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Abstract

Future global climate projections are subject to large uncertainties. Major sources of this
uncertainty are projections of anthropogenic emissions. We evaluate the uncertainty in
future anthropogenic emissions using a computable general equilibrium model of the world
economy. Results are simulated through 2100 for carbon dioxide (CO,), methane (CH,),
nitrous oxide (N,O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs) and sulfur
hexafluoride (SF), sulfur dioxide (SO,), black carbon (BC) and organic carbon (OC),
nitrogen oxides (NO,), carbon monoxide (CO), ammonia (NH;) and non-methane volatile
organic compounds (NMVOCs). We construct mean and upper and lower 95% emissions
scenarios (available from the authors at 1° x 1° latitude-longitude grid). Using the MIT
Integrated Global System Model (IGSM), we find a temperature change range in 2100 of
0.9 to 4.0 °C, compared with the Intergovernmental Panel on Climate Change emissions
scenarios that result in a range of 1.3 to 3.6 °C when simulated through MIT IGSM.
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1. INTRODUCTION

Many human activities cause the release of substances that alter the radiative properties of
the atmosphere. Projections intended to represent plausible transient climate change due to
anthropogenic forcing must, therefore, rely on emissions projections produced by models of
economic activity and technological change that determine the level of human activities and
emissions rates from those activities. Such projections of changes in economic and technological
forces are, however, subject to considerable uncertainty. The evaluation of uncertainty in
economic and technological factors and the effects on forecasts of carbon dioxide emissions has
arelatively long history (e.g., Nordhaus and Y ohe, 1985; Reilly et al., 1987) but the emissions
forecasts associated with particular uncertainty limits, heretofore, have not been used to force
complex climate models.

A major advance over the past decade has been the development of coupled ocean-
atmosphere models combined with development of computational capacity to simulate transient
climate change (IPCC, 2001), and complex climate models are now at a state of development
where they are capable of using emissions scenarios generated by economic models. A second
major advance on the atmospheric modeling front has been the coupling of atmospheric
chemistry models with climate models so that the complex interactions of greenhouse gases,
urban air pollutants, and other substances can be explicitly represented (Wang et al., 1998;
Mayer et al., 2000). Economic modeling has made major advances as well, most recently in the
ability to consistently model and project the human activities that lead to emissions of the many
substances that affect climate directly or indirectly (Babiker, et al., 2001; Reilly et al., 1999;
IPCC SRES).

These advances in economic and climate modeling make it timely, therefore, to reconsider
uncertainty in emissions projections. In this paper, we describe the development of a consistent
set of emissions scenarios with known probability characteristics based on projections of human
activities over the next 100 years.” To produce these scenarios we make use of recent
developments in uncertainty techniques (Tatang et al., 1997) and apply them to the Emissions
Prediction and Policy Analysis (EPPA) model (Babiker et al., 2001), a computable generad
equilibrium model (CGE) of the world economy that projects the major greenhouse gases as
well as other climatically or chemically important substances. We compare our results to the
scenarios generated for the Intergovernmental Panel on Climate Change (IPCC) Special Report
on Emissions Scenarios (SRES, 1999).

The next section begins with a brief discussion of uncertainty analysis and details of our
approach. We then present the resulting distributions of emissions. Finally, we develop specific
emissions scenarios with known probability characteristics and simulate resulting climate change
using the MIT Integrated Global Systems Model (IGSM), comparing them to the SRES results
also simulated through the MIT IGSM (Prinn et al., 1999; Reilly et al., 1999).

2 These scenarios are gridded at 1° x 1° latitude-longitude, and are available to interested researchers by contacting
the corresponding author.



1.1 Uncertainty Analysis

There are two broadly different ways to approach the problem of forecasting when there
is substantial uncertainty: uncertainty analysis (associating probabilities with outcomes) and
scenario analysis (developing “plausible’ scenarios that span an interesting range of possible
outcomes). Both approaches are evident in climate assessments, most notably the recent IPCC
reports. Authors for the IPCC Third Assessment Report (TAR) were provided guidance
encouraging them to move as far toward uncertainty quantification as possible. TAR authors
were asked to identify the most important factors and uncertainties likely to affect conclusions,
document ranges and distributionsin the literature, quantitatively (when possible) or
gualitatively characterize the distribution of values that a parameter, variable or outcome may
take, and optionally to use formal probabilistic frameworks for assessing expert judgment
(Moss and Schneider, 2000). The IPCC Specia Report on Emissions Scenarios (SRES, 1999)
uses the plausible scenario approach. The approach there was described as a“story line” anaysis
where all the scenarios developed were considered “equally valid,” the authors strongly resisting
an assignment of quantitative or qualitative likelihoods to scenarios.

There can be great benefit to a“story line” approach asit allows one to explore in detail how
particular sets of assumptions produce different or similar outcomes. One advantage isthat in
assessments involving a set of authors with widely diverging views, it istypically easier to
present scenarios without attaching likelihoods. When there exist widely divergent “world
views,” aterm Edmonds and Relilly (1985) used to describe different views about future energy
use and carbon intensity, one expert’ s likelihood range may not include another expert’s most
likely scenario making it as difficult to reach consensus on alikelihood ranges as on a mean or
best guess case. A similar issue of consensus distributions also arisesin expert éicitation in the
contentious issue of whether or how to combine the judgments of different experts (Keith, 1996;
Pate-Cornell, 1996). The scenario or “story line” approach alows scenarios from experts with
widely varying “world views’ to be considered “equally valid’, avoiding deadlock.

The alternative approach, uncertainty analysis, requires identification of the critical uncertain
model parameters, quantification of the uncertainty in those parametersin the form of probability
distributions, and then sampling from those distributions and performing model simulations
repeatedly to construct probability distributions of the outcomes. With this approach, one can
guantify the likelihood that an outcome falls within some specified range.

In the end, the difference between formal quantitative uncertainty analysis and the story line
scenario approach is not whether a judgment about likelihood of outcomes is needed but rather
when and by whom the judgment is made. Scientists can use the tools of uncertainty analysis
and their judgment to describe the likelihood of outcomes quantitatively or the assessment of
likelihood can be left to those who actually must use the information; i.e. policy makers and the
public who must ultimately decide whether the risks of climate change are great or small. Our
views are that (1) it isimportant for experts to offer their judgment about uncertainty in their
projections and (2) formal uncertainty techniques can eliminate some of the well-known
cognitive biases that exist when people deal with uncertainty (Tversky and Kahneman, 1974).
The evidence is strong that experts and laymen are equally prone to such biases and quantitative
approaches can reduce if not eliminate these biases (Morgan and Henrion, 1990).



A unique aspect of the uncertainty approach we use is that we are able to produce emissions
projections that are consistent with underlying economic, demographic, and technological
assumptions across substances for any year and over time. Choosing the 95% upper confidence
limit for CO,, SO,, and CH, as derived from an uncertainty analysis, for example, will produce
amuch more unlikely climate scenario than the 95% upper confidence® limit on total radiative
forcing unless these emissions are perfectly correlated. We know, however, that coa mining and
coal burning are, for practical purposes, perfectly correlated at the global level and that coal
mining releases CH, and coal burning results in emissions of CO, and SO,. Thus, we expect
correlation in emissions of these three substances. The correlation is far from perfect, however,
because there are other sources of all of these substances. Moreover, SO, and CH, emissions are
subject to control measures that do not effect CO, emissions proportionately and both the sulfur
content of coal and CH, release from coals mines varies greatly across regions, weakening the
correlation among these emissions.

Thereisaso likely to be a correlation structure for distributions across time. For example, a
time profile of energy consumption that exhausts much of the cheaply available oil and gasin the
first half of the century may lead to much greater reliance on higher emitting coa and shale ail in
the latter half of the century whereas atime profile of energy consumption that relies on coal in
the first half of the century will have more lower emitting natural gas available in the second half
of the century.

Our method also allows us to recover the underlying parameter values that can lead to
aparticular case, where they liein the input distributions we used, and the probability
characteristics of the outcome associated with the case. By using this set of parameters, the
scenario so constructed is consistent with the structure of the underlying model that includes the
technological and economic relationships that create correlation among emissions and over time.
In principle, one can then explore in detail the sensitivity of results to varying assumptions
around such a case, allowing othersto form different judgments about the likelihood, and
conduct policy analysis using these cases as reference cases. While the set of parameter values
associated with a particular set of outcomesis not unigue, our approach allows a more structured
development of families of scenarios that could serve as abasis for “story line” type analysis.
This approach offers greater assurance of having explored arange of outcomes that brackets a
specific likelihood range such as the 95 percent confidence limits.

Our approach involves: (1) choice of an appropriate model (2) sensitivity analysisto
determine those parameters that are most important for particular outcomes (3) development of
probability distributions for the parameters chosen for analysis (4) application of the
Deterministic Equivalent Modeling Method (DEMM) approach to produce a polynomial reduced
form fit of the EPPA model (5) Monte Carlo simulation of the reduced form polynomial fit
developed using DEMM.

An Economic Emissions Model

The EPPA model iswell suited for thistask, asit was designed to simulate the world
economy through time with the objective of producing scenarios of greenhouse gases (GHGS)

3 Conditional on a specific set of climate model assumptions.



and their precursors, emitted as aresult of human activities. The simulation horizon is through
the year 2100, producing emissions scenarios for the major greenhouse gases (carbon dioxide
(CO,), methane (CH,), nitrous oxide (N,O), hydrofluorocarbons (HFCs), perfluorocarbons
(PFCs) and sulfur hexafluoride (SF;))* and other pollutants and climatically or chemically
important substances including aerosols and their precursors (from sulfur dioxide (SO,), black
carbon (BC) and organic carbon (OC)), nitrogen oxides (NO,), carbon monoxide (CO), anmonia
(NH;) and non-methane volatile organic compounds (NMVOCs)). The model is a computable
general equilibrium model of the economy with sectoral and regional detail as shownin Table 1
(Babiker et al., 2001, 2000).

Greenhouse gas emissions (T able 2) and emissions of other climatically or chemically
important substances (T able 3) come from many sources including fossil fuel combustion and
production, agricultural production, biomass and waste burning, sewage from industry and
households, and other industrial processes. Emissions are associated with specific EPPA sectors
(Table 2) with emissions coefficients varying across sectors and regions to reflect differences
among countries (Babiker et al., 2001). Base year inventories were devel oped based on existing
inventories and literature on emissions coefficients (Babiker et al., 2001; Mayer and Hyman,

Table 1. Dimensions of the EPPA-GTAP Model

Production Sectors Name Countries and Regions Name
Non-Energy Annex B
1. Agriculture AGRI United States USA
2. Energy-Intensive Industries ENERINT Japan JPN
3. Other Industries and Services OTHERIND Europe*’ EEC
Energy Other OECD® OOE
5. Crude Oil including Tar Sands OIL Former Soviet Union FSU
6. Natural Gas GAS Central European Associates EET
7. Refined Oil REFOIL
8. Coal COAL Non-Annex B
9. Electricity ELEC China CHN
Future Energy Supply India IND
10. Shale Oil - producing OIL equivalent Energy Exporters® EEX
11. Coal Gas - producing GAS equivalent Brazil BRA
12. Renewable - Carbon-free electric Dynamic Asian Economies® DAE
Primary Factors Rest of World ROW
Labor
Capital
Fixed factor resources for coal, oil,
gas, shale oil, and agriculture

9The 15 nations of the European Union as of 1995

b Australia, New Zealand, Canada, Turkey, and the European Free Trade Area (Norway, Iceland, Switzerland)

¢ Middle East, Mexico, Venezuela, Indonesia and, because of the aggregation in GTAP, most of Africa except Morocco and
South Africa are included in ROW

4South Korea, Phillipines, Thailand & Singapore

€All countries not included elsewhere, including South Africa, Morocco, much of Latin America and the Asia

* CFCs and HCFCs, stratospheric ozone depl eting substances, are also greenhouse gases but are not included in
EPPA. In simulations of the MIT IGSM future emissions are prescribed to be consistent with their phase-out
under the Montreal Protocol (Wang et al., 1998).



Table 2. Gas sources and EPPA Activities for Gases Listed in the Kyoto Protocol

GAS and SOURCE

EPPA ACTIVITY

co,
Coal, oil, and natural gas combustion

Cement production
Deforestation, biomass burning

Coal, refined oil, & natural gas consumption in all

sectors, and coal gasification
Energy intensive industry production
Agriculture production

CH,

Coal seams

Petroleum production

Transmissions and distribution losses

Landfill, wastewater gas

Industrial sewage, paper and chemicals

Industrial sewage, food processing

Rice, enteric fermentation, manure management,
agr. waste, savannah, & deforestation burning

Coal production

Oil production

Gas consumption

Household consumption

Energy intensive industry production
Other industry production
Agriculture production

N,O
Adipic and nitric acid production
Refined oil products combustion
Coal combustion
Agricultural soils, manure management, agricultural
waste, savannah, and deforestation burning

Energy intensive industry

Refined oil consumption in all sectors
Coal consumption in all sectors
Agriculture production

HFCs
Air conditioning, foam blowing, other

Other industry production

PFCs
Semi-conductor production, solvent use, other
Aluminum smelting

Other industry production
Energy intensive industry production

SF,
Electrical switchgear
Magnesium production

Electricity production
Energy intensive industry production

2001). Because of the relatively aggregated structure of EPPA, emissions coefficients are subject
to change over time to reflect structural change in economies beyond that represented in the
aggregate sectora structure of EPPA. For regional and local air pollutants (SO,, carbonaceous
aerosols, NO,, CO, NH,, and NMV OCs), emissions coefficients also depend on per capitaincome
to reflect the fact that with rising incomes countries control pollution. The relationship between
per capitaincome and emissions was statistically estimated based on the cross-section variation

in emissions coefficients and per capitaincome among regionsin the EPPA 1995 data base.

Sengitivity Analysis

Thefirst step in performing an uncertainty analysisis to examine the sensitivity of the
outcome of interest to model parameters, where each parameter is varied while holding other
parameters to their reference values. The goal of this sensitivity analysisisto identify alimited
number of parameters for formal uncertainty analysis. Arbitrarily small deviations can be
misleading where uncertainties and equation formulations vary widely. We thus tested sensitivity
to approximately two standard deviation changes for each parameter to take into account that the



Table 3. Gas Sources and EPPA Activities for Other IGSM Gases Not Listed in the Kyoto Protocol

GAS and SOURCE

EPPA ACTIVITY

SO,
Coal, oil, and natural gas combustion
Non-ferrous metals, iron & steel, chemicals, & cement
Refinery processes
Agricultural waste, savannah, deforestation,
biofuels, and uncontrolled waste burning
Biofuel use in households

Coal, refined oil, & natural gas consumption in all sectors
Energy intensive industry production

Refined oil production

Agricultural production

Household consumption

NMVOCs

Coal, petroleum products in transportation, and
natural gas combustion

Refinery processes

Natural gas production processes

Oil production processes

Solvents, other industrial processes

Iron & steel, chemicals

Biofuel use in households

Agricultural waste, savannah, deforestation,
biofuels, and uncontrolled waste burning

Coal, refined oil, and natural gas consumption in all
sectors

Refined oil production

Natural gas production

Oil production

Other industry production

Energy intensive industry production

Household consumption

Agricultural production

NO,
Coal, oil, and natural gas combustion
Cement, chemical, iron & steel manufacture
Refinery processes
Biofuel use in households
Agricultural waste, savannah, deforestation,
biofuels, and uncontrolled waste burning

Coal, refined oil, & natural gas consumption in all sectors
Energy intensive industry production

Refined oil production

Household consumption

Agricultural production

co
Coal, oil, and natural gas combustion
Chemical, iron & steel manufacture
Refinery processes
Other industrial processes
Biofuel use in households
Agricultural waste, savannah, deforestation,
biofuels, and uncontrolled waste burning

Coal, refined oil, and natural gas consumption
Energy intensive industry production

Refined oil production

Other industry production

Household consumption

Agricultural production

Black Carbon and Organic Carbon
Coal, oil, and natural gas combustion
Biomass and waste burning in agriculture
Biomass burning in households

Coal, refined oil, and natural gas consumption
Agricultural production
Household consumption

NH,
Manure management and fertilizer use
Sewage

Agricultural production
Household consumption

uncertainty range is much wider for some parameters than for others. Our interests are in emissions
of the multiple greenhouse gases and other air pollutants including aerosols. Sensitivity results for
CO,, CH,, N,O, HFCs, SO,, and NO, for year 2100 emissions over the period 2000-2100, are
shown as the range (difference between high and low emissions) as a percentage of reference
emissions (Table 4). HFCs are representative of how EPPA projects the other high GWP gases,
SF, and PFCs. SO, and NO, are representative of how EPPA projects other air pollutants.



Table 4. Sensitivity of Cumulative Emissions 2000-2100 to uncertain EPPA Parameters, Range of Emissions
(High - Low) as % of Reference Emissions

Uncertain Parameter co, CH, N,O HFC SO, NO,
Labor Productivity Growth: Annual Rate 57.7 65.4 47.9 50.2 385 5438
Energy Efficiency Improvement: Annual Rate 51.5 14.3 6.0 6.9 24.5 16.6
Elasticity of Substitution: Energy and Labor-Capital 22.7 8.2 0.1 0.5 12.0 9.3
Elasticity of Substitution: Oil, Coal, and Gas 20.2 7.4 1.7 0.2 10.2 53
Elasticity of Substitution: Labor and Capital 17.2 15.5 9.8 924 114 143
Non-Carbon Electricity: Cost 7.1 2.1 0.2 0.0 4.5 37
Fossil Resources: Quantity available 5.6 1.0 2.1 0.8 10.1 9.8
Armington Elasticity: Internationally Traded Goods 3.1 2.6 0.5 1.7 0.5 44
Capital Stock: Percent Vintaged 29 4.9 58 6.7 177 237
Synthetic Gas: Cost 2.5 1.5 0.0 0.0 0.3 0.4
Shale Oil: Cost 1.9 1.5 0.7 0.1 29 238
Oil Price 2000-2020: Change from 1995 1.3 0.3 1.0 0.6 24 2.0
Land in Agriculture: Productivity 0.9 1.3 33 1.3 0.3 1.3
Nuclear Generation: Cost 0.2 0.1 0.0 0.0 0.1 0.1
Emissions Coefficients
CH,, Industrial Sources 0.0 51.6 0.0 0.0 0.0 0.0
CH,, Agricultural Sources 0.0 37.9 0.0 0.0 0.0 0.0
Non-GHGs, Fossil Fuel Burning 0.0 0.0 0.0 0.0 1433 127.0
Non-GHGs, Industrial Sources 0.0 0.0 0.0 0.0 12.3 16.3
Non-GHGs, Agricultural Sources 0.0 0.0 0.0 0.0 7.5 18.9
N,O, Agricultural Sources 0.0 0.0 126.2 0.0 0.0 0.0
N,O, Industrial Sources 0.0 0.0 35.3 0.0 0.0 0.0
HFC Emissions 0.0 0.0 0.0 602.7 0.0 0.0
PFC Emissions 0.0 0.0 0.0 0.0 0.0 0.0
SF¢ Emissions 0.0 0.0 0.0 0.0 0.0 0.0

Probability Distributions of Uncertain Parameters

The computational demands of the DEMM approach require limiting the number of
independently sampled uncertain parameters where possible. Based on the sensitivity analysis
above, we identified 12 parameters shown in Figures 1 and 2 for the formal uncertainty analysis,
normalized so that the median is 1.0. Thisis reduced to eight independent sets of probability
distributions to sample from, and assumes perfect correlation within each set:

1) Labor productivity growth—all regions correlated,

2) AEEI—all regions correlated,

3) Agricultural sources of CH, and N,,O,

4) Industrial sources of CH, and N,O,

5) Industrial sources of HFCs, PFCs, and SF,

6) Fossil fuel combustion sources of SO,, NO,, CO, NMVOC, BC, OC, and NH,,
7) Agricultural sources of SO,, NO,, CO, NMVOC, BC, OC, and NH;, and

8) Industrial sources of SO,, NO,, CO, NMVOC, BC, OC, and NH..
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Figure 1. Normalized probability distributions (median = 1.0) for model inputs. Panels (a) labor
productivity growth, (b) autonomous energy efficiency improvement rate, (¢) CH, emissions
coefficient from agricultural activities, (d) N,O emissions coefficient from agricultural activities,
(e) CH, emissions coefficient from industrial activities, and (f) N,O emissions coefficient from
industrial activities. Vertical lines show the standard deviations used to construct the distributions.



a) Growth Rate for HFC Emissions b) Growth Rate for PFC Emissions
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Figure 2. Normalized probability distributions (median = 1.0) for model inputs. Panels (a) HFC
emissions growth rate, (b) PFC emissions growth rate, (¢) Sk emissions growth rate, (d) coefficient
of GNP/capitarelationship for non-GHGs from combustion, (€) non-GHGs from agricultural activities
emissions factor, and (f) non-GHGs from industrial activities emissions factor. Vertical lines show the
standard deviations used to construct the distributions.
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We constructed the distributions for uncertain parameters through expert elicitation and from
data obtained from the literature. The probability distributions for labor productivity growth and
AEEI were obtained by expert elicitation. Five economists’ participated in a protocol, each
providing fractiles for the distribution for these variables. The five probability distributions for
each quantity were then combined by equally weighting each expert’ s assessment. The experts
beliefs about the distribution of GDP growth rather than labor productivity were assessed as the
experts indicated greater familiarity with estimates of GDP growth. As modeled in EPPA, there
isavery close relationship between GDP growth (an output of EPPA) and the labor productivity
growth required to produce that GDP growth, assuming all other parameters at reference values.
Separate distributions for labor productivity growth were assessed for each of the EPPA regions,
but in this uncertainty study we treat growth in al regions as perfectly correlated. Similarly,
distributions for AEEI were elicited from the experts for OECD regions and separately for non-
OECD regions, but treated as perfectly correlated during the random sampling.

The remaining parameters reflect uncertainties in emissions per unit of economic activity,
which we refer to as emissions coefficients. Uncertaintiesin current emissions of CH, and N,O
from anthropogenic sources are large (Table 5) and for N,O the range of uncertainty differs from
agricultural and industrial sources. The range in the estimates of methane emissionsis from the
EDGAR v2.0 study (Olivier et al., 1995). Ranges for N,O emissions are from Mosier and Kroeze
(1998). These ranges are interpreted as one standard deviation from the mean.

Alternative scenarios for emissions of HFCs, PFCs, and SF; are given in Harnisch et al.
(2000). The maor uncertainty surrounding these gasesis how emissions per unit of economic
activity will change in the future as current anthropogenic emissions are relatively well-
constrained by measurements of global concentrations. Thus, for these gases, we treated as
uncertain the change in their emissions coefficients over time. The time trend that best fits the
emissions coefficient data is exponential (HFCs and SF,) and linear (PFCs). Three sets of time
trend parameters were estimated, one each for the reference, the high, and the low cases in
Harnisch (2000). For HFCs and SF, the estimated equations were of the form:

ef (), = ae”

Table 5. Annual Global Total Emission Estimates

Natural Anthropogenic Total

CH, [TgCH,] | 160 (110-210) 375 (300 - 450) 535 (410 - 600)

N,O [Tg N] 9 (43-14.7) 7.2 (2.1-19.7) 16.2 (6.4 -34.4)

NO, [Tg N] 19.3 (6 -35) 31.1 (16 - 46) 50.4 (22-81)

SO, [Tg S] 32 (25 - 40) 70 (69 -76) 102 (95-116)

CO [Tg CO] 370 (280 -960) 925 (600 - 1250) 1295 (880 -2210)

BC [Tg C] — 6.5 fossilfuel (1.8-13) 13.7 (3.8-26)
7.2 biomass (2 -13)

OC [Tg mass] 7.8 7 7.5 fossilfuel (0.75-15) 59.3 (5.2-95)
44 biomass (4.4 - 80)

Source : Summarized from Olivier et al. (1995), Seinfeld and Pandis (1998), and Mosier and Kroeze (1998).

®The participating experts were: Henry Jacoby, Richard Eckaus, A. Denny Ellerman, John Reilly, and Mustafa
Babiker.
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wherei isanindex for the case (reference, high, or low), ef (t) is the emissions coefficient factor
intimet, aisaconstant, and c is the estimated trend parameter. For PFCs:

ef(t), =a, +c;t
Then, in all cases, the actual emissions are calculated as:
emi(t,i) = activitylevel(t) * emicoef (t) * ef (¢,1)

where emi isthe emissions (of HFCs, PFCs, or SF) at timet for samplei from the distribution,
activitylevel isthe level of economic activity in the industrial sectors ($), emicoef is the reference
emissions coefficient (kt/$), and ef is the uncertainty factor calculated as above.

Distributions are the best-fit Beta distribution for the a parameter where i = referenceisthe
median and i = high, low are interpreted as the 95 percentile values. The estimates were
normalized, with a.4= 1.0, so thisfactor could be used directly as a multiplier to the reference
emissions coefficients in EPPA.

Current emissions of the other pollutants, including SO,, NO,, CO, NMVOCs, and
particulates are subject to a substantial uncertainty (Table 5). As above, emissions from each
source activity are treated as independent, while the emissions of each non-GHG from a given
activity is perfectly correlated during sampling (e.g., SO, and NO, from agriculture are
correlated). Estimates of the uncertainty in emissions from agricultural and industrial activities
(not including fuel combustion) are based on Edgar v2.0 data (Olivier et al., 1995) and Seinfeld
and Pandis (1998). We approximate one standard deviation limitsin emissions from industrial
sources as £50% of the mean. Uncertainty in emissions from agricultural sources is somewhat
wider and skewed towards higher emissions with an upper standard deviation of +80% of the
mean and alower standard deviation of —40%.

The dominant source of these other pollutants is the combustion of fossil fuels. As described
above, the emissions coefficients over time for each speciesisfit as a power series function of
GNP per capita,

ef =a*(GNP/ capita)‘
except for SO, emissions, which are fit as an exponential function,

ef = *exp(—c*(GNP/capita)) .

The values of the parameters a and ¢ are estimated based on cross-sectional data, along with
an estimate of the standard error. The uncertainty in the emissions from fuel combustion is then
represented as the average standard error for the parameter a in these functions, which is £60%
of the mean. Uncertainty in the evolution of GNP per capitais driven by the uncertainty in labor
productivity growth. Together these two uncertainties encompass a wide range of possible future
aerosol and pollutant emissions as a function of the growth of the economy and how emissions
are reduced as wealth increases.

In Table 6 we provide the fractiles for labor productivity for each region and for the AEEI for
OECD and Non-OECD. In Table 7 we show fractiles of 1995 emissions for CH,, N,O and the
urban air pollutants. We provide emissions rather than the coefficients because they can be more
readily compared with other data on emissions. The units associated with the coefficients
themselves are M T/dollars of sector activity and are unique to the specific EPPA economic data
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set and sector aggregation. Table 7 also providesfractilesfor ~ Table 6. Fractiles of Initial GDP

the coefficient trend parameters for HFCs, PFCs, and SF. and AEE| Distributions
The DEMM Approach Initial GDP Growth Rate (% per yr)
Region 25% 50% 97.5%
The Deterministic Equivalent Modeling Method USA 165 334 454
(DEMM)® is used to obtain approximations for the model JPN 122 264 3.65
responses (Webster and Sokolov, 2000; Tatang et al., 1997),  EEC 138 275 372
and perform Monte Carlo on the approximations. DEMM is ~ ©°F 139 279 379
. : EEX 070 3.03 504
similar to response surface replacement methods (Downing
: . . . CHN 167 524 851
et al., 1985) in which typically alinear model of the FSU TR nam A
uncertain output as a function of the uncertain parameters IND 194 484 733
is calculated from afractional factorial design, and Monte EET 188 384 563
Carlo is applied to the response surface. DEMM improves DAE 134 441 706
upon these methods with respect to the choice of the basis BRA -039 320 629
functions, the choice of points to evaluate, and most ROW 037 376 668
importantly the ability to capture low-order non-linearities. AEEI (% per yr)
OECD 025 096 154

DEMM treats uncertain model responses as random NomOECD 023 143 179

variables, which are represented as expansions of orthogonal —

K i . Note : GDP rates are for the initial period,
polynomials. These orthogonal polynomials are derived after which they approach an
from the input parameter PDFs. The coefficients of the asymptotic limit of 1% for OECD

. . ) regions 2% for non-OECD regions.
expansion are calculated from simulations of the model.

The method of choosing parameter values at which to run the model is analogous to Gaussian
Quadrature (Press et al., 1992): the values used are the roots of the orthogonal polynomials one
order higher than that of the approximation. These sampleswill be distributed over parameters
joint probability space. Additional runs must be used to check whether the approximation has a
reasonably small error. The roots of the orthogonal polynomials two orders higher than the
approximation are used to generate the parameter values for checking, both because they will
interleave the points used to solve the approximation and because if a higher order is needed

Table 7. Fractiles of 1995 Global Emissions Distributions and Trends

Parameter 2.5% 50% 97.5% Units

CH, Agricultural 41.7 163.5 341.0 MegaTons (MT) CH, from Agricultural Sources

CH, Industrial 37.0 145.2 302.7 MT CH, from Industrial Sources

N,O Agricultural 0.8 8.4 16.1 MT N,O from Agricultural Sources

N,O Industrial 0.3 1.1 1.9 MT N,O from Industrial Sources

SO, from Fossil Fuels  10.4 115.2 220.1 MT SO, from Fossil Fuels

SO, Agricultural 0.7 7.6 14.5 MT SO, from Agricultural Sources

SO, Industrial 55 31.7 58.0 MT SO, from Industrial Sources

HFCs Trend -9.8% 0% 14.8%  Annual exponential rate of change relative to reference
SF, Trend -6.8% 0% 4.6%  Annual exponential rate of change relative to reference
PFCs Trend -0.148 0 0.35 Annual rate of departure from reference (MT/yr)

6 Tatang et al. (1997) use the name Probabilistic Collocation Method (PCM), but the method isidentical. DEMM
has replaced the name PCM because it better describes the method.
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these runs are immediately available. DEMM typically converges on estimates of the mean,
variance, and extreme fractiles of multiple responses by second or third order expansions (for
2 parameters, 3 order requires 10 simulations to solve the approximation, plus several more to
assess the accuracy) whereas other methods such as Latin Hypercube sampling (LHS) (McKay
et al., 1979) requires more runs to accurately represent higher order moments.

The approximation of model responses by DEMM has additional advantages. Information on
the sengitivity to individual parametersis accurately represented in the expansion, allowing the
evaluation of relative contribution to uncertainty without additional ssmulations. Finally,
aternative PDFs for parameters can be propagated through the approximation without any
additional runs of the true model, as long as the new PDFs do not extend beyond the range for
which the approximation has been validated. LHS and other methods would require new sets of
simulations at additional computational cost.

1.2 Emissions Uncertainty Results

Using DEMM, we propagate the uncertainty in 8 independent sets of input parameters by
estimating 4™ order polynomial expansions, requiring 1300 runs of EPPA for estimation and
verification. The errorsin the reduced form model were all 1ess than 0.1% of the mean values,
and most are less than 0.01% of the mean. Monte Carlo simulation is then performed on the
reduced form model using 10,000 random samples from the parameter distributions. The
resulting samples of emissions of each species at each time period are then used to construct
probability distributions.

The resulting uncertainty in greenhouse gas emissionsis shown in Figure 3, which indicate
the median, +/- one standard deviation (67%), and +/- two standard deviations (95%) for the
emissions of each gas. Also shown in Figure 3 are the emissions from the six representative
scenarios from the IPCC SRES. Although the SRES scenarios do not have an associated
probability, it is useful to compare them to our probabilistic bounds. CO, emissions from the
SRES scenarios spread over much of our 95% range (Figure 3a). Thisis not surprising, since
socioeconomic models of many types have been used to project CO, emissions for nearly two
decades, and modeling studies tend to be fairly consistent (Weyant and Hill, 1999). But while the
range itself is similar, the distributions are not. The SRES has alower bias among its scenarios,
with four of the six SRES scenarios well below our median emissions in 2100. Furthermore, two
of those project lower CO, emissions by 2100 than our 95% lower bound. The time path of
emissionsis even less consistent between the two methods; the SRES scenarios are biased higher
than our distributions before 2040, after which time some of the SRES change the trend.

Emissions projections of other greenhouse gases are less consistent between our ranges and
the IPCC’s. One significant difference is that the IPCC assumes that global emissions of all gases
are known for 1990-2000. In fact, as discussed in the previous section, there is considerable
uncertainty in current global emissions, particularly emissions resulting from agricultural
activities and emissions from developing countries. Perhaps as aresult of our treatment of
current uncertainty as well as future trends, we find alarger range of uncertainty in non-CO,
greenhouse gas emissions than the IPCC does. SRES projections of CH, and N,O span our 67%
probability bounds. Four of the six N,O scenarios are near the lower 67% bound while the other
two are near the upper 67% bound, and none are close to our mean.

14



a) Global CO, Emissions b) Global Methane Emissions

50 1400
Mean Median I
— — — +/- Standard Deviation 1200 { — — +/- Standard Deviag)n/
Q 40 1 — _ 95% Probability Bounds = —— 95% Bounds
S IPCC SRES Scenarios .~ T 1000 | -+ IPCC SRES ,
P O —e— Mean
& 30 £
2 < 800 |
L o]
£ <}
w20 7 6001
) 2
o 5 400 |
10 il
O 200 |
0 — o
= N N DN DN DN DNDDNDDNDDNDNDDN N N DN DN DN DN DNDDNDNDDNDDNDDN
© O O O O O O O O O O = O O O O O O O O o O =
© O = N W H O O N © © O o = N W Hh O O N O © O
O O O O O O O O o o o o O O O O O O O o o o o
Year Year
c) Global N,O Emissions d) HFC Emissions
50 5000
Median Median
— — +/- Standard Deviation — — */- Standard Deviation
40 { — _ 95% Probability Bounds 4 4000 {— — 95% Probability Bounds
Q | IPCC SRES Scenarios _~ . - IPCC SRES Scenarios ~
z [}
= )
£ — 3000
Y 5
'6 g 2000
3 E
IS L
g Q
Q\. T 1000
z
= N DN N DN DN DN DNDNDDNDDNDDNDDN
© O O O O ©O O O © ©o O =
© O =2 N W b O O N © © O
O O O O O O O o o o o o
Year
e) PFC Emissions f) SF, Emissions
120 30
Median Median
— — +*/- Standard Deviation — — +/- Stand. Dev. ——
100  _ _ 95% Bounds /-/\\ 254 __ _ 95% Bounds/ \
[ [P IPCC SRES \ e IPCC SRE}/ N
T 80 | / ~ 20 |
2 <)
S 60 | 2 15 |
& ?
2]
5 40 € 10
(L_B i)
©
o 20 & 5
— \
< ——
= N N N DN N DN NDNDDNDNDDN = N DN DN DN DNDNDNDNDDNDDNDDN
© O O O O O O O O O O = © O O O O O O O O O O =
© O = N W b O O N ©® © O © O = N W H O O N 0 © O
O O O O O O O O o o o o O O O O O O O o o o o o
Year Year

Figure 3. Emissions of primary anthropogenic greenhouse gases. Panels (a) carbon dioxide, (b) methane,
(c) nitrous oxide, (d) HFCs, (€) PFCs, and (f) SF;. The solid lines show the mean emissions based on
10,000 runs, long/gray dashed lines show +/- 68%, shorter/black dashed lines show +/- 95%
probability bounds, and dotted lines show the emissions from the six representative SRES scenarios.
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For the F-gases (hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride) the IPCC has
developed four representative scenarios (Fenhann, 2000; SRES, 2000). Their projections of
HFCs emissions span considerably less than our 67% probability range. The higher HFCs
emission trgjectoriesin EPPA permit strong increases of emission levels as a consequence of
increases of GDP. In contrast, the SRES emissions remain capped because of a prescribed de-
coupling of HFCs from increases of GDP due to market saturation. The low HFCs emission
levels, which are al'so possible within EPPA, are aso not seen in SRES, as its authors seem fairly
pessimistic about the potential for emission control through containment and substitution by
aternative fluids. For PFCs the authors of SRES seem skeptical about the availability of
technological options to reduce PFCs emissions from aluminum production eventually leading to
PFCs free production. The pictureis similar for SF;: SRES again does not allow for a permanent
de-coupling of emissions from economic development, which in EPPA becomes possible
through technological change. All in all, SRES—with respect to emissions of fluorinated
gases—assumes a fairly deterministic emission-GDP relation that does not allow for major
technological changesto lead to truly significant reductions of emissions.
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Figure 4. Emissions of air pollutants. Panels (a) SO,, (b) NO,, (c) CO, (d) non-methane hydrocarbons.
The solid lines show the mean emissions based on 10,000 runs, long/gray dashed lines show +/- 68%,
shorter/black dashed lines show +/- 95% probability bounds, and dotted lines show the emissions from
the six representative SRES scenarios.
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In addition to the greenhouse gas emissions, we use the 10,000 simulations to quantify
uncertainty in other climatically relevant emissions. In Figur e 4, we show the uncertainty in
emissions of SO,, NO,, CO, and non-methane hydrocarbons. As with the greenhouse gases, our
probability bounds account for uncertainty in current global emissions of these species aswell as
economic growth, while the IPCC assumes that current emissions are known. SO, emissions, a
precursor to sulfate aerosols, are especialy important in climate projections because of the strong
negative radiative forcing effect of those aerosols. The difference between the SRES projections
of SO, emissionsto our projectionsis striking. In all six of the representative scenarios, the IPCC
projects that after about 2040, SO, emissions will begin to steadily decline. The IPCC assumes
that policies will be implemented to reduce sulfur emissions, even in developing countries, in all
imaginable cases. By contrast, our study imagines that the ability or willingness to implement
sulfur emissions reduction policiesis one of the key uncertainties in these projections.
Accordingly, our 95% probability range includes the possibility of continuing increasesin SO,
emissions over the next century, as well as declining emissions consistent with SRES. Similarly,
though not as striking, SRES projections of NO,, CO, and NMVOC emissions al fall within the
lower half of our probability distributions of emissions.

Finally, we project emissions of other climatically relevant substances not treated in the IPCC
SRES: black carbon aerosols, organic carbon aerosols, and ammonia. Recently there has been an
increased interest in the radiative forcing properties of black carbon or elemental carbon
aerosols, primarily produced from incomplete combustion (Hansen et al., 2000). Black carbon
aerosols are light absorbing, and therefore have a different effect on radiative forcing than sulfate
aerosols. Aerosols in both polluted and remote areas contain a wide range of organic compounds,
resulting from direct emissions or secondary chemical production in atmosphere. Organic
aerosols, like sulfate aerosols, have negative radiative forcing. Finally, ammonia emissions are
important because the primary form of sulfate and nitrate aerosols are as ammonium salts. While
the influence of changing emissions of ammonia and carbonaceous aerosols has not been
explicitly formulated in the current version of the MIT climate-chemistry model, we project
these emissions for the new version of the IGSM currently being devel oped. Probabilistic bounds
on emissions of these substances are given in Figure 5.’

2. SCENARIOSFOR CLIMATE SIMULATIONS

Quantifying uncertainty in emissions with probability distributions, asillustrated above, isan
important step towards treating uncertainty in climate projections and, ideally, the uncertainty in
emissions scenarios would be jointly considered with uncertainty in climate models. For many
climate modelsit is not computationally feasible to run hundreds of scenarios, and instead
modelers must simulate a selected set of scenarios, such as those developed in the IPCC SRES.
Our approach alows us to select scenarios where we can describe the associated likelihoods.

There remain some limits to this approach that separates uncertainty analysisin emissions
from uncertainty in climate modeling because there are multiple climatically or chemically
important substances of interest. If there were only one substance that mattered for climate
projections, CO, for example, scenarios could simply be defined as the various fractiles of the
distributions; i.e., the mean and the upper and lower 67% or 95% emissions shown above.

" The IPCC does not project emissions of these substances, so there are no comparisonsin the figure.
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In fact, there are many emissions that influence the climate, including several greenhouse gases,
aerosols, and precursors of climatically relevant substances. The uncertainty in the emissions of
each of these substancesis neither completely independent nor completely dependent (perfectly
correlated) with each other. For example, emissions of CO, and CH, have a correlation coefficient
of 0.81. It isimportant to accurately capture this probabilistic relationship in designing scenarios.
If three different probabilities are used for each of the four groups of independently varying
emissionsin this study, mean, upper 95%, and lower 95%, then there are 3* or 81 scenarios that
describe every possible combination, an impractically large number for smulations for coupled
AOGCMs. Further, this method will result in some scenarios that have extremely low
probabilities. For example, choosing the upper 95% value on all four groups has a likelihood of
being exceeded of (0.025)* = 3.9 x 10~ or an approximately 1 out of 2,560,000 chance.

We “pare” the decision tree to afew of the most interesting scenarios. The single largest
driver of climate outcomesis CO, emissions, so we begin by choosing three emissions scenarios
for CO, that result in the median, upper 95% and lower 95% emissions levels. In order to keep
the overall probability of the scenarios at 2.5% and 97.5%, we fix the other greenhouse gas and
non-GHG emissions at their median levels where the median is conditional on CO, at median,
the upper 95% and the lower 95% emissions. With positive correlation between CO, and CH,
emissions, for example, median emissions of CH, conditional on CO, at its upper 95% level will
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focused on uncertainty in Figure 6. Probabilities for jointly varying emissions.

other GHGs or other

pollutants conditioned on median outcomes for CO, or all GHGs. Such a set of scenarios would
be useful in exploring the possible range of atmospheric chemistry and climate responses to
extreme variations in the relative increase of different substances. Since there are complex and
non-linear interactions among GHGs and other pollutants, different emissions of gases would
result in potentially widely different atmospheric lifetimes of substances or in different levels

of urban air pollution. Y et, because emissions of many substances are tied to the same human
activities, one would like to construct scenarios where one knew whether the widely diverging
emissions scenarios for different gases were consistent with the underlying structure and trends
in human activity as well as the specific likelihood of such diverging emissions scenarios.

A particular application might explore the uncertainty in sulfate aerosols given a median estimate
of GHG emissions, as reductions in sulfate aerosol 1oadings projected in the IPCC SRES
scenarios figured prominently in shifting the 2100 warming estimates for the IPCC TAR as
compared with the Second Assessment Report (IPCC, 2001). Other scenarios may also be of
interest and can be easily constructed in the future. In the end, the most useful emissions
scenarios will be those that provide probabilistic bounds in terms of their aggregate contribution
to radiative forcing or to global mean temperature change. An uncertainty study of a climate
model equivalent to this study of an emissions model would be required to build such scenarios.®

3. CLIMATE IMPACTS OF REPRESENTATIVE SCENARIOS

We use the MIT 2D climate-chemistry model to compute the climate impacts resulting from
the three representative scenarios presented above. We compare these scenario results to the
climate impacts of the six representative SRES scenarios, also as simulated by the MIT climate
model. We do not consider, here, the further uncertainties in climate that stem from uncertainties
in climate models themselves (Webster and Sokolov, 2000).

The MIT Integrated Global System Model is aset of coupled sub-models that includes the
EPPA model aswell as submodels that comprehensively cover atmosphere, ocean, and terrestrial
earth systems. Emissions scenarios from EPPA are used as inputs into a coupled chemistry/
climate model along with scenarios of natural emissions of GHGs from a Natural Emissions
Model (for wetland CH, and natural N,O emissions) and other natural emissions preprocessor
(Prinn et al., 1999; Wang et al., 1998). The chemistry and climate model is a two-dimensional

8 such astudy isin progress at the MIT Joint Program on the Science and Program of Climate Change.
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(2D) land-ocean (LO) resolving climate model, which is coupled to a 2D model of atmospheric
chemistry and a 2D or three-dimensional (3D) model of ocean circulations (Sokolov and Stone,
1998; Wang et al., 1998; Wang and Prinn, 1999). In addition to the 2D global chemistry, the
IGSM includes a 3D urban air chemistry model for treating emissionsin urban areas (Mayer et
al., 2000). The TEM model of the Marine Biological Laboratory (Melillo et al., 1993; Tian et al.,
1999; Xiao et al., 1997, 1998) simulates carbon and nitrogen dynamics of terrestrial ecosystems.
These features alow the IGSM to project concentrations of the relevant trace gases, accounting
for photochemical processes and the feedback of climate on natural emission sources; radiative
forcing from these trace gases; temperature and precipitation at different latitudes (longitudinally
averaged) and global mean; and sea level rise due to thermal expansion of the oceans.

We find that the CO, concentration by 2100 reaches 465 ppm, 662 ppm, and 1090 ppm in the
low, median, and high scenarios, respectively (Figure 7a). The SRES span asimilar range, from
518 ppm to 965 ppm because of the comparable rangesin CO, emissions. Radiative forcing due
to CO, alone in our scenarios ranges from 3.0 to 8.4 W/m? by 2100, and the SRES scenarios
result in asimilar range. In contrast, the ranges of radiative forcing resulting from other
radiatively active substances exhibit greater differences between our scenarios and the SRES.

For methane forcing, our scenarios range from 0.4 to 2.3 W/m? by 2100, while the SRES covers
asmaller range and is biased towards lower forcings, from 1.1 to only 1.3 W/n7*. Recall that
although parameters that drive both CO, and CH, are at extreme valuesin the high and low
cases, other uncertainties specific to CH, are at median values; our range is not as large as afull
95% confidence interval for CH, forcing would be. Radiative forcing from N,O in the SRES
coversamore similar range to that of our scenarios, but the SRES are biased towards higher
forcingsin this case. The combined radiative forcing effects of HFCs, PFCs, SF,, and CFCs are
also biased higher in the SRES. Our three scenarios have radiative forcings of 0.2, 0.5, and 0.9
W/, while the SRES scenarios range from 0.4 to 0.9 W/n?.

Perhaps the most important differences are the sulfate aerosol contributionsto radiative
forcing in our analysis compared with the SRES scenarios. The sulfate forcing in our scenariosis
—0.4, -1.0, and —1.6 W/m? by 2100 in the low, median, and high scenarios, respectively. By
contrast, the range of forcings from the SRES scenarios is—0.3 to —0.7 W/m?. Our wider range
stems from two factors: (1) we represent uncertainty in existing sulfate loading, recognizing that
SO, emissions come from many sources (e.g., energy and biomass burning and industrial
processes) that are not all monitored and measured with great accuracy; and (2) we relate
reductions in emissions of SO, per unit of fuel combustion and other sources to growth in per
capitaincome to reflect the growing demand for environmental clean-up with rising incomes that
has been observed. Asaresult of (1), once the wide uncertainty range for emissionsin 2000 is
represented in the climate chemistry IGSM there is an immediate response, representing
uncertainty in current levels of radiative forcing. As aresult of (2) and other assumptions about
the trend in emissions coefficients, we find the possibility of either increasing or decreasing
sulfate aerosol forcing. The SRES scenarios include no uncertainty in current emissions of SO,
and all scenarios show radiative forcing in 2100 to be below current levels of forcing. There are
other ways to represent uncertainty in future SO, emissions that could change our results but,
apart from any modeling, an adequate representation of uncertainty would seem to involve some
measurabl e chance that SO, emissions might increase rather than decrease. Figure 7(f) shows the
resulting global mean temperature change from 1990 as a result of our three scenarios and the six
representative SRES scenarios.
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Because CO, isthe largest single driver, the ranges of temperature changes are not extremely
different: our scenarios range from 0.9 to 4.0 °C, and the SRES range from 1.3t0 3.6 °C.
However, it isinteresting to note that the temperature change in five of the six SRES scenariosis
greater than or equal to the temperature change in our median scenario of 2.2 °C. Themain
reason for the difference in the median or central tendency of the two sets of scenariosisthe
difference in sulfate aerosol forcing. It isimportant to be clear that the range of global mean
temperature change between our low and high scenariosis not a 95% confidence bound on
temperature change from the MIT model. To give this range will require applying the methods
described here to afull uncertainty analysis of the climate model.

4. CONCLUSIONS

Analysis of possible future climate changes should include quantification of the uncertainty in
climate projections. In this paper, we constructed three representative scenarios where the
emissions of CO, are at median, upper 95%, and lower 95% levels, and all other emissions are at
their median levels conditional on the CO, emissions. We have compared emissions from the six
representative SRES scenarios with our calculated probability distributions of emissions, and also
compare the climate impacts of the SRES scenarios with the impacts from our low, median, and
high CO, scenarios. We find that the SRES CO, emissions covers much of our 95% confidence
range, but is biased towards lower CO, emissions by the end of the century than our distributions.
The differences partly reflect the inclusion of policy effects in some of the SRES scenarios,
whereas we have tried to develop probability distributions of emissions under no climate policy.
Assessments of the effects of policy would require repeating this exercise under the policy
assumption, and then comparing the resulting probability distributions and their impacts.

For other greenhouse gases and aerosols, the SRES scenarios tend to encompass much
narrower ranges than we find from uncertainty propagation. Further, the SRES emissions are
biased higher than our distributions for some species and biased lower for others. One difference
isthat the IPCC does not include the uncertainty in current emission levels, which is significant
in many cases. Finaly, the greatest difference between the two methods is found in sulfur
emissions. Here, the IPCC has assumed the presence of sulfate reduction policies later in the
century seemingly without considering uncertainty in the ability/willingness to implement such
policies. In performing the uncertainty analysis, we also include the effect sulfate reductions as
economies increase in wealth, but we have aso included the uncertainty in how that relationship
will hold in other countries in the future.

As aresult of the different methods and assumptions in constructing representative scenarios,
we find that the IPCC SRES are biased in the direction of higher global mean temperature
change by the end of the next century. This bias towards higher temperaturesis partly due to the
strongly optimistic assumptions about the reductions in sulfur emissions.

A significant motivation for this study was the perceived desire within the climate modeling
community for asmall set of scenarios that describe a central tendency (mean or median) and
high and low cases that bound an explicit probability. We hope these emissions scenarios
provide a useful set of scenarios to study climate uncertainties.
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