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A Semi-Empirical Representation of the Temporal Variation of Total  
Greenhouse Gas Levels Expressed as Equivalent Levels of Carbon Dioxide 

Jin Huang†, Ray Wang‡, Ronald Prinn†φ and Derek Cunnold‡∗ 

Abstract 

In order to examine the underlying longer-term trends in greenhouse gases, that are driven for example by 
anthropogenic emissions or climate change, it is useful to remove the recurring effects of natural cycles 
and oscillations on the sources and/or sinks of those gases that have strong biological (e.g., CO2, CH4, 
N2O) and/or photochemical (e.g. CH4) influences on their global atmospheric cycles. We use global 
observations to calculate monthly estimates of greenhouse gas levels expressed as CO2 equivalents, and 
then fit these estimates to a semi-empirical model that includes the natural seasonal, QBO, and ENSO 
variations, as well as a second order polynomial expressing longer-term variations. We find that this model 
provides a reasonably accurate fit to the observation-based monthly data. We also show that this semi-
empirical model has some predictive capability; that is it can be used to provide a reasonably reliable 
estimate of CO2 equivalents at the current time using validated observations that lag real time by a few to 
several months.  
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1. INTRODUCTION 
With increasing public attention on changing climate, it is useful to have a “real-time” 

estimate of a single integrating metric that expresses the combined atmospheric levels of the 
long-lived greenhouse gases contributing to that change. Such a metric can help convey to the 
public how fast these levels are increasing, how close we are to the stabilization levels relevant 
to policy discussions, and the progress, or lack thereof, in slowing the rate of increase. Three key 
issues that arise in making such a calculation are: (1) long-lived greenhouse gases include 
multiple gases with varying lifetimes and radiative properties, (2) there are inevitable lags 
between the time measurements are taken to when they can be checked and assembled to 
produce an estimate of global average levels (usually expressed as mole fractions), (3) these 
mole fractions are subject to seasonal and other cyclical variations that need to be removed if we 
want to clearly reveal the underlying long term trends. In this technical paper, we address these 
issues by development of a model that fits a suitable integrating metric that is calculated using 
global network measurements for greenhouse gases. We then evaluate the accuracy with which 
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this model can simulate the actual metric, and also provide “real time” estimates of the de-
seasonalized metric using its values in the recent past.  

First we need a procedure for converting the multiple gases to a common metric. Here we 
adopt the established approach that converts the observed global average mole fractions of CO2 

and non-CO2 gases into the equivalent global average mole fraction of CO2 alone (CO2-eq in 
parts per million, ppm) that would yield the same total radiative forcing as the multiple gases 
(IPCC, 2007; Gohar and Shine, 2007). These CO2-eq values, when computed on say monthly 
time scales, show important inter-monthly and inter-annual variations. These are associated with 
the effects of the natural seasonal cycles, and the natural quasi-biennial (QBO) and El Niño-
Southern (ENSO) oscillations on the sources and/or sinks of these gases. This is especially true 
for gases that have strong biological (e.g. CO2, CH4, N2O) and/or photochemical (e.g. CH4) 
influences on their global atmospheric cycles. 

A common approach for examining the underlying longer-term trends in a series with cycles 
is to calculate running means that extend over the cycle. A 12-month running mean would be 
needed for a series with an annual cycle, but an even longer running mean would be needed to be 
assured of removing or smoothing out other cycles. A clear drawback to such running means is 
that they necessarily lag real time by half of the averaging period. Added to this lag, is the fact 
that the measurement networks themselves generally report data with a lag of a number of 
months due to the need to carefully check the measurement precisions and absolute calibrations 
and to ship samples to central laboratories when air is collected in flasks rather than being 
measured on site in real time. 

The approach we develop is to fit the measurement-based CO2-eq using a model with basis 
functions that include the natural seasonal, QBO, and ENSO variations, as well as polynomials 
expressing longer-term variations. An advantage to this approach is that it provides both the 
basis for removing or smoothing out cycles in the data, and the remaining de-cycled trend also 
provides a method for extrapolating ahead to produce an estimate for the current time. The key 
questions are the accuracy of the model fit to the actual data, and the predictive skill of the model 
for extrapolations; that is can the model be used to provide a reasonably reliable estimate of CO2-
eq at the current time using validated observations that lag real time by several months or more. 

In this technical paper, we use monthly data from NOAA/ESRL (2009a) for global average 
CO2, and AGAGE (AGAGE, 2009; Prinn et al., 2000) for global average non-CO2 gases. We 
consider only the radiative forcing by those long-lived gases for which reliable continuous global 
measurements are currently available. For this and other reasons, we exclude shorter-lived 
radiatively important gases such as tropospheric and stratospheric O3 and H2O, aerosols (sulfate, 
black carbon, etc.), land-cover changes, and solar variations from our definition of radiative 
forcing.  In section 2, we describe the process for converting the observed greenhouse gas 
(GHG) mole fractions into their CO2 equivalent (which can be reported as either a global average 
mole fraction (parts per million [ppm] of CO2-eq) or as a total mass in the atmosphere (metric 
tons or million grams of CO2-eq). In section 3, we develop a model for the actual observation-
based CO2-eq that includes known cycles and oscillations in the greenhouse gases. Section 4 
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evaluates the accuracy of both the model-simulated CO2-eq and the model projections needed to 
estimate current levels from past levels. Section 5 provides concluding remarks.  

2. CALCULATION OF CO2 EQUIVALENTS FROM OBSERVED MOLE FRACTIONS 

The CO2 equivalent mole fraction (CO2-eq in ppm) calculation is made using the basic 
formula:  

CO2 -eq = Co exp (RFtotal /ECO2 ),                                                                                              (1) 
where Co is the pre-industrial CO2 mole fraction, ECO2 = 5.35 watts m–2  and RFtotal is the sum of 
the individual radiative forcings RFi  (watt m–2) for all of the relevant gases (Gohar and Shine, 
2007). Specific RFi formulae are given below for CO2, CH4 and N2O. The radiative efficiencies 
(Ei; watt m–2) of all other gases i needed to compute their RFi values are taken from IPCC 
(2007). Specifically: 

                                                    

 
                                           (2)  

 
 

Here, f(M,N) = 0.47 ln [1 + 2.01x10–5 (MN)0.75 + 5.31 x 10–15 M(MN)1.52], M is the CH4 mole 
fraction (ppb), N is the N2O mole fraction (ppb), C is the CO2 mole fraction (ppm), Xi indicates 
the mole fractions of other greenhouse gases, i, and the subscripts, 0, represent the unperturbed 
(pre-industrial) values. The pre-industrial mole fractions for all gases (see following list) are 
assumed zero, except for CO2 (C0 = 278 ppm), CH4 (Mo = 715 ppb), N2O (No =270 ppb) and 
CF4 (XCF4,0 = 40 ppt) (see IPCC, 2007, Table 2.1). 

To supply information on how various sub-groups of gases contribute to radiative forcing we 
have broken the contributions into 5 subgroups: 

1.   CO2; 
2.   CH4 + N2O; 
3.   HFC-23 + HFC-125 + HFC-134a + HFC-152a + SF6 + CF4 + C2F6; 
4.   CFC-11 + CFC-12 + CFC-13 + CFC-113 + CFC-114 + CFC-115 + CCl4 + CH3CCl3  

        + HCFC-22  + HCFC-141b + HCFC-142b + Halon-1211 + Halon-1301 + Halon-2402; 
5.   HFC-143a + HFC-365mfc + PFC-218 + CH3Br + HCFC-124 + CH2Cl2. 

We provide results for CO2-eq for 4 aggregations of these subgroups: (i) all 5 GHG subgroups 
together (denoted “All Gases” ); (ii) subgroup 1 (denoted “CO2 Only”); (iii) subgroups 1, 2 and 3 
(denoted “Kyoto Gases”; these 3 subgroups contain the major GHGs that are regulated under the 
Kyoto Protocol for climate change mitigation as listed in Table 2.1, IPCC, 2007) ; and (iv) 
subgroups 1, 2, 3, and 4 (denoted “IPCC Gases”; these are the major Kyoto Protocol Gases plus 
the major GHGs that are regulated under the Montreal Protocol for protection of the ozone layer 
as listed in Table 2.1, IPCC, 2007). Subgroup 5 contains greenhouse and/or ozone-depleting 
gases measured by AGAGE but not included in IPCC (2007, Table 2.1).  
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The global average monthly-mean mole fraction observations used in our CO2-eq calculations 
come from NOAA (2009a) for CO2 and from AGAGE (2009) for all other gases. We use the 
AGAGE GC-Multi-Detector measurements of CH4, N2O, CFC-11, CFC-12, CFC-113, CCl4 and 
CH3CCl3, and the AGAGE Medusa GC-MS measurements of all other non-CO2 gases (which 
have low mole fractions but large Ei (and large Global Warming Potentials (GWPs)). Our 
calculations start for convenience in January 2004, which is the month when the Medusa 
measurements started at the Mace Head and Cape Grim AGAGE stations. Global average 
monthly mean mole fractions (Xi) for the AGAGE data used in the radiative forcing calculations 
are computed from the 5 primary AGAGE stations using the formula: 

Xi = Xi Mace Head-Ireland / 8 + Xi Trinidad Head-California / 8                                                                  (3) 
+ Xi Ragged Point-Barbados / 4 + Xi Cape Matatula-Samoa / 4  
+ Xi Cape Grim-Tasmania / 4.  
There are occasionally months with no measurements, particularly since the Medusa 

measurements at 3 of the 5 sites started after 2004. Missing data at Trinidad Head were equated 
with data from the other northern mid-latitude station at Mace Head and vice-versa. We have 
filled in for missing months at the tropical stations j (Ragged Point, Cape Matatula) using the 
formula: 

 Xij = [XiMace Head <Xij>/ <XiMace Head> + XiCape Grim <Xij>/ <XiCape Grim>] / 2                          (4) 

where the annual means <Xij> were calculated centered on July 1, 2007 (annual means were 
calculated by interpolation if there were up to 3 missing monthly values). A minor disadvantage 
of this approach is the assumption that the ratios did not evolve with time (i.e. the annual mean 
latitudinal gradients did not evolve with time). While more accurate adjustments could be made 
by using results from a chemical transport model to correct for rapidly evolving latitudinal 
gradients, the contributions of the most rapidly evolving (percentage-wise) Medusa gases to 
CO2-eq is relatively minor.  

The radiative forcing (watt m-2) derived from observed mole fractions for each of the 
5 subgroups is provided in Figure 1, and the total CO2-eq derived from these observation-based 
radiative forcings is provided in Figure 2 for the “CO2 Only”, “Kyoto Gases”, and 
“IPCC Gases” aggregations. The separate CO2-eq contributions from each of subgroups 2-5 are 
not provided in Figure 2 because all of the RFi contributions must be summed before a CO2-eq 
can be calculated. We could make approximate estimates by calculating the CO2-eq values with 
and without each of the individual sub-groups, but in that case the individual contributions will 
not add to give the overall calculated CO2-eq values due to the exponential dependence of 
CO2-eq on RF. Using the total dry atmospheric mass of 5.132 x 1021 gm (Trenberth and 
Guillemot, 1994) and multiplying by the ratio of the molecular masses of CO2 (44) and dry air 
(28.97), a mole fraction of 1 ppm CO2-eq corresponds to 7.80 x 1015 gm = 7.81 Pg = 7.81 x 109 
metric ton of CO2-eq (see Figure 2 for results in ppm and metric tons).  
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We compare in Table 1 our calculations of the total radiative forcing for 2005 with those 
reported in IPCC (2007, Table 2.1, pg. 141). The agreement between the two calculations is 
excellent. 

Table 1. Radiative forcing (RF, watt m-2) and total CO2 equivalents (ppm) in 2005 reported 
in IPCC (2007) and in this paper. 

Species IPCC This paper 
RF (CO2 )  (Subgroup 1) 1.66 1.655 
RF (CH4 + N2O) (Subgroup 2) 0.64 0.648 
RF (Other “Kyoto Gases”) (Subgroup 3) 0.017 0.018 
RF (Montreal Gases) (Subgroup 4) 0.320 0.323 
RF (“IPCC Gases”) (Subgroups 1-4) 2.637 2.644 (2.646)*  
CO2-eq (“IPCC Gases”) 455.10 455.70 (455.87)* 
*Values for “All Gases” (Subgroups 1-5); these were not reported in IPCC (2007) 

To estimate the uncertainty of our CO2-eq values, we first calculate the standard deviations 
(1σ) for the global monthly mean mole fractions of all of the observed AGAGE species. For the 
NOAA global monthly mean CO2 mole fractions, we use the CO2 uncertainty from IPCC (2007) 
in this study (uncertainties are not explicitly stated by NOAA (2009a)). The reported mean and 
90% confidence range (i.e. 1.645σ) for CO2 in 2005 is 379 ± 0.65 ppm (Table 2.1, page 141, 
IPCC, 2007), corresponding to a 0.1% error. We therefore multiply the observed CO2 mole 
fractions by 0.001 to estimate uncertainties (σXi in ppm) for each month. 

The radiative forcing and uncertainty (in watt m–2) from each individual compound, i, can 
then be calculated using equations (2). Specifically, we first calculate the mean radiative forcings 
by using the monthly mean mole fractions, Xi. A second set of radiative forcings is then 
calculated using Xi + σXi as the mole fractions. The differences between the two sets are taken as 
the uncertainties σRFi in the calculated radiative forcings, RFi. The total radiative forcing and its 
uncertainty then can be calculated using 

                                                                                                            (5) 

where n is the number of gases. The CO2-eq values then can be calculated with equation (1). 
A second set of CO2-eq values is then calculated by replacing RFtotal with (RFtotal + σRFtotal), and 
the difference provides the estimated uncertainty (1σ) of  CO2-eq values in this study. 
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Figure 1. Radiative forcing by GHG sub-groups: (1) CO2; (2) CH4 + N2O; (3) HFC-23 + 

HFC-125 + HFC-134a + HFC-152a + SF6 + CF4 + C2F6; (4) CFC-11 + CFC-12 + CFC-
13 + CFC-113 + CFC-114 + CFC-115 + CCl4 + CH3CCl3 + HCFC-22  + HCFC-141b + 
HCFC-142b + Halon-1211 + Halon-1301 + Halon- 2402; (5) HFC-143a + HFC-365mfc 
+ PFC-218 + CH3Br + HCFC-124 + CH2Cl2. The radiative forcing by subgroup (5) is 
not resolved in the Figure since it accounts for only about 0.0016 watt m-2 in 2004 and 
0.0025 watt m-2 in 2009. 

 

 

Figure 2. Total CO2-eq (ppm on left-hand scale and metric tons on right-hand scale) from 
observed GHG mole fractions (oscillating colored lines), full 6-term equation (6) fit to 
the observations (oscillating black lines), and 3-term Legendre polynomial only fit to 
observations (smooth blue lines), for the “CO2 Only”, “Kyoto Gases” and “IPCC Gases” 
cases. The “All Gases” case is only 0.2 ppm above the “IPCC-Gases” case and is not 
shown as it would be indistinguishable on the scale of the graph.  



 7 

3. MODEL FOR OBSERVED CO2-EQ VALUES AND APPLICATION TO 
EXTRAPOLATION TO CURRENT TIME 

The monthly CO2-eq values are fitted using the following 6-term semi-empirical function: 

.            (6) 

Here, Fi are factors to be determined using optimal estimation, Pj are Legendre polynomials, n is 
the mid-point and t0 is the starting-point of the time period of the available measurement-based 
CO2-eq data (section 2), and 

                                                                                                                      (7) 

The Annual term is the time averaged annual cycle in the measurement-based CO2-eq data, 
the ENSO term is the normalized monthly multivariate El Niño Southern Oscillation index 
(MEI) available from NOAA (2009b), and the QBO term is the normalized monthly quasi-
biennial oscillation index available from NOAA (2009c).  

A simple first order linear fit is obtained for the measurement-based CO2-eq data and the 
coefficients from this fit are used as the first guess (a priori) estimates for the Fi factors. Optimal 
estimates of the Fi factors are then determined from the measurement-based CO2-eq values and 
their errors in a subsequent recursive weighted least squares (Kalman filter) inversion (see e.g., 
Prinn, 2000). The above empirical function with the optimally estimated Fi factors can then used 
to extrapolate the measurement-based CO2-eq values to the present time.  

The QBO and ENSO index reports usually lag real time, so the time-averaged monthly QBO 
indices and the most recent available monthly ENSO MEI indices are used whenever the actual 
measured indices are not available. This is not a significant issue since we find that the ENSO 
and QBO terms are relatively minor contributors to the CO2-eq values for 2004-2009 compared 
to the other 4 terms. However, the 2004-2009 time period did not contain a significant El Niño 
so the importance of ENSO will need to be re-assessed when we enter a future El Niño by 
considering observations at least back to the last major El Niño in 1998 (note that we do not have 
continuous global observations of some of the sub-group 3-5 gases prior to 2004). 

4. ACCURACY AND PREDICTIVE CAPABILITY OF MODEL 

To measure how well the full 6-term expression (equation 6) for CO2-eq compares to the 
monthly CO2-eq computed from observations, the root mean square differences (RMSDs) have 
been calculated. For both the “All gases” and “Kyoto gases” cases, RSMD = 0.3 ppm, indicating 
that equation (6) provides a very good fit to the actual values. To examine whether the influences 
of the 3 oscillating terms in equation (6) integrate to approximately zero over time (i.e. that the 
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3-term polynomial expression by itself accurately simulates the longer-term trends in CO2-eq 
with the seasonal, QBO and ENSO oscillations removed), the sum of the differences between the 
full 6-term fit and the 3-term polynomial fit CO2-eq values have been calculated. The 
summations of the differences are indeed negligible (0.1 ppm for both the “All gases” and 
“Kyoto-only” cases). 

To estimate how accurately the 3 polynomial terms in equation (6) can forecast the 
equivalent observation-based CO2-eq values (with oscillations removed) for 3 months into the 
future, we compared the 3-month forecasts with the values obtained when the next three months 
of observations were used to obtain an updated fit. The average differences between the 
forecasted and updated values using the 3-term polynomial CO2-eq expression is only 0.05 ppm 
for both the “All gases” and “Kyoto Gases” cases. Thus, this 3-term expression provides a very 
accurate fit to the observation-based data with oscillations removed, and it has some predictive 
capability; that is it can be used to provide a reliable estimate of CO2-eq at the current time using 
validated observations that lag real time by a few to several months.  

5. CONCLUDING REMARKS 

We have shown that a fit to monthly estimates of CO2-eq from observations using basis 
functions that include the natural seasonal, QBO, and ENSO variations, as well as a second order 
polynomial expressing longer-term variations, provides a reasonably accurate fit to the 
observation-based data. We have also shown that this semi-empirical model has some predictive 
capability; that is it could be used to provide a reasonably reliable estimate of CO2-eq at the 
current time using validated observations that lag real time by a few to several months.  

In order to examine the underlying longer-term CO2-eq trends (driven for example by 
anthropogenic emissions or climate change), it is useful to remove the recurring effects of the 
natural seasonal cycles, and the natural QBO and ENSO oscillations on the sources and/or sinks 
of gases that have strong biological (e.g., CO2, CH4, N2O) and/or photochemical (e.g., CH4) 
influences on their global atmospheric cycles. We have shown that the 3-term polynomial in 
equation (6) provides a reasonably accurate simulation of the longer-term trends in CO2-eq with 
the seasonal, QBO and ENSO effects removed. We caution that the time period examined did 
not include a strong El Niño, so our current equation (6) coefficients (that show that the ENSO 
had only a small influence on CO2-eq during 2004-2009) will need to be re-estimated should we 
enter a strong El Niño. We emphasize that total radiative forcing (watt m–2) or CO2 equivalents 
(ppm or metric tons) refer to current and past greenhouse gas levels and their radiative effects. 
Because they do not explicitly take into account differences in the atmospheric lifetimes of 
GHGs, long-term forecasts (i.e. beyond the few to several month time scales addressed in this 
paper) require the use of models that incorporate explicit treatments of GHG sources and sinks. 
The use of GWPs (Global Warming Potentials) that convert emissions of non-CO2 GHGs into 
equivalent emissions of CO2 do approximately take into account these lifetimes, but they refer of 
course to GHG emissions not atmospheric levels. We also note that these estimates focus on the 
long-lived greenhouse gases and therefore do not include a number of other contributors to 
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radiative forcing. A major hurdle for extending our approach to these other contributors is the 
lack of relevant continuous and accurate global measurements for them. Metrics like the CO2-eq 
addressed here can be useful in tracking the growing risks we face from climate change. The 
calculation of this metric underscores the value of existing observational networks, the need to 
maintain such networks, and the advantages of extending the continuous global observational 
capabilities to include as many contributors to forcing of climate change as possible. 
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