive. A flow diagram might look as follows: 
 

 

(4.3.5) 

Besides its key role in the state vector and model parameter estimations, the global adjoint 
system will be used to analyze the origin of observed anomalies in terms of specific model 
properties and initial conditions. This linking of effects to causes will be invaluable in addressing 
our scientific objectives. 

4.3.2 Hessian-based inverse uncertainty propagation 

The solution to the statistical least-squares problem results in a set of control variables, which, 
applied to the model, minimize the model vs. data misfit. In a similar way that the first derivative 
of the misfit function with respect to the controls (the gradient) provides a powerful tool in the 
optimization, the second derivative (the Hessian) evaluated at the minimum yields important 
information regarding the uncertainties. A general expression of our least-squares misfit function 
formulated earlier, and its approximate form is (see Figure 4.3.2):  

 
Figure 4.3.2 Schematic of relationship between the misfit function at the minimum, its local curvatures, r1, 
r2, and its prior (Rprior) and posterior (Rpost) uncertainty/error covariances. For large curvatures, the 
posterior errors are small, for small curvatures, the posterior errors are large. Note that the posterior 
errors depend on the prior errors, as well as the sensitivities of the model with respect to the controls. 
Large sensitivities contribute to small posterior uncertainties. 
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(4.3.6) 

Compare this to the general form of a multi-variate Gaussian distribution: 
  (4.3.7) 

We identify the approximate form of Eqn. 4.3.) as linear transformation of the prior error 
covariance Rprior into the posterior error covariance Rpost or via the second derivative of J: 
 

 

(4.3.8) 

The eigenvalues of the inverse Hessian are the posterior control variable uncertainties, based on 
the observations used, their uncertainties, and the model sensitivity, all of which are ingredients 
in the estimation process (e.g., Tarantola, 1987). 

4.4 Target/objective functions and forward uncertainty propagation 

In a last step, the posterior uncertainties of the control variables can be used as inputs in 
conjunction with the model, its linearized version (the model Jacobian), and the optimized 
control variables to infer uncertainties in any model diagnostic or target quantity considered. 
Note that in doing so, several crucial things have been achieved: 

(1) the forward propagation is with respect to an optimized model trajectory (i.e. one which 
fits the observations used in the previous inversion), 

(2) the uncertainties used as inputs are based on the available observations used and their prior 
uncertainties (use of different or more observations would result in different uncertainty 
inputs), 

(3) the uncertainties are propagated based on the “known” sensitivities encapsulated in the 
model formulation. 

A full end-to-end system of the sort described here does not currently exist. It has nevertheless 
been achieved using simpler models and in the more limited context of a marine ecosystem 
model (Fennel et al., 2001) and a terrestrial carbon cycle model (Kaminski et al., 2010). Our 
proposed system is in many ways a concrete implementation of a generic formal UQ chain as 
suggested by Oden et al. (2010a,b). The ECCO group is working toward enabling such an end-
to-end system for quantifying oceanic indices on climate time scales (Wunsch et al., 2009). All 
studies rely on automatic differentiation to derive 1st and 2nd derivative models required for the 
optimization and uncertainty propagation. The need to bring these methods to bear in a fully-
coupled system and taking advantage of all available observations from all components has 
clearly been identified by the recent study of the National Research Council (NRC) on “Verifying 
Greenhouse Gas Emissions: Methods to Support International Climate Agreements” (Pacala et 
al., 2011). Specifically, the NRC report envisions the requirement “to reduce errors in the 
transport models and to overcome the noise from natural climate variability”, and the vision that 

J = (L(x)− y)T · R−1
prior · (L(x)− y)

≈ δxT

�
∂L

∂x

�
· R−1

prior ·
�

∂L

∂x

�
δx

N (x0, R) ∼ exp
�
−(x− x0)T · R−1 · (x− x0)

�

R−1
post =

�
∂L

∂x

�T

· R−1
prior ·

�
∂L

∂x

�
=

�
∂2J0

∂xi∂xj

�



61 

“information derived from all sources could be synthesized in a data assimilation system to 
produce accurate estimates of anthropogenic CO2 emissions and trends at national scales”. 

4.5 Quantitative observing system design 

Observing system design addresses several questions related to the optimal use of existing 
observations or the potential use of future observations:  

(1) For a given mix of observing systems consisting of different types of observations, how 
does each type contribute to the overall constraint, which locations contribute most, and 
are there significant redundancies or complementing elements?  

(2) For a proposed variable to be monitored or a planned network or instrument to be 
deployed, which type of observation would contribute optimally to constrain the target 
quantity, where should observations best be taken, what are required accuracies and 
sampling rates, and what would be an optimal combination of different instruments?  

The assessment of the relative contribution of existing observations in an inversion (item 1) is 
called Observing System Experiment (OSE), whereas the simulation of observations in a planned 
observational network (item 2) is called Observing System Simulation Experiment (OSSE). 
A third category, termed Sensitivity Observing System Experiment (SOSE) is mentioned here, 
but not further discussed (see, e.g., Langland and Baker, 2004). Several Community Whitepapers 
(CWPs) on the subject in the context of climate monitoring were published as part of the 
OceanObs’09 symposium (see, e.g., Heimbach et al., 2009; Lee et al., 2009; Wunsch, 2009). 

We anticipate that the coupled, adjoined system described in this report will require 
significant resources and time to establish. The initial version of this framework will be 
relatively simple and considerable further development will be required to enhance and improve 
it. This will be a time consuming process. However, the initial version could be extremely 
valuable as an aid to understanding the sensitivity of the system to choices made and as a tool to 
guide further monitoring systems. The initial system can used to perform a series of OSSEs. 

The idea behind an OSSE is to assume that the model re-creates a “reality” that can be used to 
systematically explore how sensitive (important) different parameters and different data sets are 
in recreating the “truth” as seen by the model. An initial forward simulation with the fully-
coupled system will produce output. It will be assumed that this output is the “truth”. This output 
can then be degraded to produce “pseudo-datasets”. For instance, ocean surface chlorophyll 
output from the model can be mapped onto coarser temporal scales to resemble the type of data 
provided by satellites. This “pseudo-dataset” can then be further downgraded by addition of 
random noise to capture the uncertainty present in the satellite data. Pseudo-datasets will be 
reproduced for all the observations described in Section 3 and provided in the tables in that 
section. Experiment with adjoined version of the model will attempt to uncover how much 
information these “pseudo-datasets” actually provide. 
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5. RECOMMENDATIONS 
5.1 Maintaining and Improving the Existing System 
The current greenhouse gas observing system is measuring various aspects of the evolving 

composition of Earth’s atmosphere, oceans and land ecosystems and is providing the fundamental 
understanding needed to construct accurate process models. These measurements include: 

• Surface-based in situ measurements of all major greenhouse gases at high-frequency stations 
augmented by flask sampling; 

• Remote sensing of CO2, CH4 and N2O, and other greenhouse gases both from the surface and 
from space; 

• Vertical profiles of greenhouse gases using aircraft and balloons; 
• Land greenhouse gas flux measurements, using eddy covariance and smoke-stack 

monitoring; 
• In situ and satellite observations of land vegetation, soil moisture and other relevant; 

biogeochemical and hydrologic variables for land greenhouse gas flux determination; 
• Oceanic measurements of pCO2, pN2O and other greenhouse gases for flux determination; 
• In situ and satellite measurements of biologically and biogeochemically important oceanic 

tracers, and relevant material fluxes; 
• Economic data on production and trade flows associated with industrial and agricultural 

activities that generate greenhouse gases. 
The combination of all of these complementary data with state-of-the-art global models of 
atmospheric chemistry and circulation, land ecosystems, oceanic circulation and 
biogeochemistry models is providing a significant advance in our understanding of the global 
sources, chemistry, transport and sinks of the trace substances determining atmospheric 
composition and air quality, and the radiative forcing of climate change. 

While it is essential that this system continue to operate, to address the challenge of accurate 
GHG emissions verification it will need significant improvements as summarized below. 

5.1.1 Improvements needed to current atmospheric GHG monitoring systems 

The three leading greenhouse gases (CO2, CH4 and N2O) are generally measured by a variety 
of systems (surface in situ, surface flask, and surface, aircraft and satellite remote sensing), 
whereas the lesser GHGs, which have a significant aggregated radiative forcing (e.g., PFCs, SF6, 
HFCs, etc.), are generally only measured at the surface. For example, AGAGE is the only 
network that currently makes regular, high-frequency measurements of the major PFCs and all 
the major HFCs. While the AGAGE network is expanding, there is a great deal of the Earth’s 
surface that is not currently covered by the observations. For example, Stohl et al. (2009) find 
very low sensitivity of the AGAGE network to tropical regions. Satellite observations go some 
way to addressing the lack of in situ measurements of CO2 and CH4 in the tropics, and other 
under-sampled areas of the world. However, the accuracy of current space-based measurements 
of these gases is much less than can be achieved in situ even in cloud-free regions. Further, as 
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pointed out by Chevallier et al. (2007), while even significant uncertainties in individual 
retrievals can lead to large error reduction in surface flux estimates, regional biases in the 
satellite observations (due, for example, to scattering by aerosols) could produce errors in the 
derived emissions fields large enough to prevent them from being useful for treaty verification. 
Therefore future treaty verification will require significant improvements in the precision and 
accuracy of the remote sensing measurements, new approaches for inverting satellite radiance 
measurements over partially clouded regions, and order of magnitude increases in the spatial 
coverage of the high-frequency in situ measurements.  

5.1.2 Improvements needed to current oceanic monitoring systems 

For the purpose of a greenhouse gas observing system, there is a major lack of in situ pCO2 
measurement in the ocean from which to infer air-sea exchange of CO2 (see Figure 3.1.2). 
Systematic and regular measurement of pCO2, particularly in very under sampled Southern 
latitudes, which cover important parts of the world ocean and are among the most active players 
of oceanic variability, will be essential. Additional long ocean time series (such as BATS, 
HOTS, see Section 3.1.2) are also needed. Stations such as these in higher latitude regions are 
particularly essential. The largest sink of anthropogenic carbon is the Southern Ocean, yet this 
region has some of the least measurements. 

One of the hardest issues in ocean biogeochemistry models is to achieve the correct flux of 
carbon from the surface ocean to depths. This process effectively “stores” carbon away from the 
atmosphere. The processes that govern this flux though are extremely complex and involve the 
types and abundances of organisms in the sunlight layers as well as the sinking and decomposing 
timescales of the organic matter that they produce. Yet there is very little measurement of these 
fluxes (see discussion in Section 3.1.1). A network of consistent measurements, possibly both 
sediment traps and isotopic, needs to be established. 

The data with the most global and temporal coverage are those provided by satellite 
measurements. Though these measurements (chlorophyll, primary production) have large errors, 
long records provide a means to see (and hopefully understand) the inter-annual variability and 
trends of the ocean biological pump of carbon. Continued and consistent satellite missions 
measuring ocean color are essential. Consistency of waveband intervals would greatly aid in 
maintaining a useful long record. 

Measurements of other greenhouse gases such as methane and N2O are currently not wide 
spread. More regular and wider coverage of these gases in the ocean needs to be undertaken. 

5.1.3 Improvements needed to current land monitoring systems 

While the use of land surface models with spatially explicit time series data sets has improved 
the ability to capture spatial and temporal variations in greenhouse gas emissions from land 
ecosystems based primarily on associated variations in climate, the lack of information on 
relatively fine-scale distribution of environmental factors and carbon, nitrogen and water stocks 
across the land surface has limited the ability of these models to predict GHG fluxes more 
accurately. Traditionally, these models are parameterized with limited observational data 



64 

sampled at relatively small spatial (0.1 m2 to 1 ha) and temporal (minutes to years) resolutions 
and are then applied over extended spatial (0.5º latitude x 0.5º longitude) and temporal (decades 
to centuries) scales. Thus, regional estimates by these models may be biased by their scaling 
assumptions to represent plot scale dynamics at larger scales (Rastetter et al., 1992, 2003; 
Kicklighter et al., 1994; Rastetter, 1996; Williams et al., 2002).  

Fine-scale spatial variations in GHG emissions from land ecosystems are primarily influenced 
by topography, variations in soil characteristics, and human and natural disturbances. As 
described earlier, while some land surface models consider the influence of some major 
disturbances (e.g., deforestation, row-crop agriculture and wildfires), the influence of other major 
disturbances (e.g., insect outbreaks, urbanization/suburbanization) are not currently considered. 
These models also do not consider more subtle changes to ecosystem dynamics imposed by ice 
storms, wind damage, floods, selective logging, fuel-wood gathering, or land management 
practices (e.g., fertilizer application, irrigation, tillage) that may have a large influence on the 
storage of carbon in land ecosystems and GHG emissions.  

The recent availability of new, fine-resolution data sets and development of some new 
measurement approaches will allow improvements in the characterization of environmental 
factors and carbon stocks across the Earth’s land surface, which in turn, will help to improve the 
parameterization and evaluation of land surface models. For topography, the recent availability 
of fine resolution (30 m x 30 m) topography developed from imagery collected by the Shuttle 
Radar Topography Mission (SRTM3; Farr et al., 2007) for about 80% of the Earth’s surface 
potentially allows modeling groups to improve their consideration of drainage and small land 
depressions on storage of soil moisture in the landscape and its influence on GHG emissions. 
Because the spatial resolution of existing soil maps for most parts of the world are too coarse to 
help with practical land management, considerable effort is going into the development of a 
better digital soil map of the world (Sanchez et al., 2009) based on information of soil properties 
determined from soil pit analyses, SRTM3 topography, local climate, land cover and remote 
sensing imagery from a number of satellites including QuickBird, LANDSAT, MODIS and 
AVHRR. The digital map is being organized to provide information at a variety of spatial scales 
with a basic product for small-holder farmers having a resolution of 30 m x 30 m. For 
aboveground carbon stocks, Baccini et al. (2008) recently used MODIS data to describe spatial 
variations in forest carbon density in sub-Saharan Africa at a resolution of 1 km2. The results 
matched well with comparable results from an analysis of lidar metrics from the Geoscience 
Laser Altimetry System (GLAS) instrument on the Ice, Cloud, and Elevation Satellite (ICESAT). 
In the Peruvian Amazon Basin, Asner et al. (2010) recently used airborne lidar to document 
variations in the standing stock of carbon in aboveground vegetation airborne and the influence 
of land-use change at a spatial resolution of 0.1 ha.  

In addition to the development of fine resolution data sets, there have been other recent 
attempts at improving the measurement of error and uncertainty associated with determining 
carbon and nutrient budgets from field studies (Rastetter et al., 2010; Yanai et al., 2010).  
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Besides scaling and uncertainty considerations, there are some natural phenomena that 
influence greenhouse gas emissions that need more attention in land surface models. One such 
phenomenon is how warming-induced permafrost degradation and associated thermokarst 
dynamics influence GHG emissions.  

To address the need for more observations of the influence of ecosystem dynamics on land 
GHG emissions (Schimel et al., 2000, 2001), a number of observing networks have recently been 
initiated including a network of eddy covariance sites (FLUXNET; http://www.fluxnet.ornl.gov), 
the National Ecological Observatory Network (NEON; Schimel et al., 2007; 
http://www.neoninc.org) and the Arctic Observatory Network (AON; http://www.aoncadis.org). 

5.2 Future Developments 

New measurement technologies are beginning to emerge that have the potential to dramatically 
reduce the uncertainty of GHG emissions estimates. Also, further advances in the knowledge of 
source and sink processes and oceanic and atmospheric circulations, and the resultant 
improvements in the accuracy of process models will further lower uncertainties. Finally, the 
inclusion of reliable economic, production and trade flow data along with the GHG measurement 
data could also improve emissions estimates. Some examples are briefly outlined below. 

5.2.1 High-frequency carbon dioxide, methane and nitrous oxide isotopologue observations 

For greenhouse gases that have natural, anthropogenic, industrial and biogenic emissions, 
such as CO2, CH4 and N2O, measurements of atmospheric abundances alone are often inadequate 
to differentiate precisely among these different sources. High frequency in situ measurements of 
not just the total mole fractions of these gases, but also their isotopic compositions (12C, 13C, 14C, 
14N, 15N, 16O, 18O, H, D) are a new frontier in global monitoring and hold the promise of 
revolutionizing understanding of the natural cycles of these gases and verifying claims of 
emission reductions. High-frequency in situ isotopic measurements are now becoming feasible 
using optical (laser) detection. Recent improvements in mid-infrared quantum cascade lasers 
(QCL) enable continuous wave (CW) operation near room temperature with higher power, 
narrower line-widths, and higher spectral mode purity than previously possible. For CH4 and 
N2O, automated cryogenic pre-concentration will be necessary to measure their isotopic 
compositions with the precision necessary to differentiate their various surface fluxes (biogenic, 
anthropogenic) and photochemical sinks.  

While optical instruments to measure the stable isotopic composition of ambient CO2 currently 
exist, their sensitivity needs improvement. Current optical CH4 and N2O isotopic instruments are 
capable of analyzing the stable isotopic composition of these gases at the much-elevated 
concentrations near their sources, but they lack the sensitivity to measure this composition at 
ambient concentrations. A combination of automated pre-concentration and optical detection 
could conceivably achieve this sensitivity. In this respect, MIT has recently received a 4-year 
NSF-MRI grant to develop and deploy two automated high frequency laser-based instruments for 
analysis of the isotopologues and isotopomers of N2O. Isotopic ratios will be monitored using 
tunable infrared laser differential absorption spectroscopy (TILDAS) with CW-QC lasers. This 
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technology is well suited for long term deployment at remote sites as the instruments are fully 
automated and can also be accessed and controlled via the Internet. The new instruments will 
monitor four isotopologues/isotopomers of nitrous oxide (15N14N16O, 14N15N16O, 14N14N18O and 
14N14N16O) with a precision of at least 0.025 per mil (‰) for the 15N isotopomers of N2O. The 
projected precision for 14N14N18O is about 0.05‰. The development tasks for the nitrous oxide 
instrument include a detailed optical design, infrared detector optimization, calibration system 
design, and the design and implementation of the cryogenic pre-concentration system. This pre-
concentration will be achieved through development of a new generation high efficiency cryo-
focusing trap and a sample transfer module that is also being designed to serve for CH4 isotopic 
measurements. The instrument development and deployment will be staged over a four-year 
period. During the first year, we are focusing on instrument design and development. During the 
second year we will construct the first prototype instrument capable of quantifying the 
aforementioned isotopomer/isotopologue abundances that will be deployed during the third year 
at one of the AGAGE stations. During the third year, we will also design and construct the second 
isotope monitor using the experience gained with the prototype instrument. This instrument will 
be based at MIT and be used primarily for measurements at strongly emitting surface sites (e.g., 
soils) to characterize for the first time their isotopic signatures at high frequency. During the 
fourth year, we will continue testing and improving the instruments as we perform sample 
analyses with the MIT instrument and monitor and support the instrument deployed at the 
AGAGE station. Experience gained from the AGAGE deployment will then be used to finalize 
the instrument designs. These final designs will form the basis for more extensive N2O and CH4 

isotope monitor deployments at AGAGE and other global network stations in the future. 

5.2.2 Space-Based Differential Absorption Lidar (DIAL) 

Current space-based greenhouse gas observations rely on spectral measurements of 
backscattered or reflected sunlight (particularly in the near-infrared). This limits these 
observations to the daytime and at low-latitude, and therefore could induce a bias in the derived 
emissions. Plans are underway for active systems in which space-based instruments detect CO2 

concentrations using lidar. Such potential missions are NASA Ascends (Michalak et al., 2008) 
and the ESA’s A-SCOPE (Kaminski et al., 2010). The use of lidar will allow measurements 
throughout the day at all latitudes. Further, a measurement of the atmospheric path is obtained, 
providing information about scattering by aerosols. As summarized in the NRC Report (Pacala et 
al., 2010), DIAL techniques have significant potential for measuring both vertical profiles and 
column amounts of important GHGs. Ehret et al. (2008) estimated systematic errors in 
measurements of CO2, CH4, and N2O columns from satellite-borne DIAL instruments and 
concluded that they were less than 0.4% for CO2, 0.6% for CH4, and 0.3% for N2O. DIAL 
observations from aircraft are significantly easier than satellite measurements due to much 
shorter distance to surface and the lack of interference from high- and mid-level clouds. NASA 
has carried out studies of aircraft-borne DIAL measurements of CO2 1.57 µm as a step toward 
satellite measurements (Browell et al., 2008; Abshire et al., 2009). Deploying a second lidar that 
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simultaneously measures the column amount of oxygen (O2), that is a very accurate indicator of 
the total amount of dry air in the column, avoids the problem of having to convert a column 
measurement to a mole fraction. Instrumentation problems, such as maintaining and monitoring 
long-term laser stability, are among the main challenges in the development of the needed 
precise DIAL systems. 

5.2.3 Improved and new estimates of air-sea exchange of CO2 

Obtaining global patterns of the air-sea fluxes of greenhouse gases are difficult. As explained 
in Section 3.1, the most available dataset of the air-sea fluxes of CO2 are those of Takahashi et 
al. (2009) calculated from direct pCO2 measurements. However there are significant 
uncertainties with these estimates (maybe as much as 50%). Inverse estimates using a suite of 
ocean general circulation model (GCM) have also been undertaken (e.g., Mikaloff Fletcher et al., 
2007; Gruber et al., 2009). These additional estimates (and there comparisons to the pCO2 
estimate have provided greater understanding of these fluxes. However additional and separate 
methods do need to be advanced in this regard. The model framework we suggest in this report 
would be one way forward. However we suggest that additional observation-only based 
inversion techniques such as those done for heat by Macdonald et al. (2003) may offer a new 
way forward for calculating air-sea fluxes of carbon dioxide. From an understanding the 
inventory of carbon from observations, constrained velocity fields and enforcing conservation, 
this method could provide information of where carbon must enter or leave the ocean. 

5.2.4 Profiling Lagrangian Platforms for measuring ocean biogeochemical data 

The international Argo float program (described in Section 3.1.3) presents a huge monitoring 
array of various physical aspects of the ocean. In the near future many of these floats will include 
chlorophyll and backscattering sensors. Recently new technology has allowed an oxygen sensor 
to be added to these floats successfully (Johnson et al., 2009). Technology advances (in different 
degrees) is underway to additional attach nitrate, pCO2, pH, optical sensors to these profiling 
floats. Such an array of floats would vastly improve the sampling of the important 
biogeochemical properties over the global ocean. 

5.2.5 Enhanced coupled Forward Models and their Adjoints 

In this report we recommend a modeling framework that will:  
• Contain a detailed economics model that will provide initial estimates of release rates of 

anthropogenic greenhouse gases to the atmosphere, and will help attribute emissions to the 
nations responsible through use of trade-flow information on fuels, agricultural products 
and energy-intensive goods. 

• Simulate atmospheric and oceanic trace gas transport and chemistry using the highest 
resolution meteorological and oceanic analyses available. 

• Simulate terrestrial sources and sinks of CO2, CH4 and N2O using a natural and managed 
ecosystem model, constrained offline by meteorological data and hydrological 
measurements. 
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• Simulate natural oceanic sources and sinks of CO2, CH4 and N2O using a physical-
biogeochemical-ecosystem model. 

• Be fully coupled between each model component, such that global budgets of all greenhouse 
gases are fully accounted for at all times and change strictly, in addition to emissions, 
according to known physical and biogeochemical conservation laws. 

• Be fully adjoined in order to quantify the sensitivity of all of the described measurements 
throughout the model environment, to changes in each uncertain model parameter. This 
adjoint system will allow the incorporation of the current measurements, and desired future 
observations, to improve the accuracy of estimates of both emissions and uncertain model 
parameters. The simultaneous determination of uncertain anthropogenic and natural model 
parameters is crucial, since this will allow covariance information between various model 
components and the residual uncertainties to be quantified. 

5.2.6 Inclusion of Reliable Economic Data 

The accuracy of emission estimates is expected to be significantly improved by inclusion of 
a reliable data-based economics model that will provide initial estimates of release rates of 
anthropogenic greenhouse gases to the atmosphere, and will help attribute emissions to the 
nations responsible through use of trade-flow information on fuels, agricultural products and 
energy-intensive goods. The most efficient way to incorporate economic data is to develop an 
accounting framework that in the first step takes advantage of available data (as discussed in 
Section 3.4). The required model could follow the IPCC three-tier methodology with the tier 
level being determined based on data availability, the level of detail needed to adequately 
constrain emissions estimates, and the degrees of freedom in the inverse approach. Within the 
model, the trade of emission-containing goods between countries will be accounted for using 
trade data so that measured emissions from in situ stations and satellite networks will match the 
emissions of country consumption, not production. Although the methodology is laid out, 
additional work will need to be done to construct a system for mapping the economic data to a 
global grid. The most crucial improvement in economic data is greater spatial detail (ideally 
gridded at 0.5° latitude x 0.5° longitude, or finer). This would include detail on the location of 
large point sources of emissions (e.g., power plants, etc.). Such data generally exist at some level 
but need to be assembled into a digitized global database. Similarly data on transport networks 
are needed.  
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Glossary 

Measurables 
CFC = chlorofluorocarbons 
Chl = chlorophyll (generally Chl a) 
DIC = dissolved inorganic carbon 
DIN = dissolved inorganic nitrogen 
DOC = dissolved organic carbon 
DON = dissolved organic nitrogen 
DOP = dissolved organic phosphorus 
GHG = greenhouse gas 
HCFC = hydrochlorofluorocarbon 
HFC = hydrofluorocarbon 
HPLC = high-performance liquid chromatography 
LLGHG = long-lived greenhouse gas 
PAR = photosynthetically available radiation 
pCH4 = partial pressure of methane 
pCO2 = partial pressure of carbon dioxide 
PFC = perfluorocarbon (CF4, C2F6, C3F8, etc.) 
PIC = particulate inorganic carbon 
pN2O = partial pressure of nitrous oxide 
POC = particulate organic carbon 
PON = particulate organic nitrogen 
POP = particulate organic phosphorus 
 
Acronyms and terminology 
ACTM = Atmospheric chemical transport model 
AD = automatic differentiation 
AFEAS = Alternative Fluorocarbons Environmental Acceptability Study (http://www.afeas.org/) 
AGAGE = Advanced Global Atmospheric Gases Experiment (http://agage.eas.gatech.edu/) 
AIRS = NASA Atmospheric Infrared Sounder (http://airs.jpl.nasa.gov/) 
AMT = Atlantic Meridional Transect (http://www.amt-uk.org) 
AMOC = Atlantic Meridional Overturning Circulation (http://www.atlanticmoc.org/) 
AON = Arctic Observatory Network (http://www.aoncadis.org) 
ATM = Atmospheric Transport and Chemistry Model 
AVHRR = Advanced Very High-Resolution Radiometer  
BATS = Bermuda Atlantic Timeseries (http://bats.bios.edu/) 
Bio-ECCO = an ocean biogeochemical and ecology model 
CarboEurope = Project to assess European carbon balance (http://www.carboeurope.org/) 
CARIACO = Carbon Retention in a coloured ocean project (Cariaco basin time series station) 
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CARIBIC = Civil Aircraft for the Regular Investigation of the Atmosphere Based on an 
Instrument Container (http://www.caribic-atmospheric.com/) 

CARINA = Carbon dioxide in the Atlantic Ocean (http://cdiac.ornl.gov/oceans/CARINA/) 
CCGG = Carbon Cycle Greenhouse Gases Group (http://www.esrl.noaa.gov/gmd/ccgg/) 
CDIAC = Carbon Dioxide Information Analysis Center (http://cdiac.ornl.gov/oceans/) 
CIAB = Coal Industry Advisory Board, http://www.iea.org/ciab/ 
CLIVAR = Climate Variability and Predictability (http://www.clivar.org/) 
CLM = Community Land Model; UCAR model of biogeophysics, hydrologic cycle, 

biogeochemistry and dynamic vegetation (http://www.cgd.ucar.edu/tss/clm/) 
CMIP = Coupled Model Intercomparison Project (http://www-pcmdi.llnl.gov/projects/cmip/)  
CPR = Continuous Plankton Recorder (http://www.sahfos.ac.uk/) 
CRF = Common Reporting Format 
CTM = chemical transport model 
CTV = climate verification treaty 
CW = continuous wave  
DIAL= differential absorption lidar 
DNDC = The DeNitrification-DeComposition model of nitrogen and carbon biogeochemistry 
ECCO = Estimating the Circulation and Climate of the Ocean (http://www.ecco-group.org) 
ECD = electron capture detector; used to measure trace species such as SF6 
EDGAR = Emissions Database for Global Atmospheric Research 
EIA = U.S. Energy Information Administration (http://www.eia.doe.gov/) 
ENSO = El Niño/Southern Oscillation 
ESIA = European Semiconductor Industry Association (http://www.eeca.eu/) 
ESRL = NOAA Earth System Research Laboratory (http://www.esrl.noaa.gov/) 
EVI = Enhanced Vegetation Index 
FLUXNET = network of CO2 flux towers (http://www.fluxnet.ornl.gov) 
FTIR = Fourier transform infrared spectrometer 
GC = gas chromatograph(y) 
GEOSECS = Geochemical Ocean Sections Study 
GEOTRACES = program investigating marine biogeochemistry (http://www.geotraces.org/) 
GLODAP = Global Ocean Data Analysis Project (http://cdiac.ornl.gov/oceans/glodap/) 
GMD = NOAA-ESRL Global Monitoring division 
GOSAT = Japan Aerospace Exploration Agency Greenhouse Gases Observing SATellite 

(http://www.jaxa.jp/projects/sat/gosat/index_e.html) 
GTAP v7 = Global Trade Analysis Project version 7 (http://www.gtap.agecon.purdue.edu/) 
GWP = global warming potential 
HAIPER = High-Performance Instrumented Airborne Platform for Environmental Research 
Hessian = matrix of second partial derivatives of observations to state vector elements 
HIPPO = HAIPER Pole-to-Pole Observations 
HOTS = Hawaii Ocean Time Series (http://hahana.soest.hawaii.edu/hot/hot_jgofs.html) 
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IBUKI = GOSAT (http://www.jaxa.jp/projects/sat/gosat/index_e.html) 
IBP = International Biological Programme, predates the LTER 
IDE = Institute of Developing Economics, (http://www.ide.go.jp/English/) 
IEA = International Energy Agency, (http://www.iea.org/) 
IFA = International Fertilizer Association, (http://www.fertilizer.org/) 
ILTER = International Long Term Ecological Research network, (http://www.ilternet.edu) 
IPCC = Intergovernmental Panel on Climate Change 
IRRI = International Rice Research Institute, (http://irri.org/) 
Jacobian = matrix of first partial derivatives of observations to state vector elements 
JGOFS = Joint Global Ocean Flux Study (http://usjgofs.whoi.edu/) 
Kerfix = Southern Ocean Time series station – 50S 68E 
Lidar = Light detection and ranging 
Medusa = GC-MS system with preconcentration used in the AGAGE network for measuring 
MITgcm = MIT general circulation model (http://mitgcm.org)  
MODIS = Moderate-resolution Imaging Spectroradiometer (http://oceancolor.gsfc.nasa.gov/) 
MOMENTO = Marine Methane and Nitrous Oxide 
MOZART = Model for Ozone and Related Tracers; chemical transport model developed at 

NCAR 
MS = mass spectrometry 
NAO = North Atlantic Oscillation 
NASA = U.S. National Aeronautics and Space Administration 
NCAR = U.S. National Center for Atmospheric Research 
NCEP = U.S. National Center for Environmental Prediction 
NDACC = Network for the Detection of Atmospheric Composition Change 

(http://www.ndsc.ncep.noaa.gov/) 
NDVI = Normalized Difference Vegetation Index; an index used to determine whether a point 

on the surface has live vegetation or not 
NEON = National Ecological Observatory Network (http://www.neoninc.org) 
NIST = U.S. National Institute for Standards and Technology 
NOAA = U.S. National Oceanic and Atmospheric Administration 
NOBM = NASA Ocean Biogeochemistry Model 
OCO = Orbiting Carbon Observatory (http://oco.jpl.nasa.gov/) 
OSSE = Observing System Simulation Experiment 
OWS-I = Ocean Weather Station “India” 
OWS-M = Ocean Weather Station “Mike” 
PAPA = Ocean Weather Station “Papa” 
QCL = quantum cascade laser 
SCIAMACHY = Scanning Imaging Absorption Spectrometer for Atmospheric Chartography 
SeaBASS = SeaWiFS Bio-optical Archive and Storage System 

(http://seabass.gsfc.nasa.gov/seabass/) 
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SeaWiFS = Sea-viewing Wide Field-of-view Sensor (http://oceancolor.gsfc.nasa.gov/) 
SOLAS = Surface Ocean Lower Atmosphere Study (http://www.solas-int.org) 
TCCON = Total Carbon Column Observing Network (http://www.tccon.caltech.edu/) 
TEM = Terrestrial Ecosystem Model; model of land-based ecosystems developed at the 

Marine Biology Laboratory, Woods Hole Oceanographic Institute 
TILDAS = tunable infrared laser differential absorption spectroscopy 
TRAGNET = Trace Gas Network 
TTO = Transient Tracers in the Oceans 
UCAR = University Corporation for Atmospheric Research (http://www2.ucar.edu/) 
UNFCC = United Nations Framework Convention on Climate Change 
UQ = uncertainty quantification 
VERTIGO = VERtical Transport In the Global Ocean 

(http://cafethorium.whoi.edu/website/projects/vertigo.html) 
WIOD = World Input-Output Database (http://www.wiod.org/) 
WMO-GAW = World Meteorological Organization’s Global Atmosphere Watch program 

(http://www.wmo.int/pages/prog/arep/gaw/gaw_home_en.html) 
WOA = World Ocean Atlas (http://www.nodc.noaa.gov/OC5/WOA09/woa09data.html) 
WOCE = World Ocean Circulation Experiment 
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