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Abstract

Future global climate projections are subject to large uncertainties. Major sources of this uncertainty are projections

of anthropogenic emissions. We evaluate the uncertainty in future anthropogenic emissions using a computable general

equilibrium model of the world economy. Results are simulated through 2100 for carbon dioxide (CO2), methane

(CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs) and sulfur hexafluoride (SF6),

sulfur dioxide (SO2), black carbon (BC) and organic carbon (OC), nitrogen oxides (NOx), carbon monoxide (CO),

ammonia (NH3) and non-methane volatile organic compounds (NMVOCs). We construct mean and upper and lower

95% emissions scenarios (available from the authors at 11� 11 latitude–longitude grid). Using the MIT Integrated

Global System Model (IGSM), we find a temperature change range in 2100 of 0.9 to 4.01C, compared with the

Intergovernmental Panel on Climate Change emissions scenarios that result in a range of 1.3 to 3.61C when simulated

through MIT IGSM. r 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Many human activities cause the release of substances

that alter the radiative properties of the atmosphere.

Projections intended to represent plausible transient

climate change due to anthropogenic forcing must,

therefore, rely on emissions projections produced by

models of economic activity and technological change.

Such projections of changes in economic and technolo-

gical forces are, however, subject to considerable

uncertainty. The evaluation of uncertainty in economic

and technological factors and the effects on forecasts of

carbon dioxide emissions has a relatively long history

(e.g., Nordhaus and Yohe, 1983; Reilly et al., 1987) but

the emissions forecasts associated with particular

uncertainty limits, heretofore, have not been used to

force complex climate models.

A major advance over the past decade has been the

development of coupled ocean-atmosphere models

combined with development of computational capacity

to simulate transient climate change (IPCC, 2001). A

second major advance on the atmospheric modeling

front has been the coupling of atmospheric chemistry

models with climate models so that the complex

interactions of greenhouse gases, urban air pollutants,

and other substances can be explicitly represented

(Wang et al., 1998; Mayer et al., 2000). Economic

modeling has made major advances as well, most

recently in the ability to consistently model and project

the human activities that lead to emissions of the many
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substances that affect climate directly or indirectly

(Babiker et al., 2001; Reilly et al., 1999; IPCC SRES).

These advances in economic and climate modeling

make it timely, therefore, to reconsider uncertainty in

emissions projections. In this paper, we describe the

development of a consistent set of emissions scenarios

with known probability characteristics based on projec-

tions of human activities over the next 100 years.1 To

produce these scenarios we make use of recent develop-

ments in uncertainty techniques (Tatang et al., 1997) and

apply them to the Emissions Prediction and Policy

Analysis (EPPA) model (Babiker et al., 2001), a

computable general equilibrium model (CGE) of the

world economy that projects the major greenhouse gases

as well as other climatically or chemically important

substances. We compare our results to the scenarios

generated for the Intergovernmental Panel on Climate

Change (IPCC) Special Report on Emissions Scenarios

(SRES, 2000).

Section 2 begins with a brief discussion of uncertainty

analysis and details of our approach. We then present

the resulting distributions of emissions. Finally, we

develop specific emissions scenarios with known prob-

ability characteristics and simulate resulting climate

change using the MIT Integrated Global Systems Model

(IGSM), comparing them to the SRES results also

simulated through the MIT IGSM (Prinn et al., 1999;

Reilly et al., 1999).

2. Uncertainty analysis

There are two broadly different ways to approach the

problem of forecasting when there is substantial

uncertainty: uncertainty analysis (associating probabil-

ities with outcomes) and scenario analysis (developing

‘‘plausible’’ scenarios that span an interesting range of

possible outcomes). Both approaches are evident in

climate assessments, most notably the recent IPCC

reports. Authors for the IPCC Third Assessment Report

(TAR) were encouraged to quantify uncertainty as much

as possible (Moss and Schneider, 2000). The IPCC

Special Report on Emissions Scenarios (SRES, 2000)

used the plausible scenario approach, described as a

‘‘story line’’ analysis where all the scenarios developed

were considered ‘‘equally valid,’’ the authors strongly

resisting an assignment of quantitative or qualitative

likelihoods to scenarios.

There can be great benefit to a ‘‘story line’’ approach

as it allows one to explore in detail how particular sets of

assumptions produce different or similar outcomes. One

advantage is that in assessments involving a set of

authors with widely diverging views, it is typically easier

to present scenarios without attaching likelihoods. The

scenario or ‘‘story line’’ approach allows scenarios from

experts with widely varying ‘‘world views’’ to be

considered ‘‘equally valid’’, avoiding deadlock.

The alternative approach, uncertainty analysis, re-

quires identification of the critical uncertain model

parameters, quantification of the uncertainty in those

parameters in the form of probability distributions, and

then sampling from those distributions and performing

model simulations repeatedly to construct probability

distributions of the outcomes. With this approach, one

can quantify the likelihood that an outcome falls within

some specified range.

In the end, the difference between formal quantitative

uncertainty analysis and the story line scenario ap-

proach is not whether a judgment about likelihood of

outcomes is needed but rather when and by whom the

judgment is made. Scientists can use the tools of

uncertainty analysis and their judgment to describe the

likelihood of outcomes quantitatively, or the assessment

of likelihood can be left to the policy makers and the

public who must ultimately decide whether the risks of

climate change are great or small. Our views are that (1)

it is important for experts to offer their judgment about

uncertainty in their projections and (2) formal uncer-

tainty techniques can eliminate some of the well-known

cognitive biases that exist when people deal with

uncertainty (Tversky and Kahneman, 1974). The evi-

dence is strong that experts and laymen are equally

prone to such biases and quantitative approaches can

reduce if not eliminate these biases (Morgan and

Henrion, 1990).

Finally, the nature of forecasting economic activity

and technological development entails that some judg-

ments about the uncertainty in future trends will be

subjective, relying on expert elicitation. Our objection to

using story-line analysis to describe uncertainty is not

that it is subjective, but that it is not the proper method

for quantifying uncertainty. Uncertainty analysis should

be used when the goal is to quantify uncertainty.

The uncertainty analysis described in this study is able

to produce emissions projections that are consistent with

underlying economic, demographic, and technological

assumptions across substances for any year and over

time. It also allows us to recover the underlying

parameter values that can lead to a particular case,

where they lie in the input distributions we used, and the

probability characteristics of the outcome associated

with the case. Our approach involves: (1) use of the MIT

Emissions Prediction and Policy Analysis (EPPA) model

(Babiker et al., 2001, 2000); (2) sensitivity analysis

to determine those parameters that are most important

for particular outcomes (Webster et al., 2001);

(3) development of probability distributions for the

parameters chosen for analysis (described in Section 3);

1These scenarios are gridded at 11� 11 latitude–longitude,

and are available to interested researchers by contacting the

corresponding author.
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(4) application of the Deterministic Equivalent Model-

ing Method (DEMM) approach to produce a poly-

nomial reduced form fit of the EPPA model (Webster

et al., 2001; Webster and Sokolov, 2000; Tatang et al.,

1997); and (5) Monte Carlo simulation of the reduced

form polynomial fit developed using DEMM.

3. Probability distributions of uncertain parameters

The computational demands of the DEMM approach

require limiting the number of independently sampled

uncertain parameters where possible. Based on sensitiv-

ity analysis (Webster et al., 2001), we identified 12

parameters grouped into eight independent sets of

probability distributions to sample from, and assume

perfect correlation within each set:

(1) labor productivity growth—all regions correlated,

(2) AEEI—all regions correlated,

(3) agricultural sources of CH4 and N2O,

(4) industrial sources of CH4 and N2O,

(5) industrial sources of HFCs, PFCs, and SF6,

(6) fossil fuel combustion sources of SO2, NOx, CO,

NMVOC, BC, OC, and NH3,

(7) agricultural sources of SO2, NOx, CO, NMVOC,

BC, OC, and NH3, and

(8) industrial sources of SO2, NOx, CO, NMVOC, BC,

OC, and NH3.

We constructed the distributions for uncertain para-

meters through expert elicitation and from data

obtained from the literature. The probability distribu-

tions for labor productivity growth and AEEI were

obtained by expert elicitation. Five economists2 partici-

pated in a protocol, each providing fractiles for the

distribution for these variables. The five probability

distributions for each quantity were then combined by

equally weighting each expert’s assessment. The dis-

tributions of labor productivity were assessed in terms of

GDP growth. Separate distributions for labor produc-

tivity growth were assessed for each of the EPPA

regions, but in this uncertainty study we treat growth in

all regions as perfectly correlated. Similarly, distribu-

tions for AEEI were elicited from the experts for OECD

regions and separately for non-OECD regions, but

treated as perfectly correlated during the random

sampling (Table 1).

The remaining parameters reflect uncertainties in

emissions per unit of economic activity, which we refer

to as emissions coefficients. Uncertainties in current

emissions of CH4 (Olivier et al., 1995) and N2O (Mosier

and Kroeze, 1998) from anthropogenic sources are large

(Table 2) and for N2O the range of uncertainty differs

between agricultural and industrial sources. These

ranges are interpreted as one standard deviation from

the mean, and beta distributions fit to the uncertainty

factors (Table 3).

Alternative scenarios for emissions of HFCs, PFCs,

and SF6 are given in Harnisch et al. (2000). The major

uncertainty surrounding these gases is how emissions per

unit of economic activity will change in the future as

current anthropogenic emissions are relatively well-

constrained by measurements of global concentrations.

Thus, for these gases, we treated as uncertain the change

in their emissions coefficients over time. The time trend

was fit to the emissions coefficient data as exponential

(HFCs and SF6) and linear (PFCs) functions. Prob-

ability distributions are developed for the parameters of

these uncertain time trend functions (Table 3)3.

Current emissions of the other pollutants, including

SO2, NOx, CO, NMVOCs, and particulates are subject

to substantial uncertainty (Table 2). As above, emissions

from each source activity are treated as independent,

while the emissions of each non-GHG from a given

activity is perfectly correlated during sampling (e.g., SO2

and NOx from agriculture are correlated). Estimates of

the uncertainty in emissions from agricultural and

industrial activities (not including fuel combustion) are

based on Edgar v2.0 data (Olivier et al., 1995) and

Seinfeld and Pandis (1998). We approximate one

Table 1

Fractiles of initial GDP and AEEI distributions

Region 2.50% 50% 97.50%

Initial GDP growth rate (%/yr)

USA 1.65 3.34 4.54

JPN 1.22 2.64 3.65

EEC 1.38 2.75 3.72

OOE 1.39 2.79 3.79

EEX 0.70 3.03 5.04

CHN 1.67 5.24 8.51

FSU 1.69 3.32 4.81

IND 1.94 4.84 7.33

EET 1.88 3.84 5.63

DAE 1.34 4.41 7.06

BRA �0.39 3.20 6.29

ROW 0.37 3.76 6.68

AEEI (%/yr)

OECD 0.25 0.96 1.54

Non-OECD 0.23 1.13 1.79

Note: GDP rates are for the initial period, after which they

approach an asymptotic limit of 1% for OECD regions and 2%

for non-OECD regions.

2The participating experts were: Henry Jacoby, Richard

Eckaus, A. Denny Ellerman, John Reilly, and Mustafa Babiker.

3For more details on these and the other parameter

distributions, see Webster et al. (2001).
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standard deviation limits in emissions from industrial

sources as 750% of the mean. Uncertainty in emissions

from agricultural sources is somewhat wider and skewed

towards higher emissions with an upper standard

deviation of +80% of the mean and a lower standard

deviation of �40%.

The dominant source of these other pollutants is the

combustion of fossil fuels. The emissions coefficients

over time for each species is fit as a power series function

of GNP per capita4

ef ¼ a ðGNP=capitaÞc ð1Þ

except for SO2 emissions, which are fit as an exponential

function

ef ¼ a expð�c ðGNP=capitaÞÞ: ð2Þ

The values of the parameters a and c are estimated based

on cross-sectional data, along with an estimate of the

standard error. The uncertainty in the emissions from

fuel combustion is then represented as the average

standard error for the parameter a in these functions,

which is 760% of the mean. Uncertainty in the

evolution of GNP per capita is driven by the uncertainty

in labor productivity growth. Together these two

uncertainties encompass a wide range of possible future

aerosol and pollutant emissions as a function of the

growth of the economy and how emissions are reduced

as wealth increases (Table 3).

4. Emissions uncertainty results

Using DEMM, we propagate the uncertainty in 8

independent sets of input parameters by estimating

reduced form models of EPPA, and performing Monte

Carlo simulation on the reduced form model using

10,000 random samples from the parameter distribu-

tions. The resulting samples of emissions of each species

Table 2

Annual global total emission estimates

Natural Anthropogenic Total

CH4 [Tg CH4] 160 (110–210) 375 (300–450) 535 (410–600)

N2O [Tg N] 9 (4.3–14.7) 7.2 (2.1–19.7) 16.2 (6.4–34.4)

NOx [Tg N] 19.3 (6–35) 31.1 (16–46) 50.4 (22–81)

SO2 [Tg S] 32 (25–40) 70 (69–76) 102 (95–116)

CO [Tg CO] 370 (280–960) 925 (600–1250) 1295 (880–2210)

BC [Tg C] — 6.5 (1.8–13) ff 13.7 (3.8–26)

7.2 (2–13) biomass

OC [Tg mass] 7.8 (??) 7.5 (0.75–15) ff 59.3 (5.2–95)

44 (4.4–80) biomass

Source: Summarized from Olivier et al. (1995), Seinfeld and Pandis (1998), and Mosier and Kroeze (1998).

Table 3

Fractiles of 1995 global emissions distributions and trends

Emissions

Parameter 2.50% 50% 97.50% Units

CH4 agric 41.7 163.5 341.0 MT CH4 from agricultural sources

CH4 indus 37.0 145.2 302.7 MT CH4 from industrial sources

N2O agric 0.8 8.4 16.1 MT N2O from agricultural sources

N2O indus 0.3 1.1 1.9 MT N2O from industrial sources

SO2 from fossil fuels 10.4 115.2 220.1 MT SO2 from fossil fuels

SO2 agric 0.7 7.6 14.5 MT SO2 from agricultural sources

SO2 indus 5.5 31.7 58.0 MT SO2 from industrial sources

HFCs trend �9.8% 0% 14.8% Annual exponential rate of change relative to reference (%)

SF6 trend �6.8% 0% 4.6% Annual exponential rate of change relative to reference (%)

PFCs trend �0.148 0 0.35 Annual rate of departure from reference (Mt/yr)

4Macroeconomic models such as EPPA do not have detailed

descriptions of technologies and their emissions characteristics,

but rather represent average characteristics by industrial sector

and country. Thus the treatment of uncertainty is at this

aggregate level, and the functional approximations of emissions

in terms of GDP/capita capture the aggregate characteristics

reasonably well.
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at each time period are then used to construct

probability distributions.

The resulting uncertainty in greenhouse gas emissions

is summarized by the median, 7one standard deviation

(67%), and 7two standard deviations (95%) for the

emissions of each gas, which are compared with

emissions from the six representative scenarios from

the IPCC SRES (Fig. 1). Although the SRES scenarios

do not have an associated probability, it is useful to

compare them to our probabilistic bounds. CO2 emis-

sions from the SRES scenarios spread over much of our

95% range (Fig. 1a). This is not surprising, since

socioeconomic models of many types have been used

to project CO2 emissions for nearly two decades, and

modeling studies tend to be fairly consistent (Weyant

and Hill, 1999). But while the range itself is similar, the

distributions are not. The SRES has a lower bias among

its scenarios, with four of the six SRES scenarios well

below our median emissions in 2100.

Emissions projections of other greenhouse gases are

less consistent between our ranges and the IPCCs. One

significant difference is that the IPCC assumes that

global emissions of all gases are known for 1990–2000,

while there is, in fact, considerable uncertainty in current

global emissions, particularly emissions resulting from

agricultural activities and emissions from developing

countries. We find a larger range of uncertainty in non-

CO2 greenhouse gas emissions than the IPCC does.

Four of the six N2O scenarios are near the lower 67%

bound while the other two are near the upper 67%

bound, and none are close to our mean.

For the F-gases—hydrofluorocarbons, perfluorocar-

bons, and sulfur hexafluoride—the IPCC has developed

four representative scenarios (Fenhann, 2000; SRES,

2000). Their projections of HFC emissions span

considerably less than our 67% probability range. The

higher HFC emission trajectories in EPPA permit strong

increases of emission levels as a consequence of increases

of GDP. In contrast, the SRES emissions remain capped

because of a prescribed de-coupling of HFCs from

increases of GDP due to market saturation. The low

HFC emission levels, which are also possible within

EPPA, are also not seen in SRES, as its authors seem

fairly pessimistic about the potential for emission

control through containment and substitution by alter-

native fluids. For PFCs the authors of SRES seem

skeptical about the availability of technological options

to reduce PFC emissions from aluminum production

eventually leading to PFC-free production. The results

are similar for SF6.

In Fig. 2, we show the uncertainty in emissions of

SO2, NOx, CO, and non-methane hydrocarbons. As

with the greenhouse gases, our probability bounds

account for uncertainty in current global emissions of

these species as well as economic growth, while the IPCC

assumes that current emissions are known. SO2 emis-

sions, a precursor to sulfate aerosols, are especially

important in climate projections because of the strong

negative radiative forcing effect of those aerosols. The

difference between the SRES projections of SO2 emis-

sions and our projections is striking. In all six of the

representative scenarios, the IPCC projects that after

about 2040, SO2 emissions will begin to steadily decline.

The IPCC assumes that policies will be implemented to

reduce sulfur emissions, even in developing countries, in

all imaginable cases. By contrast, our study imagines

that the ability or willingness to implement sulfur

emissions reduction policies is one of the key uncertain-

ties in these projections. Accordingly, our 95% prob-

ability range includes the possibility of continuing

increases in SO2 emissions over the next century, as

well as declining emissions consistent with SRES.

Similarly, though not as striking, SRES projections of

NOx, CO, and NMVOC emissions all fall within the

lower half of our probability distributions of emissions.

Finally, we project emissions of other climatically

relevant substances not treated in the IPCC SRES: black

carbon aerosols, organic carbon aerosols, and ammonia.

Recently there has been an increased interest in the

radiative forcing properties of light-absorbing black

carbon or elemental carbon aerosols, primarily pro-

duced from incomplete combustion (Hansen et al.,

2000). Aerosols in both polluted and remote areas

contain a wide range of organic compounds, resulting

from direct emissions or secondary chemical production

in the atmosphere, that have negative radiative forcing

like sulfate. Finally, ammonia emissions are important

because the primary form of sulfate and nitrate aerosols

are as ammonium salts. While the influence of changing

emissions of ammonia and carbonaceous aerosols has

not been explicitly formulated in the current version of

the MIT climate-chemistry model, we project these

emissions for the new version of the IGSM currently

being developed (Fig. 3).5

5. Scenarios for climate simulations

Quantifying uncertainty in emissions with probability

distributions, as illustrated above, is an important step

towards treating uncertainty in climate projections and,

ideally, the uncertainty in emissions scenarios would be

jointly considered with uncertainty in climate models.

For many climate models it is not computationally

feasible to run hundreds of scenarios, and instead

modelers must simulate a selected set of scenarios, such

as those developed in the IPCC SRES. Our approach

allows us to select scenarios where we can describe the

associated likelihoods.

5The IPCC does not project emissions of these substances, so

there are no comparisons in the figure.
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(a) Global CO2 Emissions
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(b) Global Methane Emissions 
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(c) Global N2O Emissions
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(f) SF6 Emissions
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Fig. 1. Emissions of primary anthropogenic greenhouse gases. Panels (a) carbon dioxide, (b) methane, (c) nitrous oxide, (d) HFCs, (e)

PFCs, and (f) SF6. The solid lines show the mean emissions based on 10,000 runs, long dashed lines show 767%, short dashed lines

show 795% probability bounds, and dotted lines show the emissions from the six representative SRES scenarios.
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In designing probabilistically meaningful emissions

scenarios for climate models, the multiple climatically or

chemically important substances and the correlations

among them must be accounted for. If three different

probabilities are used for each of the four groups of

independently varying emissions in this study, mean,

upper 95%, and lower 95%, then there are 34 or 81

scenarios that describe every possible combination, an

impractically large number of simulations for coupled

AOGCMs. Further, this method will result in some

scenarios that have extremely low probabilities. For

example, choosing the upper 95% value on all four

groups has a likelihood of being exceeded of

(0.025)4=3.9� 10�7 or an approximately 1 out of

2,560,000 chance.

We ‘‘pare’’ the decision tree to a few of the most

interesting scenarios. The single largest driver of climate

outcomes is CO2 emissions, so we begin by choosing

three emissions scenarios for CO2 that result in the

median, upper 95% and lower 95% emissions levels.

In order to keep the overall probability of the scenarios

at 2.5% and 97.5%, we fix the other greenhouse gas

and non-GHG emissions at their median levels where

the median is conditional on CO2 at median, the upper

95% and the lower 95% emissions. With positive

correlation between CO2 and CH4 emissions, for

example, median emissions of CH4 conditional on CO2

at its upper 95% level will be higher than median

emissions of CH4 conditional on CO2 at its median. This

process is illustrated in Fig. 4. Similarly, it is possible to

construct other scenarios, such as ones focused on

uncertainty in other GHGs or other pollutants condi-

tioned on median outcomes for CO2 or all GHGs

(dashed lines in Fig. 4).
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Fig. 2. Emissions of air pollutants. Panels (a) SO2, (b) NOx, (c) CO, (d) non-methane hydrocarbons. The solid lines show the mean

emissions based on 10,000 runs, long dashed lines show 767%, short dashed lines show 795% probability bounds, and dotted lines

show the emissions from the six representative SRES scenarios.
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6. Climate impacts of representative scenarios

We use the MIT 2D climate-chemistry model to

compute the climate impacts resulting from the three

representative scenarios presented above. We compare

these scenario results to the climate impacts of the six

representative SRES scenarios, also as simulated by the

MIT climate model. We do not consider, here, the

further uncertainties in climate that stem from uncer-

tainties in climate models themselves (Webster and

Sokolov, 2000).

The MIT Integrated Global System Model is a set of

coupled sub-models that includes the EPPA model as

well as submodels that comprehensively simulate atmo-

sphere, ocean, and terrestrial earth systems. Emissions

scenarios from EPPA are used as inputs into a coupled

chemistry/climate model along with scenarios of natural

emissions of GHGs from a Natural Emissions Model

(for wetland CH4 and natural N2O emissions) and other

natural emissions preprocessor (Prinn et. al., 1999;

Wang et al., 1998). The chemistry and climate model is

a two-dimensional (2D) land–ocean (LO) resolving

climate model, which is coupled to a 2D model of

atmospheric chemistry and a 2D model of ocean

circulations (Sokolov and Stone, 1998; Wang et al.,

1998; Wang and Prinn, 1999). In addition, the IGSM

includes a 3D urban air chemistry model for treating

emissions in urban areas (Mayer et al., 2000). The TEM

model of the Marine Biological Laboratory (Melillo

et al., 1993; Tian et al., 1999; Xiao et al., 1997, 1998)

simulates carbon and nitrogen dynamics of terrestrial

ecosystems. These features allow the IGSM to project

concentrations of the relevant trace gases, accounting

for photochemical processes and the feedback of climate

on natural emission sources; radiative forcing from these

trace gases; temperature and precipitation at different
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Fig. 3. Emissions of other aerosols and aerosol precursors. Panel (a) black carbon (soot) particulates, (b) organic carbon particulates,

and (c) ammonia. The solid lines show the mean emissions based on 10,000 runs, long dashed lines show 767%, short dashed lines

show 795% probability bounds.
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latitudes (longitudinally averaged) and global mean; and

sea level rise due to thermal expansion of the oceans.

We find that the CO2 concentration by 2100 reaches

465, 662, and 1090 ppm in the low, median, and high

scenarios, respectively (Fig. 5(a)). The SRES span a

similar range, from 518 to 965 ppm because of the

comparable ranges in CO2 emissions. Radiative forcing

due to CO2 alone in our scenarios ranges from 3.0 to

8.4W/m2 by 2100, and the SRES scenarios result in a

similar range. In contrast, the ranges of radiative forcing

resulting from other radiatively active substances exhibit

greater differences between our scenarios and the SRES.

For methane forcing, our scenarios range from 0.4 to

2.3W/m2 by 2100, while the SRES covers a smaller

range and is biased towards lower forcings, from 0.4 to

only 1.5W/m2. Recall that although parameters that

drive both CO2 and CH4 are at extreme values in the

high and low cases, other uncertainties specific to CH4

are at median values; our range is not as large as a full

95% confidence interval for CH4 forcing would be.

Radiative forcing from N2O in the SRES covers a more

similar range to that of our scenarios, but the SRES are

biased towards higher forcings in this case. The

combined radiative forcing effects of HFCs, PFCs,

SF6, and CFCs (not shown) are also biased higher in the

SRES: our three scenarios have radiative forcings of 0.2,

0.5, and 0.9 W/m2, while the SRES scenarios range from

0.4 to 0.9W/m2.

Perhaps the most important differences are the sulfate

aerosol contributions to radiative forcing in our analysis

compared with the SRES scenarios. The sulfate forcing

in our scenarios is �0.4, �1.0, and �1.6W/m2 by 2100

in the low, median, and high scenarios, respectively. By

contrast, the range of forcings from the SRES scenarios

is �0.3 to �0.7W/m2. Our wider range stems from two

factors: (1) we represent uncertainty in existing sulfate

loading, recognizing that SO2 emissions come from

many sources that are not all monitored and measured

with great accuracy; (2) we relate reductions in emissions

of SO2 per unit of fuel combustion and other sources to

growth in per capita income to reflect the growing

demand for environmental clean-up with rising incomes

that has been observed. As a result of (1), once the wide

uncertainty range for emissions in 2000 is represented in

the climate chemistry IGSM there is an immediate

response, representing uncertainty in current levels of

radiative forcing. As a result of (2) and other assump-

tions about the trend in emissions coefficients, we find

the possibility of either increasing or decreasing sulfate

aerosol forcing. The SRES scenarios include no un-

certainty in current emissions of SO2 and all scenarios

show radiative forcing in 2100 to be below current levels

of forcing.

Fig. 5(f) shows the resulting global mean temperature

change from 1990 as a result of our three scenarios and

the six representative SRES scenarios. Because CO2 is

the largest single driver, the ranges of temperature

changes are not extremely different: our scenarios range

from 0.91C to 4.01C, and the SRES range from 1.31C to

3.61C. However, the temperature change in five of the

six SRES scenarios is greater than or equal to the

temperature change in our median scenario of 2.21C.

The main reason for the difference in the median or

central tendency of the two sets of scenarios is the

difference in sulfate aerosol forcing. It is important to be

clear that the range of global mean temperature change

between our low and high scenarios is not a 95%

confidence bound on temperature change from the MIT

model. To give this range will require applying the

methods described here to a full uncertainty analysis of

the climate model.

7. Conclusions

Analysis of possible future climate changes should

include quantification of the uncertainty in climate

projections. After propagating uncertainty through the

IGSM, we find that the SRES CO2 emissions cover

much of our 95% confidence range, but are biased
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Fig. 4. Probabilities for jointly varying emissions.
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towards lower CO2 emissions by the end of the century

compared with our distributions. The differences partly

reflect the inclusion of policy effects in some of the

SRES scenarios, whereas we have tried to develop

probability distributions of emissions under no climate

policy. Assessments of the effects of policy would

require repeating this exercise under the policy assump-

tion, and then comparing the resulting probability

distributions of impacts.

For other greenhouse gases and aerosols, the SRES

scenarios tend to encompass much narrower ranges than

we find from uncertainty propagation. Further, the

SRES emissions are biased higher than our distributions

for some species and biased lower for others. One

difference is that the IPCC does not include the

uncertainty in current emission levels, which is signifi-

cant in many cases. Finally, the greatest difference

between the two methods is found in sulfur emissions.

Here, the IPCC has assumed the presence of sulfate

reduction policies later in the century seemingly without

considering uncertainty in the ability/willingness to

implement such policies. In performing the uncertainty

analysis, we represent the effect of sulfate reductions as

economies increase in wealth, but we have also included

the uncertainty in how that relationship will hold for

other countries in the future.

As a result of the different methods and assumptions

in constructing representative scenarios, we find that the

IPCC SRES are biased in the direction of higher global

mean temperature change by the end of the next century.

This bias towards higher temperatures is partly due to

the strongly optimistic assumptions about the reductions

in sulfur emissions.

A significant motivation for this study was the

perceived desire within the climate modeling community

for a small set of scenarios that describe a central

tendency (mean or median) and high and low cases that

bound an explicit probability. We hope these emissions

scenarios provide a useful set of scenarios to study

climate uncertainties.
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